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Abstract The major characteristic of the cancellable American options is the existing writer’s
right to cancel the contract prematurely paying some penalty amount. The main purpose of this
paper is to introduce and examine a new subclass of such options for which the penalty which
the writer owes for this right consists of three parts – a fixed amount, shares of the underlying
asset, and a proportion of the usual option payment. We examine the asymptotic case in which
the maturity is set to be infinity. We determine the optimal exercise regions for the option’s
holder and writer and derive the fair option price.
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1 Introduction

In the recent years and even more so after the financial crisis of 2008, there has been
an increased interest in the international financial markets to derivatives which exhibit
early exercise rights. In response to this interest many authors turn to the scientific
side of these financial instruments. The American style derivatives are a very large
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and important class. They are examined in the presence of a credit risk in [14, 25].
An integral approach for the American put option evaluation is presented in [74].
A two-dimensional Lévy framework is used in [14]. A numerical method for solving
the arising partial integro-differential equations in another jump model, namely Kou’s
jump-diffusion model, can be found in [28]. The pricing-hedging duality in a discrete
market is considered in [3]. A HODIE (abbreviated from high order via differential
identity expansion) finite difference approach is applied in [11]. The American op-
tion pricing is considered as an optimal stopping problem in [7, 17]. Options with
a random start are considered in [6]. Perpetual lookback American options under a
stochastic volatility are examined in [21]. Other stochastic volatility models based on
the Heston framework are presented in [20, 49–51, 54, 59]. A Fourier–Padé method
for pricing and hedging early exercise options – American, Bermuda, etc – is ap-
plied in [13]. Another Fourier approach is presented in [12]. American barrier options
are considered in [19, 43]. A two-state regime-switching framework is considered in
[46]. A wealth based model is developed in [4, 5]. American better-of options defined
on two underlying assets are discussed in [33]. A deep neural network for deriving
the American option prices as well as the corresponding deltas is applied in [15].
A pricing algorithm based on a maximization of the option’s holder financial utility
is presented in [68]. American strangle options are examined in [34, 35, 37, 64].

Another important class of early exercise derivatives are the so-called convertible
bonds. Their importance is due to the mixed nature they exhibit – a debt which can
be converted to stocks. A historical overview of the CoCo (abbreviated from contin-
gent convertible) market trends is analyzed in [62]. A general evaluation method is
presented in [8]. Some numerical methods – binomial trees and finite difference –
for pricing CoCo bonds with and without credit risk are presented in [52, 53]. Con-
vertible bonds under an uncertain market assumptions are explored in [72]. A modi-
fication of the CoCo bonds, named CoCoCat, is considered in [10]. They depend on
some catastrophe stochastic event, not related to the financial market risks. Also, a
financial decision technique is applied in [18] under an assumption of a possible de-
fault. An integral approach for pricing convertible bonds with puttable features is pre-
sented in [73]. A model in accordance with the Chinese convertible bonds’ specifics
is presented in [48]. Resettable convertible bonds are considered in [45]. The He-
ston stochastic volatility framework together with the Cox–Ingersoll–Ross interest
rate term structure is used in [44]. Some specifics of the Western European markets
are studied in [1, 2]. The relations of the CoCo bonds with different market charac-
teristics as the underlying asset, credit default swap spreads, interest rates, implied
volatilities, etc. are explored in [70]. The option featues of the convertible bonds are
considered in [36]. The relation between the convertible bonds and stock returns is
examined in [16].

The cancellable American options, first introduced in [38] as game or Israeli op-
tions, are a specific extension of the American style options. They exhibit a writer’s
right to cancel the contract earlier in addition to the existing such holder’s right. The
writer is obliged to pay some amount above the usual option payment when he decides
to stop the contract. The general framework and a review on the topic are presented
in [39]. A research of the call style options can be found in [27, 41, 63], whereas the
put analogues are examined in [40, 42, 69]. Path dependent options, namely look-
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back and Asian, are considered in [30–32]. Cancellable options in the presence of a
credit risk are studied in [24]. Transaction costs in a multi-asset model are admited
in [57, 58]. The hedging problem is studied in [22, 23]. The cancellable options in
a regime switching diffusion framework are examined in [47]. It turns out that the
asymptotic perpetual case is very informative for the options’ behavior when the ma-
turity horizon is finite – see [29, 61, 66, 67].

A traditional assumption is that the penalty which the writer owes for his early
canceling right is a constant during the option life. We abandon this assumption in the
present paper considering a three-component penalty – a proportion of the usual op-
tion payment, some shares of the underlying asset, and a fixed amount. We introduce
an additional discount factor in our model following the suggestion of [60]. First, it is
the only deterministic factor which makes earlier exercising preferable when there is
no maturity constrain. Second and more important, we can view this discount factor
as a continuous dividend rate changing the parameters.

Our study begins exploring the so-called early exercise regions. They consist of
these values of the underlying asset which make the immediate exercise optimal for
one or the other option’s participant. On the contrary, the continuation region consists
of the points which give better opportunities for both of option’s holder and writer.
The boundaries between the optimal and continuation regions are known as early
exercise or optimal boundaries. The facts that (A) the underlying asset is driven by a
Markov process, (B) the lapse of maturity, and (C) the discount time dependence in
the payment functions show that both exercise boundaries are flat. It turns out that the
holder’s optimal region for a put-style option has the form (0, A) for some constant
A less than the strike, A < K . The writer’s exercise set is more variable. It can be the
interval (B,K) for some constant B ∈ (A,K), the singleton {K} or even the empty
set. The optimal regions for the call options are similar but in some sense inverse.
The holder’s one has the form (B,∞), whereas the writer’s set may again have three
forms – the interval (K,A), the singleton {K} or the empty set.

The approach we use to derive the exercise boundaries is based on maximizing
the future utilities of both of the holder and writer. We assume first that one of the
participants exercises when the underlying asset reaches some level and then obtain
the optimal value for the other. We derive the equation which has to be satisfied by
this optimal value. In such a way we look for the early exercise boundaries which
suffice both of the option’s holder and writer. Once we derive the exercise boundaries
we use some Brownian motion’s hitting properties to obtain the fair option prices. We
investigate also the impact which the penalty coefficients have. As a rule, as higher
they are, as the option is more similar to the corresponding noncancellable one. It
turns out that the smooth fit principle always holds at the holder’s boundary, but it
is satisfied at the writer’s one only when the writer’s optimal set is an interval (not a
singleton). We present also some numerical results for different values of the penalty
components.

We have to mention that the call case in the absence of discounting is specific. As
for the classical American options, early exercising is never optimal for the option’s
holder. This allows us to derive a closed form formula for the writer’s optimal bound-
ary as well as for the fair option price. It turns out that the writer’s boundary is finite
in the presence of the first or second penalty components (proportion of the usual
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option payment or shares of the underlying asset). Otherwise, if the penalty consists
only of a fixed amount, then the writer’s exercise boundary is infinite, too.

The plan of the paper is the following. In Section 2 we provide the base of our
study. Section 3 presents the results for the call style options, whereas the put options
are considered in Section 4. Some numerical results are presented in Section 5.

