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Abstract We consider the Berkson model of logistic regression with Gaussian and homosce-
dastic error in regressor. The measurement error variance can be either known or unknown.
We deal with both functional and structural cases. Sufficient conditions for identifiability of
regression coefficients are presented.

Conditions for identifiability of the model are studied. In the case where the error variance
is known, the regression parameters are identifiable if the distribution of the observed regres-
sor is not concentrated at a single point. In the case where the error variance is not known,
the regression parameters are identifiable if the distribution of the observed regressor is not
concentrated at three (or less) points.

The key analytic tools are relations between the smoothed logistic distribution function
and its derivatives.

Keywords Logistic regression, binary regression, errors in variables, Berkson model,
regression calibration model

2010 MSC 62J12

1 Introduction

Statistical model. Consider logistic regression with Berkson-type error in the ex-
planatory variable. One trial is distributed as follows. Xobs

n is the observed (or as-
signed) surrogate regressor. The true regressor is Xn = Xobs

n + Un, where the error
Un ∼ N(0, τ 2) is independent of Xobs

n . The response Yn is a binary random variable
and attains either 0 or 1 with

P
(
Yn=1

∣∣ Xobs
n ,Xn

) = exp(β0 + β1Xn)

1 + exp(β0 + β1Xn)
.
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We consider both functional model and structural model. In the functional one,
Xobs

n are nonrandom variables, and in the structural one, Xobs
n are i.i.d., and therefore

in the latter model, (Xobs
n ,Xn, Yn) are i.i.d. random triples.

The couples (Xobs
n , Yn), n = 1, . . . , N , are observed. Vector �β = (β0, β1)

� is a
parameter of interest.

The error variance τ 2 can be either known or unknown, and we consider both
cases. The conditions for identifiability of the model (or of the parameter �β) are pre-
sented.

Overview. Berkson models of logistic regression and probit regression were set up
in Burr [1]. For probit regression, it is shown that the introduction of Berkson-type
error is equivalent to augmentation of regression parameters. As a consequence, the
Berkson model of probit regression is identifiable if τ 2 is known and is not identifiable
if τ 2 is not known.

The identifiability of the classical model was studied by Küchenhoff [3]. He as-
sumes that both the regressor and measurement error are normally distributed. Then
univariate logistic regression is identifiable (here τ 2 can be unknown), and multiple
logistic regression is not identifiable. Our results can be proved similarly to [3] if we
assume that the distribution of the surrogate regressor Xobs has an unbounded support.

For classification of errors-in-variables regression models and various estimation
methods, see the monograph by Carroll et al. [2].

Identifiability of the statistical model can be used in the proof of consistency of the
estimator. For known τ 2, the strong consistency of the maximum likelihood estimator
is obtained by Shklyar [4]. But if τ 2 is not known, the maximum likelihood estimator
seems to be unstable (see discussion in [2] or [3]).

2 Convolution of logistic function with normal density

Consider the function

L0
(
x, σ 2) = E

exp(x − ξ)

1 + exp(x − ξ)
, ξ ∼ N

(
0, σ 2), x ∈ R, σ 2 ≥ 0, (1)

that is, L0(x, 0) = ex/(1 + ex) and

L0
(
x, σ 2) = 1√

2πσ

∫ ∞

−∞
exp(x − t)

1 + exp(x − t)
e−t2/(2σ 2) dt for σ 2 > 0.

Denote the derivatives w.r.t. x

Lk

(
x, σ 2) = ∂k

∂xk
L0

(
x, σ 2). (2)

Differentiation of Lk(x, σ 2) with respect to the second argument is described in
Appendix A.

The distribution of Yi given Xobs
i is

P
[
Yi = 1

∣∣ Xobs
i

] = E
[
P

[
Yi = 1

∣∣ Xobs
i , Xi

] ∣∣ Xobs
i

]
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= E
[

exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)

∣∣∣∣ Xobs
i

]
= L

(
β0 + β1X

obs
i , β2

1τ 2)
(3)

since [β0 + β1Xi | Xobs
i ] ∼ N(β0 + β1X

obs
i , β2

1τ 2).

3 Identifiability when τ 2 is known

Theorem 1. If in the functional model not all Xobs are equal, then the model is
identifiable.

