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Abstract Shafer and Vovk introduce in their book [8] the notion of instant enforcement and
instantly blockable properties. However, they do not associate these notions with any outer
measure, unlike what Vovk did in the case of sets of “typical” price paths. In this paper an outer
measure on the space [0, +∞)×� is introduced, which assigns zero value exactly to those sets
(properties) of pairs of time t and an elementary event ω which are instantly blockable. Next,
for a slightly modified measure, Itô’s isometry and BDG inequalities are proved, and then they
are used to define an Itô-type integral. Additionally, few properties are proved for the quadratic
variation of model-free continuous martingales, which hold with instant enforcement.

Keywords Model-free approach in Mathematical Finance, instant enforcement, outer
measure, quadratic variation, Itô’s isometry, BDG inequalities, stochastic integral
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1 Introduction

Since the last subprime mortgage financial crisis there is a growing interest in the
robust financial models, usually models with minimal, widely accepted nonarbitrage
assumptions. Such assumptions together with game-theoretic considerations allow to
establish properties which characterize trajectories of prices of financial assets which
exclude possibility of arbitrage. In a series of papers, among others [9, 10, 12, 11, 13],
Vovk introduced and considered outer measures on the spaces of continuous or, more
general, càdlàg trajectories which assign zero value to the sets of trajectories of prices
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of financial assets, which allow for arbitrage. “Typical” (not leading to arbitrage) tra-
jectories possess quadratic variation and model-free Itô-type integration with respect
to such trajectories may be established [7, 14, 6].

The investigations in game-theoretic approach to model-free financial models of
continuous price paths culminated in Glenn Shafer and Vladimir Vovk publishing
their book [8]. In their book Shafer and Vovk introduce a new notion – the notion of
instant enforcement. But they do not characterize it using any outer measure, unlike
what Vovk did in the case of sets of “typical” price paths. Informally, property E

is instantly enforceable if there exists a trading strategy making a trader using this
strategy infinitely rich as soon as the property E ceases to hold. In this paper we
introduce an outer measure on the space [0,+∞) × �, which assigns zero value
exactly to those sets (properties) of pairs of time t and an elementary event ω, com-
plements of which are instantly enforceable. We also introduce a slight modification
of this measure (an open question is whether the introduced modification differs from
the original measure) which allows us to establish Itô’s isometry and BDG inequal-
ities for this modification. Such results were not present in Vovk or Shafer’s works.
A “weak” BDG inequality in a model-free setting, but quite different from ours (and
only for p = 2), was established in [1]. A main novelty in our approach is that instead
of working with (outer) expectation Ē defined for variables X : � → [−∞,+∞],
as, for example, in [8, Sect. 13.3] or [1], we introduce a functional E which is defined
on (generalized) processes X : [0,+∞) × � → [−∞,+∞]. Using the obtained
BDG inequalities, we define an Itô-type integral, which allows to integrate more gen-
eral (not necessarily continuous) integrands than those considered in [8]. Finally, we
present a sequence of processes, which do not depend on any partitions, which tends
locally uniformly with instant enforcement to the quadratic variations of martingales.
This is also a new result, not published elsewhere in the literature.

1.1 Definitions and notation

Now we outline a general setting in which we will work and which follows closely
[8, Chapt. 14]. For simplicity, we consider only finite families of basic martingales.
We will work with a martingale space which is a quintuple(

�,F ,F = (Ft )t≥0 , J = {1, 2, . . . , d} ,
{
Sj , j ∈ J

})
of the following objects: � is a space of possible outcomes of reality, whose elements
are called elementary events, F is a σ -field of the subsets of � which we call events,
F = (Ft )t≥0 is a filtration (writing t ≥ 0 we mean that t ∈ [0,+∞)) such that
for t ≥ 0, Ft ⊆ F , and

{
Sj , j ∈ J

} = {
S1, S2, . . . Sd

}
is a family of mappings

Sj : [0,+∞) × � → R, j ∈ J , called basic continuous martingales, such that for
any t ≥ 0 and j ∈ J , S

j
t is a (Ft ,B(R))-measurable real variable S

j
t : � → R

(B(R) denotes the σ -field of Borel subsets of the set of real numbers R) and such that
for each ω ∈ � the trajectory [0,+∞) � t �→ S

j
t (ω) is continuous.

Throughout the paper the filtration F is fixed, moreover, we assume that F0 is
trivial, F0 = {∅,�}, thus all (F0,B(R))-measurable variables S

j
0 , j ∈ J , are deter-

ministic. In the paper we need to work with some stopping times and therefore, to
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assure that the quantities we define are indeed stopping times with respect to F, we
make the following assumption.

Assumption A. For any t ≥ 0 and any instantly blockable set B ⊆ [0,+∞) × �

(blockable sets are defined in Section 2) the projection of B ∩ ([0, t] × �) onto �

belongs to Ft .

Assumption A seems to be reasonable since it roughly means that at the moment
t ≥ 0 we are able to say if there was any trading strategy making us infinitely rich
(after investing a small positive amount at the moment 0) until the moment t . This
assumption is similar to the frequently made assumption in a classical probabilistic
setting that a filtration is complete. Alternatively, we may just assume that the set of
basic martingales and the filtration F are such that all the times which we need to be
stopping times are indeed stopping times (with resp. to F).

Remark 1.1. A common way to assure that some debut or hitting times similar to
those used in this paper are indeed stopping times, is to use the universal completion
of σ -algebras (see, for example, [13, p. 273], [6, p. 4081]). Since such an operation
is complicated and has not obvious financial interpretation, we prefer to use Assump-
tion A.

A real process X : [0,+∞) × � → R is a collection of real variables Xt :
� → R, t ≥ 0, such that Xt is (Ft ,B(R))-measurable, thus all processes which we
consider are adapted to F.

A process Y : [0,+∞) × � → R ∪ {−∞,+∞} = [−∞,+∞], is a col-
lection of extended variables Yt : � → [−∞,+∞], t ∈ [0,+∞), such that Yt

is (Ft ,B([−∞,+∞]))-measurable (any set in B([−∞,+∞]) is of the form A,
A ∪ {−∞}, A ∪ {+∞} or A ∪ {−∞,+∞}, where A ∈ B(R)).

Any mapping Y : [0,+∞) × � → [−∞,+∞] is called a generalized process.
Note that Yt does not need to be (Ft ,B([−∞,+∞]))-measurable and thus a gener-
alized process may not be a process as defined in the previous paragraph.

For any generalized process Y we define its supremum process Y ∗, which is a
generalized process defined as

Y ∗
t (ω) := sup

0≤s≤t

|Yt (ω)| ,

where we denote Yt (ω) := Y(t, ω).
A generalized process Y is globally bounded if

sup
(t,ω)∈[0,+∞)×�

|Yt (ω)| = sup
(t,ω)∈[0,+∞)×�

Y ∗
t (ω) < +∞.

Similarly, a real random variable X : � → R is globally bounded if supω∈� |X(ω)| <

+∞.
Throughout the whole paper we apply the following convention. A sequence of

real numbers dn, where n = 0, 1, 2, . . . , is denoted by (dn) or (dn)n and a sequence
of real numbers dn, where n = 0, 1, 2, . . . , is denoted by (dn) or (dn)n (without
indication that n ranges over the set of nonnegative integers N). A similar convention
will be applied to infinite sequences of stopping times, variables etc.
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An F-stopping time (or stopping time in short) is a random variable τ : � →
[0,+∞] such that for any t ≥ 0,

{τ ≤ t} := {ω ∈ � : τ(ω) ≤ t} ∈ Ft .

A σ -field Fτ generated by the stopping time τ consists of those events A ∈ F which
for any t ≥ 0 satisfy

A ∩ {τ ≤ t} ∈ Ft .

Since almost all reasonings in this article are pathwise, we will often omit the ar-
gument ω ∈ � in formulas, even if the quantities appearing in these formulas depend
on it.

Now let us introduce sequences of stopping times which we will work with.
A sequence of F-stopping times (τn) is called nondecreasing if for all n ∈ N and

each ω ∈ �, τn+1(ω) ≥ τn(ω).
A sequence of F-stopping times (τn) is called proper if it is nondecreasing, τ0 ≡ 0

and for each ω ∈ � the sequence (τn(ω)) is divergent to +∞ or there exists some
n ∈ N such that τn(ω) = τn+1(ω) = · · · ∈ [0,+∞].

A simple trading strategy is a triplet (c, (τn) , (gn)) which consists of the initial
capital c ∈ R, a proper sequence of F-stopping times (τn) and a sequence of globally
bounded real variables gn : � → R, n = 0, 1, . . . , such that gn is (Fτn ,B(R))-
measurable and gn(ω) = 0 whenever τn(ω) = +∞.

A step process G is a real process which may be represented as

Gt(ω) =
+∞∑
n=1

gn−1(ω)1[τn−1(ω),τn(ω)
)(t)

where (c, (τn) , (gn)) is a simple trading strategy.
For a real process X : [0,+∞) × � → R and a simple trading strategy G =

(c, (τn) , (gn)) we define

(G · X)t (ω) := c +
+∞∑
n=1

gn−1(ω)
(
Xτn(ω)∧t (ω) − Xτn−1(ω)∧t (ω)

)
.

(For two numbers a, b ∈ [−∞,+∞] we define a ∧ b = min {a, b}.) Let us note that
since the sequence (τn) is proper, there is only a finite number of nonzero summands
in the sum appearing in the definition of (G · X)t (ω).

We define the simple capital process or simple integral corresponding to the vec-
tor G = (

Gj
)
j∈J

of simple trading strategies Gj , j ∈ J , as

(G · S)t (ω) :=
∑
j∈J

(Gj · Sj )t (ω).

The simple capital process has a very natural interpretation – it is the wealth accumu-
lated till time t by the application of the simple trading strategy Gj to the asset whose
price is represented by the basic martingale Sj , j ∈ J .
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Remark 1.2. If G = (c, (τn) , (gn)) is a trading strategy and for some ω ∈ � and
n ∈ N, τn(ω) = τn+1(ω) = · · · ∈ [0,+∞) then the process G · X for the strategy G

and a real process X, is the same for t ≥ τn(ω) as if the trading was ceased at τn(ω),
even though gn(ω) �= 0. Thus for all trading strategies we could add requirement that
gn(ω) = 0 if τn+1(ω) = τn(ω) < +∞ for some n ∈ N (it is possible to verify this
condition at the moment τn(ω)), or for a given trading strategy always modify it so
that it satisfies this condition.

Requirement on the sequence (τn) in the definition of a simple trading strategy
to be proper together with the condition gn(ω) = 0 if τn+1(ω) = τn(ω) for some
n ∈ N guarantees that the trading never occurs with infinite frequency till any finite
time. However, to avoid dealing with too many technical details we do not add this
requirement.

2 Nonnegative supermartingales, instantly enforceable properties, an outer
measure of properties related to the instant enforcement, martingales

Definition 2.1. The class C of nonnegative supermartingales is defined as the small-
est class with the following properties

1. C contains all simple capital processes which are nonnegative;

2. whenever X ∈ C, Y is a simple capital process and X + Y is nonnegative then
X + Y ∈ C;

3. for any sequence (Xn) such that Xn ∈ C for n ∈ N, we have that X :=
lim infn→+∞ Xn also belongs to C.