2 Preliminaries

Let the underlying asset be presented by a log-normal process St under the filtered
probability space (�,F ,Ft ,Q), where Q is the risk neutral measure:

St = xe(r− σ2
2 )+σBt . (1)

We shall use a superscript if we need to mark the dependence on the initial value,
namely Sx

t . The risk free and discount rates, r and λ, are assumed to be constants
such that λ ≥ 0 and r + λ > 0. Note that we do not impose positiveness of the risk
free rate. The additional discount factor λ can be viewed also as a dividend rate –
Proposition 2.3 from [66] says that if the asset pays a dividend with rate δ, then the
(r, λ, δ)-model is equivalent to the (r − δ, λ + δ, 0)-model. We shall denote by K the
strike price. Let the function N1(t, x) present the amount which the writer owes if the
holder exercises the option in the moment t at the spot price St = x. Analogously,
the function N2(t, x) defines the amount which the writer has to pay if he cancels
the contract. Suppose that the penalty consists of three parts – the constant η1 ≥ 1
leads to a proportion of the usual option payment, η2 ≥ 0 is the number of shares,
and η3 ≥ 0 is a fixed amount. Thus the functions N1(t, x) and N2(t, x) are

N1(t, x) = e−λt (x − K)+,

N2(t, x) = e−λt
(
η1(x − K)+ + η2x + η3

) (2)

or

N1(t, x) = e−λt (K − x)+,

N2(t, x) = e−λt
(
η1(K − x)+ + η2x + η3

)
,

(3)

for the call or put style options, respectively. Thus the strategies τb ≥ t and τ s ≥ t for
the holder and writer, respectively, lead to the following value function at the point
(t, x):

M
(
t, x; τb, τ s

) = Et,x
[
e−r(τb−t)N1

(
τb, Sτb

)
Iτb≤τ s + e−r(τ s−t)N2

(
τ s, Sτs

)
Iτs<τb

]
.

(4)
Hence, the upper and lower value of this game are

V ∗(t, x) = inf
τb

sup
τ s

M
(
t, x; τb, τ s

)
, V∗(t, x) = sup

τ s
inf
τb

M
(
t, x; τb, τ s

)
. (5)

We need now the following lemma.
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Lemma 2.1. The expectation of the sup-process, Ht = sup0≤u<t Su, is⎧⎨⎩λ > 0 : e−λt
(
1 − σ 2

2λ

)
N

((
λ
σ

− σ
2

)√
t
) + (

1 + σ 2

2λ

)
N

((
λ
σ

+ σ
2

)√
t
)
,

λ = 0 : 2N
(

σ
√

t
2

) + σ 2t
2 N

(
σ
√

t
2

) + σ
√

tn
(

σ
√

t
2

)
,

(6)

where n(·), N(·), and N(·) are the probability density, the cumulative distribution
function and its complement of the standard normal distribution.

Proof. The lemma can be obtained using the distribution of the sup-Brownian motion
with drift μ and a variance coefficient σ 2:

Q(Ht < x) = N

(
x − μt

σ
√

t

)
− e

2xμ

σ2 N

(
x + μt

σ
√

t

)
. (7)

See Corollary 10.1 from [56] for the proof of equation (7).

Having in mind Lemma 2.1, which leads to E[supt∈[0,T ] e−rtN2(t, St ) = 0] < ∞
and Q(limt→∞ e−rtN2(t, St ) = 0) = 1, we see that the conditions of Theorem 2.1
from [26] are satisfied except when λ = 0 together with T = ∞. This exception is
considered separately in Section 3.4 for call options; see Proposition 4.5 for the puts
(note that r > 0 when λ = 0). Therefore the above defined problem exhibits a Nash
equilibrium, see also [55].

The value function can be defined as V (t, x) = V∗(t, x) ≡ V ∗(t, x). The optimal
regions – ϒb and ϒs – and the optimal strategies – τb and τ s – for the holder and
writer, respectively, are

ϒb = {
(t, x) : V (t, x) = N1(t, x)

}
and ϒs = {

(t, x) : V (t, x) = N2(t, x)
}
,

τ b = inf
{
t : St ∈ ϒb

}
and τ s = inf

{
t : St ∈ ϒs

}
.

(8)

We shall denote the continuation region by ϒ . Suppose that ζ is a stopping time.
We define the ζ -writer’s/holder’s optimal strategy – we denote them by A(ζ ; x) and
B(ζ ; x) marking the dependence on the initial asset value – as the stopping time
which minimizes/maximizes expected payoff (4) w.r.t. τ s or τb, respectively. This
way we deduce as a corollary the writer/holder optimal conditions, namely,

(t, x) ∈ ϒs → N2(t, x) ≤ M
(
t, x; ζ, B(ζ ; x)

) ∀ stopping times ζ,

(t, x) ∈ ϒb → N1(t, x) ≥ M
(
t, x; ζ,A(ζ ; x)

) ∀ stopping times ζ.
(9)

We need to restrict the writer’s optimal set in some marginal cases to keep the
generality of the presentation. In fact, we impose that the writer would not cancel the
option immediately, even this is optimal for him, when some future strategy provides
the same result. This assumption is not so restrictive from a financial point of view.

Condition 2.2. Let the option be out-of-the-money, λ = 0, and η3 = 0. Suppose that
V (t, x) = N2(t, x) and there exists a stopping time ζ > t a.s. such that N2(t, x) =
M(t, x; ζ, B(ζ ; x)). Then (t, x) /∈ ϒs .
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3 Call options

We assume hereafter t = 0 – this is possible due to the Markovian property driving
the asset price. We shall prove first a series of propositions for the optimal regions.
Using them we shall obtain the optimal boundaries as well as the fair price.

3.1 Exercise regions

Proposition 3.1. If x < K , then x ∈ ϒ .

Proof. Suppose that x /∈ ϒ . Obviously x /∈ ϒb and thus x ∈ ϒs . Let ε > 0 be some
small enough constant and τ be the smaller between the first hitting to the strike
moment and ε. Since e−rtSt is a Q-martingale, we derive

N2(t, x) ≡ η2x + η3 = Ex
[
η2e

−rτ Sτ

] + η3

≥ Ex
[
η2e

−(r+λ)τ Sτ + η3e
−(r+λ)τ

] = Ex
[
e−rτN2(τ, Sτ )

]
. (10)

Note that B(τ ; x) > τ , because Sζ ≤ K on every sample path at which ζ ≤ τ and
therefore the exercise before τ is not optimal for the holder (he will receive nothing).
Thus writer’s optimal condition (9) is not true for the stopping time τ – see also
Condition 2.2 for the marginal case λ = 0, η3 = 0. Hence, x /∈ ϒs . The contradiction
finishes the proof.

The following restriction on the penalty coefficients appears: if η3 ≥ η1K , then
early canceling is never optimal for the writer. Hence, the option would be a pure
American.

Proposition 3.2. If η3 ≥ η1K , then ϒs = ∅.

Proof. Suppose that η3 ≥ η1K and x ∈ ϒs . Let us denote by η the price of the or-
dinary perpetual at-the-money American call option. Proposition 6.1 from [68] leads
to η < K . The strike cannot be writer optimal because the never canceling strategy,
which makes the option pure American, leads to a better financial result for the writer
than the immediate cancellation: η2K + η3 ≥ η2K + η1K ≥ K > η. On the other
hand, Proposition 3.1 gives (0,K) /∈ ϒs . Hence x is strictly above the strike x > K .
For a positive ε and a constant K1 such that K < K1 < x, we define τ as the lower
between asset’s first hitting to the value K1 and ε. Note that τ is a finite stopping time
and Sτ > K . Also, SB(τ ;·) > K , because in the opposite case the holder receives
nothing. Let ζ = τ ∧ B(τ ; ·) – note that it is finite. Hence,

η1(x − K) + η2x + η3 ≤ M
(
x; τ, B(τ ; x)

)
= Ex

[
e−(r+λ)B(τ ;·)(SB(τ ;·) − K)IB(τ ;·)≤τ

+ e−(r+λ)τ ((η1 + η2)Sτ + (η3 − η1K))Iτ<B(τ ;·)

]
≤ Ex

[
e−(r+λ)ζ

(
(η1 + η2)Sζ + (η3 − η1K)

)]
= Ex

[
e−(r+λ)ζ (η3 − η1K)

] + Ex
[
e−(r+λ)ζ (η1 + η2)Sζ

]
< (η3 − η1K) + (η1 + η2)E

x
[
e−rζ Sζ

] = η1(x − K) + η2x + η3. (11)

The contradiction finishes the proof.
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Hereafter we assume that η3 < η1K . The following propositions hold.