Proof. Suppose that for two values of parameters �β(1) = (β
(1)
0 , β

(1)
1 ) and �β(2) =

(β
(2)
0 , β

(2)
1 ), �β(1) 	= �β(2), the distributions of observations are equal. Then for all

i = 1, 2, . . . , N ,

P �β(1) (Yi = 1) = P �β(2) (Yi = 1),

L0
(
β

(1)
0 + β

(1)
1 Xobs

i ,
(
β

(1)
1

)2
τ 2) = L0

(
β

(2)
0 + β

(2)
1 Xobs

i ,
(
β

(2)
1

)2
τ 2).

However, by Lemma 4.1 from [4] the equation

L0
(
β

(1)
0 + β

(1)
1 x,

(
β

(1)
1

)2
τ 2) = L0

(
β

(2)
0 + β

(2)
1 x,

(
β

(2)
1

)2
τ 2)

has no more than one solution x. Hence, all Xobs
i are equal.

By definition the degenerate distribution is the distribution concentrated at a sin-
gle point. For the next theorem, see the proof of Theorem 5.1 in [4].

Theorem 2 ([4]). If in the structural model the distribution of Xobs
1 is not degenerate,

then the parameter �β is identifiable.

4 Identifiability when τ 2 is unknown

For fixed σ 2, the function L0(x, σ 2) is a bijection R → (0, 1). Hence, for fixed σ 2
1

and σ 2
2 , the relation

L0
(
y, σ 2

1

) = L0
(
x, σ 2

2

)
(4)

sets the bijection R → R; see Fig. 1.

Lemma 3. For fixed σ 2
1 ≥ 0 and σ 2

2 ≥ 0, the sign of the second derivative of the
implicit function (4) is

sign

(
d2y

dx2

)
= sign

(
σ 2

2 − σ 2
1

)
sign(x).

Proof. Differentiating (4), we get

L1
(
y, σ 2

1

)
dy = L1

(
x, σ 2

2

)
dx;
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Fig. 1. The plot to equation L0(y, σ 2
1 ) = L0(x, σ 2

2 ) for σ 2
1 < σ 2

2

dy

dx
= L1(x, σ 2

2 )

L1(y, σ 2
1 )

.

Then

d2y

dx2
= L2(x, σ 2

2 )L1(y, σ 2
1 ) − L1(x, σ 2

2 )L2(y, σ 2
1 )

dy
dx

L1(y, σ 2
1 )2

= L2(x, σ 2
2 )L1(y, σ 2

1 )2 − L1(x, σ 2
2 )2L2(y, σ 2

1 )

L1(y, σ 2
1 )3

=
(

L2(x, σ 2
2 )

L1(x, σ 2
2 )2

− L2(y, σ 2
1 )

L1(y, σ 2
1 )2

)
· L1(x, σ 2

2 )2

L1(y, σ 2
1 )

.

Thus,

sign

(
d2y

dx2

)
= sign

(
L2(x, σ 2

2 )

L1(x, σ 2
2 )2

− L2(y, σ 2
1 )

L1(y, σ 2
1 )2

)
. (5)

Denote by μ(z, σ 2) the solution to the equation L0(μ, σ 2) = z. Note that as
L0(x, σ 2) is the cdf of a symmetric distribution, sign(L0(x, σ 2) − 0.5) = sign(x).
Therefore, sign(μ(z, σ 2)) = sign(z − 0.5). Find the derivative

d

dv

(
L2(μ(z, v), v)

L1(μ(z, v), v)2

)

for fixed z. By the implicit function theorem,

dμ(z, v)

dv
= − L2(μ(z, v), v)

2L1(μ(z, v), v)
;

also,

∂

∂x

(
L2(x, v)

L1(x, v)2

)
= L3(x, v)L1(x, v) − 2L2(x, v)2

L1(x, v)3
,

∂

∂v

(
L2(x, v)

L1(x, v)2

)
= L4(x, v)L1(x, v) − 2L2(x, v)L3(x, v)

2L1(x, v)3
.
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Then

d

dv

(
L2(μ(z, v), v)

L1(μ(z, v), v)2

)
= − L2

2L1
· L3L1 − 2L2

2

L3
1

+ L4L1 − 2L2L3

2L3
1

= L4L
2
1 − 3L3L2L1 + 2L3

2

2L4
1

,

where Lk are evaluated at the point (μ(z, v), v). By Lemma 10,

sign

(
d

dv

(
L2(μ(z, v), v)

L1(μ(z, v), v)2

))
= sign

(
μ(z, v)

) = sign(z − 0.5).

