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Abstract For a (non-symmetric) strong Markov process X, consider the Feynman–Kac semi-
group

T A
t f (x) := E

x
[
eAt f (Xt )

]
, x ∈ R

n, t > 0,

where A is a continuous additive functional of X associated with some signed measure. Under
the assumption that X admits a transition probability density that possesses upper and lower
bounds of certain type, we show that the kernel corresponding to T A

t possesses the density
pA

t (x, y) with respect to the Lebesgue measure and construct upper and lower bounds for
pA

t (x, y). Some examples are provided.

Keywords Transition probability density, continuous additive functional, Kato class,
Feynman–Kac semigroup
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1 Introduction

Let (Xt )t≥0 be a Markov process with the state space R
n. For a Borel measurable

function V : Rn → R, we can define the functional At of X by

At :=
∫ t

0
V (Xs)ds, t > 0. (1.1)
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Suppose that limt→0 supx E
x |At | = 0. Then, by the Khasminski lemma there exist

constants C, b > 0, such that

sup
x

E
xe|At | ≤ Cebt ; (1.2)

see, for example, [11, Lemma 3] or [12, Lemma 3.3.7]. Estimate (1.2) allows us to
define the operator

T A
t f (x) := E

x
[
eAt f (Xt )

]
, x ∈ R

n, t > 0, (1.3)

where the function f is bounded and Borel measurable. The family of operators
(T A

t )t≥0 forms a semigroup, called the Feynman–Kac semigroup.
Feynman–Kac semigroup is well studied in the case of a Brownian motion (see

[23, 24, 12, 3]); in particular, in [3] more general functionals are treated. The case of
a general Markov process is much more complicated; see, however, [12, Chap. 3.3.2]
and [24]. The essential condition on the process, stated in the papers cited, is that
the Markov process X is symmetric and possesses a transition probability density
pt(x, y).

In this paper, we construct and investigate the Feynman–Kac semigroups for a
wider class of Markov processes. First, we construct the Feynman–Kac semigroup
for a (non-symmetric) Markov process, admitting a transition density. We also treat
a more general class of functionals At , that is, in our setting the functional At is not
necessarily of the form (1.1), but is constructed by means of some measure � , which
is in the Kato class with respect to the transition probability density of X (cf. (2.3)).
The approach used in [8] allows us to show the existence of the kernel pA

t (x, y) of
the semigroup (T A

t )t≥0 and to give its representation. The method from [8] relies on
the construction of the Markov bridge density, which in turn employs the regularity
properties of the transition probability density of the initial process X rather than its
symmetry.

In such a way, this prepares the base for the main result of the paper, which is
devoted to the investigation of the Feynman–Kac semigroup for the particular class
of processes constructed in [18]. In [20, 19], we develop the approach that allows us
to relate to a pseudo-differential operator of certain type a Markov process possess-
ing a transition probability density pt (x, y) and construct for this density two-sided
estimates. In particular, such estimates provide an easily checkable condition when
a measure � belongs to the Kato class with respect to pt(x, y). This allows us to
describe the respective continuous additive functional At and to show (1.2). Starting
with the class of processes investigated in [18], we construct (see Theorem 3) the
upper and lower estimates for the Feynman–Kac density pA

t (x, y). In particular, we
show that the structure of such estimates is “inherited” from the structure of the es-
timates on pt (x, y). In some cases when the upper bound on pt(x, y) can be written
in a rather compact way, we can describe explicitly the Kato class of measures. For
example, this is the case if pt(x, y) is comparable for small t with the density of a
symmetric stable process; see also [4, Cor. 12] for refined results. In Proposition 4 we
show that if the initial transition probability density possesses an upper bound of a
rather simple (polynomial) form, this form is inherited by the Feynman–Kac density
pA

t (x, y).
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Up to the author’s knowledge, in general, the results on two-sided estimates of
pA

t (x, y) are yet unavailable. For X being an α-stable-like process, the estimates of
the kernel pA

t (x, y) are obtained in [22]; see also [10] and the references therein for
more recent results in this direction, including two-sided estimates on pA

t (x, y) in
the case when the functional A is not necessarily continuous. The approach used in
[22, 10] to construct the Feynman–Kac semigroup is based on the Dirichlet form
technique. See also [5] for yet another approach to investigate Feynman–Kac semi-
groups.

The paper is organized as follows. In Section 2, we give the basic notions and
introduce the main results. Proofs are given in Sections 3 and 4. In Section 5, we
illustrate our results with examples.

Notation

For functions f , g, by f � g we mean that there exist some constants c1, c2 > 0
such that c1f (x) ≤ g(x) ≤ c2f (x) for all x ∈ R

n. By x · y and ‖x‖ we denote,
respectively, the scalar product and the norm in R

n, and S
n denotes the unit sphere in

R
n. By Bb(R

n) we denote the family of bounded Borel functions on R
n. By Ck∞(Rn)

we denote the space of k-times differentiable functions, with derivatives vanishing at
infinity. By ci , c and C we denote arbitrary positive constants. The symbols ∗, �, and
♦ denote, respectively, the convolutions

(f ∗ g)(x, y) :=
∫
Rn

f (x − z)g(z − y)dz,

(f � g)(x, y) :=
∫
Rn

f (x − z)g(z − y)�(dz),

and

(f ♦ g)t (x, y) :=
∫ t

0

∫
Rn

ft−s(x, z)gs(z, y)�(dz)ds,

where � is a (signed) measure.

2 Settings and the main results

Let X be a Markov process with the state space R
n. We call X a Feller process if the

corresponding operator
Ttf (x) := E

xf (Xt ) (2.1)

maps the space C∞(Rn) of continuous functions vanishing at infinity into itself. As-
sume that X possesses a transition probability density pt (x, y) which satisfies the
following assumption.

P1. For fixed x ∈ R
n, the mapping y 
→ ps(x, y) is continuous for all s ∈ (0, t],

and the mapping s 
→ ps(x, y) is continuous for all x, y ∈ R
n.

Recall some notions on the Kato class of measures and related continuous additive
functionals.

