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Variance Gamma (nonlocal) equations
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Abstract Some equations are provided for the Variance Gamma process using the definition
other than that based on a time-changed Brownian motion. A new nonlocal equation is obtained
involving generalized Weyl derivatives, which is true even in the drifted case. The connection
to special functions is in focus, and a space equation for the process is studied. In conclusion,
the convergence in distribution of a compound Poisson process to the Variance Gamma process
is observed.
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1 Introduction

The Variance Gamma process is a famous Lévy process used in mathematical finance
especially for option pricing (see [19, 22]), also known in physics as Laplace mo-
tion [15]. Another financial model involving this process has been considered quite
recently in [2].

Further generalizations of the Variance Gamma process have been developed in
[16, 10], while an application of such a process is given in [20].

The classic Variance Gamma can be obtained by considering a Brownian motion
with a random time given by an independent Gamma subordinator [18, Eq. (7)]. The
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concept of subordination has been introduced by Bochner [5] and, as for the other
subordinated processes, we can associate to the Variance Gamma process the Phillips
operator [21] as generator for the governing equation. Recently, some new equations
for the Variance Gamma process and the Gamma subordinator have been provided in
[3], involving time-operators, differently from classic theory on space operators.

At the current stage, the nonlocal equation for the Variance Gamma process, de-
fined as difference of two independent Gamma subordinators [18, Eq. (8)], is not con-
sidered and also a deeper analysis concerning this process and the equations for the
modified Bessel functions is not taken into account. In order to close such a gap, we
focus on these equations and the knowledge of these allows to understand the process
from a new point of view, also for simulations. Then, we continue our dissertation
by examining the similar version of the nonlocal equation for the Variance Gamma
process with a drift. This is possible because the definition by difference of two inde-
pendent Gamma subordinators holds in presence of drift also. At the end, we consider
the compound Poisson process, related to the Gamma subordinator (the construction
for any subordinator is developed in [25, Proposition 3.3]), and its convergence (in
distribution) to the Variance Gamma process.

2 Preliminaries

A subordinator is a nondecreasing Lévy process [4, Chapter III] and it is characterized
by its Laplace transform [24, Theorem 5.1]. Let � : (0,∞) �→ (0,∞) be a Bernstein
function which is uniquely defined by the so-called Bernstein representation (Lévy–
Kintchine representation)

�(λ) =
∫ ∞

0
(1 − e−λz)�(dz), λ > 0,

where � on (0,∞) with
∫ ∞

0 (1 ∧ z)�(dz) < ∞ is the associated Lévy measure. In
general Bernstein functions can have a drift and a killing rate, but in this paper we are
assuming them to be zero.

We also recall that

�(λ)

λ
=

∫ ∞

0
e−λz�(z)dz, λ > 0, (1)

where �(z) = �((z,∞)) is termed tail of the Lévy measure.
We focus only on the Laplace symbol

�(λ) = a ln

(
1 + λ

b

)
= a

∫ ∞

0

(
1 − e−λy

) e−by

y
dy, λ > 0, a > 0, b > 0. (2)

Thus, in this case, the Lévy measure is �a,b(dy) = a e−by

y
dy and the associated

Gamma subordinator H = {Ht, t ≥ 0}, starting from zero, is such that

E0[e−λHt ] = e−t�(λ), λ > 0, (3)
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where Px denotes the probability measure for a process started from x at time t =
0 and Ex the mean value with respect to Px . The interested reader can consult [4,
Chapter III] for more details on subordinators. Since �a,b(0,∞) = ∞, from [13,
Theorem 21.3] we have that H has infinite activity, i.e. strictly increasing sample
paths with jumps; indeed the symbol � does not admit any drift. We use the notation

Px(Ht ∈ dx) = h(t, x) dx.

