
Modern Stochastics: Theory and Applications 11 (1) (2024) 43–61
https://doi.org/10.15559/23-VMSTA235

Noncentral moderate deviations for fractional Skellam
processes

Jeonghwa Leea, Claudio Maccib,∗

aDepartment of Mathematics and Statistics, University of North Carolina
Wilmington, Sartarelli Hall, Office 2012F, 601 South College Road, Wilmington,

NC 28403-5970, USA
bDipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca

Scientifica, 00133 Rome, Italy

leejb@uncw.edu (J. Lee), macci@mat.uniroma2.it (C. Macci)

Received: 29 July 2023, Revised: 3 November 2023, Accepted: 3 November 2023,
Published online: 5 December 2023

Abstract The term moderate deviations is often used in the literature to mean a class of large
deviation principles that, in some sense, fills the gap between a convergence in probability to
zero (governed by a large deviation principle) and a weak convergence to a centered Normal
distribution. The notion of noncentral moderate deviations is used when the weak convergence
is towards a non-Gaussian distribution. In this paper, noncentral moderate deviation results
are presented for two fractional Skellam processes known in the literature (see [20]). It is
established that, for the fractional Skellam process of type 2 (for which one can refer to the
recent results for compound fractional Poisson processes in [3]), the convergences to zero are
usually faster because one can prove suitable inequalities between rate functions.
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1 Introduction

A large deviation principle provides some asymptotic bounds for a family of proba-
bility measures on the same topological space X ; moreover one often refers to a fam-
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ily of X -valued random variables, {Ct }, whose laws are those probability measures.
These asymptotic bounds are expressed in terms of a speed function vt (that tends
to infinity) and a lower semicontinuous rate function I : X → [0,∞]. The concept
of large deviation principle is a basic definition in the theory of large deviations; this
theory allows us to compute the probabilities of rare events on an exponential scale
(see [10] as a reference of this topic).

The term moderate deviations is often used in the literature to mean a class of
large deviation principles that, in some sense, fills the gap between two asymptotic
regimes:

1. The convergence of Ct in probability to zero, which is governed by a large
deviation principle with speed vt ;

2. The weak convergence of
√

vtCt to a centered Normal distribution.

The speed functions and the random variables involved in these large deviation prin-
ciples depend on some scalings in a suitable class; moreover, the large deviation prin-
ciples in this class are governed by the same quadratic rate function that uniquely
vanishes at zero. Typically the scalings consist of families of positive numbers {at :
t > 0} such that

at → 0 and vtat → ∞,

and one can show that {√vtatCt } satisfies the large deviation principle with speed
1
at

; note that 1
at

has a lower intensity than the speed vt , and this explains the use of
the term moderate. We also recall that we recover the two asymptotic regimes stated
above for at = 1

vt
(in this case vtat → ∞ fails) and for at = 1 (in this case at → 0

fails).
The term noncentral moderate deviations has been recently used in the literature

when we have a class of large deviation principles that, in some sense, fills the gap be-
tween a convergence to a constant (typically zero) and the weak convergence towards
a non-Gaussian distribution. Some examples of noncentral moderate deviations can
be found in [12], where the weak convergences are towards Gumbel, exponential,
and Laplace distributions. In that reference, the interested reader can find some other
previous references in the literature with some other examples.

The aim of this paper is to present some examples of noncentral moderate de-
viations based on fractional Skellam processes. In these examples we always have
vt = t , and therefore the scalings are families of positive numbers {at : t > 0} such
that

at → 0 and tat → ∞. (1)

Skellam processes are given by the difference of two independent Poisson processes.
In this paper we consider two fractional Skellam processes studied in [20]; some more
recent generalized versions of these processes can be found in [14] and [17]. The frac-
tional Skellam processes in [20] are closely related to the definition of the fractional
Poisson process in the literature. We recall that a fractional Poisson process is ob-
tained as an independent random time-change of a Poisson process with an inverse
of stable subordinator (see, e.g., [5], [6] and [22]); here we are referring to the time
fractional Poisson process and, for the definitions of space and space-time fractional
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Poisson process, the interested reader can refer to [23] (see also [19] as a very recent
paper on time-changed space-time fractional Poisson processes). Then the fractional
Skellam processes studied in [20] are obtained in a quite natural way as follows.

