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Abstract The so-called multi-mixed fractional Brownian motions (mmfBm) and multi-mixed
fractional Ornstein–Uhlenbeck (mmfOU) processes are studied. These processes are constructed
by mixing by superimposing or mixing (infinitely many) independent fractional Brownian mo-
tions (fBm) and fractional Ornstein–Uhlenbeck processes (fOU), respectively. Their existence
as L2 processes is proved, and their path properties, viz. long-range and short-range depen-
dence, Hölder continuity, p-variation, and conditional full support, are studied.
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1 Introduction and preliminaries

The first attempt to formulate the long-term memory of time series was in hydrology
when Hurst (1951) and his colleagues were studying the fluctuation of the reservoir
of the Nile river over a long period of time (see [16]). Later on, after the works of
Mandelbrot (1968) in [24], it was clarified that this behavior of time series is be-
cause of including long-range depended noises called fractional Brownian motion
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(fBm) BH . Regarding sources of these noises, in hydrology, they are accumulated
from factors such as waterfalls, glaciers melting, riverbed shape and material, slope
and direction, width and depth, local temperature, etc. Moreover, we know a river
(especially a large one like the Nile) is a combination of many sub-rivers, and each
sub-river (or even a large river) is also a combination of many sources like streams,
mountain glaciers, underground water reservoirs, and rainfall in general. Now, one
may ask

How many sources of such noises are there for a river reservoir in real-
ity?

The answer of nature then, in practice, is infinity!

Table 1. Multi-mixed fBm arising from different Hurst exponents imposed to a river reservoir

So, let us consider the source i has the noise BHi with the weight of effect σi

to the river reservoir, then the general noise of the river can be written as a linear
combination

Mt =
∞∑
i=1

σiB
Hi
t . (1)

On the other hand, about the dynamic of a particle in a liquid, Langevin (1908) in [21]
modeled the particle’s velocity U with an equation which was wisely revised later on
by Doob (1942) [9] as

dUt = −λUt dt + dMt,

where λ > 0 is the mean reversion parameter and M is a noise, caused by a fluctuating
force imposed by an impact of the molecules of the surrounding medium. If U0 = ξ

then the unique solution of this equation is

Ut = e−λt ξ +
∫ t

0
e−λ(t−s) dMs.

First, this solution was given for all cases where M is semimartingale, then Cheridito
et al. (2003) in [8] confirmed this solution for the case the noise process is an fBm
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M = BH . Now, let us think the liquid is not purely homogeneous, so the local sur-
rounding molecules (particles) can have different imposing forces according to their
different sizes, weights, density, or dynamic patterns. Hence, if molecule (particle) i

Fig. 1. Free particle movement in a liquid bombarded by multiple molecules (particles) impos-
ing multi-mixed fBm noises

imposes the noise force BHi with the weight of effect σi to the free particle, then the
Langevin equation takes the form

Ut = e−λt ξ +
∫ t

0
e−λ(t−s) d

( ∞∑
i=1

σiB
Hi
t

)
. (2)

In this article, our aim is to develop the analysis and some properties of the
stochastic processes in equations (1) and (2). To do this, first, we review some math-
ematical concepts. The fractional Brownian motion (fBm) BH , with parameter H ∈
(0, 1) called the Hurst index, is the unique (up to a multiplicative constant) centered
H -self-similar stationary-increment Gaussian process. The fBm was first studied in
[19]. The name fractional Brownian motion comes from the influential article [24].
For further information of the fBm, see the monographs [6, 25]. The covariance of
the fBm with the Hurst index H is given by

rH (t, s) = 1

2

[
t2H + s2H − |t − s|2H

]
.

For H = 1/2 this process is well known as the Brownian motion (BM) or the Wiener

process: B
1
2 = W . As a stationary-increment process, the fBm has the spectral rep-

resentation

rH (t, s) =
∫
R

(eisx − 1)(eitx − 1)

x2 fH (x) dx,

where

fH (x) = sin(πH)�(1 + 2H)

2π
|x|1−2H . (3)

Here � is the complete gamma function

�(α) =
∫ ∞

0
tα−1e−t dt,

see [28].
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Let
�H (δ; t) = E

[
(BH

δ − BH
0 )(BH

t+δ − BH
t )

]
be the incremental autocovariance (with lag δ) of the fBm. For t → ∞ we have the
power decay

�H (δ; t) ∼ H(2H − 1)δ2t2H−2.

This means that the increments of the fBm, called the fractional Gaussian noise (fGn),
for H > 1

2 , are positively correlated and long-range dependent. However, for H < 1
2

they are negatively correlated and short-range dependent.

In the Bm case B
1
2 = W we have independent increments, i.e. no dependence:

� 1
2
(δ; t) = 0.

The fBm has almost surely Hölder continuous paths with any order H − ε for any
ε > 0. This follows, e.g., from Theorem 1 of [2].