Proposition 3.3. Suppose that a larger than the strike constant x is writer optimal,
x ∈ ϒs . Let y be another constant such that K < y < x. Then y ∈ ϒs .

Proof. Let us fix some future moment T and a writer’s strategy ζ with values between
0 and T . This leads to the ζ -holder’s optimal strategy B(ζ ; x). Let us define the
function f (·) as f (z) = M(0, z; ζ, B(ζ ; z))−N2(0, z). Using the martingality of the
discounted prices we derive

f (z) = η1K − η3

+ Ez

⎡⎢⎢⎢⎣
e−(r+λ)B(ζ ;z) max

(−(eλB(ζ ;z)(η1 + η2) − 1)SB(ζ ;z) − K,

−eλB(ζ ;z)(η1 + η2)SB(ζ ;z)

)
IB(ζ ;z)≤ζ

+ e−(r+λ)ζ max

( −(η1 + η2)(e
λζ − 1)Sζ − η1K + η3,

−(eλζ (η1 + η2) − η2)Sζ + η3

)
Iζ<B(ζ ;z)

⎤⎥⎥⎥⎦ .

We can see that this function is decreasing and therefore f (y) > f (x) > 0 since
x ∈ ϒs . We finish the proof by taking T → ∞.

Proposition 3.4. If η1 = 1, η2 = 0, and η3 = 0, then ϒ = (0,K).

Proof. See Propositions 3.7 from [66].

Proposition 3.5. If x ∈ ϒb and y > x, then y ∈ ϒb.

Proof. The proof is very similar to the proof of Proposition 3.5 from [65] and we
omit it.

Proposition 3.6. If λ = 0, then the holder’s exercise region is empty.

Proof. Note that Proposition 3.1 from [66] does not explore the form of the cancel-
lation payment, but only the fact that N1(t, x) < N2(t, x).

Proposition 3.7. If r < 0, then ϒs ≡ ∅ or ϒs ≡ {K}.

Proof. First, Proposition 3.1 states that all points below the strike are not writer op-
timal. Suppose that K1 ∈ ϒs for some K1 > K . Proposition 3.3 gives us that the
whole strip (K,K1) ∈ ϒs . Let x ∈ (K,K1) and ζ be the first exit time from the strip
(K,K1). Therefore B(ζ ; x) > ζ . Using the martingality of the discounted asset price
and the inequality η3 < η1K , we derive

Ex
[
e−(r+λ)ζ

(
η1(Sζ −K)+η2Sζ +η3

)
Iζ≤B(ζ ;x) + e−(r+λ)B(ζ ;x)(Sζ − K)IB(ζ ;x)<ζ

]
= Ex

[
e−(r+λ)ζ

(
η1(Sζ − K) + η2Sζ + η3

)]
≤ Ex

[
e−rζ

(
η1(Sζ − K) + η2Sζ + η3

)]
< η1(x − K) + η2x + η3, (12)

which contradicts the writer’s optimal condition (9).
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3.2 Pricing

Propositions 3.1, 3.3, and 3.5 indicate that the holder’s exercise region has the form
ϒb = [B,∞) for some constant B > K , whereas the writer’s one is the interval
ϒs = [K,A] (A is a constant less than B, K < A < B), the singleton ϒs = {K}, or
the empty set ϒs ≡ ∅.

Suppose that the starting point x is between the boundaries A and B, A < x < B,
and let us denote the option price as f (A,B, x) under these assumptions. In such a
way the pricing problem turns to a problem of first exit of a Brownian motion with
drift ψ = r

σ
− σ

2 from the strip (A1, B1) for

A1 = ln A − ln x

σ
< 0, B1 = ln B − ln x

σ
> 0. (13)

If we denote by τA and τB the first hitting moments to the values A1 and B1, then the
option price can be derived as

f (A,B, x) = M
(
x; τA, τB

)
= (B − K)Ex

[
e−(r+λ)τB

IτB≤τA

]
+ (

(η1 + η2)A − η1K + η3
)
Ex

[
e−(r+λ)τA

IτA<τB

]
. (14)

Let the constants p and q be defined as

p = 2

√(
r

σ 2 − 1

2

)2

+ 2
r + λ

σ 2 , q =
√(

r

σ 2 − 1

2

)2

+ 2
r + λ

σ 2 +
(

r

σ 2 − 1

2

)
.

(15)
We have that p ≥ q + 1, equality holds only in the undiscounted case λ = 0. Assume
now that discounting really exists, i.e. λ > 0 or equivalently p > q + 1. Using
equations (45) and (46) from Appendix A we convert call price (14) to

f (A,B, x) = (
(η1 + η2)A − η1K + η3

)
eψA1

sinh(σcB1)

sinh(σc(B1 − A1))

+ (B − K)eψB1
sinh(−σcA1)

sinh(σc(B1 − A1))

= (
(η1 + η2)A − η1K + η3

)(A

x

)q
Bp − xp

Bp − Ap
+ (B − K)

(
B

x

)q
xp − Ap

Bp − Ap
. (16)

Let us fix the upper boundary B. After the substitution a = A
B

, k = K
B

, ξ = η3
B

, and
y = x

B
, formula (16) turns to

f (A,B, x) = B

yq

((η1 + η2)a − η1k + ξ)aq(1 − yp) + (1 − k)(yp − ap)

1 − ap

= B

yq

−ap(1 − k) + aq+1(η1 + η2)(1 − yp) − aq(η1k − ξ)(1 − yp) + yp(1 − k)

1 − ap
.

(17)
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We have the order 0 ≤ ξ
η1

< k < a < 1, because η3 < η1K . Since the option’s writer
minimizes his financial result, we have to derive for which value of a the function

g(a; y)= −ap(1−k)+aq+1(η1+η2)(1−yp)−aq(η1k − ξ)(1 − yp) + yp(1 − k)

1 − ap

(18)
is smallest in the interval (0, 1). Its derivative is

ga(a) = 1 − yp

(1 − ap)2 aq−1
[
ap+1(η1 + η2)(p − q − 1) − ap(η1k − ξ)(p − q)

− ap−qp(1 − k) + a(q + 1)(η1 + η2) − q(η1k − ξ)

]
.

(19)

We prove in Proposition B.2 that function (19) has a unique root in the interval (0, 1)

– we denote it by a(B). It leads to the minimum of price function (17).
Let now fix the writer’s boundary A. We have to find which value B maximizes

function (16), since the option’s holder maximizes his financial utility. Let us change
the variables as b = B

A
, k = K

A
, ξ = η3

A
, and y = x

A
. Now the order is 0 ≤ ξ

η1
< k ≤

1 < b. Thus option’s price function (16) turns to

f (A,B, x) = A

yq

(η1 + η2 − η1k + ξ)(bp − yp) + (b − k)bq(yp − 1)

bp − 1
. (20)

Hence, we have to derive the maximum of the function

g(b) = (η1 + η2 − η1k + ξ)(bp − yp) + (b − k)bq(yp − 1)

bp − 1

= bp(η1+η2−η1k+ξ)+bq+1(yp−1)−bqk(yp − 1) − (η1 + η2 − η1k + ξ)yp

bp − 1
.

Its derivative is

gb(b) = yp − 1

(bp − 1)2 bq−1
[−bp+1(p − q − 1) + bpk(p − q)

+ bp−qp(η1 + η2 − η1k + ξ) − b(q + 1) + qk

]
. (21)

We show in Proposition B.3 that this function has just one root in the interval (1,∞)

except in the marginal case η2 = η3 = 0, which is examined in [65]. We shall denote
the root by b(A). Thus pricing function (20) has a maximum for B = b(A)A.