The function v �→ L2(μ(z,v),v)

L1(μ(z,v),v)2 is monotone (it is increasing for z > 0.5 and
decreasing for z < 0.5). For x and y satisfying (4),

x = μ
(
z, σ 2

2

)
and y = μ

(
z, σ 2

1

)

with z = L0(y, σ 2
1 ) = L0(x, σ 2

2 ); note that sign(z − 0.5) = sign(x). Then

sign

(
L2(x, σ 2

2 )

L1(x, σ 2
2 )2

− L2(y, σ 2
1 )

L1(y, σ 2
1 )2

)
= sign

(
σ 2

2 − σ 2
1

)
sign(x),

and with (5), we can obtain the desired equality

sign

(
d2y

dx2

)
= sign

(
σ 2

2 − σ 2
1

)
sign(x).

Lemma 4. The equation

L0
(
β

(1)
0 + β

(1)
1 x, σ 2

1

) = L0
(
β

(2)
0 + β

(2)
1 x, σ 2

2

)
(6)

has no more than three solutions, unless either

�β(1) = �β(2) and σ 2
1 = σ 2

2 (7)

or
β

(1)
1 = β

(2)
1 = 0 and L0

(
β

(1)
0 , σ 2

1

) = L0
(
β

(2)
0 , σ 2

2

)
. (8)

In exceptional cases (7) and (8), equation (6) is an identity.

Proof. The proof has the following idea: if a twice differentiable function y(x) satis-
fies (4), then the plot of the function either is a straight line (if σ 2

1 = σ 2
2 ) or intersects

any straight line at no more than three points.
Consider four cases.
Case 1. σ 2

1 = σ 2
2 . Since the function L0(z, σ

2) is strictly increasing in z, Eq. (6)
is equivalent to

β
(1)
0 + β

(1)
1 x = β

(2)
0 + β

(2)
1 x.
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Equation (6) has only one solution if β
(1)
1 	= β

(2)
1 ; it is an identity if �β(1) = �β(2), and

it has no solutions if β
(1)
1 = β

(2)
1 but β

(1)
0 	= β

(2)
0 .

Case 2. β
(2)
1 = 0 and β

(1)
1 	= 0. For any fixed σ 2, the function z �→ L0(z, σ

2) is
a bijection R → (0, 1). Denote the inverse function μ(Z, σ 2): L0(z, σ

2) = Z if and
only if z = μ(Z, σ 2). Equation (6) has a unique solution

x = μ(L0(β
(2)
0 , σ 2

2 ), σ 2
1 ) − β

(1)
0

β
(1)
1

.

Case 3. β
(2)
1 = β

(1)
1 = 0. Neither side of (6) depends on x. Equation (6) becomes

L0(β
(1)
0 , σ 2

1 ) = L0(β
(2)
0 , σ 2

2 ). Equation (6) either holds for all x or does not hold for
any x.

Case 4. σ 2
1 	= σ 2

2 and β
(2)
1 	= 0. Make a linear variable substitution: denote z2 =

β
(2)
0 + β

(2)
1 x. Then Eq. (6) becomes

L0

(
β

(1)
0 + β

(1)
1

β
(2)
1

· (
z2 − β

(2)
0

)
, σ 2

1

)
= L0

(
z2, σ

2
2

)
. (9)

Define the function z1(z2) from the equation

L0
(
z1(z2), σ

2
1

) = L0
(
z2, σ

2
2

)
.

The function z1(z2) : R → R is implicitly defined by Eq. (4): there the equality holds
if and only if y = z1(x). Hence, the function z1(z2) satisfies Lemma 3. Equation (9)
is equivalent to

z1(z2) − β
(1)
0 − β

(1)
1

β
(2)
1

· (
z2 − β

(2)
0

) = 0. (10)

By Lemma 3,

sign

(
d2

dz2
2

(
z1(z2) − β

(1)
0 − β

(1)
1

β
(2)
1

· (
z2 − β

(2)
0

)))

= sign

(
d2 z1(z2)

dz2
2

)
= sign

(
σ 2

2 − σ 2
1

)
sign(z2).