• Fractional Skellam process of type 1. A difference between two independent
fractional Poisson processes (so we have two independent random time-changes
for each one of the involved fractional Poisson processes);

• Fractional Skellam process of type 2. An independent random time-change of
a Skellam process with an inverse of stable subordinator.

It is easy to check (see Remark 2.3) that the fractional Skellam process of type 2 is a
particular compound fractional Poisson process (and this is not surprising because a
Skellam process is a particular compound Poisson process; see Remark 2.1). There-
fore, the moderate deviation results for the fractional Skellam process of type 2 can
be obtained from the ones in [3]. Here, since we deal with random time-changes of
Skellam processes, for completeness we recall the references [7], [8] and [18].

Here for completeness we present a brief review of the references with results on
large/moderate deviations for fractional Poisson processes or similar models: [1] and
[2] with results for the (possibly multivariate) alternative fractional Poisson process,
[4] with results for random time-changed continuous-time Markov chains on inte-
gers with alternating rates, [21] with results for a nonstandard model based on the
Prabhakar function in [24], and for a state dependent model in [11].

We conclude with the outline of the paper. We start with some preliminaries in
Section 2. The results for the fractional Skellam processes of type 1 and 2 are pre-
sented in Sections 3 and 4, respectively. In Section 5 we compare some rate functions
and present some plots. Finally, in Section 6, we present some concluding remarks.

2 Preliminaries

In this section, we recall some preliminaries on large deviations and on fractional
Skellam processes.

2.1 On large deviations

Here we present definitions and results for families of real random variables {Zt :
t > 0} defined on the same probability space (�,F , P ); moreover, in view of what
follows, we consider the case t → ∞. We start with the definition of large deviation
principle (see, e.g., [10, pages 4–5]). A family of numbers {vt : t > 0} such that
vt → ∞ (as t → ∞) is called a speed function, and a lower semicontinuous function
I : R → [0,∞] is called a rate function. Then {Zt : t > 0} satisfies the large
deviation principle (LDP from now on) with speed vt and a rate function I if

lim sup
t→∞

1

vt

log P(Zt ∈ C) ≤ − inf
x∈C

I (x) for all closed sets C,

and

lim inf
t→∞

1

vt

log P(Zt ∈ O) ≥ − inf
x∈O

I (x) for all open sets O.
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Moreover the rate function I is said to be good if, for every β ≥ 0, the level set
{x ∈ R : I (x) ≤ β} is compact. The following well-known theorem provides a
sufficient condition to have an LDP, and makes it easy to compute the corresponding
speed and rate functions (see, e.g., Theorem 2.3.6(c) in [10]).

Theorem 1 (Gärtner–Ellis theorem). Assume that, for all θ ∈ R, there exists

�(θ) := lim
t→∞

1

vt

logE
[
evt θZt

]
as an extended real number; moreover assume that the origin θ = 0 belongs to the
interior of the set

D(�) := {
θ ∈ R : �(θ) < ∞}

.

Furthermore let �∗ be the Legendre–Fenchel transform of the function �, i.e. the
function defined by

�∗(x) := sup
θ∈R

{
θx − �(θ)

}
.

Then, if � is essentially smooth and lower semi-continuous, then {Zt : t > 0} satisfies
the LDP with speed vt and good rate function �∗.

We also recall (see, e.g., Definition 2.3.5 in [10]) that � is essentially smooth
if the interior of D(�) is nonempty, the function � is differentiable throughout the
interior of D(�), and � is steep, i.e. |�′(θn)| → ∞ whenever {θn : n ≥ 1} is
a sequence of points in the interior of D(�) which converge to a boundary point
of D(�). A particular simple case (which always occurs in the applications of the
Gärtner–Ellis theorem in this paper) is when D(�) = R and � is a differentiable
function; indeed, in such a case, the function � is essentially smooth (the steepness
condition holds vacuously) and lower semi-continuous.

2.2 On fractional Skellam processes

We start with the definition of the (nonfractional) Skellam process. Let {Nλ1(t) : t ≥
0} and {Nλ2(t) : t ≥ 0} be two independent Poisson processes with intensities λ1 > 0
and λ2 > 0, respectively. In particular we consider the notation λ = (λ1, λ2). Then
the process {Sλ(t) : t ≥ 0} defined by

Sλ(t) := Nλ1(t) − Nλ2(t)

is called Skellam process. Moreover, for each fixed t ≥ 0, we have

E
[
eθSλ(t)

] = exp
((

λ1
(
eθ − 1

) + λ2
(
e−θ − 1

))
t
)

(for all θ ∈ R).