In addition to Hölder continuity, we have the p-variation as a measure of the path
regularity. For a process X and p ∈ [1,∞) for the partitions πn := {tk = k

n
T : k =

0, 1, . . . , n}, if

V
p
T (X) := lim

n→∞

n∑
k=1

|Xtk − Xtk−1 |p < ∞ (limit in probability),

then it is said X has equidistant p-variation on [0, T ], and its p-variation on [0, T ] is
V

p
T (X). For the fBm BH then the p-variation is

V
p
T (BH ) =

⎧⎨
⎩

∞ ; pH < 1
T μp ; pH = 1
0 ; pH > 1

where μp is the pth moment of a standard Gaussian process, see [10, 11].
While the fBm has been proposed as a model for financial time series, modeling

with it makes arbitrage possible, see [4]. To eliminate this problem, a generalization
called mixed fractional Brownian motion (mfBm) was introduced in [7]. This is the
mixture model

Ma,b = aB + bBH ,

where a, b ∈ R and B is a standard Brownian motion (Bm) independent of the
fBm BH . If H > 1/2, the mfBm has the path roughness governed by the Bm part
and the long-range dependence governed by the fBm part. Hence, e.g., in pricing of
financial derivatives the corresponding mixed Black–Scholes model yields the same
option prices as the standard Brownian model, see [5].

A natural generalization of the mfBm is to consider two (or n) independent fBm
mixtures, see [23]. In this paper, we study an independent infinite-mixture gener-
alization that we call the multi-mixed fractional Brownian motion (mmfBm) with
parameters σk , Hk , k ∈ N:

M =
∞∑

k=1

σkB
Hk ,
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where BHk ’s are independent fBm’s with Hurst indices Hk ∈ (0, 1), and σk’s are
positive volatility constants satisfying

∑∞
k=1 σ 2

k < ∞. This study extends the work
of [30].

For other kinds of generalizations of the fBm, see, e.g., [14, 22, 26, 27].
The fractional Ornstein–Uhlenbeck process (fOU) Uλ,H , with parameters λ > 0

and H ∈ (0, 1), is the stationary solution of the Langevin equation

dU
λ,H
t = −λU

λ,H
t dt + dBH

t ,

which is given by

U
λ,H
t =

∫ t

−∞
e−λ(t−s) dBH

s ,

where (BH
s )s≤0 is an independent copy of the fBm (BH

s )s≥0, see [8]. Note that the
Langevin equation and its solution can be understood via integration by parts. As a
stationary process, the fOU admits the spectral density

fλ,H (x) = fH (x)

x2 + λ2 , (4)

where fH is the spectral density of the driving fBm (3), see [3]. Denote, for α ∈
(−1, 0) ∪ (0, 1),

γα(x) = 1

�(α)

∫ x

0
sα−1es ds, (5)

�α(x) = 1

�(α)

∫ ∞

x

sα−1e−s ds, (6)

and γ0(x) = 1, �0(x) = 0. The functions γα and �α are related to the incomplete
Gamma functions and they can be calculated, e.g., by approximating the integrals
with sums. The autocovariance function of the fOU process can be written as

ρλ,H (t) = �(1 + 2H)

4

e−λt

λ2H

{
1 + γ2H−1(λt) + e2λt�2H−1(λt)

}
. (7)

See Proposition 4.
A stationary process X with the autocovariance function satisfying

ρ(t) ∼ c|t |−α as t → ∞
where 0 
= c ∈ R, and “∼” means the ratio of left and right sides tends to 1, is
called long-range dependent (having long memory) if 0 < α ≤ 1, and short-range
dependent (having short memory) if α > 1, see [18].

For H = 1
2 we recover the well-known Bm case

ρ
λ, 1

2
(t) = e−λt

2λ
.

For t → ∞ we have the power decay

ρλ,H (t) = 1

2

N∑
n=1

λ−2n

⎛
⎝2n−1∏

j=0

(2H − j)

⎞
⎠ t2H−2n + O(t2H−2N−2),
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for N = 1, 2, . . . , i.e., the fOU process with H > 1
2 is long-range dependent, and for

H ≤ 1
2 it is short-range dependent, see [8].

The Hölder continuity and p-variation of fOU is the same as for the mmfBm.
In this paper we study the multi-mixed fractional Ornstein–Uhlenbeck process

(mmfOU) with parameters λ > 0 and σk , Hk , k ∈ N, that is defined naturally as the
stationary solution of Langevin equation with mmfBm as the driving noise:

dUt = −λUt dt + dMt,

with

U0 =
∫ 0

−∞
eλs dMs,

where (Ms)s≤0 is an independent copy of the mmfBm. This study develops the work
of [17].

The rest of the paper is organized as follows. In Section 2 we define the multi-
mixed fractional Brownian motions (mmfBm) and the associated multi-mixed frac-
tional Ornstein–Uhlenbeck (mmfOU) processes, prove their existence in L2(
 ×
[0, T ]), and provide their basic properties. The long-range dependence of these pro-
cesses are studied in Section 3. In Section 4 we analyze the Hölder continuity and
p-variation of mmfBm’s and mmfOU processes. The p-variations of these processes
are calculated in Section 5. In Section 6 we show that the mmfBm’s and mmfOU pro-
cesses have the conditional full support property. Finally, In Section 7 some simulated
paths of these processes are given.

2 Definitions and basic properties

Definition 1. Let σk , k ∈ N, satisfy

∞∑
k=1

σ 2
k < ∞, (8)

and let Hk , k ∈ N, satisfy

Hk 
= Hl for k 
= l,

Hinf = inf
k∈NHk > 0 (9)

Hsup = sup
k∈N

Hk < 1.

The multi-mixed fractional Brownian motion (mmfBm) is

M =
∞∑

k=1

σkB
Hk ,

where BHk , k ∈ N, are independent fBm’s.

The following proposition shows the existence of the mmfBm.
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Proposition 1. The mmfBm M exists as a random function taking values in L2(
 ×
[0, T ]) for all T > 0.