In addition, it is well known that, ∀ t > 0,

h(t, x) =
⎧⎨⎩

bat

�(at)
xat−1e−bx, x > 0,

0, x ≤ 0,

(4)

trivially verifies∫ ∞

0
e−λxh(t, x) dx = bat

(λ + b)at
= e

−t a ln
(

1+ λ
b

)
, λ > 0, t > 0, (5)

which coincides with formula (3). We observe that the continuity of the function
h(t, ·), when x → 0, depends on the time variable t . Indeed, the Gamma subordina-
tor has the time dependent property (see [13, Chapter 23]). From this, the Variance
Gamma process inherits also continuity problems for its probability density function.

Let B := {Bt , t ≥ 0} be the one-dimensional Brownian motion starting from zero,
independent of H , and g(t, x) = e−x2/4t /

√
4πt be its probability density function.

The Variance Gamma process X := {Xt, t ≥ 0} can be defined as X = BH :=
B ◦ H , i.e. it is a Brownian motion time-changed with a random clock given by an
independent Gamma subordinator, and we know from [13, Theorem 30.1] that X is
still a Lévy process. Its probability density function is

p(t, x) =
∫ ∞

0
g(s, x)h(t, s)ds, (6)

and the Lévy symbol is �(ξ2), as we see from

E0[eiξXt ] = p̂(t, x) =
∫ ∞

−∞
eiξxp(t, x)dx =

∫ ∞

−∞
eiξx

∫ ∞

0
g(s, x)h(t, s)ds dx

=
∫ ∞

0
e−sξ2

h(t, s)ds

= e−t�(ξ2) = e
−at ln

(
1+ ξ2

b

)
. (7)

For the Variance Gamma process we know an explicit representation for p(t, x).
From [11, formula 3.478] we have∫ ∞

0
xν−1 exp{−βxq − αx−q}dx = 2

q

(
α

β

) ν
2q

K ν
q

(
2
√

αβ
)

, q, α, β, ν > 0,

(8)
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where Kν is the modified Bessel function, so we get that∫ ∞

0
g(s, x) h(t, s) ds =

∫ ∞

0

e− x2
4s√

4πs

bat

�(at)
sat−1e−bs ds =

= bat

√
4π

1

�(at)

∫ ∞

0

sat−1

√
s

exp

(
−x2

4
s−1 − bs

)
ds. (9)

Then we use (8) by choosing ν = at − 1
2 , q = 1, α = z2

4 , β = b and we obtain

p(t, x) =
∫ ∞

0
g(s, x) h(t, s) ds = bat

√
4π

1

�(at)
2

(
x2

4b

) 1
2 (at− 1

2 )

K
at− 1

2

⎛⎝2

√
x2

4
b

⎞⎠
= bat

√
π

1

�(at)

(
1

2
√

b

)(at− 1
2 )

|x|at− 1
2 K

at− 1
2
(|x|√b).

(10)

Since we are dealing with a subordinate stochastic process (see [6, 14]), we can
use the Phillips representation (or the Bochner subordination) to generate a new oper-
ator through subordination. It is well known that the Phillips operator −�(−�) [21]
is the generator of X, when it is restricted to Dom(�) ([13, Theorem 32.1] or [12,
Theorem 4.3.5]), and it can be written as

−�(−�)u(x) = a

∫ ∞

0
(Tyu(x) − u(x))

e−by

y
dy, (11)

where � is defined in (2) and T is the semigroup associated to the Brownian motion
on R, such that the characteristic symbol is T̂t = e−tξ2

. This leads us to∫ ∞

−∞
eiξx (−�(−�)u(x)) dx =

(
a

∫ ∞

0
(e−yξ2 − 1)

e−by

y
dy

)
û(ξ)

=
(

−a ln

(
1 + ξ2

b

))
û(ξ), (12)

where we indicate by û the Fourier transform of u, for u in the Schwartz space S(R).
If we combine (7) and (12), we obtain the well known result

∂

∂t
p(t, x) = −�(−�)p(t, x), t > 0, x ∈ R, (13)

with p(t, 0) = δ(x) in the sense that the Fourier transform of the fundamental solu-
tion of (13) is satisfied by p.