Remark 2.1. It is easy to check that {Sλ(t) : t ≥ 0} can be seen as a compound

Poisson process {∑Nλ1+λ2 (t)

k=1 Xk : t ≥ 0}, where {Xk : k ≥ 1} and {Nλ1+λ2(t) : t ≥ 0}
are independent, {Xk : k ≥ 1} are i.i.d. random variables such that

P(Xk = 1) = 1 − P(Xk = −1) = λ1

λ1 + λ2
,

and {Nλ1+λ2(t) : t ≥ 0} is a Poisson process with intensity λ1 + λ2.
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In view of what follows we recall some other preliminaries. We start with the
definition of the Mittag-Leffler function (see, e.g., [13], eq. (3.1.1))

Eν(x) :=
∞∑

k=0

xk

�(νk + 1)
for ν, x ∈ C.

Actually throughout this paper we have ν ∈ (0, 1) and x ∈ R; moreover, it is known
(see Proposition 3.6 in [13] for the case α ∈ (0, 2); indeed α in that reference coin-
cides with ν in this paper) that we have{

Eν(x) ∼ ex1/ν

ν
, as x → ∞,

1
x

log Eν(x) → 0, as x → −∞
(2)

(this is the correct version of eq. (3) in [3]; indeed we need the condition presented
here for x → −∞, instead of Eν(x) → 0).

Now we recall some moment generating functions which can be expressed in
terms of the Mittag-Leffler function. If we consider the inverse of the stable subordi-
nator {Lν(t) : t ≥ 0}, then we have

E
[
eθLν(t)

] = Eν

(
θtν

)
(for all θ ∈ R). (3)

This formula appears in several references with θ ≤ 0 only; however, this restric-
tion is not needed because we can refer to the analytic continuation of the Laplace
transform with complex argument.

The fractional Poisson process {Nν,λ(t) : t ≥ 0} is defined by

Nν,λ(t) := Nλ

(
Lν(t)

)
,

where {Nλ(t) : t ≥ 0} is a (nonfractional) Poisson process with intensity λ, indepen-
dent of {Lν(t) : t ≥ 0}; it is known that

E
[
eθNν,λ(t)

] = Eν

(
λ
(
eθ − 1

)
tν

)
(for all θ ∈ R).

Now we are ready to provide the definitions of two fractional Skellam processes
and their moment generating functions (see [20], Definitions 3.1–3.2 and Theorems
3.1–3.2). In particular, we consider the notation ν = (ν1, ν2) for ν1, ν2 ∈ (0, 1).

Fractional Skellam process of type 1. It is the process {Yν,λ(t) : t ≥ 0} defined by

Yν,λ(t) := Nν1,λ1(t) − Nν2,λ2(t),

where {Nν1,λ1(t) : t ≥ 0} and {Nν2,λ2(t) : t ≥ 0} are two independent fractional
Poisson processes. Then we have

E
[
eθYν,λ(t)

] = Eν1

(
λ1

(
eθ − 1

)
tν1

)
Eν2

(
λ2

(
e−θ − 1

)
tν2

)
(for all θ ∈ R).

Remark 2.2. Some results for {Yν,λ(t) : t ≥ 0} presented below concern the case
ν1 = ν2; in this case we set ν1 = ν2 = ν for some ν ∈ (0, 1), and use the notation
Yν,λ(t) in place of Yν,λ(t).
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Fractional Skellam process of type 2. It is the process {Zν,λ(t) : t ≥ 0} defined by

Zν,λ(t) := Sλ

(
Lν(t)

)
,

where the Skellam process {Sλ(t) : t ≥ 0} and the inverse of the stable subordinator
{Lν(t) : t ≥ 0} are independent. Then we have

E
[
eθZν,λ(t)

] = Eν

((
λ1

(
eθ − 1

) + λ2
(
e−θ − 1

))
tν

)
(for all θ ∈ R).

Remark 2.3. We have recalled that the fractional Poisson process can be seen as a
time changed (nonfractional) Poisson process with an independent inverse of the sta-
ble subordinator. Then, by taking into account Remark 2.1, we can say that {Zν,λ(t) :
t ≥ 0} is distributed as the compound fractional Poisson process {∑Nν,λ1+λ2 (t)

k=1 Xk :
t ≥ 0}, where {Xk : k ≥ 1} and {Nν,λ1+λ2(t) : t ≥ 0} are independent, {Xk : k ≥ 1}
are i.i.d. random variables as in Remark 2.1, and {Nν,λ1+λ2(t) : t ≥ 0} is a fractional
Poisson process.