Using transfinite induction on the countable ordinals α one may prove that C is
a convex cone, which means that whenever X,Z ∈ C then for any s > 0, sX ∈ C
and X + Z ∈ C. An elementary reference on the Transfinite Induction Principle is,
for example, [3, Chapt. 6]. Indeed, let C0 be the class of all simple capital processes
which are nonnegative and for α > 0, X ∈ Cα if and only if there exists X̃ ∈ C<α :=⋃

β<α Cβ and a simple capital process Y such that X = X̃ + Y is nonnegative or

there exists a sequence of nonnegative supermartingales X1, X2, . . . from C<α such
that X = lim infn→+∞ Xn. Using conditions 1. and 2. of Definition 2.1 we have that
whenever X ∈ C0 and Z ∈ C then for any s > 0, sX ∈ C and X + Z ∈ C. Assume
that the statement ‘whenever X ∈ C<α and Z ∈ C then for any s > 0, sX ∈ C
and X + Z ∈ C’ holds. Assume now that X ∈ Cα and Z ∈ C. Considering two
possible cases (either X = X̃ + Y , X̃ ∈ C<α , Y is a simple capital process and X is
nonnegative, or X = lim infn→+∞ Xn, where X1, X2, . . . ∈ C<α) we easily get that
sX ∈ C and X + Z ∈ C.

Remark 2.2. Our definition of the family of nonnegative supermartingales differs
slightly from that proposed by Shafer and Vovk, who do not assume the second con-
dition, only the first and the third ones, see [8, Sect. 14.1]. We need the second con-
dition to prove Fact 2.11. It remains an open question whether the family C coincides
with the family C̃ of nonnegative supermartingales in the sense of Shafer and Vovk.
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In [8, Sect. 14.1] there is defined a notion of instant enforcement of a subset
E ⊆ [0,+∞) × � (also called a property of t and ω). Informally, property E is
instantly enforceable if there exists a trading strategy making a trader using this strat-
egy infinitely rich as soon as the property E ceases to hold. A formal definition is
the following: a property E ⊆ [0,+∞) × � is instantly enforceable, or holds with
instant enforcement, w.i.e. in short, if there exists X ∈ C such that X0 = 1 and

(t, ω) /∈ E =⇒ Xt(ω) = +∞.

Complements of instantly enforceable properties (sets) are called instantly blockable.
The main result of this section is that it is possible to introduce an outer measure

P on the subsets of [0,+∞)×� (similarly as in the case of the notion of null events,
where one can introduce Vovk’s outer probability on all subsets of �, cf. [9]) such
that B ⊆ [0,+∞) × � is instantly blockable iff P(B) = 0.

For A ⊆ [0,+∞) × � we define

P(A) := inf {X0 : X ∈ C and ∀(t, ω) ∈ [0,+∞) × �,Xt(ω) ≥ 1A(t, ω)} .

We have the following lemma.

Lemma 2.3. The set B ⊆ [0,+∞) × � is instantly blockable iff

P(B) = 0.

Proof. If B is instantly blockable then there exists X ∈ C such that X0 = 1 and

(t, ω) ∈ B =⇒ Xt(ω) = +∞.

Thus, taking arbitrary ε > 0 we have (εX)0 = ε and

(t, ω) ∈ B =⇒ (εX)t (ω) = +∞ > 1B(t, ω),

(t, ω) /∈ B =⇒ (εX)t (ω) ≥ 0 = 1B(t, ω);
and since εX ∈ C we get

P(B) ≤ ε.

Since ε may be as close to 0 as we wish, P(B) ≤ 0 and thus P(B) = 0 (the opposite
inequality P(B) ≥ 0 holds since for any X ∈ C, X0 ≥ 0).

Assume now that P(B) = 0. For n = 1, 2, . . . , there exists Xn ∈ C such that
Xn

0 (ω) ≤ 2−n and for all (t, ω) ∈ [0,+∞) × �,

(t, ω) ∈ B =⇒ Xn
t (ω) ≥ 1B(t, ω) = 1.

Taking X = (
1 − ∑+∞

n=1 Xn
0

) + ∑+∞
n=1 Xn we get X ∈ C, X0 = 1 (notice that∑+∞

n=1 Xn
0 ≤ 1) and

(t, ω) ∈ B =⇒ Xt(ω) ≥
+∞∑
n=1

Xn
t (ω) ≥

+∞∑
n=1

1 = +∞.
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Remark 2.4. Replacing in the definition of instantly enforceable property and in the
definition of P the family C by C̃ (the family of nonnegative supermartingales in the
sense of Shafer and Vovk) one obtains an outer measure which assigns zero value
exactly to those sets (properties) of pairs of time t and an elementary event ω which
are instantly blockable in the sense of Shafer and Vovk. The proof is exactly the same
as the proof of Lemma 2.3.

The definition of upper probability P may be generalized and we may define the
upper expectation (or cost of super-hedging or super-replication) of a generalized
process Y : [0,+∞) × � → [−∞,+∞] in the following way:

EY := inf {X0 : X ∈ C and ∀(t, ω) ∈ [0,+∞) × �,Xt(ω) ≥ Yt (ω)} .

For A ⊆ [0,+∞) × � we have

P(A) = E1A.

For two generalized processes X and Y we say that X dominates Y if they satisfy
the condition

∀(t, ω) ∈ [0,+∞) × �, Xt(ω) ≥ Yt (ω).

For two generalized processes X and Y we say that X dominates Y with instant
enforcement (w.i.e.) if the set of (t, ω) where the inequality Xt(ω) ≥ Yt (ω) holds is
instantly enforceable.

Below we list, without proofs, properties of E which imply that P is an outer
measure:

1) nonnegativity: for any generalized process Y , EY ≥ 0;

2) monotonicity with respect to domination of generalized processes: if Z domi-
nates Y or Z dominates Y w.i.e. and Zt(ω) > −∞ w.i.e. then

EY ≤ EZ;
3) positive homogeneity: if α ∈ [0,+∞) then

E(αY ) = αEY,

where we apply the convention that 0 · (±∞) = 0;

4) countable subadditivity for nonnegative generalized processes: if ∀(t, ω) ∈
[0,+∞) × �, Y 1

t (ω), Y 2
t (ω), . . . ≥ 0 then

E

(+∞∑
k=1

Y k

)
≤

+∞∑
k=1

EY k;

5) finite subadditivity for generalized processes not attaining −∞ (this is as-
sumed in order to be able to calculate

∑n
m=1 Ym): if Ym : [0,+∞) × � →

(−∞,+∞], m = 1, 2, . . . , n (n ∈ N), are generalized processes then

E

(
n∑

m=1

Ym

)
≤

n∑
m=1

EYm;
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6) consistency: if Yt (ω) = 1 w.i.e. then EY = 1;

7) a lower bound for generalized processes: for any Y : [0,+∞) × �, EY ≥
max {Y0, 0};

8) determinism for nonnegative supermartingales: if Y is a nonnegative super-
martingale then EY = Y0.

Also, an almost immediate consequence of the definition of E is the Fatou lemma.

Fact 2.5 (Fatou’s lemma). If (Y n) is a sequence of generalized processes then

E lim inf
n→+∞ Yn ≤ lim inf

n→+∞EYn.

Proof. Let Xn ∈ C, n = 1, 2, . . . , be such that Xn
0 ≤ EYn + 1/n and ∀(t, ω) ∈

[0,+∞) × �, Xn
t (ω) ≥ Yn

t (ω). Denote X = lim infn→+∞ Xn, then

∀(t, ω) ∈ [0,+∞) × �, Xt(ω) = lim inf
n→+∞ Xn

t (ω) ≥ lim inf
n→+∞ Yn

t (ω).

Hence, since X ∈ C,

E lim inf
n→+∞ Yn ≤ X0 = lim inf

n→+∞ Xn
0 ≤ lim inf

n→+∞EYn.

Definition 2.6. A process Y has trajectories which are continuous w.i.e. (Y is contin-
uous w.i.e. in short) if the set of pairs (t, ω) ∈ [0,+∞) × � such that the trajectory
[0,+∞) � s �→ Ys(ω) is real and continuous at the point t is instantly enforceable.

Now we will prove a technical lemma which we will use to prove that some
quantities we define in the sequel are stopping times.

Lemma 2.7. Let Y be a process whose trajectories are continuous w.i.e. and F =
(Ft )t≥0 be a filtration satisfying Assumption A. Let τ : � → [0,+∞] be a stopping
time (with respect to the filtration F) and let F be a closed subset of R. Define ρ :
� → [0,+∞] by

ρ(ω) = inf {t ≥ τ(ω) : Yt ∈ F }
with the usual convention that inf ∅ = +∞. Then ρ is a stopping time with respect to
the filtration F. If moreover τ is such that for each ω ∈ � ∩ {τ < +∞}, Yτ(ω)(ω) is
an isolated point of F , then σ : � → [0,+∞] defined by

σ(ω) = inf
{
t > τ(ω) : Yt ∈ F \ {Yτ(ω)

}}
is also a stopping time with respect to the filtration F.

Proof. Let us fix t ∈ [0,+∞). We need to prove that {ρ ≤ t}, {σ ≤ t} ∈ Ft . Let
C ⊆ [0,+∞) × � be the set of pairs (s, ω) ∈ [0,+∞) × � such that the trajectory
[0,+∞) � s �→ Ys(ω) is continuous at the point s. By assumption, its complement
B = ([0,+∞) × �) \ C is instantly blockable and thus, by Assumption A, the pro-
jection of B ∩ ([0, t] × �) onto � belongs to Ft . Let us denote this projection by �B .
For y ∈ R let d (y, F ) = inf {|y − z| : z ∈ F } denote the distance of y from the set F

and let Q denote the set of all rational numbers. For each ω ∈ � \ �B the trajectory
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[0, t] � s �→ Ys(ω) is continuous (if [0, t] � s �→ Ys(ω) was not continuous at some
point s ∈ [0, t] then (s, ω) ∈ B and thus ω ∈ �B ) and we get

{ω ∈ � \ �B : ρ(ω) ≤ t} =
{
ω ∈ � \ �B : inf

τ(ω)≤s≤t,s∈Q∪{t} d (Ys(ω), F ) = 0

}

=
⋂
n∈N

⋃
0≤s≤t,s∈Q∪{t}

{
ω ∈ (� \ �B) ∩ {τ ≤ s} : d (Ys(ω), F ) ≤ 1

n + 1

}
∈ Ft .

Next we consider {ω ∈ �B : ρ(ω) ≤ t} = �B ∩ {ρ ≤ t}. There exists a subset D of
B whose projection equals �B ∩{ρ ≤ t}. D being a subset of B is instantly blockable
and its projection onto � belongs to Ft . Thus,

{ρ ≤ t} = {ω ∈ � \ �B : ρ(ω) ≤ t} ∪ {ω ∈ �B : ρ(ω) ≤ t} ∈ Ft .