Let us denote the true boundaries (if they exist) by A∗ and B∗. We search the po-
tential writer’s optimal boundary as the unique solution A of the equation
yb(y)a(yb(y)) = y or equivalently

b(y)a
(
yb(y)

) = 1. (22)

If A ≥ K , then this is the true boundary, i.e. A∗ = A and B∗ = b(A)A. It may happen
that A < K , because we have changed the original payment functions in formula (14)
from N1(t, x) = e−λt (x − K)+ and N2(t, x) = e−λt (η1(x − K)+ + η2x + η3) to
N1(t, x) = e−λt (x − K) and N2(t, x) = e−λt (η1(x − K) + η2x + η3), respectively.
Note that we are just in this case when r < 0 due to Proposition 3.7. Hence, if A < K

we have to recognize whether the writer’s exercise region is the singleton {K} or the
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empty set. Suppose that the initial asset price is the strike, x = K . The writer has
the alternatives to cancel immediately or to do nothing. In the first case he has to
pay amount of η2K + η3, whereas in the second one the option turns to ordinary
American. It is shown in [68], Proposition 6.1, that its price is

η = K

γ

(
γ − 1

γ

)γ−1

(23)

for γ = p − q. We conclude that if η2K + η3 ≤ η, then the writer would prefer to
cancel the option immediately, i.e. ϒs = {K} and thus A∗ = K and B∗ = b(K)K .
Otherwise, if η2K + η3 > η, then ϒs = ∅, which means that the option is ordinary
American, A∗ does not exist, and B∗ = γ

γ−1K , see Proposition 6.1 from [68].
Note at last that if the writer’s exercise region is not empty and the asset starts

below the strike, x < K , then the writer cancels when the asset hits the strike and this
strategy leads to the option price

Ex
[
e−(r+λ)τ

(
η1(Sτ − K)+ + η2K + η3

)
Iτ<∞

]
= (η2K + η3)E

x
[
e−(r+λ)τ Iτ<∞

] = (η2K + η3)

(
x

K

)γ

(24)

due to Proposition A.1.

Remark 1. If η2 = η3 = 0, then we have an option with a proportional penalty –
we refer to Theorem 4.1 from [65]. There all points below the strike are considered
as writer optimal, since the writer owes nothing. On the other hand, these points can
be viewed also as belonging to the continuation region, since the first hitting to the
strike strategy gives the same results – we can apply Condition 2.2. Let us mention,
that if r ≤ 0, then ϒs = {K} and ϒb = (K,∞). If r > 0, then the results are similar
to the general case presented below.

We summarize the derived results in the following theorem.

Theorem 3.8. Let λ > 0 and η2 + η3 > 0. If η3 ≥ η1K , then ϒs = ∅ and the option
is ordinary American – for more details about these options see Theorem 6.1 from
[68]. If η3 < η1K in addition to η2 + η3 > 0, then A is defined as the solution of
equation (22) and the following statements hold.

If A ≥ K , then A∗ = A and B∗ = Ab(A). The exercise regions for the writer
and holder are ϒs = [K,A∗] and ϒb = [B∗,∞), respectively. The option price
V (x) is given by equation (24) when x ≤ K; V (x) = (η1 + η2)x − η1K + η3 when
K < x < A∗; V (x) = x −K when x > B∗; and V (x) is given by formula (16) when
A∗ ≤ x ≤ B∗.

If A < K and η2K + η3 ≤ η, η is given by equation (23), then A∗ = K and
B∗ = Kb(K). The exercise regions are ϒs = {K} and ϒb = [B,∞). The option
price V (x) is determined as in the previous case.

If A < K and η2K + η3 > η, then the option is again ordinary American.

3.3 Smooth fit principle

Let us discuss now the smooth fit principle, i.e. when the derivative of the value
function V (x) is continuous at the optimal boundaries. We have that V ′(x) = 1 for
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x ∈ ϒb and V ′(x) = η1 + η2 for x ∈ ϒs . If x > K and x ∈ ϒ , then we derive V ′(x)

differentiating formula (16):

V ′(x) = (B∗ − K)B∗q(xp(p − q) + qA∗p)

xq+1(B∗p − A∗p)

− ((η1 + η2)A
∗ − η1K + η3)A

∗q(xp(p − q) + qB∗p)

xq+1(B∗p − A∗p)
. (25)

Let us check the smooth fit at the holder’s boundary. Using again the change of vari-
ables b∗ = B∗

A∗ , k = K
A∗ , ξ = η3

A∗ , and y = x
A∗ , we derive for derivative (25) at the

point b∗

V ′(b∗)= (b∗−k)(b∗p(p − q) + q) − ((η1 + η2) − η1k + ξ)(b∗p(p − q) + qb∗p)

b∗(b∗p − 1)
.

(26)
We can easily check that V ′(b∗) = 1, because b∗ is the root of function (49). Hence,
there is a smooth fit at the holder’s boundary. Analogously, we can establish the
smooth fit at the writer’s boundary A∗ when A∗ = A ≥ K having in mind that
we use the root of function (48) to derive the value of A. Otherwise, if A < K , then
we have not smooth fitting at the writer’s boundary, namely the strike, because it is
not B∗-writer optimal. Note that B∗ is K-holder optimal which confirms the smooth
fit at B∗.

On the other hand, all points below the strike belong to the continuation region.
Suppose that the writer’s optimal region is not empty. We cannot expect lower smooth
fit at the strike because the writer’s payoff function N2(t, x) is not smooth namely at
the strike.

We can summarize: we have always smooth fit at the holder’s boundary, but only
when A ≥ K at the writer’s one.

3.4 Absence of discounting
Suppose now, that λ = 0 or equivalently p = q + 1. We have r > 0, because the
total discount factor is positive. Proposition 3.6 shows that it is never optimal for the
holder to exercise the option. Hence, his boundary is infinitely large. This conclusion
is supported by the fact that derivative (21) is always positive, which is proven in
Proposition B.3. Thus the holder maximizes his utility for B = ∞. Suppose that the
writer’s optimal boundary is a constant A ≥ K and the underling asset starts above it,
x > A. Let us denote the first hitting moment of the asset to the level A by ζ and the
price of a down-and-out barrier option with strike K and barrier A by CDO(x,A,K).
Therefore, the option price can be presented as the following dependent on A function

F(A) = Ex
[
e−rζ

(
η1(Sζ − K)+ + η2Sζ + η3

)
Iζ<∞

]
+ lim

T →∞ Ex
[
e−rT (ST − K)+IT <ζ

]
= (

(η1 + η2)A − η1K + η3
)
Ex

[
e−rζ Iζ<∞

] + lim
T →∞ CDO(x,A,K). (27)

Using Proposition A.1 and equation (10.45) from [71] we obtain

Ex
[
e−rζ Iζ<∞

] =
(

A

x

) 2r

σ2

, lim
T →∞ CDO(x,A,K) = x

(
1 −

(
A

x

)1+ 2r

σ2
)

. (28)
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Substituting equations (28) into (27) we derive for the option price

F(A) = x +
(

A

x

) 2r

σ2 (
A(η1 + η2 − 1) + η3 − η1K

)
. (29)

Its derivative is F ′(A) = 1
Aσ 2 (A

x
)

2r

σ2 h(A), where the function h(A) is

h(A) = A(η1 + η2 − 1)
(
2r + σ 2) + 2r(η3 − η1K). (30)

It is linear and increasing with root

M = 2r(η1K − η3)

(η1 + η2 − 1)(2r + σ 2)
. (31)

Note that it is positive. We have two cases to examine – suppose first that M ≤ K .
Thus derivative F ′(A) is always positive for A > K . Hence, the price function (29) is
increasing and therefore its minimum is for A = K . We have to recognize whether the
writer’s exercise region is the singleton {K} or the empty set. Suppose that the option
is at-the-money, i.e. the initial asset price is the strike. The writer has the alternatives
to cancel the option immediately or to do nothing. If he chooses the first one, then he
has to pay η2K + η3. The second alternative turns the option to European, since the
holder will never exercise earlier, too. Its price is just the initial asset value – we can
see this if we take the limit T → ∞ in the Black–Scholes formula. Hence, ϒ ≡ {K}
when η2K + η3 ≤ K , and it is the empty set otherwise. Thus, if η2K + η3 ≤ K , the
option price (29) takes the form

x +
(

K

x

) 2r

σ2 (
K(η2 − 1) + η3

)
(32)

when x ≥ K . Note that function (32) is increasing, since K(η2 − 1) + η3 < 0 and
therefore its minimum is for x = K and it is η2K + η3. When x < K we use
Proposition A.1 to derive the option price as

(η2K + η3)E
x
[
e−rζ Iζ<∞

] = (η2K + η3)x

K
. (33)

If η2K + η3 > K , early exercising is never optimal neither for the writer nor for
the holder. Hence, the option turns to a European one and its price is the initial asset
price x.