Then the derivative of the left-hand size of (10)

d

dz2

(
z1(z2) − β

(1)
0 − β

(1)
1

β
(2)
1

· (
z2 − β

(2)
0

))
(11)

is strictly monotone on both intervals (−∞, 0] and [0, +∞), and hence (11) attains
0 no more than at two points. Then the left-hand side of (10) has no more than three
intervals of monotonicity, and Eq. (10) has no more than three solutions. Equation (6)
has the same number of solutions.
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Theorem 5. If in the functional model there are four different Xobs, then the param-
eters �β and β2

1τ 2 are identifiable.

Proof. Suppose that there are two sets of parameters ( �β(1), (τ (1))2) and ( �β(2), (τ (2))2)

that for a given sample of the surrogate, the regressors {X0n, n = 1, . . . , N} provide
the same distribution of Yn, n=1, . . . , N . Then for all n = 1, . . . , N ,

P �β(1),(τ (1))2(Yn = 1) = P �β(2),(τ (2))2(Yn = 1);
L0

(
β

(1)
0 + β

(1)
1 Xobs

n ,
(
β

(1)
1

)2(
τ (1)

)2) = L0
(
β

(2)
0 + β

(2)
1 Xobs

n ,
(
β

(2)
1

)2(
τ (2)

)2)
.

The equation

L0
(
β

(1)
0 + β

(1)
1 x,

(
β

(1)
1

)2(
τ (1)

)2) = L0
(
β

(2)
0 + β

(2)
1 x,

(
β

(2)
1

)2(
τ (2)

)2)

has at least four solutions. Then by Lemma 4 either

�β(1) = �β(2) and
(
β

(1)
1

)2(
τ (1)

)2 = (
β

(2)
1

)2(
τ (2)

)2
,

or

β
(1)
1 = β

(2)
2 = 0 and L0

(
β

(1)
0 ,

(
β

(1)
1

)2(
τ (1)

)2) = L0
(
β

(2)
0 ,

(
β

(2)
1

)2(
τ (2)

)2)
. (12)

In the latter alternative,

(
β

(1)
1

)2(
τ (1)

)2 = (
β

(2)
1

)2(
τ (2)

)2 = 0 and β
(1)
0 = β

(2)
0

since L0(b0, 0) = 1
1+e−b0

is a strictly increasing function in b0.

Theorem 6. If in the structural model the distribution of X0 is not concentrated at
three (or less) points, then the parameters �β and β2

1τ 2 are identifiable.

Proof. Suppose that there are two sets of parameters ( �β(1), (τ (1))2) and ( �β(2), (τ (2))2)

for which the same bivariate distribution of (Xobs
1 , Y1) is obtained. The random vari-

able P[Y1 = 1 | Xobs
1 ] satisfies Eq. (3) almost surely for each set of parameters.

Hence, the equality

L0
(
β

(1)
0 + β

(1)
1 Xobs

1 ,
(
β

(1)
1

)2(
τ (1)

)2) = L0
(
β

(2)
0 + β

(2)
1 Xobs

1 ,
(
β

(2)
1

)2(
τ (2)

)2)

holds almost surely. The rest of the proof is the same as in Theorem 5.

A Differentiation of Lk(x, σ 2)

Consider the sum of two independent random variables ζ = λ + ξ , where λ has the
logistic distribution

P(λ ≤ x) = exp(x)

1 + exp(x)
, x ∈ R,

and ξ ∼ N(0, σ 2). We allow σ 2 = 0, and then ξ = 0 almost surely.



138 S. Shklyar

The function L0(x, σ 2) defined in (1) is the cdf of ζ , and the function L1(x, σ 2)

defined in (2) is the pdf of ζ .
The partial derivatives of Lk(x, v) are

∂

∂x
Lk(x, v) = Lk+1(x, v),

∂

∂v
Lk(x, v) = 1

2
Lk+2(x, v);

see the proof in [4, Section 2]. The functions Lk(x, v) are infinitely differentiable and
bounded on R × [0,+∞).

Since the distribution of ζ is symmetric,

Lk

(−x, σ 2) = (−1)k−1Lk

(
x, σ 2), k ≥ 1,

that is, L1(x, σ 2) and L3(x, σ 2) are even functions in x, and L2(x, σ 2) and L4(x, σ 2)

are odd functions in x.