We say that a functional ϕt of a Markov process Xt is a W -functional (see [13,
§6.11]) if ϕt is a positive continuous additive functional, almost surely homogeneous,
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and such that supx E
xϕt < ∞. By additivity we mean that ϕt satisfies the following

equality:
ϕt+s = ϕt + ϕs ◦ θt , (2.2)

where θt is the shift operator, that is, Xs ◦ θt = Xt+s . The function vt (x) := E
xϕt is

called the characteristic of ϕt and determines ϕt in the unique way; see [13, Thm. 6.3].
A positive Borel measure � is said to belong to the Kato class SK with respect to

pt(x, y) if

lim
t→0

sup
x∈Rn

∫ t

0

∫
Rn

ps(x, y)�(dy)ds = 0. (2.3)

By [13, Thm. 6.6], the condition � ∈ SK implies that the function

χt (x) :=
∫ t

0

∫
Rn

ps(x, y)�(dy)ds (2.4)

for which the mapping x 
→ χt (x) is measurable for all t ≥ 0, is the characteristic of
some W -functional ϕt .

Let � = �+ − �− be a signed measure such that �± ∈ SK with respect to
pt(x, y). Then

χ±
t :=

∫ t

0

∫
Rn

ps(x, y)�±(dy)ds (2.5)

are the characteristics of some W -functionals A±
t , respectively, that is, there exist A±

t

such that χ±
t (x) = E

xA±
t . Since for such functionals we have

lim
t→0

sup
x

E
xA±

t = 0,

then estimate (1.2) holds true, and thus the Feynman–Kac semigroup (T A
t )t≥0 for

At := A+
t − A−

t is correctly defined.
To show that the semigroup (T A

t )t≥0 can be written as

T A
t f (x) =

∫
Rn

f (y)pA
t (x, y)dy, f ∈ Bb

(
R

n
)
,

and to find the representation of the density pA
t (x, y) in terms of the probability

density of the initial process, recall some notions on Markov bridge measures.
Denote by (Ft )t≥0 the admissible filtration related to X. A Markov bridge X

x,y
t

of Xt is a Markov processes conditioned by X0 = x and Xt = y. In the proof of
[8, Thm. 1], it is shown that under P1 there exists the corresponding Markov bridge
measure P

t
x,y on Ft− for (t, x, y) such that pt(x, y) > 0. We denote by E

t
x,y the

expectation with respect to P
t
x,y .

The next proposition is essentially contained in [8, Thm. 1], but we reformulate
the result in the way convenient for our purposes.

Proposition 1. Let X be a Feller process, admitting the transition probability density
pt(x, y), for which assumption P1 holds. Let � = �+ −�− be a signed Borel mea-
sure, �± ∈ SK , and At = A+

t − A−
t , where A± are continuous additive functionals

with characteristics (2.5), respectively. Then

T A
t f (x) =

∫
{y: pt (x,y)>0}

f (y)pA
t (x, y)dy for any f ∈ Bb

(
R

n
)
,
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where
pA

t (x, y) = pt (x, y)Et
x,ye

At , x, y ∈ R
n, t > 0. (2.6)

Remark 1. When X is a Brownian motion, the statement of Proposition 1 is known,
see [23] and also [3]. The construction from [3, 23] can be extended to the case of a
symmetric Markov process, see [24]. On the contrary, the construction presented in
[8] relies on P1 and does not require the symmetry of the initial process.

Proposition 1 implicitly gives the representation of the function pA
t (x, y). How-

ever, when one wants to get quantitative information about pA
t (x, y), like the up-

per bound on pA
t (x, y), estimation of the expectation E

t
x,ye

At in (2.6) appears to
be non-trivial. Instead, for some class of Feller processes, we can use another ap-
proach, which enables us to get explicitly an upper estimate of pA

t (x, y). Namely, in
[18] we formulated the assumptions under which one can construct a Feller process
possessing the transition probability density pt(x, y) satisfying assumption P1 and
admitting upper and lower bounds of certain form. In order to make the presentation
self-contained, we quote this result below.

Let

Lf (x) := a(x) ·∇f (x)+
∫
Rn

(
f (x +u)−f (x)−u ·∇f (x)1{‖u‖≤1}

)
m(x, u)μ(du),

(2.7)
where f ∈ C2∞(Rn), and μ is a Lévy measure, that is, a Borel measure such that∫

Rn

(‖u‖2 ∧ 1
)
μ(du) < ∞.

Assume that μ satisfies the following assumption.

A1. There exists β > 1 such that

sup
�∈Sn

qU (r�) ≤ β inf
�∈Sn

qL(r�) for all r > 0 large enough,

where

qU(ξ) :=
∫
Rn

[
(ξ · u)2 ∧ 1

]
μ(du), qL(ξ) :=

∫
|u·ξ |≤1

(ξ · u)2μ(du). (2.8)

Assume that the functions a(x) and m(x, u) in (2.7) satisfy the assumptions A2–
A4 given below.

A2. The functions m(x, u) and a(x) are measurable, and satisfy with some con-
stants b1, b2, b3 > 0, the inequalities

b1 ≤ m(x, u) ≤ b2,
∣∣a(x)

∣∣ ≤ b3, x, u ∈ R
n.

A3. There exist constants γ ∈ (0, 1] and b4 > 0 such that∣∣m(x, u) − m(y, u)
∣∣ + ∥∥a(x) − a(y)

∥∥ ≤ b4
(‖x − y‖γ ∧ 1

)
, u, x, y ∈ R

n.

(2.9)
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A4. In the case β > 2, we assume that a(x) = 0 and the kernel m(x, u)μ(du) is
symmetric with respect to u for all x ∈ R

n.

Denote by flow and fup the functions of the form

flow(x) := a1
(
1 − a2‖x‖)+, fup(x) := a3e

−a4‖x‖, x ∈ R
n, (2.10)

where ai > 0, 1 ≤ i ≤ 4, are some constants.
Finally, define q∗(r) := sup�∈Sn qU (r�), r > 0. It was shown in [17] (see

also [20]) that condition A1 implies that

q∗(r) ≥ r2/β, r ≥ 1.

Note also that the continuity of qU in ξ implies the continuity of q∗ in r . Therefore,
we can define its generalized inverse

ρt := inf
{
r : q∗(r) = 1/t

}
, t ∈ (0, 1]. (2.11)

Theorem 2 ([18]). Under assumptions A1–A4, the operator (L, C2∞(Rn) extends to
the generator of a Feller process, admitting a transition probability density pt(x, y).
This density is continuous in (t, x, y) ∈ (0,∞) ×R

n ×R
n, and there exist constants

ai > 0, 1 ≤ i ≤ 4, and a family of sub-probability measures {Qt, t ≥ 0} such that

ρn
t flow

(
(x − y)ρt

) ≤ pt(x, y) ≤ ρn
t

(
fup(ρt ·) ∗ Qt

)
(x − y), t ∈ (0, 1], x, y ∈ R

n,

(2.12)
where flow and fup are functions of the form (2.10) with constants ai , and ρt is defined
in (2.11).