Suppose now that M > K and therefore function (30) is negative for A ∈ (K,M)

and positive for A > M . Therefore price function (29) has a minimum for A = M .
This means that the exercise boundary is given by formula (31) and the writer’s ex-
ercise region is the interval (K,M). Hence, the option price is given by formula (33)
when x < K . Also, if x ≥ M , then option price formula (29) turns to

x

(
1 − σ 2(η1 + η2 − 1)

2r

(
2r(η1K − η3)

x(η1 + η2 − 1)(2r + σ 2)

) 2r

σ2 +1)
. (34)

We can summarize the results above in the following theorem.



Perpetual cancellable American options with convertible features 379

Theorem 3.9. Let λ = 0 and suppose first that M < K , where the constant M is
defined by formula (31). If η2K + η3 > K , then early exercising is never optimal
for both participants and the option price is V (x) = x. Otherwise, if η2K + η3 ≤
K , then the writer’s exercise region is the strike. The option price V (x) is given by
equation (32) when x ≥ K and by equation (33) when x < K .

If M ≥ K , then the writer’s exercise region is ϒs = [K,M]. The price V (x)

is given by statement (33) when x < K; by (34) when M < x; and V (x) = (η1 +
η2)x − η1K + η3 when K ≤ x ≤ M .

4 Put style options

We turn to the cancellable put options considering payments structures (3). We work
in a similar manner giving only the differences with the call case. Analogously to
Proposition 3.1 we can prove that all points above the strike are not optimal for both
participants:

Proposition 4.1. If x > K , then x ∈ ϒ .

The following restriction for the penalty coefficients stands.

Proposition 4.2. If η2 ≥ η1, then ϒs ≡ ∅.

Proof. Suppose that η2 ≥ η1 and x ∈ ϒs . Proposition 4.1 gives us that x ≤ K . Note
that the price of the ordinary perpetual at-the-money American put option, denoted
by η, is less the strike, η < K . The point x = K cannot be writer’s optimal because
the writer has to pay η2K + η3 ≥ K > η (note that η2 ≥ η1 ≥ 1), i.e. the strategy
of never canceling, which leads to a pure American option, is better for him. Hence
x < K . We continue in the same way as in Proposition 3.2 turning contradictory
inequality (11) to

η1(K − x) + η2x + η3 ≤ M
(
x; τ, B(τ ; x)

)
= Ex

[
e−(r+λ)B(τ ;·)(K − SB(τ ;·))IB(τ ;·)≤τ

+ e−(r+λ)τ (η1K + η3 + (η2 − η1)Sτ )Iτ<B(τ ;·)

]
≤ Ex

[
e−(r+λ)ζ

(
η1K + η3 + (η2 − η1)Sζ

)]
< η1(K − x) + η2x + η3.

We assume hereafter that η2 < η1. The following statements describe the shape
of the exercise boundaries.

Proposition 4.3. If η1 = 1, η2 = 0, and η3 = 0, then ϒ = (K,∞).

Proof. See Proposition 2.6 from [67].

Proposition 4.4. The following two statements hold: (A) if x ∈ ϒb and y < x, then
y ∈ ϒb and (B) if x < K , x ∈ ϒs , and x < y < K , then y ∈ ϒs .

Proof. We refer again to Proposition 3.5 from [65] for the proof of the first part.
Let us turn to the second statement of the proposition. Suppose that a point y from
the interval (x,K) is not writer optimal, y /∈ ϒs . If y ∈ ϒb, the first part of the
proposition leads to x ∈ ϒb, which is impossible. Hence y ∈ ϒ . Something more,
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all points between x and y are not holder optimal. Suppose also, that all points above
y are not writer optimal. Therefore they belong to the continuation region. Let us
examine the writer’s minimization problem if the initial asset price is S0 = y. Let τz

be first hitting of the asset to the value z. The writer has to minimize the following
term in the interval z ∈ (0, y)

h(z) = Ey
[
e−(r+λ)τz

(
η1(K − Sτz) + η2Sτz + η3

)]
= (η1 − η2)E

y

[
e−(r+λ)τz

(
η1K + η3

η1 − η2
− Sτz

)]
. (35)

Function (35) is the payment of (η1 − η2) ordinary American put options with strike
η1K+η3
η1−η2

; note that η1 − η2 > 0. This function first increases to a maximum and then
decreases; for the proof see Theorem 6.2 from [68]. Hence, its minimum is either for
z = 0 or for z = y. The second one contradicts to y ∈ ϒ , whereas the first one
contradicts to x ∈ ϒs .

Suppose now, that some point between y and K is writer optimal. Therefore there
exist points B < C such that {B,C} ∈ ϒs and the interval between them is a part of
the continuation region, (B,C) ∈ ϒ . We can think that B < y < C. Let us denote
by ζB and ζC the first hitting moments of the underlying asset to the levels B and
C, respectively, and by ζ the lesser of them, ζ = ζB ∧ ζC . Note that ζ < B(ζ, y).
Therefore

η1K + η3 − (η1 − η2)y > Ey
[
e−(r+λ)ζ

(
η1K + η3 − (η1 − η2)Sζ

)]
. (36)

Let us define a new cancellable option with strike η1K+η3
η1−η2

and without penalty.

We shall denote by ϒs
1 , ϒb

1 , and ϒ1 the corresponding regions and by A1(·) and
B1(·) the writer’s and holder’s optimal strategies, respectively. The fact that x ∈ ϒs

means that the writer prefers to cancel the option immediately provided that he may
pay less if the holder exercises. This means that the writer will prefer to stop the
contract immediately again if there is no possibility for a lower payment when the
holder exercises the option. Hence x ∈ ϒs

1 and thus y /∈ ϒb
1 , because the opposite

would contradict to the first part of the proposition. Note that the conclusion above
is true for all points between B and C. Suppose that y ∈ ϒs

1 and let us examine the
strategy ζ . We have that ζ < B1(ζ, y), since (B,C) /∈ ϒb

1 . Therefore

(η1 − η2)

(
η1K + η3

η1 − η2
− y

)
≤ (η1 − η2)E

y

[
e−(r+λ)(ζ∧B1(ζC ;y))

(
η1K + η3

η1 − η2
− Sζ∧B1(ζ ;y)

)]
= Ey

[
e−(r+λ)ζ

(
η1K + η3 − (η1 − η2)Sζ

)]
, (37)

which contradicts to inequality (36). Thus y ∈ ϒ1, which is impossible due to Propo-
sition 4.3. The last contradiction finishes the proof.