B The key inequality

The next lemma is similar to Lemma 2.1 in [4]. Hence, the proof is brief; see [4] for
details.

Lemma 7. Let ξ and η be two independent random variables, where ξ ∼ N(0, 1).
Denote ζ = ξ + η and let pζ (z) be the pdf of ζ . Then

d3

dz3

(
ln pζ (z)

) = μ3[η | ζ=z],

where μ3[η | ζ=z] is the third conditional central moment,

μ3[η | ζ=z] = E
[(

η − E[η | ζ=z])3 ∣∣ ζ=z
]
.

Proof. We have

pζ (z) = E pξ (z − η) = 1√
2π

E e− 1
2 (z−η)2

.

Then

p′
ζ (z) = 1√

2π
E

[
(η − z)e− 1

2 (z−η)2]
,

d

dz

(
ln pζ (z)

) = p′
ζ (z)

pζ (z)
= E[(η − z)e− 1

2 (z−η)2 ]
E e− 1

2 (z−η)2
= E ηe− 1

2 (z−η)2

E e− 1
2 (z−η)2

− z,

d2

dz2

(
ln pζ (z)

) = E η2e− 1
2 (z−η)2

E e− 1
2 (z−η)2 − (E ηe− 1

2 (z−η)2
)2

(E e− 1
2 (z−η)2

)2
− 1,
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d3

dz3

(
ln pζ (z)

) = (
E e− 1

2 (z−η)2)−3

× (
E

[
η2(η − z)e− 1

2 (z−η)2](
E e− 1

2 (z−η)2)2

+ E η2e− 1
2 (z−η)2

E
[
(η − z)e− 1

2 (z−η)2]
E e− 1

2 (z−η)2

− 2 E
[
η(η − z)e− 1

2 (z−η)2]
E ηe− 1

2 (z−η)2
E e− 1

2 (z−η)2

− 2 E η2e− 1
2 (z−η)2

E e− 1
2 (z−η)2

E
[
(η − z)e− 1

2 (z−η)2]
+ 2

(
E ηe− 1

2 (z−η)2)2 E
[
(η − z)e− 1

2 (z−η)2])
= (

E e− 1
2 (z−η)2)−3 × (

E η3e− 1
2 (z−η)2(

E e− 1
2 (z−η)2)2

− 3 E η2e− 1
2 (z−η)2

E ηe− 1
2 (z−η)2

E e− 1
2 (z−η)2 + 2

(
E ηe− 1

2 (z−η)2)3)
.

(13)

If η has a pdf, the conditional pdf of η given ζ=z is equal to

pη|ζ=z(y) = pη(y)e− 1
2 (z−y)2

E e− 1
2 (z−η)2

;

otherwise, we can use the conditional density of η w.r.t. marginal density

d cdfη|ζ=z(y)

d cdfη(y)
= e− 1

2 (z−y)2

E e− 1
2 (z−η)2

.

Anyway, the conditional moments of η given ζ=z are equal to

E
[
ηk

∣∣ ζ=z
] = E ηke− 1

2 (z−η)2

E e− 1
2 (z−η)2

. (14)

From (13) and (14) it follows that

d3

dz3

(
ln pζ (z)

) = E
[
η3

∣∣ ζ=z
] − 3 E

[
η2

∣∣ ζ=z
]

E[η | ζ=z] + 2
(
E[η | ζ=z])3

= μ3[η | ζ=z].
Corollary 8. Let ξ and η be independent random variables such that ξ ∼ N(μ, σ 2).
Denote ζ = ξ + η, and denote the pdf of ζ by pζ (z). Then

d3

dz3

(
ln pζ (z)

) = 1

σ 6
μ3[η | ζ=z].

Lemma 9. Assume that the distribution of a random variable X satisfies the following
conditions:

1) X has a continuously differentiable density pX(x).

2) X is unimodal in the following sense: there exists a mode M ∈ R such that for
all x ∈ R, we have the equality sign(p′

X(x)) = sign(M − x).
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Fig. 2. To proof of Lemma 9, part 1). Sample pX(x) and definition of x1(z) and x2(z)

3) Whenever x1 < M < x2 and pX(x1) = pX(x2), then pX(x1) > −pX(x2).