Proof. Let Mn = ∑n
k=1 σkB

Hk . Clearly Mn takes values in L2(
 × [0, T ]). Let
n,m ∈ N with n > m. Then

‖Mn − Mm‖2
L2(
×[0,T ]) =

∫ T

0
E

[
(Mn

t − Mm
t )2

]
dt

=
∫ T

0
E

⎡
⎣( n∑

k=m+1

σkB
Hk
t

)2
⎤
⎦ dt

=
n∑

k=m+1

∫ T

0
σ 2

k E

[
(B

Hk
t )2

]
dt

=
n∑

k=m+1

∫ T

0
σ 2

k t2Hk dt

=
n∑

k=m+1

σ 2
k

T 1+2Hk

1 + 2Hk

≤
n∑

k=m+1

σ 2
k max

{
1, T 3

}
,

which shows that (Mn)n∈N is the Cauchy sequence. Thus Mn → M in L2(
×[0, T ])
showing the existence.

In the same way we see that the mmfBm (Mt)t≥0 exists in the sense that Mn
t →

Mt in L2(
) for all t ≥ 0.
The following is now obvious.

Proposition 2. The mmfBm has stationary increments, its covariance function is

r(t, s) =
∞∑

k=1

σ 2
k rHk

(s, t) = 1

2

∞∑
k=1

σ 2
k

[
|t |2Hk + |s|2Hk − |t − s|2Hk

]
, (10)

and it admits the spectral density

f (x) =
∞∑

k=1

σ 2
k fHk

(x) =
∞∑

k=1

sin(πHk)�(1 + 2Hk)

2π
σ 2

k |x|1−2Hk . (11)

Definition 2. The multi-mixed fractional Ornstein–Uhlenbeck process (mmfOU) U

with parameter λ > 0 is the stationary solution of the Langevin equation

dUt = −λUtdt + dMt, (12)

where the equation is understood in the integration by parts sense.



350 H. Maleki Almani, T. Sottinen

Proposition 3. On L2(
 × [0, T ]), the mmfOU can be represented as the integral

Ut = e−λt ξ +
∫ t

0
e−λ(t−s) dMs,

where the integral is understood in the integration by parts sense, and

ξ =
∫ 0

−∞
eλs dMs,

where (Ms)s≤0 is an independent copy of the mmfBm (Ms)s≥0.

Proof. Let Mn = ∑n
k=1 σkB

Hk . Then, the stationary solution of the Langevin equa-
tion

dUn
t = −λUn

t dt + dMn
t

is given by

Un
t = e−λt ξn +

∫ t

0
e−λ(t−s) dMn

s ,

where

ξn =
∫ 0

−∞
eλs dMn

s .

Then, with integration by parts

∫ t

0
eλs dMn

s = eλtMn
t − λ

∫ t

0
eλsMn

s ds

→ eλtMt − λ

∫ t

0
eλsMs ds =

∫ t

0
eλs dMs,

because Mn → M in L2(
 × [0, T ]). With the same arguments ξn → ξ in L2(
).
This yields Un → U in L2(
 × [0, T ]).
Lemma 1. For 0 
= p ∈ (−1, 1), λ > 0, t > 0,

∫ ∞

−∞
eitx |x|p

λ2 + x2 dx = πe−λt

2 cos(pπ
2 )λ1−p

{
1 + γ−p(λt) + e2λt�−p(λt)

}
, (13)

where γ−p and �−p are given by (5) and (6).

Proof. Recall that for the Fourier transform

F (f )(x) = 1√
2π

∫ ∞

−∞
e−itxf (t) dt

we have the convolution theorem∫ ∞

−∞
eitxF (f )(x)F (g)(x) dx =

∫ ∞

−∞
f (t − ξ)g(ξ) dξ. (14)
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Moreover, we have

F
(
e−λ|t |) =

√
2

π
· λ

λ2 + x2 , (15)

F
(|t |α) =

√
2

π
· �(α + 1) cos

(
(α + 1)π

2

)
|x|−(α+1). (16)

The first formula (15) is valid for λ > 0. The second formula (16) is valid for
−1 < α < 0. For −2 < α < −1, because of the function |t |α , some singular
terms arise at the origin. Nevertheless, it admits a unique meromorphic extension as
a tempered distribution, also denoted |t |α as a homogeneous distribution on all real
line R including the origin (see [13]). So, we use that extension and formula (16) will
be valid for all −1 
= α ∈ (−2, 0). So, using f (t) = e−λ|t | and g(t) = |t |α in (14)
we obtain

2

π
· �(α + 1) cos

(
(α + 1)π

2

)
λ

∫ ∞

−∞
eitx |x|−(α+1)

λ2 + x2 dx

=
∫ ∞

−∞
|ξ |αe−λ|t−ξ | dξ

=
∫ 0

−∞
(−ξ)αe−λ(t−ξ) dξ

+
∫ t

0
ξαe−λ(t−ξ) dξ

+
∫ ∞

t

ξαe−λ(ξ−t) dξ

= e−λt

λ(α+1)

∫ ∞

0
uαe−u du

+ e−λt

λ(α+1)

∫ λt

0
uαeu du

+ eλt

λ(α+1)

∫ ∞

λt

uαe−u du

= e−λt�(α + 1)

λ(α+1)

{
1 + γ(α+1)(λt) + e2λt�(α+1)(λt)

}
.

Now, choosing p = −(α + 1) proves (13).