Proposition 4.5. If r > 0, then ϒs ≡ ∅ or ϒs ≡ {K}.
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Proof. The proof is similar to the proof of Proposition 3.7. Supposing the opposite,
we construct ζ as the first exit from the strip (K1,K). Assuming x ∈ (K1,K) we
modify inequality (12) to

Ex
[
e−(r+λ)ζ

(
η1(K−Sζ )+η2Sζ +η3

)
Iζ≤B(ζ ;x) + e−(r+λ)B(ζ ;x)(K − Sζ )IB(ζ ;x)<ζ

]
= Ex

[
e−(r+λ)ζ

(
η1(K − Sζ ) + η2Sζ + η3

)]
≤ Ex

[
e−rζ

(
η1(K − Sζ ) + η2Sζ + η3

)]
< η1(K − x) + η2x + η3.

Hence, the point x cannot be writer’s optimal.

Let us turn to the pricing problem. We shall use an approach similar to those
presented in Section 3.2 to obtain the equations which are solved by the optimal
boundaries. Propositions 4.1 and 4.4 indicate that the holder’s exercise region has
the form ϒb = (0, A] for some constant A, whereas the writer’s set has one of the
following three forms: ϒs = [B,K], ϒs = {K}, or ϒs = ∅.

If η2 = η3 = 0 we have an option with multiplied penalty. These options are
examined in [65]. Suppose now that η2 +η3 > 0 and A < x < B < K . Let us denote
again by τA and τB the first hitting moments of the underlying asset to the values A

and B, respectively. The pricing function of the option can be written as

f (A,B, x) = E

[
e−(r+λ)τB

(η1K − (η1 − η2)SτB + η3)IτB≤τA

+ e−(r+λ)τA
(K − SτA)IτA<τB

]

= (K − A)

(
A

x

)q
Bp − xp

Bp − Ap
+ (

η1K − (η1 − η2)B + η3
)(B

x

)q
xp − Ap

Bp − Ap
. (38)

For the meaning of p and q, see equations (15). Note that p ≥ q + 1 and the equality
is reached when λ = 0. First, let us fix the boundary B. The change of variables we
use, a = A

B
, k = K

B
, y = x

B
, and ξ = η3

B
, leads to an order 0 < a < 1 ≤ k. Thus

pricing function (38) can be transformed to f (A,B, x) = B
yq g(a) where the function

g(a) is

g(a) = (k − a)aq(1 − yp) + (η1k − η1 + η2 + ξ)(yp − ap)

1 − ap

= −ap(η1k−η1+η2+ξ)−aq+1(1 − yp)+aqk(1 − yp) + yp(η1k − η1+η2+ξ)

1 − ap
.

(39)

It is proven in Appendix B, Proposition B.6, that its derivative

ga(a; y) = 1 − yp

(1 − ap)2 aq−1
[−ap+1(p − q − 1) + apk(p − q)

− ap−qp(η1k − η1 + η2 + ξ) − a(q + 1) + qk

]
has a unique root in the interval (0, 1) which leads to the maximum of the price
function. We shall denote the root by a(B). Hence, if the writer’s strategy is to cancel
when the asset reaches the level B, then the holder’s strategy is to exercise at level
Ba(B).
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Let us fix now the value A in formula (38). We change the variables to b = B
A

,
k = K

A
, y = x

A
, and ξ = η3

A
. Therefore we have to examine b > 1. Note that k > 1.

Price function (38) turns to f (A,B, x) = A
yq g(b) where

g(b) = bp(k − 1) − bq+1(η1 − η2)(y
p − 1) + bq(η1k + ξ)(yp − 1) − (k − 1)yp

bp − 1
.

Its derivative is

gb(b; y) = yp − 1

(bp − 1)2 bq−1
[
bp+1(p − q − 1)(η1 − η2) − bp(η1k + ξ)(p − q)

+ bp−qp(k − 1) + b(q + 1)(η1 − η2) − q(η1k + ξ)

]
.

(40)

Suppose first λ > 0 or equivalently p > q + 1. It is proven in Proposition B.4
that derivative (40) has a unique root larger than one. It leads to the minimum of the
price function and we shall denote it by b(A). Hence, our candidate for the writer’s
boundary is the solution B of the equation Ba(y)b(ya(y)) = B or equivalently

a(y)b
(
ya(y)

) = 1. (41)

We shall denote the true holder’s and writer’s boundaries by A∗ and B∗. If B ≤ K ,
then B∗ = B and A∗ = B∗a(B∗). If B > K , then we need to recognize when
ϒs = {K} and when ϒs = ∅. Similarly to the call case, we conclude that ϒs = {K}
when η2K + η3 ≤ η and ϒs = ∅ when η2K + η3 > η, where η is the price of the
corresponding noncancellable at-the-money American option. We derive its value via
Theorem 6.2 from [68]

η = K

q + 1

(
q

q + 1

)q

. (42)

If λ = 0, then derivative (40) is negative for b > 1 due to Proposition B.4 from
Appendix B. Therefore B = ∞, particularly B > K , and hence the writer’s exercise
region is either empty or the singleton {K}. This case is examined above. Note that
the same result can be establish via Proposition 4.5: r > 0, since r + λ > 0 and
λ = 0.

Finally, if we suppose that the writer’s optimal region is not empty and the asset
starts above the strike x > K , then the optimal writer’s strategy is first hitting to the
strike. We use Proposition A.1 to obtain the option price as

Ex
[
e−(r+λ)τ

(
η1(Sτ − K)+ + η2Sτ + η3

)
Iτ<∞

] = (η2K + η3)

(
K

x

)q

. (43)

We summarize the derived results in the following theorem.

Theorem 4.6. If η2 ≥ η1, then the option is ordinary American. Suppose now η2 <

η1 and η2 + η3 > 0.1 If B ≤ K , then B∗ = B and A∗ = B∗a(B∗); thus the exercise

1If η2 = η3 = 0 we refer to Theorem 6.1 from [65]. See also Remark 1. Let us mention that if r ≥ 0,
then ϒs = {K} and ϒb = (0, K). The rest of the results are similar to the general case.
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regions for the writer and holder are ϒs = [B∗,K] and ϒb = [0, A∗), respectively.
The option price V (x) is given by equation (43) when x ≥ K; by formula (38) when
A ≤ x ≤ B; it is V (x) = −(η1 − η2)x + η1K + η3 when B < x < K; and
V (x) = K − x when x < A.

If K < B and η2K + η3 ≤ η, η is given by equation (42), then B∗ = K and
A∗ = Ka(K). The exercise regions are ϒs = {K} and ϒb = (0, A]. The option
price is determined as in the previous case.

If K < B and η2K + η3 > η, then the option is again ordinary American.

Remark 2. Analogously to the results from Section 3.3 we always establish a smooth
fit at the holder’s boundary, but only when B < K at the writer’s one.

5 Numerical results

Now we discuss some numerical examples based on the theoretical results presented
above.

5.1 Call options

As we have seen above, the penalty coefficients η1, η2, and η3 influence significantly
the option behavior. Roughly said, the option looks more like the corresponding ordi-
nary American call when they are larger. We shall see for which values the cancellable
feature has its impact. First, Proposition 3.2 says that η3 is limited by the inequality
η3 < η1K . It turns out that this evaluation is too weak. We know that if the writer’s
optimal set is not empty, then the strike belongs to it. Hence, η2K + η3 < η, where η

is given by equation (23). Obviously, this equation is stronger due to η < K . Other-
wise, the assumption ϒs = ∅ means that the nonuse of the canceling right is the best
writer’s strategy, particularly better than the immediate exercise. So, the inequality
η2K + η3 ≥ η holds and hence it determines whether the option is ordinary Amer-
ican or cancellable. Also, we can see that if the number of shares, η2, is larger than
1
γ
(
γ−1
γ

)γ−1, then the option is ordinary American (γ = p − q). Otherwise, the value

K[ 1
γ
(
γ−1
γ

)γ−1 − η2] is critical for the fixed amount η3: if it is larger, then the option
is ordinary American; otherwise it is a real cancellable option. We have to mention
an important fact that the option’s essence does not depend on the coefficient η1 – it
influences whether the writer’s optimal set is only the strike once we know that the
option is real cancellable.