The constructed process is a Lévy type process. In the “constant coefficient case,”
that is, where a(x) ≡ const and m(x, u) = const, (2.7) is just the representation
of the generator of a Lévy process; in other words, a Lévy type process is the pro-
cess with “locally independent increments.” It is known (cf. the Courrège–Waldenfels
theorem, see [16, Thm. 4.5.21]) that if the class C∞

c (Rn) of infinitely differentiable
compactly supported functions belongs to the domain D(A) of the generator A of a
Feller process, then on this set C∞

c (Rn) the operator A coincides with L+ “Gaussian
component.” Thus, the class of processes satisfying the conditions of Theorem 2 is
rather wide.

Let us show that, under the conditions of Theorem 2, we have

pt (x, y) > 0 for all t > 0, x, y ∈ R
n.

We find the minimal N such that the distance from x to y can be covered by N balls
of the radius smaller than (2a2ρt/N)−1 (where a2 > 0 is the constant appearing in
flow in (2.12)), that is, the minimal N for which

‖x − y‖
N

≤ 1

a2ρt/N

. (2.13)

Observe that q∗(r) ≤ c1r
2, r ≥ 1, implying c2t

−1/2 ≤ ρt for all t small enough.

Hence, (2.13) holds with N ≥ (a2c2‖x−y‖)2

t
. Therefore, putting y0 = x and yN = y,
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we get

pt(x, y) =
∫
Rn

. . .

∫
Rn

( N∏
i=1

pt/N(yi−1, yi)

)
dy1 . . . dyN

≥
∫

B(y0,(2a2ρt/N )−1)

. . .

∫
B(yN−1,(2a2ρt/N )−1)

N∏
i=1

pt/N(yi−1, yi)dyi

≥ c0ρ
Nn
t/N ,

where in the last line we used that

pt/N(yi−1, yi) ≥ 2−1a1ρ
n
t/N for all yi ∈ B

(
yi−1, (2a2ρt/N)−1).

Thus, the transition probability density pt(x, y) is strictly positive.
Finally, for a signed Borel measure � , define

h(r) := sup
x

|� |{y : ‖x − y‖ ≤ r
}
, (2.14)

where |� | := �+ + �− is the total variation of � . Denote by ĥ the Laplace trans-
form of h.

The following theorem is the main result of the paper. Let t0 ∈ (0, 1] be small
enough.

Theorem 3. Let X be the Feller process constructed in Theorem 2. Take a signed
Borel measure � such that its volume function (2.14) satisfies∫ t

0
ρn+1

s ĥ(ρs)ds ≤ Ctζ , t ∈ [0, 1], (2.15)

with some constants C, ζ > 0, where ρt is given by (2.11). Then

a) There exists a continuous functional At such that

E
xAt =

∫ t

0

∫
Rn

ps(x, y)�(dy)ds;

b) The semigroup (T A
t )t≥0 is well defined, and its kernel possesses a density

pA
t (x, y) with respect to the Lebesgue measure on R

n;

c) There exist constants ai > 0, 1 ≤ i ≤ 4, and a family of sub-probability
measures {Rt , t ≥ 0} such that for t ∈ (0, t0] and x, y ∈ R

n,

ρn
t flow

(
(x − y)ρt

) ≤ pA
t (x, y) ≤ ρn

t

(
fup(ρt ·) ∗ Rt

)
(y − x); (2.16)

here flow and fup are the function of the form (2.10) with some constants ai ,
1 ≤ i ≤ 4.
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Remark 2. In general, ai in estimate (2.16) are some constants, that may not coincide
with those in estimate (2.12). In order to simplify the notation, we assume that in
Theorem 2, a1 = a3 = 1, a2 = a, and a4 = b.

Assumption (2.15) can be relaxed, provided that more information about the ini-
tial transition probability density is available. Put

gt (x) := 1

t
n
α (1 + ‖x‖/t1/α)d+α

, t > 0, x ∈ R
n. (2.17)

Note that for d = n, this function is equivalent to the transition probability density of
a symmetric α-stable process in R

n (that is, the process whose characteristic function
is e−t‖ξ‖α

). Denote by Kn,α the class of Borel signed measures such that

lim
t→0

sup
x

∫ t

0

|� |{y : ‖x − y‖ ≤ s}
sn+1−α

ds = 0. (2.18)

The following lemma shows that for d > n − α the Kato class of measures with
respect to gt (x − y) coincides with Kn,α . The proof uses the idea from [4], and will
be given in Appendix A.

Lemma 1. A finite Borel signed measure � belongs to SK with respect to gt (x − y),
given by (2.17) with d > n − α, if and only if |� | ∈ Kn,α .

Corollary 1. In particular, it follows from Lemma 1 that � ∈ SK with respect to the
transition probabiility density of a symmetric α-stable process if an only if � ∈ Kn,α .

In the proposition below, we state the “compact” upper bound for pA
t (x, y).

Proposition 4. Let X be a Feller process satisfying the conditions of Proposition 1,
and in addition assume that the transition density pt(x, y) of X is such that for all
t ∈ (0, 1], x, y ∈ R

n, the inequality

pt (x, y) ≤ cgt (x − y), t ∈ (0, 1], x, y ∈ R
n, (2.19)

where the function gt (x) is defined in (2.17) with d > n−α. Suppose that � ∈ Kn,α .
Then

pA
t (x, y) ≤ Cgt (x − y), t ∈ (0, 1], x, y ∈ R

n. (2.20)

Remark 3. a) For X being a symmetric α-stable-like process, such a result is known,
see [22]. In particular, the upper bound (2.20) holds with n = d . In our case, X is from
a wider class; in particular, we do not assume the symmetry of the initial process, and
the method of constructing the Feynman–Kac semigroup is completely different.

b) In view of Lemma 1, under the assumptions of this proposition, we can take
� ∈ Kn,α rather than � ∈ SK with respect to gt , which is more convenient for
usage.

In Section 5, we provide examples that illustrate Theorem 3 and Proposition 4.
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2.1 Discussion and overview

1. On continuous additive functionals. Loosely speaking, there are two approaches
for constructing continuous additive functionals. One approach, which we de-
scribed previously, relies on the Dynkin theory of W -functionals. Another ap-
proach, based on the Dirichlet form technique, establishes the one-to-one cor-
respondence between the class of positive continuous additive functionals and
the class of smooth measures, see [14, Lemmas 5.1.7, 5.1.8] or [15, Thm. 5.1.4]
in the case when the process under consideration is symmetric; see also [21,
Thm. 2.4] for the non-symmetric case. In this paper, we use Dynkin’s approach
as more appropriate in our situation, in particular, we do not assume that the
initial Markov process X is symmetric. Our standard reference in this paper
is [13].