Proposition 4 follows from Lemma 1 (see also [20]).

Proposition 4. The covariance function of the fOU is

ρλ,H (t) = E[Uλ,H
s U

λ,H
s+t ]

= �(1 + 2H)

4

e−λt

λ2H

{
1 + γ2H−1(λt) + e2λt�2H−1(λt)

}
. (17)
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Proposition 5. The covariance function of the mmfOU is

ρλ(t) = E[UsUs+t ]

=
∞∑

k=1

σ 2
k

�(1 + 2Hk)e−λt

4λ2Hk

{
1 + γ2Hk−1(λt) + e2λt�2Hk−1(λt)

}
, (18)

and it admits the spectral density

fλ(x) =
∞∑

k=1

σ 2
k

sin(πHk)�(1 + 2Hk)

2π

|x|1−2Hk

x2 + λ2 . (19)

Proof. Let Un be like in the proof of Proposition 3, then

fλ,n(x) =
n∑

k=1

σ 2
k

sin(πHk)�(1 + 2Hk)

2π

|x|1−2Hk

x2 + λ2 ,

and fλ,n(x) → fλ(x) because Un → U in L2(
 × [0, T ]). This proves (19). Simi-
larly, (18) follows by Proposition 4.

Remark 1. Proposition 4 represents the covariance function ρλ,H (t) in a form in-
volving special functions. However, these special complex functions are usually not
suitable for numerical computations. For example, in [3], Lemma B.1, the following
representation was used for H > 1

2 :

ρλ,H (t) = H�(2H)
e−λt

λ2H

{
1 + e2λt

2
− λ

�(2H − 1)
Iλ,H (t)

}
,

Iλ,H (t) =
∫ t

0

∫ λv

0
e2λve−ss2H−2 dsdv.

The double integral above seems reasonable enough, but yields slow numerical cal-
culation in practice. This can be improved by calculating the inner integral as fol-
lows:

Iλ,H (t) =
∫ λt

0

∫ t

s/λ

e2λve−ss2H−2 dsdv

= 1

2λ

∫ λt

0
s2H−2(e2λt−s − es) ds

= eλt

λ

∫ λt

0
s2H−2 sinh(λt − s) ds.

Consequently,

ρλ,H (t) = �(2H + 1)

2λ2H

{
cosh(λt) − 1

�(2H − 1)

∫ λt

0
s2H−2 sinh(λt − s) ds

}
. (20)
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For the case H < 1/2 we use the following developed version of Lemma 5.1 in
[15] for α > −1. The proof is similar.

Lemma 2. For α > −1∫ ∞

0

∫ ∞

0
e−(x+y)|x − y|α dxdy = �(α + 1).

Theorem 1. For the fOU process Uλ,H , we have

ρλ,H (t) = �(2H + 1)

2λ2H

{
cosh(λt) − 1

�(2H)

∫ λt

0
s2H−1 cosh(λt − s) ds

}
, (21)

and so for mmfOU process we have

ρλ(t) =
∞∑

k=0

σ 2
k

�(2Hk + 1)

2λ2Hk

{
cosh(λt) − 1

�(2Hk)

∫ λt

0
s2Hk−1 cosh(λt − s) ds

}
.

Proof. For H = 1/2, the right-hand side of (21) is e−λt /2λ, equal to the autocovari-
ance of the classical Ornstein–Uhlenbeck process with respect to the standard Brow-
nian motion. For H > 1/2, we obtain (21) from (20) via integration by parts. To
prove it for H < 1/2, we will apply the same approach as in the proof of Lemma B.1
in [3]

ρλ,H (t) = E[Uλ,H
t U

λ,H
0 ]

= E

[∫ 0

−∞
eλu dBH

u

∫ t

−∞
e−λ(t−v) dBH

v

]

= e−λt

{
Var(U

λ,H
0 ) + E

[ ∫ 0

−∞
eλu dBH

u

∫ t

0
eλv dBH

v

]}
.

To obtain the term Var(U
λ,H
0 ) in a closed form, [3] referred to Lemma 5.2 in [15];

however, such form was only obtained for H ≥ 1/2, and so we need to extend their
result for H < 1/2.

Since

U
λ,H
0 =

∫ 0

−∞
eλu dBH

u = −λ

∫ 0

−∞
eλuBH

u du,

we have

Var(U
λ,H
0 ) = Var

[
−λ

∫ 0

−∞
eλuBH

u du

]

= λ2
Var

[∫ ∞

0
e−λuBH

u du

]

= λ2
E

[(∫ ∞

0
e−λuBH

u du

)2
]

= λ2
E

[∫ ∞

0

∫ ∞

0
e−λ(u+v)BH

u BH
v dudv

]
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= λ2

2

∫ ∞

0

∫ ∞

0
e−λ(u+v) ·

{
u2H + v2H − |u − v|2H

}
dudv

= λ2

2

{
2

(∫ ∞

0
e−λu du

)(∫ ∞

0
e−λvv2H dv

)

−
∫ ∞

0

∫ ∞

0
e−λ(u+v)|u − v|2H dudv

}
.