Having in mind the previous restrictions, we examine call options with the fol-
lowing parameters: the risk free rate r = 0.05, the discount factor λ = 0.01, the
volatility σ = 0.3, the strike K = $5, and the initial asset value x = $20. We vary
the penalty parts as η1 ∈ (1, 1.1), η2 ∈ (0, 0.3), and η3 ∈ (0, 1). When we fix some
of these penalties, we use the values η1 = 1.05, η2 = 0.2, and η3 = 0.5.

The behavior of the optimal boundaries w.r.t. the three components of the penalty
is presented in Figure 1. We can see that the writer’s boundary decreases to the strike
when the penalty coefficients increase – we mark by red color the critical values. Note
that this boundary vanishes when the penalties are large enough. Also, the holder’s
boundary is an increasing function and it tends to the American optimal boundary.
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Fig. 1. Call options boundaries

We present the call prices at Figures 3a, 3b, and 3c varying the three different penalty
coefficients.

The results for some particular options are reported in Table 1. There can be seen
the option prices – the second line – as well as the optimal boundaries. The writer’s
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Table 1. Call option prices and optimal boundaries

η2 0.05 0.1 0.15 0.2
penalty cefficient η1 = 1

η3 = 0.25 {10.9835; 47.9751} {8.4011; 49.8094} {6.9288; 50.8208} {5.9432; 51.4786}
$15.6691 $15.8449 $15.9507 $16.0229

η3 = 0.5 {10.0752; 49.0768} {7.7986; 50.5301} {6.4656; 51.3630} {5.5627; 51.9147}
$15.7722 $15.9196 $16.0100 $16.0723

η3 = 0.75 {9.2236; 50.0061} {7.2169; 51.1625} {6.0134; 51.8470} {5.1889; 52.3078}
$15.8649 $15.9879 $16.0646 $16.1179

η3 = 1 {8.4209; 50.7978} {6.6546; 51.7185} {5.5718; 52.2787} {5; 52.6652}
$15.9482 $16.0500 $16.1145 $16.1602

penalty cefficient η1 = 1.05

η3 = 0.25 {9.0261; 48.9852} {7.4034; 50.2132} {6.3308; 50.9953} {5.5558; 51.5439}
$15.7633 $15.8863 $15.9696 $16.0302

η3 = 0.5 {8.4011; 49.8094} {6.9288; 50.8208} {5.9432; 51.4786} {5.2260; 51.9456}
$15.8449 $15.9507 $16.0229 $16.0759

η3 = 0.75 {7.7986; 50.5301} {6.4656; 51.3630} {5.5627; 51.9147} {5.1889; 52.3078}
$15.9196 $16.0100 $16.0723 $16.1179

η3 = 1 {7.2169; 51.1625} {6.0134; 51.8470} {5.1889; 52.3078} {5; 52.6652}
$15.9879 $16.0646 $16.1179 $16.1602

penalty cefficient η1 = 1.1

η3 = 0.25 {7.8900; 49.5313} {6.7256; 50.4598} {5.8903; 51.1023} {5.2554; 51.5765}
$15.8169 $15.9122 $15.9813 $16.0339

η3 = 0.5 {7.4034; 50.2132} {6.3308; 50.9953} {5.5558; 51.5439} {5; 51.9526}
$15.8863 $15.9696 $16.0302 $16.0767

η3 = 0.75 {6.9288; 50.8208} {5.9432; 51.4786} {5.2260; 51.9456} {5; 52.3120}
$15.9507 $16.0229 $16.0759 $16.1184

η3 = 1 {6.4656; 51.3630} {5.5627; 51.9147} {5; 52.3120} {5; 52.6652}
$16.0100 $16.0723 $16.1184 $16.1602

penalty cefficient η1 = 1.2

η3 = 0.25 {6.5741; 50.0836} {5.8489; 50.7178} {5.2793; 51.2001} {5; 51.5866}
$15.8729 $15.9396 $15.9920 $16.0351

η3 = 0.5 {6.2297; 50.6170} {5.5504; 51.1660} {5.0151; 51.5866} {5; 51.9526}
&15.9288 $15.9882 $16.0350 $16.0767

η3 = 0.75 {5.8903; 51.1023} {5.2554; 51.5765} {5; 51.9526} {5; 52.3120}
&15.9813 $16.0339 $16.0767 $16.1184

η3 = 1 {5.5558; 51.5439} {5; 51.9526} {5; 52.3120} {5; 52.6652}
$16.0302 $16.0767 $16.1184 $16.1602

boundary is the first value at the first line, whereas the holder’s one is given at the
second place. We vary the three parts of the penalty among η1 ∈ {1; 1.05; 1.1; 1.2},
η2 ∈ {0.05; 0.1; 0.15, 0.2}, and η3 ∈ {0.25; 0.5; 0.75; 1}.

5.2 Put options

Analogously to the call case, we can see that the inequality η2K +η3 < η determines
when the option is ordinary American or cancellable – we have a cancellable option
when it holds and pure American otherwise. Note that η is given by equation (42).
We conclude that we have a real cancellable option if (A) the number of shares is
less than 1

q+1 (
q

q+1 )q and (B) the fixed amount η3 is less than K[ 1
q+1 (

q
q+1 )q − η2].

If one of these conditions does not hold, then we have a noncancellable American
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option. Let us discuss the role of the penalty coefficient η1. Proposition 4.2 says that
a necessary condition the option to be real cancellable is η2 < η1. On the other hand,
inequality η2K +η3 < η is stronger, since η < K and therefore η2 < 1 ≤ η1. Hence,
as in the call case, the coefficient η1 influences whether the writer’s optimal set is the
strike, but not whether we have a real cancellable option or pure American.

Taking into account the previous limitations, we consider put options with the
following parameters: the risk free rate r = −0.03, the discount factor λ = 0.05,
the volatility σ = 0.3, the strike K = $10, and the initial asset value x = $5. The
penalties are taken as before: η1 ∈ (1, 1.1), η2 ∈ (0, 0.3), and η3 ∈ (0, 1). When we
fix some of them, we use the values η1 = 1.05, η2 = 0.2, and η3 = 0.5.

We present the optimal boundaries in Figure 2 fixing one of the penalty parts
and varying the others. As we expected, the writer’s boundary increases w.r.t. the
penalties and goes to the strike. The meaning of the red points is preserved – they
mark namely the values for which the writer’s boundary turns to the strike. Also,
we can see that the holder’s boundaries are decreasing functions. The resulting price
behavior is presented in Figures 3d, 3e, and 3f.

We report some results for option prices and the related exercise boundaries in
Table 1. The optimal boundaries are placed at the first line – the holder’s boundary
is first; the writer’s one is second. The obtained prices are presented at the second
line. The three parts of the penalties are again among η1 ∈ {1; 1.05; 1.1; 1.2}, η2 ∈
{0.05; 0.1; 0.15, 0.2}, and η3 ∈ {0.25; 0.5; 0.75; 1}.

A Some Laplace transforms

The following results are reported in [9], pages 223 and 233.

Proposition A.1. Let τ be the first hitting time of a Brownian motion with drift μ to
the level a. Then

E
[
e−yτ Iτ<∞

] =
{

e−(
√

μ2+2y−μ)a if a > 0,

e(
√

μ2+2y+μ)a if a < 0.
(44)

Also, the Laplace transforms of the first exit time from a strip (a, b) are

E
[
e−yτ Iτ=a

] = eμa sinh(b
√

2y + μ2)

sinh((b − a)
√

2y + μ2)
, (45)

E
[
e−yτ Iτ=b

] = eμb sinh(−a
√

2y + μ2)

sinh((b − a)
√

2y + μ2)
. (46)

B Uniqueness of the solutions

Let p and q be defined as in equations (15).