To prove that {σ ≤ t} ∈ Ft we write

{ω ∈ � \ �B : σ(ω) ≤ t}
=
{
ω ∈ � \ �B : inf

τ(ω)<s≤t,s∈Q∪{t} d
(
Ys(ω), F \ {Yτ(ω)

}) = 0

}
∈ Ft .

The rest of the proof is the same as for ρ.

Next to the class of nonnegative supermartingales, other important class of pro-
cesses which we will work with is the family of martingales. The class of martingales
M is defined as the smallest lim-closed class of real (w.i.e.) processes such than
it contains all simple capital processes. By the fact that M is lim-closed we mean
that whenever Xn ∈ M, n ∈ N, and X is a real (w.i.e.) process such that for any
(t, ω) ∈ [0,+∞) × �,

lim
n→+∞ sup

s∈[0,t]
∣∣Xs(ω) − Xn

s (ω)
∣∣ = 0 w.i.e. (1)

then also X ∈ M.

Remark 2.8. To deal with the improper (or nonexistent) limits of sequences of pro-
cesses, Shafer and Vovk introduce in [8, Sect. 14.1] also a ‘cemetery’ state ∂ , which
may be attained by martingales since some moment in time, but in this article we will
deal with martingales attaining values in [−∞,+∞] only.

Using condition (1) and transfinite induction we get the following fact.

Fact 2.9. Let X be a martingale. The property of (t, ω) ∈ [0,+∞) × � that the
trajectory [0,+∞) � s �→ Xs(ω) is real and continuous on [0, t] is instantly en-
forceable.

Proof. We will use transfinite induction on the countable ordinals α. Let M0 be the
class of all simple capital processes and for α > 0, X ∈ Mα if and only if there exists
a sequence X1, X2, . . . of martingales in M<α = ⋃

β<α Mβ such that (1) holds.

Naturally, all martingales in M0 are continuous. Assume that for a given ordinal
α, for all martingales in M<α the trajectories [0,+∞) � s �→ Xn

t (ω) are real and
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continuous on [0, t] w.i.e. Now let X ∈ Mα and let (Xn) be a sequence of martingales
in M<α such that (1) holds. Let E be the intersection of the sets of pairs (t, ω) ∈
[0,+∞)×� such that the trajectories [0,+∞) � s �→ Xn

t (ω) are real and continuous
on [0, t] and where (1) holds. E, as the intersection of countably many instantly
enforceable sets, is instantly enforceable. From (1) it follows that for (t, ω) ∈ E the
trajectory [0,+∞) � s �→ Xs(ω) is real and continuous on [0, t], which finishes the
proof.

Remark 2.10. In the proof of Fact 2.9 we also quietly used the fact that using the
definition of M and starting from M0 (the family of all simple capital processes) we
recover whole M, that is, we do not need to ‘produce’ more martingales than those
which are in

⋃
α Mα , where α ranges over all countable ordinals (M is supposed to

be minimal).
A more precise reasoning is the following. Denote M∪ := ⋃

α Mα , where α

ranges over all countable ordinals. To prove that M∪ = M we need to prove that

1. M0 ⊆ M∪;

2. whenever Xn ∈ M∪, n ∈ N, and X is a real (w.i.e.) process such that

lim
n→+∞ sup

s∈[0,t]
∣∣Xs(ω) − Xn

s (ω)
∣∣ = 0 w.i.e.

then also X ∈ M∪.

The fact that M0 ⊆ M∪ is trivial. To prove the second fact, assume that Xn ∈ Mαn ,
where αn is a countable ordinal. Let α∞ be the smallest ordinal greater than all αn,
n ∈ N. α∞ is also countable and by the definition of the sets Mα , X ∈ Mα∞ , thus
also X ∈ M∪.

We have the following important fact.

Fact 2.11. Assume that Y is a nonnegative supermartingale and X is a martingale
such that Y + X is nonnegative, then there exists a nonnegative supermartingale Z

such that Y + X = Z w.i.e.

Proof. Again, we will use transfinite induction on the countable ordinals α. We apply
the same notation as in the proof of Fact 2.9. If X ∈ M0 then Y + X is also a
nonnegative supermartingale (condition 2. in Definition 2.1). Let now X ∈ Mα for
some α > 0 and let X1, X2, . . . be martingales in M<α such that (1) holds. For fixed
ε > 0 we consider the following processes:

A
ε,n
t := Yt∧σε,n + ε + Xn

t∧σε,n , (2)

where
σε,n := inf

{
s > 0 : Xn

s − Xs ≤ −ε
}
.

From Lemma 2.7 (and Fact 2.9) it follows that σε,n is a stopping time and it is
easy to see that Yt∧σε,n is a nonnegative supermartingale while ε + Xn

t∧σε,n is a
martingale from M<α . Moreover, Aε,n is nonnegative (it follows from the fact that
Y + X is nonnegative and from the definition of σε,n), thus, by the inductive as-
sumption, Aε,n is equal to a nonnegative supermartingale Zε,n w.i.e. We notice that
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Zε := lim infn→+∞ Zε,n = ε + Y + X on the set �ε where (1) holds as well all the
equalities Aε,n = Zε,n hold.

Choosing a sequence (εm) such that εm > 0 and εm → 0 as m → +∞ we get
that Y + X = Z := lim infm→+∞ Zεm on the set

⋂
m �εm . Thus X + Y = Z ∈ C

w.i.e.

Corollary 2.12. If Y ∈ C, X ∈ M is such that X0 = 0 and Y + X is nonnegative
then E (Y + X) = Y0.

Proof. By Fact 2.11 there exists Z ∈ C such that Y + X = Z w.i.e. Let us fix ε > 0
and let U ∈ C be such that U0 ≤ ε and U = +∞ on the set where X + Y �= Z. We
have that Z + U ∈ C dominates Y + X, hence

Y0 = Y0 + X0 ≤ E (Y + X) ≤ E (Z + U) = Z0 + U0 ≤ Z0 + ε.

On the other side, since Y = Z −X w.i.e and U = +∞ on the set where Y �= Z −X,
Y + U dominates Z − X and hence

Z0 = Z0 − X0 ≤ E (Z − X) ≤ E (Y + U) = Y0 + U0 ≤ Y0 + ε.

Since ε is an arbitrary positive real we must have E (Y + X) = Y0 = Z0.

Remark 2.13. By transfinite induction it is possible to prove (see [8, Sect. 14.2]) that
whenever X is a martingale and G is a simple trading strategy then G · X is again a
martingale. We will use this in the sequel.

3 Simple quadratic variation – definition, Itô’s isometry and BDG inequalities

Let X be a martingale and τ = (τn) be a proper sequence of stopping times. We
define the simple quadratic variation process of X along τ as

[X]τt :=
+∞∑
n=1

(
Xτn∧t − Xτn−1∧t

)2
, t ∈ [0,+∞).

Lemma 3.1. Let X be a martingale and τ = (τn) be a proper sequence of stopping
times. The process

Yt := (Xt − X0)
2 − [X]τt , t ∈ [0,+∞),

is a martingale.

Proof. For M ∈ (0,+∞) let σ(M) = σ(X,M) denote the stopping time defined as

σ(X,M) := inf {t ∈ [0,+∞) : |Xt | ≥ M} . (3)

By Lemma 2.7, σ(X,M) is indeed a stopping time. Now let us define the simple
trading strategy GM = (

0, (τn) ,
(
gM

n

))
with g0 : R → R, g0(ω) := 0 and gn :

R → R,

gM
n (ω) : =

{
2
(
Xτn(ω) − X0(ω)

)
if n ∈ N and τn < σ(M),

0 if n ∈ N and τn ≥ σ(M).
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All variables gn, n = 0, 1, 2, . . . , are bounded, thus GM is indeed a simple trading
strategy. A direct calculation for (t, ω) ∈ [0,+∞) × � gives

YM
t := Yt∧σ(M) = (GM · X)t

and thus (recall Remark 2.13) YM is a martingale. Moreover, for t ∈ [0,+∞) and a
real M > sups∈[0,t] |Xs(ω)| we have YM

s (ω) = Ys(ω) for s ∈ [0, t] (we can always
find such a M if the trajectory [0, t] � s �→ Xs(ω) is real and continuous) so

lim
M→+∞ sup

s∈[0,t]

∣∣∣YM
s (ω) − Ys(ω)

∣∣∣ = 0 w.i.e.

and hence Y is a martingale.

Fact 3.2 (Itô’s isometry for simple quadratic variation). Let X be a martingale and
τ = (τn) be a proper sequence of stopping times. We have

E (X − X0)
2 = E [X]τ .

Proof. Let ε > 0 and Y be a nonnegative supermartingale such that Y0 ≤
E (X − X0)

2 + ε and ∀(t, ω) ∈ [0,+∞) × �, Yt (ω) ≥ (Xt (ω) − X0(ω))2. We have

∀(t, ω) ∈ [0,+∞) × � Yt(ω) − (Xt (ω) − X0)
2 + [X]τt (ω) ≥ [X]τt (ω) ≥ 0.

Y − (
(X − X0)

2 − [X]τ
)

is nonnegative and by Lemma 3.1, (X − X0)
2 − [X]τ is a

martingale (starting from 0), thus by Corollary 2.12, the following estimates follow:

E [X]τ ≤ E

{
Y −

(
(X − X0)

2 − [X]τ
)}

= Y0 ≤ E (X − X0)
2 + ε.

Since ε may be as close to 0 as we wish, we have

E [X]τ ≤ E (X − X0)
2 .

The opposite inequality follows by a similar reasoning – if Y is a nonnegative
supermartingale that dominates [X]τ and such that Y0 ≤ E [X]τ + ε then we apply
Corollary 2.12 to the process Y −[X]τ +(X − X0)

2 which dominates (X − X0)
2.

Remark 3.3. The proof of Fact 3.2 may be easily adapted to prove the following,
more general statement: if there are two nonnegative real w.i.e. processes X and Y

whose difference is a martingale starting from 0 then

EX = EY.

Now we proceed to the Burkholder–Davis–Gundy inequalities for the simple
quadratic variation along some proper sequence of stopping times. As it is one of
the main ingredients in the proof of the next fact, let us briefly recall the pathwise
version of the Burkholder–Davis–Gundy inequalities (BDG inequalities in short) of
Beiglboeck and Siorpaes [2]. Let xk , k ∈ N, be a sequence of real numbers and for
k ∈ N define

x∗
k := max

l=0,1,...,k
|xl | , [x]k := x2

0 +
k∑

l=1

(xl − xl−1)
2 ,



BDG inequalities for model-free continuous price paths with instant enforcement 437

then

x∗
k ≤ 6

√[x]k + 2 (h · x)k and
√[x]k ≤ 3x∗

k − (h · x)k , (4)

where

(h · x)k =
k∑

l=1

hl−1 (xl − xl−1) with hl = xl√[x]l + x∗
l

(5)

and we apply the convention that 0
0 = 0. Inequalities (4) may be viewed as a pathwise

version of the BDG inequalities for p = 1. To formulate a pathwise version of the
BDG inequalities for p > 1, for k, l ∈ N, k ≥ l, we introduce

e
(l)
k := xk − xl−1√

[x]k − [x]l−1 + maxl≤m≤k (xm − xl−1)
2
,

fk := p2
k∑

l=0

(√
[x]p−1

l −
√

[x]p−1
l−1

)
e
(l)
k ,

gk := p2
k∑

l=0

((
x∗
l

)p−1 − (
x∗
l−1

)p−1
)

e
(l)
k ,

(6)

where together with the convention 0
0 = 0 we also use x−1 = x∗−1 = [x]−1 = 0.