2. On the generator of (T A
t )t≥0. Suppose that the Markov process X and the

positive functional At are as in Proposition 1. In this case, the semigroup
(T A

t )t≥0 is contractive, and thus there exists a sub-Markov process with transi-
tion sub-probability density pA

t (x, y). Formally, we can describe the generator
of (T A

t )t≥0 as
LA = L − �, (2.21)

where L is the generator of the semigroup associated with X, and � is the
measure appearing in the characteristic of At (cf. (2.4)), see [13, Thms. 9.5, 9.6]
for the (equivalent) formulation. Nevertheless, in this framework the problem
of defining the domain D(LA) of LA still remains open. In the general case,
that is, when A can attain negative values, in order to define the generator of
(non-contractive) semigroup (T A

t )t≥0, we can use the quadratic form approach,
see [1, 2], and also [9].

3 Proof of Theorem 3

3.1 Proof of statements a) and b)

a) By the upper bound in (2.12) on pt (x, y) (see also Remark 2), (2.15) implies that
� ∈ SK :

sup
x∈Rn

∫ t

0

∫
Rn

ps(x, y)|� |(dy)ds

≤ sup
x∈Rn

∫ t

0

∫
Rn

∫
Rn

ρn
s fup

(
(y − x − z)ρs

)
Qs(dz)|� |(dy)ds

≤ b sup
x∈Rn

∫ t

0

∫
Rn

∫ ∞

0
ρn

s |� |{y : ‖y − x − z‖ ≤ v/ρs

}
e−bvdvQs(dz)ds

≤ b

∫ t

0
ρn+1

s ĥ(bρs)ds → 0, t → 0.

Hence, applying [13, Thm. 6.6], we derive the existence of a continuous functional
At with claimed characteristic.

Statement b) is already contained in Proposition 1.
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3.2 Outline of the proof of c)

For the proof of Theorem 3(c), we use the Duhamel principle. First, we show that the
function pA

t (x, y) satisfies the integral equation

pA
t (x, y) = pt (x, y) +

∫ t

0

∫
Rn

pt−s(x, z)pA
s (z, y)�(dz)ds, (3.1)

provided that the integral on the right-hand side converges. We show that if the series

πt (x, y) :=
∞∑

k=1

p
♦k
t (x, y) (3.2)

converges, then it satisfies Eq. (3.1). We derive an upper estimate for the convolutions
p
♦k
t (x, y), which guarantees the absolute convergence of the series and allows to find

the upper estimate for πt (x, y).
Second, we show that on (0, t0] ×R

n ×R
n the solution (3.2) to (3.1) is unique in

the class of non-negative functions {f (t, x, y) ≥ 0, t ∈ (0, t0], x, y ∈ R
n} such that∫

Rn

f (t, x, y)dy ≤ C for all t ∈ (0, t0], x ∈ R
n. (3.3)

We use the standard method, based on the Gronwall–Bellman inequality.
Finally, observe that the kernel pA

t (x, y) of T A
t belongs to the class of functions

satisfying (3.3). Indeed, since for At we have (1.2), it follows that∣∣T A
t f (x)

∣∣ ≤ c1E
xe|At | ≤ c2, f ∈ Bb

(
R

n
)
, x ∈ R

n, t ∈ (0, t0]. (3.4)

Thus, pA
t (x, y) ≡ πt (x, y) on (0, t0] × R

n × R
n.

Before we prove that (3.2) is the solution to Eq. (3.1) on (0, t0] × R
n × R

n,
let us discuss a simple case when � is the Lebesgue measure on R

n. In this case
h(r) = cnr

n, and thus assumption (2.15) is satisfied:

∫ t

0
ρn+1

s ĥ(ρs)ds = cnt.

Therefore, the procedure of estimation of convolutions reduces to those treated in [18,
Lemmas 3.1, 3.2].

Rewrite the upper bound in (2.12) as

pt(x, y) ≤ C1t
−1/2(g(1)

t ∗ Qt

)
(y − x), (3.5)

where C1 > 0 is some constant,

g
(1)
t (x) := t1/2gt (x), (3.6)

and (cf. Remark 2)
gt (x) := ρn

t fup(ρtx) = ρn
t e−bρt |x|. (3.7)
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This modification is technical, but proves to be useful for estimating the convolutions
p
♦k
t (x, y). Let us estimate p

♦k
t (x, y). Take now a sequence (θk)k≥1 such that 0 <

θk+1 < θk , θ1 = 1, and put

g
(k)
t (x) := tk/2gt (θkx), k ≥ 1. (3.8)

Since ρt is monotone decreasing, for 0 < s < t
2 , we have ρt−s ≤ ρt/2. Note that

ρt � ρt/2; this follows from condition A1 and the definition of ρt ; see [20] for the
detailed proof. Then, for 0 < s < t/2,

(
g

(k−1)
t−s ∗ g(1)

s

)
(x) ≤ tk/2

∫
Rn

gt−s(θk−1x − θk−1y)gs(θk−1y)dy

= tk/2θ−n
k−1

∫
Rn

gt−s(θk−1x − y)gs(y)dy

≤ tk/2θ−n
k−1

∫
Rn

ρn
t−sρ

n
s e

− bρt θk
θk−1

(|θk−1x−z|+|z|)−bρs (1− θk
θk−1

)|z|
dz

≤ c1t
k/2θ−n

k−1ρ
n
t e−bρt θk |x|

∫
Rn

ρt e
−bρs(1− θk

θk−1
)|z|

dz

= Dkg
(k)
t (x), (3.9)

where Dk = c(θk−1 − θk)
−n, c = c1

∫
Rn e−b|z|dz, and in the second line from below,

we used the triangle inequality and monotonicity of ρt . In the case t/2 ≤ s ≤ t ,
calculation is similar.

By induction we can get

∣∣p♦k
t (x, y)

∣∣ ≤ Ckt
k
2 −1(g(k)

t ∗ Q
(k)
t

)
(y − x), k ≥ 2, (3.10)

where

Ck := ck−1Ck
1
Γ k(1/2)

Γ (k/2)

k∏
j=2

1

(θj−1 − θj )n
,

and for k ≥ 2

Q
(k)
t (dw) := 1

B(k−1
2 , 1

2 )

∫ 1

0

∫
R

(1−r)(k−1)/2−1/2r−1/2Q
(k−1)
t (1−r)(dw−u)Q

(1)
tr (du)dr.