If we change perspective and consider the operator in time, an interesting equa-
tion, presented in [3, Remark 3.3], for the Variance Gamma process is

∂2

∂x2 p(t, x) = b

(
p(t, x) − p

(
t − 1

a
, x

))
, x ∈ R,

with p(t, 0) = δ(x) and at > 1.

Remark 1. The condition at > 1 is not surprising, since h(t, ·) is continuous when
at > 1.
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3 Main results

3.1 Nonlocal equations

In the preceding section we have seen how in (13), from the definition of time-
changed process, we can associate to the Variance Gamma process a nonlocal op-
erator. However, it is not the only possible definition. From (7), we see that

e
−at ln

(
1+ ξ2

b

)
=

(
1 + ξ2

b

)−at

=
(

1 − i
ξ√
b

)−at (
1 + i

ξ√
b

)−at

.

Then, in the Wiener–Hopf factorization [17, Remark 3.3], the Bernstein function as-
sociated to the Gamma subordinator (2) is used. Therefore, we have another definition
for our process

X = G − L (14)

where G and L are two independent Gamma subordinators both with parameters a

and
√

b. From a financial point of view this representation has the meaning of the dif-
ference between independent ‘gains’ and ‘losses’ (see [18]). Formula (14) means that
X has trajectories of locally bounded variation, as it is the difference of two increas-
ing functions, and this leads us to investigate the connection between the Variance
Gamma process and the nonlocal operators of the Gamma subordinator.

Let us introduce the following generalized Weyl derivatives for x ∈ R:

D+
a,bu(x) := ∂

∂x

∫ x

−∞
u(s)�a,b(x − s)ds, (15)

D−
a,bu(x) := − ∂

∂x

∫ ∞

x

u(s)�a,b(s − x)ds, (16)

respectively defined for function u such that

u(s)�a,b(x − s) ∈ L1(−∞, x) and u(s)�a,b(s − x) ∈ L1(x,∞), ∀x ∈ R.

Remark 2. We could also refer to (15) and (16) as generalized Riemann–Liouville
derivatives on the whole real axis (see [23, Formula (5.6)]).

Remark 3. From [7, Eq. (37)] we know that �a,b(x) = aE1(bx), where E1 is the
exponential integral

E1(x) :=
∫ ∞

x

e−z

z
dz, x > 0. (17)

This allows us to write (15) and (16) in a compact form:

D+
a,bu(x) := a

∂

∂x

∫ x

−∞
u(s)E1(b(x − s))ds,

D−
a,bu(x) := −a

∂

∂x

∫ ∞

x

u(s)E1(b(s − x))ds.
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From a simple change of variables, by assuming that u is at least absolutely con-
tinuous, our definitions (15) and (16) concur with [25, Definition 2.8] and we achieve

D+
a,bu(x) :=

∫ ∞

0

∂

∂x
u(x − s)�a,b(s)ds,

D−
a,bu(x) := −

∫ ∞

0

∂

∂x
u(x + s)�a,b(s)ds.

The operators D+
a,b and D−

a,b are important due to the fact that we can easily com-
pute the characteristic function essential to the study of Lévy processes. Indeed, by
recalling (1), for u ∈ S(R) we have∫ ∞

−∞
eixξD+

a,bu(x)dx = (−iξ)

∫ ∞

−∞
eixξ

∫ ∞

0
u(x − s)�a,b(s)ds dx

= (−iξ)û(ξ)

∫ ∞

0
eisξ�a,b(s)ds

= a ln

(
1 − iξ

b

)
û(ξ). (18)

Similarly we obtain∫ ∞

−∞
eixξD−

a,bu(x)dx = a ln

(
1 + iξ

b

)
û(ξ). (19)

These results coincide with [25, Lemma 2.9]. We now analyze the connection be-
tween these operators and the Variance Gamma process by exploiting (14). In partic-
ular, we will show that the Fourier transform of its probability density function solves
the following equation.

Theorem 1. Let p(t, x) be the probability density function of the Variance Gamma
process X. Then we have

∂

∂t
p(t, x) = −

(
D+

a,
√

b
p(t, x) + D−

a,
√

b
p(t, x)

)
, t > 0, x ∈ R,

with p(0, x) = δ(x).