With the just defined quantities and (f · x)k , (g · x)k defined similarly as (h · x)k
one has the following pathwise versions of the BDG inequalities for p > 1: if
Cp = 6p(p − 1)p−1 then for k ∈ N

(
x∗
k

)p ≤ Cp

√
[x]pk + 2 (g · x)k and

√
[x]pk ≤ Cp

(
x∗
k

)p − (f · x)k . (7)

Now, for a generalized process Y and a proper sequence of stopping times τ =
(τn) we define a process

Y
τ,∗
t := max

n∈N
∣∣Yτn∧t

∣∣ , t ∈ [0,+∞)

(maxn∈N
∣∣Yτn∧t

∣∣ is well defined since τ is proper).

Fact 3.4 (BDG inequalities for simple quadratic variation). Let X be a martingale
and τ = (τn) be a proper sequence of stopping times. For any p ≥ 1 there exist finite
positive constants cp and Cp such that

cpE
(
[X]τ

)p/2 ≤ E
(
(X − X0)

τ,∗)p ≤ CpE
(
[X]τ

)p/2
.

In the case p > 1 one may take Cp = 6p(p − 1)p−1 and cp = 1/Cp, while in the
case p = 1 one may take Cp = 6 and cp = 1/3.

Proof. The proof is almost a straightforward application of the pathwise versions of
the BDG inequalities.
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If p > 1 we fix a real M > 0, recall the stopping time σ(M) = σ(X,M) defined
in (3) and define a simple strategy GM = (

0, (τn) ,
(
gM

n

))
in the following way: for

ω ∈ � and n ∈ N we define xn = Xτn(ω) − X0 and

gM
n (ω) : =

{
gn if n ∈ N and τn < σ(M),

0 if n ∈ N and τn ≥ σ(M),

where gn for the given sequence (xn) is defined as in (6). Functions gM
n are globally

bounded (by constants depending on n and M) and Fτn-measurable. The pathwise
limit GX

t (ω) := limM→+∞
(
GM · X

)
t
(ω), (t, ω) ∈ [0,+∞) × �, is well defined on

the set of (t, ω) where the trajectory [0, t] � s �→ Xs(ω) is real and continuous, since(
GM · X

)
s
(ω), s ∈ [0, t], is the same for all M > sups∈[0,t] |Xs(ω)|. For all other

(t, ω) we define GX
t (ω) := 0 and obtain a martingale GX.

Now, by (7), if Y is a nonnegative supermartingale dominating ([X]τ )p/2 then
CpY + 2GX is a process dominating

(
(X − X0)

τ,∗)p w.i.e. (this follows from the ap-
plication of (7) to the sequence x̃k = Xτk∧t −X0, k ∈ N). By this and Corollary 2.12,
similarly as in the proof of Itô’s isometry, we infer

E
(
(X − X0)

τ,∗)p ≤ CpE
(
[X]τ

)p/2
.

The inequality
E
(
(X − X0)

τ,∗)p ≥ cpE
(
[X]τ

)p/2

with cp = 1/Cp may be proven similarly, with the help of the sequence (fn).
The case p = 1 is even easier since one does not need to use the stopping time

σ(M) to define appropriate trading strategies, since hl , l ∈ N, in (4) always belong to
the interval [−1, 1].

4 Quadratic variation – existence, Itô’s isometry and BDG inequalities

4.1 Quadratic variation – existence

In this section we will prove that the simple quadratic variations of a martingale along
sequences of stopping times satisfying some condition converge w.i.e. To formulate
this condition we need to define a fine cover of a real process.

A nondecreasing sequence of F-stopping times (τn) is called a fine cover of the
process X with accuracy δ > 0 (or: (τn) finely covers the process X with accuracy
δ > 0) on the set E ⊆ [0,+∞) × � if τ0 ≡ 0, for any (t, ω) ∈ E there are only
finitely many n ∈ N such that τn(ω) ≤ t and for any n ∈ N and (t, ω) ∈ E

sup
s∈[τn(ω)∧t,τn+1(ω)∧t

]Xs − inf
s∈[τn(ω)∧t,τn+1(ω)∧t

]Xs ≤ δ. (8)

If the set E is instantly enforceable then we say that the sequence (τn) is a fine cover
of the process X with accuracy δ > 0 (or: (τn) finely covers the real process X with
accuracy δ > 0) w.i.e.

Using ideas from [8], which may be attributed already to Kolmogorov, we first
prove the following lemma.
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Lemma 4.1. Let X be a martingale, σ = (σn) be a fine cover of X with accuracy
δ > 0 on the set E ⊆ [0,+∞)×�, τ = (τn) be a sequence of F-stopping times such
that for any (t, ω) ∈ E there are only finitely many n ∈ N such that τn(ω) ≤ t , and
let υ be the nondecreasing rearrangement of the stopping times from both sequences
σ and τ , υ = (υn), with redundancies deleted. Then

[
[X]σ − [X]υ

]υ ≤ 4δ2 [X]υ on E (9)

Proof. Let (t, ω) ∈ E. In all formulas which follow in the proof we omit ω. We have

[
[X]σ − [X]υ

]υ
t

=
+∞∑
n=1

(
[X]συn∧t − [X]συn−1∧t − [X]υυn∧t + [X]υυn−1∧t

)2
.

Denoting

n(t) := max {n ∈ N : υn ≤ t} , t ∈ [0,+∞),

we further estimate

[
[X]σ − [X]υ

]υ
t

=
n(t)∑
n=1

(
[X]συn

− [X]συn−1
− (

Xυn − Xυn−1

)2
)2

+
(

[X]σt − [X]συn(t)
− (

Xt − Xυn(t)

)2
)2

. (10)

Next, denoting

m(n) := max {m ∈ N : σm ≤ υn} , n ∈ N,

for n ∈ N \ {0} we have

[X]συn
− [X]συn−1

= (
Xυn − Xσm(n−1)

)2 − (
Xυn−1 − Xσm(n−1)

)2

= (
Xυn − Xυn−1

) (
Xυn + Xυn−1 − 2Xσm(n−1)

)
(this may be proven by considering two possible cases: υn = σm(n) > υn−1 ≥
σm(n−1) and υn ≥ υn−1 ≥ σm(n) = σm(n−1)), so

[X]συn
− [X]συn−1

− (
Xυn − Xυn−1

)2 = (
Xυn − Xυn−1

) (
2Xυn−1 − 2Xσm(n−1)

)
. (11)

Similarly,

[X]σt − [X]συn(t)
− (

Xt − Xυn(t)

)2 = (
Xt − Xυn(t)

) (
2Xυn(t)

− 2Xσm(n(t))

)
. (12)

Plugging in (10) equalities (11) and (12), and using the estimates

∣∣2Xυn−1 − 2Xσm(n−1)

∣∣ ≤ 2δ,
∣∣2Xυn(t)

− 2Xσm(n(t))

∣∣ ≤ 2δ,

which stem from (8), we get (9).
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For a positive real number d and r ∈ [0, d) let us consider the grid d · Z + r =
{d · n + r : n ∈ Z}. For a real process X let now τ(X, d, r) = (τn(X, d, r)) be a
sequence of times τn = τn(X, d, r) defined as: τ0 ≡ 0 and for n = 1, 2, . . .

τn =
{

inf
{
t > τn−1 : Xt ∈ (d · Z + r) \ {Xτn−1

}}
if τn−1 < +∞,

+∞ if τn−1 = +∞.

If X is continuous w.i.e. then by Lemma 2.7, τn, n ∈ N, is a stopping time.
Moreover, if X is a martingale then τ(X, d, r) is a fine cover of the process X

with accuracy d > 0 w.i.e. (since the property of (t, ω) ∈ [0,+∞) × � that the
trajectory [0,+∞) � s �→ Xs(ω) is real and continuous on [0, t] is instantly en-
forceable). However, the sequence τ(X, d, r) may be not proper for all ω. To avoid
such a situation we modify τn by setting: τn(ω) = +∞ if X is not real and contin-
uous on [0, τn(ω)). Such modified τn is also a stopping time (the proof is almost the
same as the proof of Lemma 2.7) and a sequence of such modified times is proper
and is a fine cover of the process X with accuracy d > 0 w.i.e. We will also denote
it by τ(X, d, r) and call the Lebesgue sequence of stopping times for X and the grid
d · Z + r .

To state the next proposition we need two more definitions.

Definition 4.2. Let σ be a stopping time. By the locally uniform convergence of
the sequence of processes (Ym) on the random interval [0, σ ] \ {+∞}, with instant
enforcement (w.i.e.), to the process Y , we mean the fact that the property of (t, ω) ∈
[0,+∞) × � that sups∈[0,σ∧t]

∣∣Ym
s (ω) − Ys(ω)

∣∣ → 0 holds w.i.e.
By the locally uniform convergence of the sequence of processes (Ym) w.i.e. to

the process Y we mean the fact that the property of (t, ω) ∈ [0,+∞) × � that
sups∈[0,t]

∣∣Ym
s (ω) − Ys(ω)

∣∣ → 0 holds w.i.e.

Now we are ready to state and prove a proposition on the existence of martingale
quadratic variation.

Proposition 4.3. Let X be a martingale. There exists a real continuous process [X]
such that if (δm) is a sequence of positive reals such that

∑+∞
m=0 δm < +∞ and (σm)

is a sequence of sequences σm = (
σm

n

)
n

of stopping times, such that σm is proper
and is a fine cover of X with accuracy δm w.i.e., then, for any M ∈ (0,+∞) and
σ(M) = σ(X,M) defined by (3), the processes [X]σ

m
converge locally uniformly on

the random interval [0, σ (M)] \ {+∞} with instant enforcement to the process [X].
As a result, the processes [X]σ

m
converge locally uniformly w.i.e. to the process [X].

Proof. First we consider τm = τ
(
X, 2−m, 0

)
, m ∈ N, the Lebesgue sequences of

stopping times for X, and the grid 2−mZ. Let us fix M ∈ (0,+∞) and let E be the
instantly enforceable set of (t, ω) ∈ [0,+∞) × � where the trajectory [0, t] � s �→
Xs(ω) is continuous.