Since {Q(k)
t , t > 0, k ≥ 1} is the sequence of sub-probability measures and g

(k)
t (x) ≤

ρn
t tk/2, we obtain ∣∣p♦k

t (x, y)
∣∣ ≤ Ckt

k−1ρn
t .

Thus, to show the absolute convergence of the series
∑∞

k=1 p
♦k
t (x, y), we may check

that
∑∞

k=1 Ck < ∞. However, the behaviour of Ck as k → ∞ is rather complicated.
To see this, take, for example, θk = 1

2 + 1
2k

. Then

Ck = ck−1Ck
1
Γ k(1/2)

Γ (k/2)

(
2kk!(k − 1)!)n

,
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and thus Ck explodes as k → ∞. Therefore, this procedure of estimation of con-
volutions is too rough, and needs to be modified. For this, we change the estimation
procedure after some finite number of steps; this allows us to control the decay of
coefficients and, in such a way, to prove that

∑∞
k=1 p

♦k
t (x, y) < ∞.

In the next subsection, we handle the general case, in particular,

• We give the generic calculation, which allows us to estimate the convolution
(gt−s � gs)(x);

• We estimate the convolutions p
♦k
t (x, y), k ≥ 2;

• We change the estimation procedure after k0 steps, where k0 is properly chosen,
and estimate p

♦(k0+�)
t (x, y), � ≥ 1.

The change of the estimation procedure could be unnecessary if we would know
that pt(x, y) possesses a more regular upper bound than (2.12). In this case, we obtain
a sufficient control on the coefficients Ck , k ≥ 1. This is exactly the case under the
conditions of Proposition 4.

3.3 Representation lemma, generic calculation, and estimation of convolutions

Lemma 2. The function pA
t (x, y) given by (2.6) satisfies Eq. (3.1).

Proof. In the case when X is a symmetric stable-like process and � ∈ SK with
respect to the transition probability density of X, the sketch of the proof is given
in [22]. In the general case, the proof is the same; in order to make the presentation
self-contained, we present it below. Using the equality

eAt =
∫ t

0
eAt−As dAs + 1,

the strong Markov property of X, and the additivity of At (cf. (2.2)), we write

T A
t f (x) = E

x
[
f (Xt )e

At
]

= E
xf (Xt ) + E

x

[∫ t

0

[
f (Xt )e

At−As
]
dAs

]

= E
xf (Xt ) + E

x

[∫ t

0
E

Xs
[
f (Xt−s)e

At−s
]
dAs

]

= E
xf (Xt ) + E

x

∫ t

0
T A

t−sf (Xs)dAs.

Observe that for f ∈ Bb(R
n), we have

E
x

∫ t

0
f (Xs)dAs =

∫ t

0

∫
Rn

f (y)ps(x, y)�(dy)ds. (3.11)

Indeed, since χt = χ+
t − χ−

t with χ±
t given by (2.5) is the characteristic of At ,

Eq. (3.11) holds for a finite linear combination of indicators. Approximating f ∈
Bb(R

n) by such linear combinations and passing to the limit, we get (3.11).
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For θ ∈ [0, 1], put
gt,θ (x) := gt (θx), (3.12)

where gt (x) is defined in (3.7), and

φν(s) := ρn+1
s ĥ(νρs), ν > 0, (3.13)

where h is the volume function (cf. (2.14)) appearing in condition (2.15). Lemma
below gives the generic calculation, needed for the proof of Theorem 3.

Lemma 3. For θ ∈ (0, 1), we have

(gt−s � gs)(x) ≤ C
[
φ(1−θ)b(t − s) + φ(1−θ)b(s)

]
gt,θ (x), x ∈ R

n, 0 < s < t ≤ 1,

(3.14)
where C > 0 is some constant, independent of θ , and b > 0 comes from the definition
of gt , see (3.7).

Proof. Take θ ∈ (0, 1). Since by definition the function ρt is decreasing, we have

‖x − z‖ρt−s + ‖z‖ρs ≥ ‖x‖ρt ,

which implies

(gt−s � gs)(x)

≤ e−θb‖x−y‖ρt ρn
t−sρ

n
s

∫
Rn

[
fup

(
(z − x)ρt−s

)
fup

(
(y − z)ρs

)](1−θ)|� |(dz).

By integration by parts we derive, using that ρt is monotone decreasing, that∫
Rn

ρn
t−sρ

n
s

[
fup

(
(x − z)ρt−s

)
fup

(
(z − y)ρs

)]1−θ |� |(dz)

≤ ρn
t/2

∫
Rn

ρn
s f 1−θ

up

(
(z − y)ρs

)|� |(dz)

≤ c1ρ
n
t ρn

s

∫ ∞

0
|� |{z : e−b(1−θ)‖z−y‖ρs ≥ e−v

}
e−vdv

= (1 − θ)bc1ρ
n
t ρn

s

∫ ∞

0
|� |{z : ‖z − y‖ ≤ v/ρs

}
e−b(1−θ)vdv

≤ (1 − θ)bc1ρ
n
t ρn

s

∫ ∞

0
h(v/ρs)e

−b(1−θ)vdv

= c1ρ
n
t ρn+1

s ĥ
(
b(1 − θ)ρs

)
= c1ρ

n
t φb(1−θ)(s). (3.15)

Similar estimate holds true for s > t
2 , which finishes the proof of (3.14).

Take a sequence (θk)k≥1 such that

θ1 = 1, θk > 0, θk−1 > θk, k ≥ 2. (3.16)

Let

k0 :=
[

n

αζ

]
, (3.17)
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where ζ is the parameter appearing in (2.15). Define

κ := min
{
b(θj−1 − θj ), 1 ≤ j ≤ k0

}
, (3.18)

F(t) :=
∫ t

0
φκ(r)dr, (3.19)

and

g̃
(k)
t (x) :=

{
gt,θk

(x)F k−1(t), 1 ≤ k ≤ k0,

e−bθk0 ρt‖x‖Fk−k0(t), k > k0,
(3.20)

where gt,θ (x) is defined in (3.12).
Finally, define inductively the sequence of measures

R
(1)
t (dw) := Qt(dw) if k = 1,

R
(k)
t (dw) := (

2F(t)
)−1

∫ t

0

∫
Rn

[
φκ(t − s) + φκ(s)

]
Qt−s(dw − u)R(k−1)

s (du)ds

(3.21)
if k ≥ 2. Since (Qt )t≥0 is the family of sub-probability measures (see Theorem 2),
we have

R
(2)
t

(
R

n
) ≤ (

2F(t)
)−1

∫ t

0

[
φκ(t − s) + φκ(s)

]
Qt−s

(
R

n
)
Qs

(
R

n
)
ds ≤ 1,

and we can see by induction that R(k)
t (Rn) ≤ 1, t ∈ [0, 1], for all k ≥ 2.