Remark 2.4. Assume that ν1 = ν2 = ν for some ν ∈ (0, 1) (and recall the slight
change of notation explained in Remark 2.2 for the fractional Skellam process of
type 1). Then, if λ1 = λ2, the random variables Yν,λ(t) and Zν,λ(t) are symmetric
(around zero); namely Yν,λ(t) and Zν,λ(t) are distributed as −Yν,λ(t) and −Zν,λ(t),
respectively. Then we have some consequences highlighted in Remarks 3.3 and 4.3.

3 Noncentral moderate deviations for the type 1 process

We start with the first result for which we could have ν1 �= ν2.

Proposition 3.1. Let 

(1)
ν,λ be the function defined by



(1)
ν,λ(θ) :=

{
(λ1(e

θ − 1))1/ν1 , if θ ≥ 0,

(λ2(e
−θ − 1))1/ν2 , if θ < 0.

(4)

Then {Yν,λ(t)

t
: t > 0} satisfies the LDP with speed vt = t and good rate function I

(1)
LD

defined by
I

(1)
LD(x) := sup

θ∈R
{
θx − 


(1)
ν,λ(θ)

}
. (5)

Proof. We prove this proposition by applying the Gärtner–Ellis theorem. More pre-
cisely, we have to show that

lim
t→∞

1

t
logE

[
etθ

Yν,λ(t)

t
] = 


(1)
ν,λ(θ) (for all θ ∈ R), (6)

where 

(1)
ν,λ is the function in (4).

The case θ = 0 is immediate. Moreover, we remark that

logE
[
etθ

Yν,λ(t)

t
] = logE

[
eθYν,λ(t)

]
= log Eν1

(
λ1

(
eθ − 1

)
tν1

) + log Eν2

(
λ2

(
e−θ − 1

)
tν2

)
.



Noncentral moderate deviations for fractional Skellam processes 49

Then, by taking into account the asymptotic behaviour of the Mittag-Leffler function
in (2), we have

lim
t→∞

1

t
log Eν1

(
λ1

(
eθ − 1

)
tν1

)
+ lim

t→∞
1

t
log Eν2

(
λ2

(
e−θ − 1

)
tν2

) = (
λ1

(
eθ − 1

))1/ν1 for θ > 0,

and

lim
t→∞

1

t
log Eν1

(
λ1

(
eθ − 1

)
tν1

)
+ lim

t→∞
1

t
log Eν2

(
λ2

(
e−θ − 1

)
tν2

) = (
λ2

(
e−θ − 1

))1/ν2 for θ < 0.

Thus the limit in (6) is checked.
In conclusion, the desired LDP holds noting that the function 


(1)
ν,λ in (4) is finite

(for all θ ∈ R) and differentiable.

Remark 3.1. In general, we do not have an explicit expression for the rate function
I

(1)
LD in Proposition 3.1 (see (5)). However, if ν1 = ν2 = 1

2 , then we have

I
(1)
LD(x) =

⎧⎪⎨
⎪⎩

x log
( 1

2 + 1
2

√
1 + 2x

λ2
1

) − ( 1
2

√
λ2

1 + 2x − λ1
2

)2
, if x ≥ 0,

−x log
( 1

2 + 1
2

√
1 − 2x

λ2
2

) − ( 1
2

√
λ2

2 − 2x − λ2
2

)2
, if x < 0.

Indeed, after some computations, one can check that the supremum in (5) (with ν1 =
ν2 = 1

2 ) is attained at θ = 0 for x = 0, at θ = log( 1
2 + 1

2

√
1 + 2x

λ2
1
) for x > 0, and at

θ = − log( 1
2 + 1

2

√
1 − 2x

λ2
2
) for x < 0.

From now on we assume that ν1 and ν2 coincide, and therefore we consider the
change of notation in Remark 2.2 for ν = ν1 = ν2. Moreover, we set

α1(ν) := 1 − ν. (7)

Proposition 3.2. Assume that ν1 = ν2 = ν for some ν ∈ (0, 1) and let α1(ν) be

defined in (7). Then {tα1(ν) Yν,λ(t)

t
: t > 0} converges weakly to λ1L

◦
ν(1) − λ2L

◦◦
ν (1),

where L◦
ν(1) and L◦◦

ν (1) are two i.i.d. random variables distributed as Lν(1).