4) E |X|3 < ∞.

Then μ3(X) := E(X − E X)3 > 0.

Proof. 1) E X > M . Denote by x1(z) and x2(z) the solutions to the equation
pX(x) = z (see Fig. 2):

x1(z) < M < x2(z) if 0 < z < max(pX);
x1(z) = M = x2(z) if z = max(pX);

pX

(
x1(z)

) = pX

(
x2(z)

) = z if 0 < z ≤ max(pX).

Represent the expectation as a double integral and change the order of integration:

E X = M +
∫ ∞

−∞
(x − M)pX(x) dx

= M +
∫∫

{(x,z) | 0≤z≤pX(x)}
(x − M) dx dz

= M +
∫ max(pX)

0

(∫ x2(z)

x1(z)

(x − M) dx

)
dz

= M +
∫ max(pX)

0

(x2(z) − M)2 − (M − x1(z))
2

2
dz. (15)

For all x2 > M , by the implicit function theorem,

d

dx2
x1

(
pX(x2)

) = p′
X(x2)

p′
X(x1(pX(x2)))

> −1

because pX(x1(pX(x2))) = pX(x2) implies p′
X(x1(pX(x2))) > −p′

X(x2) > 0. Note
that x1(pX(M)) = M . By the Lagrange theorem,

x1
(
pX(x2)

) = M + (x2 − M) · d

dx3
x1

(
pX(x3)

)∣∣∣
x3=M+(x2−M)θ

for some θ ∈ (0, 1);

x1
(
pX(x2)

)
> M − (x2 − M) for x2 > M;
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Fig. 3. To proof of Lemma 9, part 2)

x1(z) > M − (
x2(z) − M

)
for 0 < z < max(pX);

x2(z) − M > M − x1(z) > 0;
(x2(z) − M)2

2
>

(M − x1(z))
2

2
;

the last integrand in (15) is positive, and then (15) implies E X > M .
2) Consider the function

f (t) = pX(E X + t) − pX(E X − t),

which is odd and strictly decreasing on the interval [−(E X −M), E X −M]. There-
fore, f (t) attains 0 only once on this interval, that is, at the point 0 (see Fig. 3).

If t > E X − M (more generally, |t | > E X − M) and f (t) = 0, then f ′(t) =
p′

X(E X + t) + p′
X(E X − t) > 0 by condition 3) of Lemma 9. Therefore, f (t)

can attain 0 only once on (E X − M, +∞), and if it attains 0 (say, at a point t1 >

E X − M > 0), it is increasing in the neighborhood of t1.
Hence, there may be two cases of sign changing of f (t) (Fig. 3). Either

∃t1 > 0 ∀x∈R : sign
(
f (t)

) = sign(t) sign
(|t | − t1

)
, (16)

or
∀x∈R : sign

(
f (t)

) = − sign(t). (17)

3) We have

0 = E[X − E X] =
∫ ∞

−∞
(x − E X)pX(x) dx

=
∫ ∞

−∞
t pX(E X + t) dt
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=
∫ ∞

0
t pX(E X + t) dt +

∫ ∞

0
(−t) pX(E X − t) dt

=
∫ ∞

0
t f (t) dt, (18)

where f (t) is defined in the second part of the proof.
Note that the case (17) is impossible because otherwise the last integrand in (18)

would be negative and thus the integral could not be equal to 0.
4) Similarly to (18),

E(X − E X)3 =
∫ ∞

0
t3f (t) dt.

Subtract t2
1 times Eq. (18), where t1 comes from (16):

E(X − E X)3 =
∫ ∞

0
t
(
t2 − t2

1

)
f (t) dt.

The integrand is positive for t > 0, t 	= t1, and hence μ3[X] = E(X−E X)3 > 0.

Lemma 10. For all x ∈ R and σ 2 ≥ 0,

sign
(
L4

(
x, σ 2)L1

(
x, σ 2)2 − 3L3

(
x, σ 2)L2

(
x, σ 2)L1

(
x, σ 2) + 2L2

(
x, σ 2)3)

= sign(x).

Lemma 11 is needed to prove Lemma 10. The notation F(y) and y0 is common
for Lemmas 10 and 11.