Lemma 4. For k ≥ 2 we have∣∣p♦k
t (x, y)

∣∣ ≤ C̃k

(
g̃

(k)
t ∗ R

(k)
t

)
(y − x), x, y ∈ R

n, t ∈ (0, 1], (3.22)

where the sequence (g̃
(k)
t )k≥1 is given by (3.20), R(k)

t is defined in (3.21), k ≥ 2, and
for k > k0, the constants C̃k can be expressed as

C̃k = Ck−k0M,

where M,C > 0 are some constants.

Proof. We use induction. Rewrite the upper estimate on pt (x, y) in the form (3.5).
For k = 2 we get, using (3.5) and (3.15), the following estimates:

∣∣p♦2
t (x, y)

∣∣ ≤ C2
1

∫ t

0

∫
R2n

[∫
Rn

g̃(1)
s (z − x − w1)g̃

(1)
t−s(y − z − w2)|� |(dz)

]
· Qt−s(dw1)Qs(dw2)ds

≤ C2

∫
Rn

gt,θ2(x − w)

{∫ t

0

[
φb(θ1−θ2)(t − s) + φb(θ1−θ2)(s)

]

·
∫
Rn

Qt−s(dw − u)Qs(du)ds

}
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≤ C2

∫
Rn

gt,θ2(x − w)

{∫ t

0

[
φκ(t − s) + φκ(s)

]

·
∫
Rn

Qt−s(dw − u)Qs(du)ds

}

≤ 2C2F(t)
(
gt,θ2 ∗ R(2)

)
(y − x)

= 2C2
(
g̃

(2)
t ∗ R(2)

)
(y − x), (3.23)

where C1 > 0 comes from (3.5), and in the third line from below we used that by the
definition of κ and monotonicity of φν in ν,

φb(θj−1−θj )(t) ≤ ϕκ(t), t ∈ (0, 1].
Suppose that (3.22) holds for some 2 ≤ k ≤ k0. Then

∣∣p♦(k+1)
t (x, y)

∣∣ ≤ 2k−1CkC1

∫ t

0

∫
Rn

(
g̃

(1)
t−s ∗ Qt−s

)
(z − x)

· (
g̃(k)

s ∗ R(k)
s

)
(y − z)dzds

= 2k−1CkC1

∫ t

0

∫
Rn

∫
Rn

(
g̃

(1)
t−s�g̃(k)

s

)
(y − x − w1 − w2)

· Qt−s(dw1)R
(k)
s (dw2)ds. (3.24)

By the same argument as those used in the proof of Lemma 3, we have

(
g̃

(1)
t−s � g̃(k)

s

)
(x) ≤ (gt−s,θk

� gs,θk
)(x)F k−1(t)

≤ ck+1gt,θk+1(x)F k−1(t)
[
φb(θk−1−θk)(t − s) + φb(θk−1−θk)(s)

]
= ck+1

(
F(t)

)−1[
φκ(t − s) + φκ(s)

]
g̃

(k+1)
t (x).

Substituting this estimate into (3.27), performing the change of variables and normal-
izing, we get (3.22) for 2 ≤ k ≤ k0.

Take c0 > 0. Note that for some c1 > 0, we have c0ρt ≤ ρc1t , t ∈ (0, 1]. Then,
by (2.15),∫ t

0
ρn+1

t ĥ(c0ρt )dt ≤ c2

∫ t

0
ρn+1

c1t
ĥ(ρc1t )dt ≤ c3

∫ c1t

0
ρn+1

t ĥ(ρt )dt ≤ c4t
ζ .

Therefore, taking k0 as in (3.17), we get

ρn
t F k0(t) ≤ c5t

−n/α+k0ζ ≤ c6, t ∈ [0, 1]. (3.25)

In such a way, on the (k0 + 1)-th step, we obtain

(
g̃

(k0)
t−s � g̃(1)

s

)
(x) ≤ ce−bθk0 ρt‖x‖

∫
Rn

e−bρs(1−θk0 )‖z−x‖|� |(dz)

= ce−bθk0 ρt‖x‖
∫ ∞

0
|� |{z : ρsb(1 − θk0)‖z − x‖ ≤ r

}
e−rdr
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≤ ce−bθk0 ρt‖x‖φb(1−θk0 )(s)

≤ cg̃
(k0+1)
t (x)φκ(s)F−1(t)

(cf. (3.15)), where in the last line we used the inequality κ < b(1 − θk0) and the
monotonicity of φν in ν. Using this estimate, we derive

p
♦(k0+1)
t (x, y) ≤ Ck0C1

∫ t

0

∫
Rn

∫
Rn

(
g̃

(k0)
t−s �g̃(1)

s

)
(y − x − w1 − w2)

· Qs(dw1)R
(k0)
t−s (dw2)ds

≤ 2cC1Ck0 · (
g̃

(k0+1)
t ∗ R

(k0+1)
t

)
(y − x). (3.26)

Then (3.22) follows by induction. Indeed, assume that (3.22) holds for k = k0 +�−1.
For � ≥ 2 we get(

g̃
(k0+�−1)
t−s � g̃(1)

s

)
(x) ≤ cF �−1(t)e−bθk0 ρt‖x‖φκ(s) = cF−1(t)g̃

(k0+�)
t (x)φκ(s).

Therefore,

∣∣p♦(k0+�)
t (x, y)

∣∣ ≤ (2C1c)
�−1C1Ck0

∫ t

0

∫
Rn

(
g̃

(k0+�−1)
t−s ∗ R

(k0+�−1)
t−s

)
(z − x)

· (
g̃(1)

s ∗ Qs

)
(y − z)dzds

= Ck0(2C1c)
�
(
g̃

(k0+�)
t ∗ R

(k0+�)
t

)
(y − x). (3.27)

Remark 4. As we observed in the proof, the estimation procedure depends on con-
dition H1, which guarantees the existence of the number k0 such that (3.25) holds.
In general, without H1 we cannot guarantee the existence of such a number, which is
crucial in our approach. For example, suppose that ρs � s−1 for small s, and take the
measure � such that

h(r) � 1

ln2 r
, r ∈ (0, 1].

By the Tauberian theorem, we have ĥ(λ) � [λ ln2 λ]−1 for large λ. Therefore, φν(t) ∼
| ln t |−1 as t → 0, and thus the integral F(t) diverges. Nevertheless, assumption H1
can be dropped, if the function pt (x, y) possesses a more precise upper bound. We
discuss this question later in Section 4.