Now choosing x = λu, y = λv by Lemma 2 we have

Var(U
λ,H
0 ) = λ−2H

2

{
2
∫ ∞

0
e−yy2H dy

−
∫ ∞

0

∫ ∞

0
e−(x+y)|x − y|2H dxdy

}

= λ−2H

2

[
2�(2H + 1) − �(2H + 1)

]
= λ−2H H�(2H). (22)

On the other hand, as in Lemma 2.1 in [8] and the proof of Lemma B.1 in [3], using
formula

γ�(z, x) = γ�(z + 1, x) + xze−x

z
,

where γ� is the well-known lower Gamma function, for H < 1/2 we have

E

[∫ 0

−∞
eλu dBH

u

∫ t

0
eλv dBH

v

]

= H(2H − 1)

∫ 0

−∞

∫ t

0
e−λ(u+v)|u − v|2H−2 dudv

= Var(U
λ,H
0 )

{
e2λt − 1

2

− λ

�(2H − 1)

∫ t

0
e2λv

∫ λv

0
e−ss2H−2 dsdv

}

= Var(U
λ,H
0 )

{
e2λt − 1

2

− λ

�(2H − 1)

∫ t

0
e2λvγ�(2H − 1, λv) dv

}

= Var(U
λ,H
0 )

{
e2λt − 1

2

− λ

�(2H)

∫ t

0
e2λvγ�(2H, λv) dv

− λ2H

�(2H)

∫ t

0
eλvv2H−1 dv

}

= Var(U
λ,H
0 )

{
e2λt − 1

2
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− λ

�(2H)

∫ t

0
e2λv

∫ λv

0
e−ss2H−1 dsdv

− λ2H

�(2H)

∫ t

0
eλvv2H−1 dv

}
. (23)

Using (22) and (23), with similar arguments as we did for (20), we obtain (21).

3 Long-range dependence

The increments of fBm are a well-known stationary process, that is long-range de-
pendent (LRD) if H > 1/2, see [18]. Motivated by this, we consider the LRD for the
increments of the mmfBm

�δMt =
∞∑

k=1

σk�δB
Hk
t ,

with covariance function

�(δ; t) = E
[
�δMs+t�δMs

]
,

where δ > 0 is the lag and �δxt = xt+δ − xt for a process x.

Theorem 2. For t → ∞,

�(δ; t) ∼ δ2
∞∑

k=1

σ 2
k Hk(2Hk − 1)t2Hk−2 = O(t2Hsup−2). (24)

So the mmfBm increment process �δMt is LRD if and only if Hk > 1/2 for some
k ≥ 0.

Proof. By using the generalized binomial theorem,

�(δ; t) = 1

2

∞∑
k=1

σ 2
k

{
(t + δ)2Hk + (t − δ)2Hk − 2t2Hk

}

= 1

2

∞∑
k=1

σ 2
k t2Hk

{(
1 + δ

t

)2Hk +
(

1 − δ

t

)2Hk − 2

}

= 1

2

∞∑
k=1

σ 2
k t2Hk

{ ∞∑
r=0

(
2Hk

r

)(δ

t

)r +
∞∑

r=0

(
2Hk

r

)
(−1)r

(δ

t

)r − 2

}

∼ δ2
∞∑

k=1

σ 2
k Hk(2Hk − 1)t2Hk−2. (25)

Since
σ 2

k Hk(2Hk − 1)t2Hk−2 ≤ σ 2
k ,
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the series (25) is uniformly convergent. So we have

lim
t→∞

∞∑
k=1

σ 2
k Hk(2Hk − 1)t2Hk−2 =

∞∑
k=1

lim
t→∞ σ 2

k Hk(2Hk − 1)t2Hk−2.

This yields (24).

To investigate LRD for the mmfOU process, we first need some lemmas.
The following theorem shows that similar to the mmfBm increment process, the

long-range dependence of the mmfOU is governed by the long-range dependence of
the largest Hurst index in the driving mmfBm.

Theorem 3. For t → ∞ and each N = 1, 2, . . . ,

ρλ(t) = 1

2

∞∑
k=1

N∑
n=1

σ 2
k λ−2n

⎛
⎝2n−1∏

j=0

(2Hk − j)

⎞
⎠ t2Hk−2n + O(t2Hsup−2N−2). (26)

So the mmfOU process U is LRD if and only if Hk > 1/2 for some k ≥ 0.

Proof. By the proof of Lemma 2.2 and Theorem 2.3 in [8]

ρλ(t) = E

[∫ 0

−∞
eλu dMu

∫ t

−∞
e−λ(t−v) dMv

]

= e−λt
E

[∫ 0

−∞
eλu dMu

∫ 1/λ

−∞
eλv dMv

]

+ e−λt

∞∑
i=1

σ 2
i Hi(2Hi − 1)

×
∫ 0

−∞
eλu

(∫ t

1/λ

eλv(v − u)2Hi−2 dv

)
du

= O(e−λt )

+ 1

2

∞∑
i=1

σ 2
i

Hi(2Hi − 1)

λ2Hi

{
e−λt

∫ λt

1
eyy2Hi−2 dy

+ eλt

∫ ∞

λt

e−yy2Hi−2 dy

}

≤ O(e−λt )

+ 1

2

∞∑
k=1

N∑
n=1

σ 2
k λ−2n

⎛
⎝2n−1∏

j=0

(2Hk − j)

⎞
⎠ t2Hk−2n

+ 1

2

∞∑
k=1

σ 2
k

∣∣∣Hk(2Hk − 1) · · · (2Hk − 2 − 2N)

∣∣∣
λ2Hk

×
[
e− λt

2 + (1 + 22Hk−2N−3)(λt)2Hk−2N−3
]
. (27)
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Now, for t ∈ [1,∞),∣∣∣Hk(2Hk − 1) · · · (2Hk − 2 − 2N)