Proof. The initial value can be easily checked, since the Fourier transform of the δ

distribution is 1. The characteristic function of the left-hand side, with respect to x, is
given by

∫ ∞

−∞
eixξ ∂

∂t
p(t, x)dx = ∂

∂t
e
−at ln

(
1+ ξ2

b

)
= −a ln

(
1 + ξ2

b

)
e
−at ln

(
1+ ξ2

b

)
.

For the right-hand side, by using (18) and (19), we have

−
∫ ∞

−∞
eixξ

(
D+

a,
√

b
p(t, x) + D−

a,
√

b
p(t, x)

)
dx
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= −
⎛⎝a ln

(
1 − iξ√

b

)
e
−at ln

(
1+ ξ2

b

)
+ a ln

(
1 + iξ√

b

)
e
−at ln

(
1+ ξ2

b

)⎞⎠
= −a ln

(
1 + ξ2

b

)
e
−at ln

(
1+ ξ2

b

)
,

so that our claim holds true.

Remark 4. The fact that, in the last theorem, there is a sum of nonlocal derivatives
is not new in the theory of probability and nonlocal operators. For example, for the
Brownian motion time-changed with an independent stable subordinator, we know
that the one-dimensional Riesz derivative can be written as sum of Marchaud deriva-
tives (see [9, page 12]).

Remark 5. From the financial definition of X, the effect of the difference between in-
dependent gains and losses should be studied through the two nonlocal operators (15)
and (16). Indeed, the last result transforms this definition in a nonlocal equation for
the process.

In Theorem 1 we took advantage of the possible definition of the process X as dif-
ference of two independent Gamma subordinators. We observe that this information
on the process brings us to the next result for the operators.

Corollary 1. Let u ∈ S(R). Then the following equivalence is satisfied

−�(−�)u(x) = −
(
D+

a,
√

b
u(x) + D−

a,
√

b
u(x)

)
, x ∈ R.

Proof. We easily show this result by using the characteristic functions. On the left-
hand side we have, from (12),∫ ∞

−∞
eiξx (−�(−�)u(x)) dx = −

(
a ln

(
1 + ξ2

b

))
û(ξ).

On the right-hand side, from (18) and (19), we have

−
∫ ∞

−∞
eixξ

(
D+

a,
√

b
u(x) + D−

a,
√

b
u(x)

)
dx =

= −
(

a ln

(
1 − iξ√

b

)
û(ξ) + a ln

(
1 + iξ√

b

)
û(ξ)

)
= −a ln

(
1 + ξ2

b

)
û(ξ),

which concludes the proof.

Adding the drift. We now focus on the Variance Gamma process with drift and
we prove that the nonlocal equation is still true. Let Bθ := {Bθ

t , t ≥ 0} be the
drifted Brownian motion on R starting from zero, independent of H , and gθ (t, x) =
e−(x−θt)2/4t /

√
4πt , for the drift θ ∈ R, be its probability density function. The drifted

Variance Gamma process Xθ := {Xθ
t , t ≥ 0} is Xθ = Bθ

H := Bθ ◦ H . Its character-
istic function turns out to be

E0[eiξXθ
t ] =

(
1 − iξ

θ

b
+ ξ2

b

)−at

.
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We see that, again, the process can be written as difference of two independent
Gamma subordinators as suggested by [19, Eq. (8)]. Indeed, the following holds

(
1 − iξ

θ

b
+ ξ2

b

)−at

=
⎛⎜⎝1 − iξ√

θ2

4 + b − θ
2

⎞⎟⎠
−at ⎛⎜⎝1 + iξ√

θ2

4 + b + θ
2

⎞⎟⎠
−at

.

Thus we have Xθ = Gθ − Lθ , where Gθ and Lθ are two independent Gamma sub-

ordinators, the first one with parameters a and
√

θ2

4 + b − θ
2 and the second one with

parameters a and
√

θ2

4 + b + θ
2 . As well as for the Variance Gamma process, Xθ

admits paths of locally bounded variation and we show the next result.