Since τm+1 is the same as the nondecreasing rearrangement of τm and τm+1 (all
stopping times from the sequence τm also appear in the sequence τm+1) and since τm

is a fine cover of X with accuracy 2−m on the set E, by Lemma 4.1 we have

[
[X]τ

m

(ω) − [X]τ
m+1

(ω)
]τm+1

t
≤ 4 · 2−2m [X]τ

m+1

t (ω) for (t, ω) ∈ E. (13)
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By Fact 3.1 the difference

Ym
t := [X]τ

m+1

t∧σ(M) − [X]τ
m

t∧σ(M)

= (
Xt∧σ(M) − X0

)2 − [X]τ
m

t∧σ(M) −
((

Xt∧σ(M) − X0
)2 − [X]τ

m+1

t∧σ(M)

)
is a difference of two martingales stopped at σ(M), thus a martingale. Recall a defi-
nition of the supremum process (of a generalized process) and consider (Ym)∗. Now,
since τm+1, m ∈ N, is a fine cover of X with accuracy 2−m−1 on E, we have

(
Ym

)∗
t

≤ (
Ym

)τm+1,∗
t

+ 2 · 2−2m−2

on this set, and by this and Fact 3.4 (discrete BDG inequality) we have

E
(
Ym

)∗ ≤ E
(
Ym

)τm+1,∗ + 2−2m−1 ≤ 6E
√

[Ym]τ
m+1 + 2−2m−1.

Further, using (13), the elementary estimate
√

x ≤ 1
2 + 1

2x (x ≥ 0) and the Itô
isometry (Fact 3.2) we have

E
(
Ym

)∗ ≤ 6E
√

4 · 2−2m [X]τ
m+1

·∧σ(M) + 2−2m−1

≤ 6 · 2−m
(

1 + E [X]τ
m+1

·∧σ(M)

)
+ 2−2m−1

≤ 6 · 2−m
(

1 + E (X − X0)
2
·∧σ(M)

)
+ 2−2m−1

≤ 6 · 2−m
(

1 + 4M2
)

+ 2−2m−1

≤ 7
(

1 + 4M2
)

2−m. (14)

Now let B ⊆ [0,+∞) × � be the set of pairs (t, ω) where the sequence of processes
[X]τ

m
, m ∈ N, does not converge uniformly on [0, σ (M) ∧ t] \ {+∞}. Let us fix

ε > 0. For each (t, ω) ∈ B we have

ε

+∞∑
m=0

(
Ym

)∗
t
(ω) = +∞ ≥ 1B(t, ω).

By (14) there exists a nonnegative supermartingale Zm such that Zm
0 ≤

8
(
1 + 4M2

)
2−m and Zm

t (ω) ≥ (Ym)∗t (ω) for each (t, ω) ∈ [0,+∞) × �. Hence

Uε := ε ·
+∞∑
m=0

Zm

is a nonnegative supermartingale such that Uε
0 ≤ 8

(
1 + 4M2

)
ε
∑+∞

m=0 2−m =
16

(
1 + 4M2

)
ε and for each (t, ω) ∈ B

Uε
t (ω) = +∞ > 1B(t, ω).
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Since ε may be as close to 0 as we wish, we get that the set B is instantly blockable.
Let [X] denote any real continuous process to which [X]τ

m
converges locally uni-

formly on [0, σ (M)] \ {+∞} w.i.e. for all M = 1, 2, . . . (we may take, for example,
[X]t (ω) := limm→+∞ [X]τ

m

t (ω) if the limit exists and [X]t (ω) := 0 if the limit does
not exist).

For m ∈ N let now υm be the nondecreasing rearrangement of the stopping times
from both sequences σm and τm with redundancies deleted. Reasoning similarly as
for τm and τm+1 we infer that for the differences

Rm := [X]σ
m

·∧σ(M) − [X]υ
m

·∧σ(M) , V m := [X]τ
m

·∧σ(M) − [X]υ
m

·∧σ(M)

one has
E
(
Rm

)∗ ≤ 6δm

(
1 + 4M2

)
+ 2δ2

m (15)

and
E
(
V m

)∗ ≤ 6 · 2−m
(

1 + 4M2
)

+ 2 · 2−2m. (16)

Now, if D(M) ⊆ [0,+∞) × � is the set of pairs (t, ω) where the sequence of
processes [X]σ

m
, m ∈ N, does not converge uniformly to [X] on [0, σ (M) ∧ t] \

{+∞} then for each ε > 0 and (t, ω) ∈ D(M)

ε

+∞∑
m=0

(
Rm

)∗
t
(ω) + ε

+∞∑
m=0

(
V m

)∗
t
(ω) = +∞ ≥ 1D(M)(t, ω). (17)

Inequalities (15), (16) and (17) imply the existence of a nonnegative supermartingale
which starts from the initial capital smaller than

6ε(1 + 4M2)

+∞∑
m=0

(
δm + 2−m

) + 2ε

+∞∑
m=0

(
δ2
m + 2−2m

)

and attains value +∞ on the set D(M). Thus, since ε may be arbitrary close to 0,
D(M) is instantly blockable.

To obtain locally uniform convergence w.i.e. of [X]σ
m

to [X] we consider D :=⋃+∞
M=1 D(M). D is instantly blockable and on its complement we have the desired

convergence.

Definition 4.4. By quadratic variation of a martingale X we will mean any process
which satisfies the thesis of Proposition 4.3. [X] is real, continuous and increasing
w.i.e. Any two processes satisfying the thesis of Proposition 4.3 are equal w.i.e.

A direct consequence of Lemma 3.1, Proposition 4.3 and Definition 4.4 is the
following fact.

Fact 4.5. If X is a martingale then the process (X − X0)
2 −[X] is also a martingale.

We also have the following fact.

Fact 4.6. If X is a martingale, X0 = 0 and [X] = 0 w.i.e. then X = 0 w.i.e.
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Proof. By Fact 4.5, X2 is a martingale starting from 0. It is nonnegative, thus Corol-
lary 2.12 yields that EX2 = 0. For any n ∈ N there exists a nonnegative supermartin-
gale Un such that Un

0 ≤ 1/n2 and Un ≥ X2. Thus, U = lim infn→+∞ n · Un is a
nonnegative supermartingale such that U0 = 0 and for any (t, ω) ∈ [0,+∞) × �

such that Xt(ω) �= 0, Ut(ω) = +∞, hence X = 0 w.i.e.

4.1.1 Quadratic covariation
Now, let X and Y be two martingales. Naturally, X + Y and X − Y are also mar-
tingales. Let

(
τ(X, 2−m, 0)

)
and

(
τ(Y, 2−m, 0)

)
be two sequences of the Lebesgue

sequences of stopping times for X and Y respectively (and the grids 2−m · Z). Let
υm be the nondecreasing rearrangement of the stopping times from both sequences
τ(X, 2−m, 0) and τ(Y, 2−m, 0), with redundancies deleted. υm is also a proper se-
quence of stopping times and finely covers w.i.e. both X + Y and X − Y with ac-
curacy 2−m+1. By Proposition 4.3 we get that for any real M > 0, [X + Y ]υ

m
and

[X − Y ]υ
m

converge locally uniformly on [0, σ (X + Y,M) ∧ σ(X − Y,M)]\{+∞}
w.i.e. to the quadratic variations [X + Y ] and [X − Y ], respectively. The difference

[X, Y ] := 1

4
[X + Y ] − 1

4
[X − Y ]

is called the quadratic covariation of X and Y . Substituting a = Xυm
n ∧t − Xυm

n−1∧t ,

b = Yυm
n ∧t −Yυm

n−1∧t in the identity 1
4 (a + b)2 − 1

4 (a − b)2 = a · b we get that [X, Y ]
is the limit of the simple quadratic covariation processes along (υm):

[X, Y ]υm

t :=
+∞∑
n=1

(
Xυm

n ∧t − Xυm
n−1∧t

) (
Yυm

n ∧t − Yυm
n−1∧t

)
, t ∈ [0,+∞), (18)

which converge to [X, Y ] locally uniformly on [0, σ (X + Y,M) ∧ σ(X − Y,M)] \
{+∞} w.i.e. for any real M > 0.

4.2 Itô’s isometry
Using Fact 3.2 (Itô’s isometry for simple quadratic variation) and the just proven
Proposition 4.3 we can obtain Itô’s isometry for quadratic variation.

Fact 4.7 (Itô’s isometry for quadratic variation). Let X be a martingale and [X] its
quadratic variation. We have

E (X − X0)
2 = E [X] .

Proof. Let (τm) = (
τ(X, 2−m, 0)

)
be the sequence of the Lebesgue sequences of

stopping times for X and the grids 2−m · Z. For any m = 0, 1, 2, . . . , by the Itô
isometry for simple quadratic variation (Fact 3.2) we have E(X − X0)

2 = E[X]τ
m

which yields
E(X − X0)

2 = lim inf
m→+∞E[X]τ

m

. (19)

Since lim infm→+∞ [X]τ
m = [X] w.i.e., we have E[X] = E lim infm→+∞ [X]τ

m
, and

by (19) and the Fatou lemma (Lemma 2.5) we get

E(X − X0)
2 ≥ E lim inf

m→+∞ [X]τ
m = E[X].
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To prove the upper bound, let us fix ε,M ∈ (0,+∞). Let σ(M) = σ(X,M) be
defined by (3) and

ρm(ε) := inf
{
t ≥ 0 :

∣∣∣[X]t − [X]τ
m

t

∣∣∣ ≥ ε
}

,

where we take [X] = lim infm→+∞ [X]τ
m

. By Lemma 2.7, ρm(ε) is a stopping time
([X] is continuous w.i.e.).

Similarly as in the proof of the Itô isometry for simple quadratic variation we

define a trading strategy Gm,ε,M =
(
ε, τm,

(
g

m,ε,M
n

))
in the following way:

gm,ε,M
n (ω) : =

{
2
(
Xτn(ω) − X0(ω)

)
if n ∈ N and τm

n < σ(M) ∧ ρm(ε),

0 if n ∈ N and τm
n ≥ σ(M) ∧ ρm(ε).

Functions g
m,ε,M
n are globally bounded (by 2M) and Fτm

n
-measurable. The pathwise

limit

G
m,ε,X
t (ω) := lim

M→+∞

(
Gm,ε,M · X

)
t
(ω), (t, ω) ∈ [0,+∞) × �,

is a martingale since
(
Gm,ε,M · X

)
s
(ω), s ∈ [0, t], is the same for all M >

sups∈[0,t] |Xs(ω)| (sups∈[0,t] |Xs(ω)| is finite w.i.e.). Moreover, if Y is a nonnegative
supermartingale dominating [X] and such that Y0 ≤ ε + E[X], then by the definition
of the stopping time ρm(ε), ε + Y·∧ρm(ε) is a nonnegative supermartingale dominat-
ing [X]τ

m

·∧ρm(ε). Next, ε + Y·∧ρm(ε) + Gm,ε,X is a process dominating (X − X0)
2
·∧ρm(ε)

and by Corollary 2.12

E

{
ε + Y·∧ρm(ε) + Gm,ε,X

}
= ε + Y0.

Proceeding to the lower limit we have that

lim inf
m→+∞

{
ε + Y·∧ρm(ε) + 2Gm,ε,X

}
is a nonnegative process which dominates

lim inf
m→+∞ (X − X0)

2
·∧ρm(ε) = (X − X0)

2 w.i.e.

(since [X]τ
m

converges locally uniformly w.i.e.). Hence, by the Fatou lemma,

E(X − X0)
2 ≤ lim inf

m→+∞E

{
ε + Y·∧ρm(ε) + Gm,ε,X

}
= ε + Y0 ≤ 2ε + E [X]

which gives the desired bound by letting ε → 0+.