3.4 Proof of statement c)
From (3.27) we get for all x, y ∈ R

n,∣∣p♦(k0+�)
t (x, y)

∣∣ ≤ M
(
CF(t)

)�
, � ≥ 1, (3.28)

where M = Ck0 and C = 2C1c. Without loss of generality, assume that C ≥ 1. Since
F(t) → 0 as t → 0, there exists t0 > 0, such that

CF(t) < 1/2, t ∈ (0, t0]. (3.29)

Thus, for t ∈ (0, t0], the series (3.2) converges absolutely and is the solution to (3.1).
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Let us show that the integral equation (3.1) possesses a unique solution in the
class of functions {f (t, x, y) ≥ 0, t ∈ (0, t0], x, y ∈ R

n}, such that∫
Rn

f (t, x, y)dy ≤ c, t ∈ (0, t0], x ∈ R
n. (3.30)

Then the series (3.2) is a unique representation of the Feynman–Kac kernel pA
t (x, y)

for t ∈ (0, t0], x, y ∈ R
n.

Suppose that there are two solutions p
(1),A
t (x, y) and p

(2),A
t (x, y) to (3.1). Put

p̃A
t (x, y) := |p(1),A

t (x, y) − p
(2),A
t (x, y)| and vt (x) := ∫

Rn p̃A
t (x, y)dy. Then, by

(3.1) we have

vt (x) ≤
∫ t

0

∫
Rn

pt−s(x, z)vs(z)�(dz)ds. (3.31)

By induction we get

vt (x) ≤
∫ t

0

∫
Rn

p
♦k
t−s(x, z)vs(z)�(dz)ds. (3.32)

Note that there exists c > 0 such that p
♦(k0+1)
t (x, y) ≤ c for all t ∈ (0, t0], x, y ∈ R

n

(cf. (3.26)). In such a way, by the finiteness of measure � , we get

vt (x) ≤ c1

∫ t

0

∫
Rn

vs(z)�(dz)ds ≤ c2

∫ t

0
ṽsds, (3.33)

where ṽs := supz∈Rn vs(z). Taking supx∈Rn in the left-hand side of (3.33), we derive

ṽt ≤ c2

∫ t

0
ṽsds, t ∈ (0, t0]. (3.34)

Applying the Gronwall–Bellman lemma, we derive ṽt ≡ 0 for all t ∈ (0, t0]. Thus,
the solution to (3.1) is unique in the class of functions{

f (t, x, y) ≥ 0, t ∈ (0, t0], x, y ∈ R
n
}

satisfying (3.30).

Estimating series (3.2) from above, we get an upper bound in (2.16) with fup of
the form (2.10) and

Rt (dw) = c0

∑
k≥1

ckR
(k)
t (dw),

with some c ∈ (0, 1) and the normalizing constant c0 > 0 chosen so that Rt (R
n) ≤ 1

for all t ∈ (0, t0].
For the lower bound, observe that by (3.20) we have∣∣p♦k

t (x, y)
∣∣ ≤ C(k0)ρ

n
t F (t), 2 ≤ k ≤ k0. (3.35)

By (3.28) and (3.29) we get∑
�≥1

p
♦(k0+�)
t (x, y) ≤ 2MCF(t), t ∈ (0, t0],
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which, together with (3.35) and the observation that ρt is decreasing, yields the esti-
mate ∣∣∣∣

∞∑
k=2

p
♦k
t (x, y)

∣∣∣∣ ≤ C0F(t)ρn
t , t ∈ (0, t0], (3.36)

where C0 > 0 is some constant. Therefore, choosing t0 small enough, we have by the
lower bound in (2.12) the inequalities

pA
t (x, y) ≥ ρn

t flow
(
(y − x)ρt

) − C0F(t)ρn
t

≥ cρn
t flow

(
(y − x)ρt

)
, t ∈ (0, t0]. (3.37)

4 Proof of Proposition 4

Since the proof of the proposition follows with minor changes from the proof of
the upper estimate in [22, Thm. 3.3], we only sketch the argument. For (t, x, y) ∈
(0, t0] × R

n × R
n, put

I0(t, x, y) := gt (x − y), Ik(t, x, y) =
∫ t

0

∫
Rn

gt−s(x − z)Ik−1(s, z, y)�(dz)ds.

By the same argument as in [22], we can get∣∣Ik(t, x, y)
∣∣ ≤ ckgt (y − x), k ≥ 1, t ∈ (0, t0],

where c ∈ (0, 1) is some constant. Thus, for k ≥ 1, we have∣∣p♦k
t (x, y)

∣∣ ≤ ckgt (x − y), x, y ∈ R
n, t ∈ (0, t0]. (4.1)

This proves the convergence of the series (3.2) and the upper estimate (2.20).

Remark 5. Let us briefly discuss the crucial difference between the proofs of Theo-
rem 3 and Proposition 4. We changed the procedure of estimation of p

♦k
t (x, y) after

a certain step, which was possible due to (2.15). In the case when we have a single-
kernel estimate for pt(x, y), for example, (2.19), we can drop condition (2.15). In
fact, it is enough to require that � ∈ SK with respect to gt (y − x). This happens
because in the case of the single-kernel estimate of type (2.19), it is possible to show
that the convolutions p

♦k
t (x, y) satisfy the upper bound (4.1) with c ∈ (0, 1), which

implies the convergence of the series (3.2).

5 Examples

As one might observe, the scope of applicability of Theorem 3 heavily relies on the
properties of the initial process X. To assure the existence of such a process, we
applied Theorem 2. Below we give the examplesin which condition A1 is satisfied.
Since conditions A2–A4 are easy to check, we may assume that the functions a(x)

and m(x, u) are appropriate. We confine ourselves to the case when the measure μ in
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the generator of X is “discretized α-stable; up to the author’s knowledge, in this case
the corresponding Feynman–Kac semigroup was not investigated. Examples below
illustrate that our approach is applicable also in the situation when the “Lévy-type
measure” m(x, u)μ(du) related to the initial process X is not absolutely continuous
with respect to the Lebesgue measure.

Example 1. a) Consider a “discretized version” of an α-stable Lévy measure in R
n.