For fixed x > 0 and σ 2, consider the function

F(y) = ln

(
ey

(ey + 1)2

)
− (y − x)2

2σ 2
. (19)

Its derivative

F ′(y) = 1 − 2
ey

ey + 1
− y − x

σ 2

is strictly decreasing, and

lim
y→−∞ F ′(y) = +∞, lim

y→+∞ F ′(y) = −∞.

Hence, F ′(y) attains 0 at a unique point. Denote this point by y0, and then

sign
(
F ′(y)

) = − sign(y − y0). (20)

Lemma 11. For the function F(y) defined in (19), for y0 satisfying (20), and for
y3 and y4 such that F ′(y3) + F ′(y4) = 0 and y3 < y4, we have the following
inequalities:

1) y3 < y0 < y4 and F ′(y3) = −F ′(y4) > 0.

2) y3 + y4 > 0.

3) F ′′(y3) < F ′′(y4) < 0.

4) F(y3) > F(y4).
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Proof. 1) The inequality y3 < y0 < y4 is a consequence of (20), and (20) implies
F ′(y3) > 0.

2) y3 + y4 > 0. For all y ∈ R,

F ′(y) + F ′(−y) = 2x

σ 2
> 0.

Since F ′(y3) + F ′(−y3) > 0 and F ′(y3) + F ′(y4) = 0, we have F ′(−y3) > F ′(y4),
and then −y3 < y4 because the derivative F ′(y) is decreasing.

3) F ′′(y3) < F ′′(y4) < 0. The second derivative

F ′′(y) = −2ey

(ey + 1)2
− 1

σ 2

is an even function strictly increasing on [0,+∞) and attaining only negative values.
The inequalities y3 < y4 and y3 + y4 > 0 can be rewritten as |y3| < y4, and then

F ′′(y3) = F ′′(|y3|
)

< F ′′(y4) < 0.

4) F(x3) > F(x4). Consider the inverse function
(
F ′)−1

(t), t∈R.

Its derivative is
d

dt

((
F ′)−1

(t)
) = 1

F ′′((F ′)−1(t))
< 0.

Then

d

dt

(
F

((
F ′)−1

(t)
)) = F ′((F ′)−1(t))

F ′′((F ′)−1(t))
= t

F ′′((F ′)−1(t))
;

d

dt

(
F

((
F ′)−1

(t)
) − F

((
F ′)−1

(−t)
)) = t

F ′′((F ′)−1(t))
+ −t

F ′′((F ′)−1(−t))
.

Apply already proven part 3) of Lemma 11. If t > 0, then (F ′)−1(t) < (F ′)−1(−t)

(because (F ′)−1(t) is a decreasing function) and F ′((F ′)−1(t))+F ′((F ′)−1(−t)) =
t − t = 0. Then by part 3)

F ′′((F ′)−1
(t)

)
< F ′′((F ′)−1

(−t)
)

< 0, t > 0.

Hence,
d

dt

(
F

((
F ′)−1

(t)
) − F

((
F ′)−1

(−t)
))

> 0, t > 0.

Note that
F

((
F ′)−1

(0)
) − F

((
F ′)−1

(−0)
) = 0.

By the Lagrange theorem, for t > 0,

F
((

F ′)−1
(t)

) − F
((

F ′)−1
(−t)

) = t · d

dt1

(
F

((
F ′)−1

(t1)
) − F

((
F ′)−1

(−t1)
))

> 0,

(21)
where the derivative is taken at some point t1 ∈ (0, t).

Substituting t = F ′(y3) > 0 (then −t = F ′(y4)), we obtain F(y3) − F(y4) > 0.
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Proof of Lemma 10. Case 1. x > 0 and σ 2 > 0. Recall that for fixed σ 2, L1(x, σ 2)

is the pdf of η + ξ , where η and ξ are independent variables, P(η < y) = ey

ey+1 and

ξ ∼ N(0, σ 2) (see Appendix A). By Corollary 8,

d3

dx3

(
ln L1

(
x, σ 2)) = 1

σ 6
μ3[η | η+ξ=x], (22)

but
d3

dx3

(
ln L1

(
x, σ 2)) = L4L

2
1 − 3L3L2L1 + 2L3

2

L3
1

, (23)

where Lk are evaluated at the point (x, σ 2). Since L1(x, σ 2) > 0, we have to prove
that μ3[η | η+ξ=x] > 0. Therefore, we apply Lemma 9.