4.3 BDG inequalities

Using Fact 3.4 (BDG inequalities for simple quadratic variation) and Proposition 4.3
we obtain the following proposition.
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Proposition 4.8 (BDG inequalities for quadratic variation). Let X be a martingale
and [X] be its quadratic variation. For any p ≥ 1 there exist finite, positive constants
cp and Cp such that

cpE [X]p/2 ≤ E
(
(X − X0)

∗)p ≤ CpE [X]p/2 .

In the case p > 1 one may take Cp = 6p(p − 1)p−1 and cp = 1/Cp, while in the
case p = 1 one may take Cp = 6 and cp = 1/3.

Proof. The proof is similar to the proof of Itô’s isometry for quadratic variation. Let
(τm) = (

τ(X, 2−m, 0)
)

be the sequence of the Lebesgue sequences of stopping times
for X and the grids 2−m · Z. For any m = 0, 1, 2, . . . , by the BDG inequality for
simple quadratic variation (Fact 3.4), we have

E
(
(X − X0)

∗)p ≥ E

(
(X − X0)

τm,∗)p ≥ cpE

(
[X]τ

m
)p/2

which yields

E
(
(X − X0)

∗)p ≥ cp lim inf
m→+∞E

(
[X]τ

m
)p/2

. (20)

Since lim infm→+∞ [X]τ
m = [X] w.i.e. (understood for all (t, ω) ∈ [0,+∞) × �

as the property that lim infm→+∞ [X]τ
m

t (ω) = [X]t (ω)) we have E ([X])p/2 =
E lim infm→+∞

(
[X]τ

m
)p/2

and by (20) and the Fatou lemma (Lemma 2.5) we get

E
(
(X − X0)

∗)p ≥ cpE lim inf
m→+∞

(
[X]τ

m
)p/2 = cpE ([X])p/2 .

To prove the upper bound, let us fix ε,M ∈ (0,+∞). Let σ(M) = σ(X,M) be
defined by (3) and

ρm(ε) := inf

{
t ≥ 0 :

∣∣∣∣([X]t )
p/2 −

(
[X]τ

m

t

)p/2
∣∣∣∣ ≥ ε

}
,

where we take [X] = lim infm→+∞ [X]τ
m

. By Lemma 2.7, ρm(ε) is a stopping time
([X] is continuous w.i.e.). Similarly as in the proof of the BDG inequality for simple

quadratic variation we define a trading strategy Gm,ε,M =
(
ε, τm,

(
g

m,ε,M
n

))
in the

following way: xn = Xτm
n
(ω) − X0 and

gm,ε,M
n (ω) : =

{
gn if n ∈ N and τm

n < σ(M) ∧ ρm(ε),

0 if n ∈ N and τm
n ≥ σ(M) ∧ ρm(ε),

where gn for the given sequence (xn) is defined as in (6). Functions g
m,ε,M
n are glob-

ally bounded (by constants depending on m, n and M) and Fτm
n

-measurable. The
pathwise limit

G
m,ε,X
t (ω) := lim

M→+∞

(
Gm,ε,M · X

)
t
(ω), (t, ω) ∈ [0,+∞) × �,
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is a martingale since
(
Gm,ε,M · X

)
t
(ω) is the same for all M > sups∈[0,t] |Xs(ω)|

(sups∈[0,t] |Xs(ω)| is finite w.i.e.). Moreover, if Y is a nonnegative supermartingale
dominating ([X])p/2 and such that Y0 ≤ ε + E ([X])p/2 then by the definition of
the stopping time ρm(ε), ε + Y·∧ρm(ε) is a nonnegative supermartingale dominating(

[X]τ
m

·∧ρm(ε)

)p/2
. Next, by (7), Cp

(
ε + Y·∧ρm(ε)

) + 2Gm,ε,X is a process dominating(
(X − X0)

τm,∗
·∧ρm(ε)

)p

(this follows from the application of (7) to the sequence x̃k =
Xτm

k ∧t − X0, k ∈ N) and by Corollary 2.12

E

{
Cp

(
ε + Y·∧ρm(ε)

) + 2Gm,ε,X
}

= Cp (ε + Y0) .

Proceeding to the lower limit we have that

lim inf
m→+∞

{
Cp

(
ε + Y·∧ρm(ε)

) + 2Gm,ε,X
}

is a nonnegative supermartingale dominating

lim inf
m→+∞

(
(X − X0)

τm,∗
·∧ρm(ε)

)p = (
(X − X0)

∗)p w.i.e.

(let us notice that since τm finely covers X with accuracy 2−m w.i.e., we have

(X − X0)
τm,∗ ≤ (X − X0)

∗ ≤ (X − X0)
τm,∗ + 2−m w.i.e.

and since [X]τ
m

converges locally uniformly w.i.e., ρm(ε)(ω) ≥ t as m → +∞
w.i.e.) hence, by the Fatou lemma,

E
(
(X − X0)

∗)p ≤ lim inf
m→+∞E

{
Cp

(
ε + Y·∧ρm(ε)

) + 2Gm,ε,X
}

= Cp (ε + Y0) ≤ Cp

(
2ε + E ([X])p/2

)
,

which gives the desired bound by letting ε → 0+.

5 Model-free stochastic integral – definition and its quadratic variation

5.1 Model-free stochastic integral – definition
If G = (c, (τn) , (gn)) is a simple trading strategy and X is a martingale then G · X

is again a martingale. An almost immediate consequence of Proposition 4.3 is the
following fact.

Fact 5.1. Let G = (c, (τn) , (gn)), H = (d, (σn) , (hn)) be simple trading strategies
and X, Y be martingales. Then the quadratic covariation of the martingales G · X

and H · Y equals

[G · X,H · Y ]t =
∫ t

0
(Gs · Hs) · d[X, Y ]s w.i.e.,

where Gt := ∑+∞
n=1 gn−11[τn−1,τn

)(t), Ht := ∑+∞
n=1 hn−11[σn−1,σn

)(t) and the integral∫ t

0 Gs · Hs · d[X, Y ]s is understood as the (pathwise) Lebesque–Stieltjes integral.
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Sketch of a proof. Let G̃ = (c, (τ̃n) , (g̃n)) be a modification of the trading strategy
G obtained in the following way. If for some ω ∈ � and n ∈ N, τn(ω) = τn+1(ω) =
· · · , then we set

τ̃n = τ̃n+1 = · · · = +∞, g̃n = g̃n+1 = · · · = 0,

otherwise neither τn nor gn are changed. This way we get a trading strategy satisfying

for all (t, ω) ∈ [0,+∞) × �,
(
G̃ · X

)
t
(ω) = (G · X)t (ω) and such that for all

ω ∈ �, τn(ω) → +∞.

Let H̃ =
(
d, (σ̃n) ,

(
h̃n

))
be a similar modification of the strategy H .

Let us consider m ∈ N and let τ(X, 2−m, 0), τ(Y, 2−m, 0), τ(G̃ · X, 2−m, 0) and
τ(H̃ ·Y, 2−m, 0) be the Lebesgue sequences of stopping times for X, Y , G̃·X and H̃ ·Y
respectively (and the grid 2−m · Z), and υm be the nondecreasing rearrangement of
the stopping times from these sequences and (τ̃n)n, (σ̃n)n, with redundancies deleted.
Since υm is a proper sequence of stopping times and finely covers both X + Y and
X − Y w.i.e. with accuracy 2−m+1, we easily see that by (18)

[G · X,H · Y ]υ
m

t =
[
G̃ · X, H̃ · Y

]υm

t

=
+∞∑
l=1

Gυm
l−1

· Hυm
l−1

(
[X]υm

υm
l ∧t

− [X]υm

υm
l−1∧t

) (
[Y ]υm

υm
l ∧t

− [Y ]υm

υm
l−1∧t

)
, (21)

and by Proposition 4.3, [G · X,H · Y ]υ
m

tends locally uniformly w.i.e. Moreover the
limit is equal to the process ∫ t

0
(Gs · Hs) · d[X, Y ]s

since the (random) functions t �→ Gt , t �→ Ht are constant on intervals of the form[
τ̃n−1, τ̃n),

[
σ̃n−1, σ̃n) respectively (we apply the convention that [+∞,+∞) = ∅).

In particular, taking in Fact 5.1 G = H , we get that

[G · X]t =
+∞∑
n=1

g2
n−1

([X]σn∧t − [X]σn−1∧t

) =
∫ t

0
G2

s · d[X]s w.i.e.

Now, having at hand Fact 5.1, Remark 2.13 and BDG inequalities we are going
to extend the definition of the integral with the martingale integrator X.

Similarly as in [6] we equip the family of simple trading strategies with the fol-
lowing pseudodistance. For two simple trading strategies G = (c, (τn) , (gn)) and
H = (d, (σn) , (hn)) we define

dQV,X,loc (G,H) :=
∞∑

N=1

2−NE

(∫ σ(X,N)

0
(Gs − Hs)

2 d [X]s

)1/2

,



448 R. M. Łochowski

where Gt := ∑+∞
n=1 gn−11[τn−1,τn

)(t), Ht := ∑+∞
n=1 hn−11[σn−1,σn

)(t), σ(X,N) is

defined by (3) and the integral
∫ σ(X,N)

0 (Gs − Hs)
2 d [X]s is understood as the (path-

wise) Lebesque–Stieltjes integral.
Similarly one can also define dQV,X,loc (G,H) for any two generalized processes

G and H such that, for any t ≥ 0 and ω ∈ �, the trajectories s �→ Gs(ω) and
s �→ Hs(ω) are Borel measurable and real on the whole interval [0, t] w.i.e. (as
a property of (t, ω)). Let us define the space of such generalized processes more
formally.

Definition 5.2. By R we denote the space of generalized processes G such that for
any t ≥ 0 and ω ∈ �, the trajectories s �→ Gs(ω) are Borel measurable and real on
the whole interval [0, t] w.i.e. (as a property of (t, ω)).

We restrict our considerations to the space R since in order to calculate
dQV,X,loc (G,H) we need to calculate integrals

∫ σ(X,N)

0 (Gs − Hs)
2 d [X]s which re-

main undefined when Gs = +∞ and Hs = +∞ or Gs = −∞ and Hs = −∞ for
some s ∈ [0, σ (X,N)], or the difference Gs − Hs is not Borel measurable. How-
ever, when it occurs on an instantly blockable set, this does not affect the value of
dQV,X,loc (G,H). From the Minkowski inequality for the Stieltjes integrals it follows
that dQV,X,loc satisfies the triangle inequality. We call dQV,X,loc a pseudodistance
since, for example, the paths s �→ Gs and s �→ Hs , s ∈ [0,+∞), may differ on the
intervals where the martingale X is constant, but still dQV,X,loc (G,H) = 0, it may
also attain value +∞.

Next, for two generalized processes Y and Z from the space R we define

d∞,X,loc (Y, Z) :=
∞∑

N=1

2−NE (Y − Z)∗·∧σ(X,N) .