Let mk,υ(dy) be the uniform distribution on a sphere Sk,υ centered at 0 with radius
2−kυ , υ > 0, k ∈ Z. Consider the Lévy measure

μ(dy) =
∞∑

k=−∞
2kγ mk,v(dy), (5.1)

where 0 < γ < 2υ. In [17], it is shown that for such a Lévy measure condition A1 is
satisfied, and

ρt � t−1/α, t ∈ (0, 1], (5.2)

where α = γ /υ.
Take some functions a(·) : Rn → R and a non-negative bounded function m(·, ·)

defined on R
n × R

n satisfying assumptions A2–A4. By Theorem 2 the operator of
the form (2.7) with μ, a(x), and m(x, u) as before can be extended to the generator
of a Feller process X that admits the transition density pt (x, y) satisfying (2.12).

Let � be a finite Borel measure, and let h be its volume function, see (2.14). Let
us show that if the inequality∫ t

0

h(v)

vn+1−α
dv ≤ c1t

ζ , t ∈ (0, 1], (5.3)

for some ζ > 0, then we have (2.15). Using (5.2), changing variables, and applying
the Fubini theorem, we derive∫ t

0
ρn+1

s ĥ(ρs)ds ≤
∫ t

0
s− n+1

α ĥ
(
c2s

−1/α
)
ds

= α

∫ ∞

0

[∫ t1/αv

0

h(τ)

τn+1−α
dτ

]
vn−αe−c2vdv.

Denote by I (t) the right-hand side in this expression. Applying (5.3), we get

I (t) ≤ c1

∫ ∞

0

(
t1/αv

)ζ
vn−αe−c2vdv ≤ c3t

ζ/α.

In particular, if h(v) ≤ cvd , d > n − α, then (5.3) holds.
Thus, by Theorem 3, the Feynman–Kac semigroup (T A

t )t≥0 is well defined, and
the kernel pA

t (x, y) satisfies (2.16) with some constants ai , 1 ≤ i ≤ 4, and some
family of sub-probability measures (R(k))t≥0.

b) Consider now the one-dimensional situation. In this case, the Lévy measure μ

from (5.1) is just

μ(dy) =
∞∑

n=−∞
2nγ

(
δ2−nυ (dy) + δ−2−nυ (dy)

)
. (5.4)
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Let X be a Lévy process with characteristic exponent

ψ(ξ) :=
∫
Rn

(
1 − cos(ξu)

)
μ(du).

In [20] we show that if 1 < α < 2, then the transition probability density pt(x, y) of
X, X0 = x, is continuous in (t, x, y) ∈ (0,∞) × R × R and admits the following
upper bound:

pt(x, y) ≤ ct−1/α
(
1 + |y − x|/t1/α

)−α
, t ∈ (0, 1], x, y ∈ R. (5.5)

Note that the right-hand side of (5.5) is of the form (2.17) with d = 0. Thus, the
conditions of Proposition 4 are satisfied, and we can construct the Feynman–Kac
semigroup for the related functional At and the transition density pt(x, y), and get
the upper bound for the function pA

t (x, y) with ρt � t−1/α , t ∈ (0, 1].
To end this example, we remark that it is still possible to construct the upper

bound for such pt(x, y) for α ∈ (0, 1) of the form t−n/αf (xt−1/α), but the function
f in this upper bound might not be integrable; see [20] for details. Note that the upper
bound (5.5) is non-integrable in R

n for n ≥ 2.

Example 2. Consider the Lévy measure

ν0(A) =
∫
Rn

∫ ∞

0
1A(rv)r−1−α drμ0(dv) , α ∈ (0, 2), (5.6)

where α ∈ (0, 2), μ0 is a finite symmetric non-degenerate (that is, not concentrated
on a linear subspace of Rn) measure on the unit sphere S

n in R
n. Suppose that there

exists d > 0 such that for small r we have

ν0
(
B(x, r)

) ≤ Crd, ‖x‖ = 1.

For d + α > n, it is shown in [6] that the corresponding Lévy process X, X0 = x,
admits the transition probability density pt (x, y), which satisfies

pt(x, y) ≤ ct−n/α
(
1 + ‖y − x‖t−1/α

)−d−α
, t > 0, x, y ∈ R

n. (5.7)

In the forthcoming paper [7], we construct a class of Lévy-type processes that ad-
mit the transition densities bounded from above by the left-hand side of (5.7). Thus,
taking � ∈ Kn,α , we may apply Proposition 4.
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A Appendix

Proof of Lemma 1. We follow the idea of the proof of [4, Lemma 11]. Without loss
of generality, assume that � is non-negative. Suppose first that � ∈ Kn,α . Using
integration by parts and the Fubini theorem, we get∫ t

0

∫
Rn

gs(x − y)�(dy)ds

�
∫ t

0

∫
Rn

s−n/α
(
1 ∧ (

s1/α/‖x − y‖))α+d
�(dy)ds

=
∫ t

0
s−n/α�

{
y : ‖x − y‖ ≤ s1/α

}
ds

+
∫ t

0
s−n/α

∫
‖x−y‖>s1/α

(
s1/α

‖x − y‖
)d+α

�(dy)ds

= α

(
1 + d + α

d + 2α − n

) ∫ t1/α

0

� {y : ‖x − y‖ ≤ v}
vn+1−α

dv

+ α(d + α)

d + 2α − n
t

d+2α−n
α

∫ ∞

t1/α

� {y : ‖x − y‖ < v}
vd+1+α

dv. (A.1)

Since � ∈ Kn,α , the first term tends to 0 as t → 0. Further, since d > n − α and the
measure � is finite, we have

t
d+2α−n

α sup
x

∫ ∞

1

� {y : ‖x − y‖ < v}
vd+1+α

dv → 0, t → 0.

Let us show that

sup
x

t
d+2α−n

α

∫ 1

t1/α

� {y : ‖x − y‖ < v}
vd+1+α

dv. (A.2)

Let K0 ≡ K0(t) := [t−1/α] + 1; note that K0(t)t
1/α → 1 as t → 0. We have

t
d−ε+2α−n

α

∫ 1

t1/α

� {y : ‖x − y‖ < v}
vd+1+α

dv

≤
K0∑
k=1

(
1

k

)(d−n+2α)/α ∫ (k+1)t1/α

kt1/α

� {y : ‖x − y‖ < v}
vn+1−α

dv.

Since d > n − α, we have
∑∞

k=1 k−(d−n+2α)/α < ∞. Since � ∈ Kn,α , we have

max
1≤k≤K0(t)

sup
x

∫ (k+1)t1/α

kt1/α

� {y : ‖x − y‖ < v}
vn+1−α

dv −→ 0, t → 0.

Thus, we arrive at (A.2). This proves that (2.18) implies that � ∈ SK with respect to
gt (y − x).

The converse is straightforward.
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