Corollary 2. Let pθ(t, x) be the probability density function of the drifted Variance
Gamma process Xθ . Then we have

∂

∂t
pθ (t, x) = −

(
D+

a,

√
θ2
4 +b− θ

2

pθ(t, x) + D−
a,

√
θ2
4 +b+ θ

2

pθ(t, x)

)
, t > 0, x ∈ R,

with pθ(0, x) = δ(x).

Proof. We observe that pθ(t, x) can be written as (6), where gθ replaces g. By using
that

(
1 − iξ

θ

b
+ ξ2

b

)
=

⎛⎜⎝1 − iξ√
θ2

4 + b − θ
2

⎞⎟⎠
⎛⎜⎝1 + iξ√

θ2

4 + b + θ
2

⎞⎟⎠ ,

the proof is analogous to that of Theorem 1 and the Fourier transform of pθ solves
the equation.

Remark 6. Trivially, if θ = 0, the last differential equation coincides with that of
Theorem 1 as expected.

3.2 Variance Gamma and special functions

In this section we examine how special functions bring us to a new equation for the
Variance Gamma process. From (10), we have seen that the modified Bessel function
Kν(x) appears in the density and this special function solves (see [1, formula 9.6.1])

x2 ∂2

∂x2 u(x) + x
∂

∂x
u(x) − (x2 + ν2)u(x) = 0,

where, in our case, ν is a time function. Another interesting fact on the function Kν(x)

is that it can be written in terms of the Kummer (confluent hypergeometric) function
usually denoted by U , so that it is connected to the Kummer equation. This moves
our thinking about differential space equations for the Variance Gamma process.
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Theorem 2. The following differential equation is satisfied by the density of the Vari-
ance Gamma process X, for t > 0 fixed:

x
∂2

∂x2 p(t, x) − (2at − 2)
∂

∂x
p(t, x) − bxp(t, x) = 0, x ∈ R, (20)

with p(0, x) = δ(x).

Proof. The initial value can be easily checked, since the Fourier transform of the δ

is 1. The characteristic function, with respect to x, of (20) is∫ ∞

−∞
eixξ

(
x

∂2

∂x2 p(t, x) − (2at − 2)
∂

∂x
p(t, x) − bxp(t, x)

)
dx =

= −i
∂

∂ξ

∫ ∞

−∞
eixξ ∂2

∂x2 p(t, x) dx − (2at − 2)(−iξ)

∫ ∞

−∞
eixξp(t, x) dx

− b(−i)
∂

∂ξ

∫ ∞

−∞
eixξp(t, x) dx

= −i
∂

∂ξ
(−ξ2)e

−at ln

(
1+ ξ2

b

)
+ (2at − 2)(iξ)e

−at ln

(
1+ ξ2

b

)

− ib2at
ξ

b

(
1 + ξ2

b

)−at−1

= 2iξ

(
1 + ξ2

b

)−at

− 2iξ2at
ξ

b

(
1 + ξ2

b

)−at−1

+ (2at − 2)(iξ)

(
1 + ξ2

b

)−at

− 2iatξ

(
1 + ξ2

b

)−at−1

= −2iξ2at
ξ

b

(
1 + ξ2

b

)−at−1

+ 2iatξ

(
1 + ξ2

b

)−at

− 2iatξ

(
1 + ξ2

b

)−at−1

= −2iξ2at
ξ

b

(
1 + ξ2

b

)−at−1

+ 2iatξ

(
1 + ξ2

b

)(
1 + ξ2

b

)−at−1

− 2iatξ

(
1 + ξ2

b

)−at−1

= −2iξ2at
ξ

b

(
1 + ξ2

b

)−at−1

+ 2iξ2at
ξ

b

(
1 + ξ2

b

)−at−1

+2iatξ

(
1 + ξ2

b

)−at−1

− 2iatξ

(
1 + ξ2

b

)−at−1

= 0,

so that the Fourier transform of p solves (20), as required.