Now we will deal with relationship between d∞,X,loc (G · X,H · X) and
dQV,X,loc (G,H) when G and H are step processes. We have

∫ σ(X,N)

0
(Gs − Hs)

2 d [X]s = [
(G − H) · X·∧σ(X,N)

]
and, by Remark 2.13, (G − H) · X·∧σ(X,N) is a martingale. Now, applying the BDG
inequality we obtain the estimate

E

(∫ σ(X,N)

0
(Gs − Hs)

2 d [X]s

)1/2

= E
[
(G − H) · X·∧σ(X,N)

]1/2

≥ C−1
1 E (G · X − H · X)∗·∧σ(X,N) ,

which yields

d∞,X,loc (G · X,H · X) ≤ C1 · dQV,X,loc (G,H) . (22)

For any martingale X the function d∞,X,loc also satisfies the triangle inequality,
thus is a pseudometric (possibly attaining also value +∞) on the space R. It is easy
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to see that d∞,X,loc (Y, Z) = 0 does not imply that Y and Z are equal, but for our
purposes we should not distinct such processes. Therefore, we define Y and Z to be
equivalent if d∞,X,loc (Y, Z) = 0. This way we obtain the space G of equivalence
classes of generalized processes from the space R with respect to the pseudometric
d∞,X,loc. For two elements Y and Z of G we define their distance (denoted also by
d∞,X,loc) by

d∞,X,loc (Y,Z) := d∞,X,loc (Y, Z) ,

where Y is any element (representative) of class Y and Z is any element (representa-
tive) of class Z . The triangle inequality implies that d∞,X,loc (Y,Z) does not depend
on the choice of representatives Y and Z.

Proposition 5.3. d∞,X,loc is a metric on the space G (possibly attaining also value
+∞), and G equipped with this metric is complete. If Y is a generalized process,
Yn ∈ R, n ∈ N, and

∑+∞
n=1 d∞,X,loc (Y n, Y ) < +∞ then the generalized processes

Yn converge to Y locally uniformly w.i.e. Moreover, if Yn, n ∈ N, are processes
then the class Y , which is the limit of the classes Yn containing Yn resp., contains a
process, thus as a representative Y of Y we can take a process.

Proof. We start with the proof of the second statement of the theorem. Let B ⊆
[0,+∞) × � be the set where all the processes Yn, n ∈ N, are real, but the se-
quence of generalized processes Yn does not converge locally uniformly to Y , that is,
(Y n(ω) − Y(ω))∗t � 0. Next, for (t, ω) ∈ [0,+∞) × �, let N(t, ω) be the smallest
element of N ∪ {+∞} such that N(t, ω) ≥ 1 + sup0≤s≤t |Xs(ω)|. N(t, ω) is finite
w.i.e. (for example, it is finite for all pairs (t, ω) such that the trajectory [0, t] � s �→
Xs(ω) is real and continuous) and {(t, ω) ∈ [0,+∞) × � : N(t, ω) = +∞} is in-
stantly blockable. For (t, ω) ∈ B̃ = B ∩ {(t, ω) ∈ [0,+∞) × � : N(t, ω) < +∞}
and N ≥ N(t, ω) one has

+∞∑
n=1

(
Yn(ω) − Y(ω)

)∗
σ(X(ω),N)

≥
+∞∑
n=1

(
Yn(ω) − Y(ω)

)∗
t

= +∞.

As a result, for any ε > 0, we get

ε

+∞∑
n=1

+∞∑
N=1

2−N
(
Yn(ω) − Y(ω)

)∗
σ(X(ω),N)

= +∞.

On the other hand, since

E

+∞∑
n=1

+∞∑
N=1

2−N
(
Yn(ω) − Y(ω)

)∗
·∧σ(X(ω),N)

≤
+∞∑
n=1

E

+∞∑
N=1

2−N
(
Yn(ω) − Y(ω)

)∗
·∧σ(X(ω),N)

=
+∞∑
n=1

d∞,X,loc

(
Yn, Y

) =: M < +∞,
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we know that there exists a nonnegative supermartingale which starts from a capital
no greater than εM and attains value +∞ on B̃. Since ε is arbitrary positive real, B̃ is
instantly blockable, and the same applies to B since B ⊆ B̃∪{(t, ω) ∈ [0,+∞)×� :
N(t, ω) = +∞}.

The proof that d∞,X,loc defines a metric is omitted. To prove the completeness, let
(Yn), Yn ∈ G for n ∈ N, be a Cauchy sequence with respect to d∞,X,loc. Let (dk) be
any sequence of positive reals such that

∑+∞
k=1 dk < +∞. There exists a subsequence

(Ynk ) such that for n ≥ nk , n, k = 1, 2, . . ., one has d∞,X,loc (Yn,Ynk ) ≤ dk . Let
Yn ∈ Yn, n ∈ N, be a representative of the class Yn and let Y := lim infl→+∞ Ynl

on the set where all the processes Yn, n ∈ N, are real. We have

d∞,X,loc

(
Yn, Y

) ≤ d∞,X,loc

(
Yn, Y nk

) +
+∞∑
l=k

d∞,X,loc

(
Ynl , Y nl+1

)

≤ dk +
+∞∑
l=k

dl.

Thus, from the already proven second statement of the thesis we have that Ynk con-
verge to Y locally uniformly w.i.e. and, as a result, Y ∈ R and the classes Yn converge
to the class Y containing Y .

The fact that if Yn are processes then as a representative Y of Y we can take also
a process, follows from the proof of completeness, more precisely, from the fact that
as the limit Y one may take lim inf of some subsequence of (Y n).

What will be important to us is that if the filtration F is right-continuous then for
any real process F with càdlàg trajectories, which is globally bounded
(sup(t,ω)∈[0,+∞)×� |Ft (ω)| < +∞), we are able to construct a sequence of simple

trading strategies F̃ m = (
0,
(
τm
n

)
n
,
(
f m

n

)
n

)
, m ∈ N, such that the sequence (Fm) of

step processes

Fm
t :=

+∞∑
n=1

f m
n−11[τm

n−1,τ
m
n

)(t)
converges in dQV,X,loc to F for all X, limm→+∞ dQV,X,loc(F

m, F ) = 0. For exam-
ple, we can define τm

0 := 0,

τm
n := inf

{
t > τm

n−1 : |Ft − Fτm
n−1

| ≥ 2−m
}

, n = 1, 2, . . . ,

and f m
n = Fτm

n
. For any t ∈ [0,+∞) we naturally have |Ft − Fm

t | ≤ 2−m. The
assumption that the process F is càdlàg and the filtration F is right-continuous guar-
antees that τm

n are indeed stopping times.
For a simple trading strategy F̃ and its corresponding step process F , instead of

F̃ · X we will often write F · X.
Now, using Itô’s isometry we estimate

dQV,X,loc(F
m, F ) =

∞∑
N=1

2−NE

(∫ σ(N)

0

(
Fm

s − Fs

)2 d [X]s

)1/2
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≤
∞∑

N=1

2−NE2−m [X]1/2
σ(N)

≤ 2−m

∞∑
N=1

2−NE

(
1

2
[X]σ(N) + 1

2

)

≤ 2−m
∞∑

N=1

2−N

(
1

2
4N2 + 1

2

)
= 12.5 · 2−m. (23)

Using (22), (23) and the fact that dQV,X,loc(F
m, Fn) ≤ dQV,X,loc(F

m, F ) +
dQV,X,loc(F

n, F ) we obtain that the sequence of classes, whose sequence of repre-
sentatives is (Fm · X), is a Cauchy sequence in the space of equivalence classes of
generalized processes G equipped with the metric d∞,X,loc.

Now, using Proposition 5.3 we are able to extend the definition of the integral F ·X
at least for any adapted, globally bounded, real process F with càdlàg trajectories.

Definition 5.4. For any real process F , for which there exists a sequence of step
processes (Fm) such that limm→+∞ dQV,X,loc(F

m, F ) = 0 we define the model-
free integral F · X as any process which is a representative of the limit of the (classes
containing) integrals Fm·X, m ∈ N, in the space G equipped with the metric d∞,X,loc.

If the filtration F is right-continuous then for any globally bounded real process
F with càdlàg trajectories by the model-free integral F · X we will mean any process
which is a representative of the limit of the (classes containing) integrals Fm · X,
m ∈ N, where Fm

t := ∑+∞
n=1 f m

n−11[τm
n−1,τ

m
n

)(t) and τm
0 := 0,

τm
n := inf

{
t > τm

n−1 : |Ft − Fτm
n−1

| ≥ 2−m
}

, n = 1, 2, . . . ,

and f m
n = Fτm

n
, in the above mentioned space.

Since Fm · X are martingales, then by Proposition 5.3 we get that the integral
F ·X is also a martingale (we may always take a subsequence (Fmk · X)k of (Fm · X)

such that
∑+∞

k=1 dQV,X,loc (Fmk , F ) < +∞). Therefore, it is in place to calculate its
quadratic variation or more generally, the quadratic covariation of two integrals F ·X
and G · Y .

Fact 5.5. Let the filtration F be right-continuous, G and H be globally bounded
real processes with càdlàg trajectories and X, Y be martingales. Then the quadratic
covariation of the martingales G · X and H · Y equals

[G · X,H · Y ]t =
∫ t

0
(Gs · Hs) · d[X, Y ]s w.i.e.

(the integral
∫ t

0 (Gs · Hs)·d[X, Y ]s is understood as the (pathwise) Lebesque–Stieltjes
integral).

Proof. Let us consider m ∈ N and let Gm and Hm be step processes such that |Gt −
Gm

t | ≤ 2−m and |Ht − Hm
t | ≤ 2−m.

Next, by polarization formula of Subsection 4.1.1 we know that

1

4
(G · X + H · Y)2 − 1

4
(G · X − H · Y)2 − [G · X,H · Y ]
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= (G · X) (H · Y) − [G · X,H · Y ]

is a martingale, and the same applies to the process (Gm · X) (Hm · Y) − [Gm · X,

Hm · Y ]. By Fact 5.1 we have
[
Gm · X,Hm · Y

] = ∫ ·
0 Gm

s · Hm
s · d [X, Y ]s w.i.e.

By Proposition 5.3 we get that Gm ·X and Hm ·Y tend locally uniformly w.i.e. to
G·X and H ·Y respectively, as m → +∞, and it is easy to see that [Gm ·X,Hm ·Y ] =∫ ·

0 Gm
s · Hm

s · d[X, Y ]s tends to
∫ ·

0 Gs · Hs · d [X, Y ]s locally uniformly w.i.e. as
m → +∞. Thus, the differences

(G · X) (H · Y)− [G · X,H · Y ]−
((

Gm · X
) (

Hm · Y
) −

∫ ·

0
Gm

s · Hm
s · d [X, Y ]s

)
tend locally uniformly w.i.e. as m → +∞ to a martingale which is equal to

Zt(ω) =
∫ t

0
Gs(ω) · Hs(ω) · d [X, Y ]s (ω) − [G · X,H · Y ]t (ω).

This martingale has finite total variation and continuous trajectories on any interval
[0, t] w.i.e. and, by standard arguments, its quadratic variation [Z] vanishes w.i.e.
Thus, by Fact 4.6, Z = 0 w.i.e. which is equivalent with the fact that

[G · X,H · Y ] =
∫ ·

0
Gs · Hs · d [X, Y ]s w.i.e.

The assumption in the second part of Definition 5.4 that the càdlàg process F is
globally bounded seems to be too restrictive, therefore now we extend the definition of
F ·X by localization. For N > 0 let σ (F,N) be defined similarly as σ(X,N) defined
by (3). Let us consider the stopped processes FN

t (ω) := Ft∧σ(F,N)(ω), N ∈ N. Using
Fact 5.5 for any t ≥ 0 we get[(

FN+1 · X − FN · X
)

·∧σ(F,N)

]
t

=
[(

FN+1 − FN
)

· X
]
t∧σ(F,N)

=
∫ t∧σ(F,N)

0

(
FN+1

s − FN
s

)2
d[X]s = 0

since FN+1
s = FN

s for s ∈ [0, t ∧ σ (F,N)] ⊆ [0, σ (F,N)]. Therefore, by Fact 4.6,
both integrals FN+1 · X and FN · X coincide w.i.e. for t ∈ [0, σ (F,N)] and we can
define the integral F · X as

F · X = lim inf
N→+∞ FN · X.