∣∣∣
λ2Hk

e− λt
2 < �N∣∣∣Hk(2Hk − 1) · · · (2Hk − 2 − 2N)

∣∣∣
λ2Hk

(1 + 22Hk−2N−3)(λt)2Hk−2N−3 < �N,

where

�N = Hsup

max
(
|2Hinf − 1|, |2Hsup − 1|

)
max

(
λ2Hinf , λ2Hsup

) ∣∣∣(2Hinf − 2) · · · (2Hinf − 2 − 2N)

∣∣∣,

�N = Hsup

max
(
|2Hinf − 1|, |2Hsup − 1|

)
λ2N+3

∣∣∣(2Hinf − 2) · · · (2Hinf − 2 − 2N)

∣∣∣
× (1 + 22Hsup−2N−3).

So, as
∑∞

k=1 σ 2
k < ∞, the series in the right-hand side of the inequality (27) is

uniformly convergent on t ∈ [1,∞). Hence

lim
t→∞

∞∑
k=1

σ 2
k

∣∣∣Hk(2Hk − 1) · · · (2Hk − 2 − 2N)

∣∣∣
λ2Hk

×
[
e− λt

2 + (1 + 22Hk−2N−3)(λt)2Hk−2N−3
]

=
∞∑

k=1

σ 2
k

∣∣∣Hk(2Hk − 1) · · · (2Hk − 2 − 2N)

∣∣∣
λ2Hk

× lim
t→∞

[
e− λt

2 + (1 + 22Hk−2N−3)(λt)2Hk−2N−3
]
.

This proves (26).

4 Continuity

Definition 3. Let X = (Xt ) be a continuous stochastic process defined on a proba-
bility space (
,F ,P). If

H := sup

{
ν > 0 : sup

s,t

Xt − Xs

|t − s|ν < ∞
}

< ∞,

the process X is called Hölder continuous with index H , and H is its Hölder index.

Theorem 4. Both mmfBm and mmfOU have Hölder index Hinf.

Proof. For ε > 0 and |t − s| < 1, the mmfBm satisfies

E

[
(Mt − Ms)

2
]

=
∞∑

k=1

σ 2
k |t − s|2Hk ≤

( ∞∑
k=1

σ 2
k

)
|t − s|2Hinf−ε = C0|t − s|2Hinf−ε,
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where C0 := ∑∞
k=1 σ 2

k > 0. Thus, the claim follows from Theorem 1 of [2]. On the
other hand, for some j ≥ 1 we have Hinf ≤ Hj < Hinf + ε and so the fBm BHj is
not (Hinf + ε)-Hölder continuous. Hence the process M = σjB

Hj +∑
k 
=j σkB

Hk is
not (Hinf + ε)-Hölder continuous. This proves the claim for mmfBm.

For the mmfOU, we apply Corollary 2 of [2]. That states the process Ut is Hölder-
continuous of any order 0 < a < Hinf if and only if for each 0 < ε < 2Hinf, there is
some 0 < δ < 1 such that∫ ∞

0
(1 − cos(sx))fλ(x)dx < Cεs

2Hinf−ε, s ∈ (0, δ). (28)

This is equivalent to∫ ∞

0

(1 − cos(sx))

s2Hinf−ε
fλ(x)dx < Cε, s ∈ (0, δ).

To show this, here for s < 1 we have∫ ∞

0

(1 − cos(sx))

s2Hk−ε
fλ,Hk

(x)dx

= sεcHk

∫ ∞

0
(1 − cos(sx))

x · (sx)−2Hk

λ2 + x2 dx

= sεcHk

∫ ∞

0
(1 − cos u)

u1−2Hk

s2λ2 + u2 du (u = sx)

≤ cHk

∫ ∞

0
(1 − cos u)

u1−2Hk

s2λ2 + u2 du (0 < s < 1)

≤ cHk

{ ∫ ε

0
(1 − cos u)

u1−2Hk

u2 du +
∫ ∞

ε

u1−2Hk

u2 du
}

= cHk

{ ∫ ε

0

2 sin2(u
2 )

u2 u1−2Hkdu +
∫ ∞

ε

u−1−2Hkdu
}

≤ cHk

{ ∫ ε

0

1

2
u1−2Hkdu +

∫ ∞

ε

u−1−2Hkdu
}

= cHk

{ ε2−2Hk

4(1 − Hk)
+ ε−2Hk

2Hk

}
=: Cε,Hk

< ∞.

Therefore,∫ ∞

0
(1 − cos(sx))fλ,Hk

(x)dx ≤ Cε,Hk
s2Hk−ε ≤ Cε,Hk

s2Hinf−ε . (29)

Also, we have

∞∑
k=1

σ 2
k Cε,Hk

=
∞∑

k=1

σ 2
k

sin(πHk)�(1 + 2Hk)

2π

{ ε2−2Hk

4(1 − Hk)
+ ε−2Hk

2Hk

}

≤ �(3)

2π

{ ε2−2Hsup

4(1 − Hsup)
+ ε−2Hinf

2Hinf

}( ∞∑
k=1

σ 2
k

)
=: Cε < ∞, (30)
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if and only if 0 < Hinf ≤ Hsup < 1 and
∑∞

k=1 σ 2
k < ∞. Now, (29) and (30) yield (28).