3.3 Compound Poisson process convergence
The convergence of compound Poisson processes to subordinators has been exten-
sively studied. In [8, Theorem 1] M. D’Ovidio shows the connection to a difference
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of α-stable subordinators and in [25, Proposition 3.3] we have the construction for
any subordinator. In this section, we exploit these mentioned results to obtain the
convergence of a compound Poisson process to the Variance Gamma process.

We consider the i.i.d. random variables Yj , Yj ∼ Y (distributed as Y ), with prob-
ability density function

νY (y) = e−√
by

y

1

E1(
√

bγ )
1y≥γ , γ > 0,

where E1 is defined in (17). Let εj ∼ ε be i.i.d. (centered) Rademacher random
variables, with the distribution

P(ε = +1) = 1

2
, P(ε = −1) = 1

2
.

Now, we define Y ∗ = εY with probability density function

ν∗
Y = 1

2
νY (−y) + 1

2
νY (y). (21)

We are ready to provide the following convergence result.

Proposition 1. Let N(t), t ≥ 0, be a homogeneous Poisson process with parameter 1,
independent of the i.i.d random variables Y ∗

j ∼ Y ∗, with law (21). We have that⎛⎝N(taE1(
√

bγ ))∑
j=0

Y ∗
j

⎞⎠ law→ X t
2

as γ → 0. (22)

Proof. Since we are dealing with a compound Poisson process, we know that

E0

⎡⎣exp

⎛⎝iξ

N(taE1(
√

bγ ))∑
j=0

Y ∗
j

⎞⎠⎤⎦
= exp

[
taE1(

√
bγ )(E0

[
exp(iξY ∗)

] − 1)
]

= exp
[
taE1(

√
bγ )(E0

[
exp(iξεY )

] − 1)
]

= exp

[
taE1(

√
bγ )

(
1

2
E0

[
exp(iξY )

] + 1

2
E0

[
exp(−iξY )

] −
(

1

2
+ 1

2

))]
= exp

[
taE1(

√
bγ )

(
1

2
E0[exp(iξY ) − 1] + 1

2
E0[exp(−iξY ) − 1]

)]
= exp

[
t

(
a

2

∫ ∞

γ

(eiξy − 1)
e−√

by

y
dy + a

2

∫ ∞

γ

(e−iξy − 1)
e−√

by

y
dy

)]
.

If γ → 0, we get that

exp

[
t

(
a

2

∫ ∞

γ

(eiξy − 1)
e−√

by

y
dy + a

2

∫ ∞

γ

(e−iξy − 1)
e−√

by

y
dy

)]
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→ exp

[
− t

2

(
a ln

(
1 − iξ√

b

)
+ a ln

(
1 + iξ√

b

))]
,

hence the claim holds by using (14) and the classic Lévy continuity theorem.

Remark 7. This result may be important for the simulations: numerical analysis for
compound Poisson process is simpler than that for Bessel functions of (10).
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[24] Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions, 2nd edn. De Gruyter Stud-
ies in Mathematics, vol. 37. Walter de Gruyter & Co., Berlin (2012). MR2978140

[25] Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-
changed C0-semigroups. Potential Anal. 42(1), 115–140 (2015). MR3297989

https://mathscinet.ams.org/mathscinet-getitem?mr=2986850
https://mathscinet.ams.org/mathscinet-getitem?mr=1935481
https://doi.org/10.1007/978-1-4612-0173-1
https://mathscinet.ams.org/mathscinet-getitem?mr=2264952
https://mathscinet.ams.org/mathscinet-getitem?mr=2860308
https://doi.org/10.1086/296519
https://doi.org/10.1023/A:1009703431535
https://mathscinet.ams.org/mathscinet-getitem?mr=50797
https://mathscinet.ams.org/mathscinet-getitem?mr=2405311
https://mathscinet.ams.org/mathscinet-getitem?mr=1347689
https://mathscinet.ams.org/mathscinet-getitem?mr=2978140
https://mathscinet.ams.org/mathscinet-getitem?mr=3297989

	Introduction
	Preliminaries
	Main results
	Nonlocal equations
	Variance Gamma and special functions
	Compound Poisson process convergence