6 Quadratic variation expressed via limit of truncated variations

In this section, for any martingale X we present another sequence of processes which
tend locally uniformly w.i.e. to the quadratic variation of X. To define these processes
we introduce truncated variation of a càdlàg function x : [0,+∞) → R. The trun-
cated variation of f over the interval [a, b] ⊂ [0,+∞) (−∞ < a < b < +∞) with
the truncation parameter c > 0 is defined as

TVc(x, [a, b]) := sup
n

sup
a≤t0<t1<···<tn≤b

n∑
i=1

max {|x (ti) − x (ti−1)| − c, 0} .
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Notice that TVc(x, [a, b]) does not depend on any partition, since it is the supremum
over all partitions of the interval [a, b].
Proposition 6.1. Let X be a martingale and (cn) a sequence of positive reals tending
to 0. The processes t �→ cn · TVcn(X, [0, t]) tend locally uniformly w.i.e. to [X] as
n → +∞.

Sketch of a proof. First we will prove the thesis for the sequence of processes t �→
m−2 ·TVm−2

(X, [0, t]), m = 1, 2, . . . . Let M be a positive real and σ(M) = σ(X,M)

be defined by (3). Let τm,k =
(
τ

m,k
n

)
n

:= τ(X,m−2, k · m−3), m ∈ N \ {0, 1},
k ∈ {0, 1, 2, . . . , m − 1}, be the Lebesgue sequence of stopping times for X and the

grid m−2 ·Z+k ·m−3. We define τm,k ∧σ(M) as the sequence
(
τ

m,k
n ∧ σ(M)

)
n
. For

m ∈ N \ {0}, k ∈ {0, 1, 2, . . . , m − 1}, let υm,k be the nondecreasing rearrangement
of the stopping times from both sequences τm,k and τm,0 with redundancies deleted.

υm,k =
(
υ

m,k
l

)
l

is a proper sequence of stopping times and we define υm,k ∧ σ(M)

as the sequence
(
υ

m,k
l ∧ σ(M)

)
l
. Similarly as in the proof of Fact 4.3 (inequalities

(15) and (16)), we infer that

E

(
[X]τ

m,k∧σ(M) − [X]υ
m,k∧σ(M)

)∗ ≤ 6m−2
(

1 + 4M2
)

+ 2m−4

and
E

(
[X]τ

m,0∧σ(M) − [X]υ
m,k∧σ(M)

)∗ ≤ 6m−2
(

1 + 4M2
)

+ 2m−4,

thus

E

(
[X]τ

m,k∧σ(M) − [X]τ
m,0∧σ(M)

)∗ ≤ 12m−2
(

1 + 4M2
)

+ 4m−4. (24)

Summing both sides of (24) over k ∈ {0, 1, 2, . . . , m − 1} and dividing by m we get
that

E

(
1

m

m−1∑
k=0

[X]τ
m,k∧σ(M) − [X]τ

m,0∧σ(M)

)∗
≤ 12m−2

(
1 + 4M2

)
+ 4m−4

which yields

+∞∑
m=1

E

(
1

m

m−1∑
k=0

[X]τ
m,k∧σ(M) − [X]τ

m,0∧σ(M)

)∗
< +∞. (25)

Notice that on the set where(
1

m

m−1∑
k=0

[X]τ
m,k∧σ(M) − [X]τ

m,0∧σ(M)

)∗
�m→+∞ 0

one has
+∞∑
m=1

(
1

m

m−1∑
k=0

[X]τ
m,k∧σ(M) − [X]τ

m,0∧σ(M)

)∗
= +∞.
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This and (25) imply that 1
m

∑m−1
k=0 [X]τ

m,k
tends locally uniformly and w.i.e. to the

same limit as [X]τ
m,0

, that is, to [X].
The next ingredient of the proof which we need is the identity

TVm−2
(X, [0, σ (M) ∧ t]) =

∫
R

nz,m−2
(X, [0, σ (M) ∧ t])dz, (26)

where for a càdlàg function x : [0,+∞) → R and real numbers 0 ≤ a < b <

+∞, c > 0, nz,c(x, [a, b]) denotes the number of crossings by x the value interval
[z − c/2, z + c/2] on the interval [a, b]. For precise definitions of nz,c(x, [a, b]), see
[5, Subsect. 2.4] and for the proof of (26), see [4].

Next, let us notice that for t > 0, m ∈ N \ {0, 1} and k ∈ {0, 1, 2, . . . , m − 1}

[X]τ
m,k∧σ(M)

t =
∑
p∈Z

m−4nm−2·p+m−2/2+k·m−3,m−2
(X, [0, t ∧ σ(M)]), (27)

since X has continuous trajectories and the Lebesgue stopping times are hitting times
of consecutive levels of the grid m−2 · Z + k · m−3.

For p ∈ Z, m ∈ N \ {0, 1, 2}, k ∈ {0, 1, 2, . . . , m − 2} and

z ∈
[

p

(m − 1)2 + k

(m − 1)3 ,
p

(m − 1)2 + k + 1

(m − 1)3

)
(28)

we have

p

(m − 1)2 + k

(m − 1)3 + 1

m2 ≤ z + 1

m2 <
p

(m − 1)2 + k + 1

(m − 1)3 + 1

m2

<
p + 1

(m − 1)2 + k

(m − 1)3 ,

which follows from the estimate

p + 1

(m − 1)2 + k

(m − 1)3 − p

(m − 1)2 − k + 1

(m − 1)3 − 1

m2

= 1

(m − 1)2 − 1

(m − 1)3 − 1

m2 = m2 − 3m + 1

m2(m − 1)3 > 0,

valid for m ≥ 3. Thus, each crossing of the interval[
p

(m − 1)2 + k

(m − 1)3 ,
p + 1

(m − 1)2 + k

(m − 1)3

]

implies crossing of the interval
[
z, z + m−2

]
, whenever z satisfies (28). This implies

that∫ p

(m−1)2
+ k+1

(m−1)3

p

(m−1)2
+ k

(m−1)3

nz+m−2/2,m−2
(X, [0, t ∧ σ(M)])dz

≤
∫ p

(m−1)2
+ k+1

(m−1)3

p

(m−1)2
+ k

(m−1)3

np(m−1)−2+k(m−1)−3+(m−1)−2/2,(m−1)−2
(X, [0, t ∧ σ(M)])dz
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= 1

(m − 1)3 np(m−1)−2+k(m−1)−3+(m−1)−2/2,(m−1)−2
(X, [0, t ∧ σ(M)]).

Now, summing over p ∈ Z and k ∈ {0, 1, 2, . . . , m − 2}, and using (27) (with m

replaced by m − 1) we get

TVm−2
(X, [0, σ (M) ∧ t])

=
∫
R

nz+m−2/2,m−2
(X, [0, t ∧ σ(M)])dz

=
∑
p∈Z

m−2∑
k=0

∫ p

(m−1)2
+ k+1

(m−1)3

p

(m−1)2
+ k

(m−1)3

nz+m−2/2,m−2
(X, [0, t ∧ σ(M)])dz

≤ 1

(m − 1)3

m−2∑
k=0

∑
p∈Z

np(m−1)−2+k(m−1)−3+(m−1)−2/2,(m−1)−2
(X, [0, t ∧ σ(M)])

= (m − 1)

m−2∑
k=0

[X]τ
m−1,k∧σ(M)

t . (29)

On the other hand, for p ∈ Z, m ∈ N \ {0}, k ∈ {0, 1, 2, . . . , m} and

z ∈
(

p

(m + 1)2 + k

(m + 1)3 ,
p

(m + 1)2 + k + 1

(m + 1)3

]
(30)

we have

p + 1

(m + 1)2 + k + 1

(m + 1)3 <
p

(m + 1)2 + k

(m + 1)3 + 1

m2

< z + 1

m2 <
p

(m + 1)2 + k + 1

(m + 1)3 + 1

m2 ,

since

p

(m + 1)2 + k

(m + 1)3 + 1

m2 − p + 1

(m + 1)2 − k + 1

(m + 1)3

= 1

m2 − 1

(m + 1)2 − 1

(m + 1)3 = m2 + 3m + 1

m2(m + 1)3 > 0.

Thus, each crossing of the interval
[
z, z + m−2

]
implies a crossing of the interval[

p

(m − 1)2 + k + 1

(m − 1)3 ,
p + 1

(m − 1)2 + k + 1

(m − 1)3

]

whenever z satisfies (30). This implies analogous inequality to (29), but in opposite
direction:

TVm−2
(X, [0, σ (M) ∧ t]) ≥ (m + 1)

m∑
k=0

[X]τ
m+1,k∧σ(M)

t . (31)
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(29) and (31) give bounds

m + 1

m2

m∑
k=0

[X]τ
m+1,k∧σ(M)

t ≤ 1

m2 TVm−2
(X, [0, σ (M) ∧ t])

≤ m − 1

m2

m∑
k=0

[X]τ
m−1,k∧σ(M)

t ,

which imply that m−2TVm−2
(X, [0, ·]) tends locally uniformly and w.i.e. to the same

limit as 1
m

∑m
k=0 [X]τ

m,k
, that is, to [X].

Finally, the convergence of cn ·TVcn(X, [0, ·]) for any sequence cn → 0+ follows
from the estimates⌊

1/
√

cn

⌋2

�1/cn� + 1

1⌊
1/

√
cn

⌋2 · TV1/
⌊

1/
√

cn

⌋2
(X, [0, t])

≤ cn · TVcn(X, [0, t]) ≤
⌈

1/
√

cn

⌉2

�1/cn� − 1

1⌈
1/

√
cn

⌉2 · TV1/
⌈

1/
√

cn

⌉2
(X, [0, t])

valid for cn < 1, which stem directly from inequalities

1

�1/cn� + 1
≤ cn ≤ 1

�1/cn� − 1
and

1⌈
1/

√
cn

⌉2 ≤ cn ≤ 1⌊
1/

√
cn

⌋2

(valid for cn < 1), and the fact that the function (0,+∞) � c �→ TVc(X, [0, t]) is
nonincreasing.
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