Lemma B.1. Let η > 1 and k < 1. The function h(a), defined on the interval (0, 1)

as

h(a) = ap+1η(p − q − 1) − apηk(p − q) − ap−qp(1 − k) + a(q + 1)η − qηk,

(47)
starts from a negative value, increases having a root, and then stays positive.
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Fig. 2. Put options boundaries

Proof. See Appendix B.1 in [65].

Proposition B.2. Let η1 ≥ 1, η2 ≥ 0, and 0 ≤ ξ
η1

< k < 1. The function

h(a) = ap+1(η1 + η2)(p − q − 1) − ap(η1k − ξ)(p − q)

− ap−qp(1 − k) + a(q + 1)(η1 + η2) − q(η1k − ξ) (48)
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Fig. 3. Options prices

has a unique root in the interval (0, 1).

Proof. First, note that if η1 = 1 and η2 = 0, we have an option with a constant
penalty. Hence, we can use Appendix B.1 of [66]. Suppose now that η1 +η2 > 1. We
can decompose function (48) as h(a) = h(a)+h̃(a) for h̃(a) = (η2k+ξ)(ap(p−q)+
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Table 2. Put option prices and optimal boundaries

η2 0.05 0.1 0.15 0.2
penalty cefficient η1 = 1

η3 = 0.25 {2.5588; 7.6681} {2.4126; 8.6126} {2.3100; 9.6050} {2.2308; 10}
$5.2703 $5.3475 $5.4102 $5.4650

η3 = 0.5 {2.4656; 8.7271} {2.3541; 9.6389} {2.2686; 10} {2.1955; 10}
$5.3480 $15.9196 $5.4663 $5.5212

η3 = 0.75 {2.4022; 9.6654} {2.3093; 10} {2.2308; 10} {2.1625; 10}
$5.4120 $5.4673 $5.5224 $5.5778

η3 = 1 {2.3534; 10} {2.2686; 10} {2.1955; 10} {2.1315; 10}
$5.4680 $5.5233 $5.5789 $5.6348

penalty cefficient η1 = 1.05

η3 = 0.25 {2.5247; 8.8198} {2.4022; 9.6654} {2.3093; 10} {2.2308; 10}
$5.2946 $5.3564 $5.4108 $5.4650

η3 = 0.5 {2.4551; 9.6858} {2.3534; 10} {2.2686; 10} {2.1955; 10}
$5.3572 $5.4119 $5.4663 $5.5212

η3 = 0.75 {2.4015; 10} {2.3093; 10} {2.2308; 10} {2.1625; 10}
$5.4126 $5.4673 $5.5224 $5.5778

η3 = 1 {2.3534; 10} {2.2686; 10} {2.1955; 10} {2.1315; 10}
$5.4680 $5.5233 $5.5789 $5.6348

penalty cefficient η1 = 1.1

η3 = 0.25 {2.5139; 9.7012} {2.4015; 10} {2.3093; 10} {2.2308; 10}
$5.3032 $5.3570 $5.4108 $5.4650

η3 = 0.5 {2.4544; 10} {2.3534; 10} {2.2686; 10} {2.1955; 10}
$5.3579 $5.4119 $5.4663 $5.5212

η3 = 0.75 {2.4015; 10} {2.3093; 10} {2.2308; 10} {2.1625; 10}
$5.4126 $5.4673 $5.5224 $5.5778

η3 = 1 {2.3534; 10} {2.2686; 10} {2.1955; 10} {2.1315; 10}
$5.4680 $5.5233 $5.5789 $5.6348

penalty cefficient η1 = 1.2

η3 = 0.25 {2.5132; 10} {2.4015; 10} {2.3093; 10} {2.2308; 10}
$5.3038 $5.3570 $5.4108 $5.4650

η3 = 0.5 {2.4544; 10} {2.3534; 10} {2.2686; 10} {2.1955; 10}
&5.3579 $5.4119 $5.4663 $5.5212

η3 = 0.75 {2.4015; 10} {2.3093; 10} {2.2308; 10} {2.1625; 10}
&5.4126 $5.4673 $5.5224 $5.5778

η3 = 1 {2.3534; 10} {2.2686; 10} {2.1955; 10} {2.1315; 10}
$5.4680 $5.5233 $5.5789 $5.6348

q) and h(a) defined as (47) for η = η1 + η2. We finish the proof using the inequality
h(0) = −q(η1k−ξ) < 0, Lemma B.1, and the fact that h̃(a) is an increasing positive
function.

Proposition B.3. Let η1 ≥ 1, η2 ≥ 0, 0 ≤ ξ
η1

< k ≤ 1, and the function h(·) be
defined as

h(b) = −bp+1(p − q − 1) + bpk(p − q) + bp−qp(η1 + η2 − η1k + ξ)

− b(q + 1) + qk (49)

in the interval b ∈ [1,∞). If p = q + 1, then function (49) is positive. If p > q + 1,
k = 1, η2 = η3 = 0, and r < 0, then function (49) is negative. In all other cases
function (49) has just one root larger than one.
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Proof. When η2 = η3 = 0 we refer to Appendix B.2 of [65]. The proof when
η2 + η3 > 0 is very similar to the the case {η1 = 1, η2 = 0, η3 > 0}, which is
examined in Appendix B.2 of [66] and thus we omit it.

Proposition B.4. Let k > 1, η1 > η2 ≥ 0, η1 ≥ 1, and ξ ≥ 0. If p > q + 1, then the
function

h(b) = bp+1(p − q − 1)(η1 − η2) − bp(η1k + ξ)(p − q)

+ bp−qp(k − 1) + b(q + 1)(η1 − η2) − q(η1k + ξ) (50)

has a unique root larger than one. Otherwise, if p = q + 1, then function (50) is
negative for b > 1.

Proof. We rewrite function (50) as h(b) = (η1 − η2)h(b) for

h(b) = bp+1(p − q − 1) − bp(k + ξ)(p − q) + bp−qp(k − 1) + b(q + 1),

− q(k + ξ),

k = 1 + k − 1

η1 − η2
,

ξ = (k − 1)(η1 − 1) + η2 + ξ

η1 − η2
.

(51)

Note that η1 > η2, k > 1, and ξ > 0. The desired result is proven for the function
h(b) in Appendix B.1 of [67].

Lemma B.5. Let k ≥ 1 and ξ ≥ 0. The function h(a), defined on the interval (0, 1)

as

h(a) = −ap+1(p − q − 1) + apk(p − q) − ap−qp(k − 1 + ξ) − a(q + 1) + qk,

(52)
starts from a positive value, decreases having a root, and then stays negative.

Proof. See Appendix B.2 in [67].

Proposition B.6. Let k ≥ 1, η1 > η2 ≥ 0, η1 ≥ 1, ξ ≥ 0, and the function

h(a) = −ap+1(p − q − 1) + apk(p − q) − ap−qp(η1k − η1 + η2 + ξ)

− a(q + 1) + qk (53)

be defined on the interval a ∈ (0, 1). If η2 + η3 = 0, then function (53) is positive
when {p = q + 1, k = 1} or {p > q + 1, k = 1, r ≥ 0}. In the rest of the cases,
namely, when {p = q+1, k > 1}, {p > q+1, k = 1, r < 0}, and {p > q+1, k > 1},
function (53) has unique root.

Otherwise, if η2 + η3 > 0, then function (53) has just one root. Also h(a) is
positive before the root and negative after it.

Proof. The proposition is proven in Appendix B.3 of [65] when η2+η3 = 0. Suppose
now that η2 +η3 > 0. We can decompose h(a) = h(a)+ h̃(a) where function h(a) is
defined by formula (52) and h̃(a) = −ap−qp((k−1)(η1 −1)+η2). We complete the
proof using Lemma B.5 and observing that h(0) = qk > 0 and h̃(a) is a decreasing
negative function.
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