The pdf of the conditional distribution of η given η + ξ = x is equal to

pη|η+ξ=x(y) = 1

E e
− (η−x)2

2σ2

· ey

(1 + ey)2
e
− (y−x)2

2σ2 .

The pdf pη|η+ξ=x(y) is continuously differentiable. The conditional distribution has

a finite kth moment because yke
− (y−x)2

2σ2 is bounded for any k ∈ N. Hence, conditions
1) and 4) of Lemma 9 are satisfied.

Evaluate

ln pη|η+ξ=x(y) = ln

(
ey

(ey + 1)2

)
− y − x

2σ 2
− ln

(
E e

− (η−x)2

2σ2
) = F(y) + C,

where the function F(y) is defined in (19), and C = − ln(E exp(− (η−x)2

2σ 2 )) depends

only on x and σ 2 and does not depend on y.
We check condition 2) of Lemma 9:

pη|η+ξ=x(y) = eF(y)+C;
d

dy
pη|η+ξ=x(y) = F ′(y)eF(y)+C; (24)

sign

(
d

dy
pη|η+ξ=x(y)

)
= sign

(
F ′(y)

) = − sign(y − y0),

and condition 2) holds with M = y0, where y0 is defined just above (20).
Now check condition of 3) of Lemma 9. The proof is illustrated by Fig. 4. Assume

that pη|η+ξ=x(y1) = pη|η+ξ=x(y2) and y1 < y0 < y2. Then F(y1) = F(y2).
Denote

y4 = (
F ′)−1(−F ′(y1)

)
.

Then F ′(y1) + F ′(y4) = F ′(y1) − F ′(y1) = 0, and by (20), as y1 < y0, we have
F ′(y1) > 0, F ′(y4) < 0, y4 > y0 > y1. By Lemma 11, F(y1) > F(y4).

Hence, F(y2) = F(y1) > F(y4). Because the function F(y) is decreasing on
(y0,+∞) (see (20)), we have y2 < y4. Since the function F ′(y) is decreasing,
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Fig. 4. To proof of Lemma 10. Checking condition 3) of Lemma 9

F ′(y2) > F ′(y4) = −F ′(y1), which implies F ′(y1) + F ′(y2) > 0. By (24) we
have p′

η|η+ξ=x(y1) + p′
η|η+ξ=x(y2) > 0.

All the conditions of Lemma 9 are satisfied. By Lemma 9, μ3[η | η + ξ = x] > 0,
and by (22)–(23),

L4
(
x, σ 2)L1

(
x, σ 2)2 − 3L3

(
x, σ 2)L2

(
x, σ 2)L1

(
x, σ 2) + 2L2

(
x, σ 2) > 0 (25)

for all x > 0 and σ 2 > 0.
Case 2. x ≤ 0 and σ 2 > 0. The distribution of η + ξ is symmetric. Hence,

L1(x, σ 2) and L3(x, σ 2) are even functions in x, and L2(x, σ 2) and L4(x, σ 2) are
odd functions in x. Then

L4
(
x, σ 2)L1

(
x, σ 2)2 − 3L3

(
x, σ 2)L2

(
x, σ 2)L1

(
x, σ 2) + 2L2

(
x, σ 2)3

is an odd function in x. It is equal to 0 for x = 0, and it is negative for x < 0 by
Case 1; see (25).

Case 3. σ 2 = 0. The function L1(x, 0) is the pdf of the logistic distribution, and
Lk+1(x, 0) is its kth derivative:

L1(x, 0) = ex

(1 + ex)2
; L2(x, 0) = ex(1 − ex)

(1 + ex)3
;

L3(x, 0) = ex

(1 + ex)4

(
1 − 4ex + e2x

);
L4(x, 0) = ex(1 − ex)

(1 + ex)5

(
1 − 10ex + e2x

)
.

Then

L4L
2
1 − 3L3L2L1 + 2L3

2 = e3x(1 − ex)

(1 + ex)9

(−2ex
);

sign
(
L4L

2
1 − 3L3L2L1 + 2L3

2

) = sign(x),

where Lk are evaluated at the point (x, 0).
Lemma 10 is proven.
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