Moreover, for some j ≥ 1 we have Hinf ≤ Hj < Hinf + ε and so the fOU UHj is not
(Hinf + ε)-Hölder continuous. Hence the process U = σjU

Hj +∑
k 
=j σkU

Hk is not
(Hinf + ε)-Hölder continuous. This proves the claim for mmfOU.

5 Variation

Recall that the p-variation of fBm with H ∈ (0, 1) on the time-interval [0, T ] is given
in Definition 3.4 of [29] as

V
p
T (BH ) = lim|πn|→0

∑
tk∈πn

|�BH
tk

|p =
⎧⎨
⎩

∞ ; pH < 1
T μp ; pH = 1
0 ; pH > 1

where πn = {tk = k
n
}nk=0 is a partition of [0, T ], and μp is the pth absolute moment

of a standard Gaussian process, and the limit is taken in probability. With the same
argument, it is easy to check that for the mixed fractional Brownian motion (mfBm)
Y = aB + bBH the p-variation is

V
p
T (Y ) = lim|πn|→0

∑
tk∈πn

|�Ytk |p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ ; p min(1/2,H) < 1
T apμp ; H > 1/2, p/2 = 1
T (a2 + b2)p/2μp ; H = 1/2, p/2 = 1
T bpμp ; H < 1/2, pH = 1
0 ; p min(1/2,H) > 1

where a, b > 0, and B is the standard Brownian motion, and BH is a standard fBm
independent from B. Now, for the p-variation of the mmfBm we have the next theo-
rem.

Theorem 5. For p > 0, the p-variations of the mmfBm M and the mmfOU U on the
time-interval [0, T ] are equal and

V
p
T (M) = V

p
T (U) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ ; pHinf < 1

T

( ∑
Hi=Hinf

σ 2
i

)p/2

μp ; pHinf = 1

0 ; pHinf > 1

(31)

Proof. For the mmfBm M , we have

vp
πn

(M) :=
∑
tk∈πn

|�Mtk |p

=
∑
tk∈πn

∣∣∣∣∣
∞∑
i=1

σ 2
i (�tk)

2Hi

∣∣∣∣∣
p/2 ∣∣∣∣∣ �Mtk

[∑∞
i=1 σ 2

i (�tk)2Hi ]1/2

∣∣∣∣∣
p

d=
( ∞∑

i=1

σ 2
i T 2Hi n2/p−2Hi

)p/2

· 1

n

n∑
k=1

|Zk|p
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as |πn| → 0, or equivalently n → ∞. Here Zk is a standard Gaussian process and so
by the proof of Lemma 3.7 in [29]

1

n

n∑
k=1

|Zk|p → μp,

as n → ∞, where μp is the pth absolute moment of the standard Gaussian process.
Now, if pHinf < 1 then Hinf < 1/p, and so there exists some j ≥ 1 that Hj < 1/p,
and so 2/p − 2Hj > 0. Therefore

vp
πn

(M) ≥
(
σ 2

j T 2Hj n2/p−2Hj

)p/2 · 1

n

n∑
k=1

|Zk|p → ∞.

On the other hand, if pHinf ≥ 1, for x ∈ (1,∞)

σ 2
i T 2Hi x2/p−2Hi ≤ σ 2

i T 2,

and because
∑∞

i=1 σ 2
i < ∞, the

∑∞
i=1 σ 2

i T 2Hi x2/p−2Hi is uniformly convergent on
x ∈ [1,∞). So for pHinf ≥ 1,

lim
n→∞

∞∑
i=1

σ 2
i T 2Hi n2/p−2Hi =

∞∑
i=1

lim
n→∞ σ 2

i T 2Hi n2/p−2Hi .

This yields the values mentioned in (31) are correct for the p-variation of M . For the
mmfOU U , as it is stationary, we have

vp
πn

(U) :=
∑
tk∈πn

|�Utk |p

d=
n∑

k=1

(
Var[�Ut1]

)p/2|Zk|p

= n
(
Var[UT

n
− U0]

)p/2 · 1

n

n∑
k=1

|Zk|p.

As 1
n

∑n
k=1 |Zk|p → μp for n → ∞, the problem reduces to the limit

lim
n→∞ n

(
Var[UT

n
− U0]

)p/2
.

To find it, again because U is stationary, and using the proof of Theorem 1 we have

Var[UT
n

− U0] = Var UT
n

+ Var U0 − 2 Cov
(
UT

n
, U0

)
= 2Var U0 − 2 Cov

(
UT

n
, U0

)

= 2
∞∑
i=1

σ 2
i λ−2Hi Hi�(2Hi)
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− 2
∞∑
i=1

σ 2
i

�(2Hi + 1)

2λ2Hi

{
cosh

(λT

n

)

− 1

�(2Hi)

∫ λT
n

0
s2Hi−1 cosh

(λT

n
− s

)
ds

}

=
∞∑
i=1

σ 2
i

�(2Hi + 1)

λ2Hi

{
1 − cosh

(λT

n

)

+ 1

�(2Hi)

∫ λT
n

0
s2Hi−1 cosh

(λT

n
− s

)
ds

}
.

For the large values of n, the final series in the right-hand side above is uniformly
convergent. So, the lim

n→∞ and
∑∞

i=1 could change places. This yields

lim
n→∞ n

(
Var[UT

n
− U0]

)p/2

= lim
n→∞

(
n2/p

Var[UT
n

− U0]
)p/2

=
( ∞∑

i=1

σ 2
i

�(2Hi + 1)

λ2Hi
· lim
n→∞ n2/p

{
1 − cosh

(λT

n

)

+ 1

�(2Hi)

∫ λT
n

0
s2Hi−1 cosh

(λT

n
− s

)
ds

})p/2

.

Now for t → 0, by the Taylor expansion

1 − cosh t = −
∞∑

r=1

t2r

(2r)! ,

and via integration by parts∫ t

0
s2Hi−1 cosh(t − s) ds = t2Hi

2Hi

+ 1

2Hi

∫ t

0
s2Hi sinh(t − s) ds.

Again for t → 0, by the Taylor expansion,∫ t

0
s2Hi sinh(t − s) ds ≤

∫ t

0
t2Hi sinh t ds = t2Hi+1 sinh t =

∞∑
r=1

t2r+2Hi

(2r − 1)! .

These yield for t → 0

1 − cosh t + 1

�(2Hi)

∫ t

0
s2Hi−1 cosh(t − s) ds ∼ t2Hi

2Hi + 1
.

Therefore

lim
n→∞ n

(
Var[UT

n
− U0]

)p/2 =
( ∞∑

i=1

σ 2
i T 2Hi lim

n→∞ n2/p−2Hi

)p/2

,

this proves (31).
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6 Conditional full support

As explained in [5], in mathematical finance models one of the must require features
is the so-called Conditional Full Support (CFS) to avoid simple kind of arbitrage. This
means that, given the information up to any time τ ∈ [0, T ], the process is inherently
free enough to go anywhere after time τ with positive probability. This motivates us
to study the CFS property of the mmfBm and mmfOU processes but first we restate
the precise definition of CFS from [12].

Definition 4. Let X = (Xt )0≤t≤T be a continuous stochastic process defined on a
probability space (
,F ,P), and (Ft ) be its natural filtration. The process X is said to
have CFS if, for all t ∈ [0, T ], the conditional law of (Xu)t≤u≤T given (Ft ), almost
surely has support CXt [t, T ], where Cx[t, T ] is the space of continuous functions
f on [t, T ] satisfying f (t) = x. Equivalently, this means that, for all t ∈ [0, T ],
f ∈ C0[t, T ], and ε > 0,

P

(
sup

t≤u≤T

|Xu − Xt − f (u)| < ε

∣∣∣∣Ft

)
> 0,

almost surely.

Theorem 6. Both the mmfBm and the mmfOU have conditional full support.

Proof. It is easy to check that

f (x) =
∞∑

k=1

σ 2
k fHk

(x) ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εH �(1)
2π

( ∞∑
k=1

σ 2
k

)
|x|1−2Hinf : |x| ≤ 1

εH �(1)
2π

( ∞∑
k=1

σ 2
k

)
|x|1−2Hsup : |x| ≥ 1

=: h(x),

where
εH := inf

{
sin(πHk)

}
k≥1

= inf
{

sin(πHinf), sin(πHsup)
}
.

Since 0 < Hinf ≤ Hsup < 1, εH > 0. Thus h(x) > 0 for x 
= 0. Therefore, for any
x0 > 1 we have∫ ∞

x0

log f (x)

x2 dx ≥
∫ ∞

x0

log h(x)

x2 dx

= log

{
εH

2π

( ∞∑
k=1

σ 2
k

)}∫ ∞

x0

dx

x2

+ (1 − 2Hsup)

∫ ∞

x0

log x

x2 dx > −∞,

and by Theorem 2.1 of [12] this proves that M has conditional full support.
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For mmfOU it is easy to check that

fλ(x) =
∞∑

k=1

σ 2
k fλ,Hk

(x) ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εH �(1)
2π

( ∞∑
k=1

σ 2
k

) |x|1−2Hinf

λ2 + x2 : |x| ≤ 1

εH �(1)
2π

( ∞∑
k=1

σ 2
k

) |x|1−2Hsup

λ2 + x2 : |x| ≥ 1

=: h(x),

where
εH := inf

{
sin(πHk)

}
k≥1

= inf
{

sin(πHinf), sin(πHsup)
}
.

Since 0 < Hinf ≤ Hsup < 1, we have εH > 0. Consequently, h(x) > 0 for x 
= 0.
Therefore, for any x0 > 1 we have that∫ ∞

x0

log fλ(x)

x2 dx ≥
∫ ∞

x0

log h(x)

x2 dx

= log

{
εH

2π

( ∞∑
k=1

σ 2
k

)}∫ ∞

x0

dx

x2

+ (1 − 2Hsup)

∫ ∞

x0

log x

x2 dx

−
∫ ∞

x0

log(λ2 + x2)

x2 dx > −∞.

The claim follows now from Theorem 2.1 of [12].

7 Sample paths

Here we aim to present some replications of the mmfOU and its related mmfBm
with different limitations for its Hurst exponents. Obviously the limitations of the
Hurst exponents characterize the roughness of the sample paths. In each of these
replications, the mmfOU is given on N = 1000 equidistant points tk = k/(N − 1)

of the time interval [0, 1], with n = 10 equidistant Hurst exponents Hi = Hinf +
(i − 1)(Hsup − Hinf)/(n − 1) on the Hurst interval [Hinf,Hsup]. Also, the coefficients
σi = i−1, i!−1, e−i are used and indicated in each figure. In all paths here λ = 1.
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Fig. 2. Sample paths of mmfBm with equidistant time points and equidistant Hurst parameters

Fig. 3. Sample paths of mmfOU with equidistant time points and equidistant Hurst parameters
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