Proof. We have to check that

lim
t→∞E

[
eθtα1(ν)

Yν,λ(t)

t

]
= E

[
eθ(λ1L

◦
ν (1)−λ2L

◦◦
ν (1))

]︸ ︷︷ ︸
=Eν(λ1θ)Eν(−λ2θ)

(for all θ ∈ R)

(here we take into account that L◦
ν(1) and L◦◦

ν (1) are i.i.d., and the expression of the
moment generating function in eq. (3)). This can be readily done noting that, for two
suitable remainders o( 1

t2ν ) such that t2νo( 1
t2ν ) → 0, we have

E

[
eθtα1(ν)

Yν,λ(t)

t

]
= E

[
eθ

Yν,λ(t)

tν

]
= Eν

(
λ1

(
eθ/tν − 1

)
tν

)
Eν

(
λ2

(
e−θ/tν − 1

)
tν

)
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= Eν

(
λ1

(
θ

tν
+ θ2

2t2ν
+ o

(
1

t2ν

))
tν

)
Eν

(
λ2

(
− θ

tν
+ θ2

2t2ν
+ o

(
1

t2ν

))
tν

)

= Eν

(
λ1

(
θ + θ2

2tν
+ tνo

(
1

t2ν

)))
Eν

(
λ2

(
−θ + θ2

2tν
+ tνo

(
1

t2ν

)))
;

then we get the desired limit letting t go to infinity (for each fixed θ ∈ R).

Proposition 3.3. Assume that ν1 = ν2 = ν for some ν ∈ (0, 1) and let α1(ν) be
defined in (7). Then, for every family of positive numbers {at : t > 0} such that (1)

holds, the family of random variables { (at t)
α1(ν)Yν,λ(t)

t
: t > 0} satisfies the LDP with

speed 1/at and good rate function I
(1)
MD defined by

I
(1)
MD(x) :=

{
(νν/(1−ν) − ν1/(1−ν))( x

λ1
)1/(1−ν), if x ≥ 0,

(νν/(1−ν) − ν1/(1−ν))( x
−λ2

)1/(1−ν), if x < 0.

Proof. We prove this proposition by applying the Gärtner–Ellis theorem. More pre-
cisely, we have to show that

lim
t→∞

1

1/at

logE
[
e

θ
at

(at t)
α1(ν)Yν,λ(t)

t

]
= 
̃

(1)
ν,λ(θ) (for all θ ∈ R), (8)

where 
̃
(1)
ν,λ is the function defined by


̃
(1)
ν,λ(θ) :=

{
(λ1θ)1/ν, if θ ≥ 0,

(−λ2θ)1/ν, if θ < 0.

Indeed, since the function 
̃
(1)
ν,λ is finite (for all θ ∈ R) and differentiable, the de-

sired LDP holds noting that the Legendre–Fenchel transform (
̃
(1)
ν,λ)

∗ of 
̃
(1)
ν,λ, i.e. the

function (
̃
(1)
ν,λ)

∗ defined by

(

̃

(1)
ν,λ

)∗
(x) := sup

θ∈R
{
θx − 
̃

(1)
ν,λ(θ)

}
(for all x ∈ R),

coincides with the function I
(1)
MD in the statement of the proposition (for x = 0

the supremum is attained at θ = 0, for x > 0 the supremum is attained at θ =
1
λ1

( νx
λ1

)ν/(1−ν), for x < 0 the supremum is attained at θ = − 1
λ2

( νx
−λ2

)ν/(1−ν)).
So we conclude the proof by checking the limit in (8). The case θ = 0 is im-

mediate. Moreover, we remark that, for two suitable remainders o( 1
(at t)2ν ) such that

(at t)
2νo( 1

(at t)2ν ) → 0, we have

logE
[
e

θ
at

(at t)
α1(ν)Yν,λ(t)

t

]
= logE

[
e
θ

Yν,λ(t)

(at t)
ν

]
= log Eν

(
λ1

(
eθ/(at t)

ν − 1
)
tν

) + log Eν

(
λ2

(
e−θ/(at t)

ν −1
)
tν

)
= log Eν

(
λ1

(
θ

(at t)ν
+ θ2

2(at t)2ν
+ o

(
1

(at t)2ν

))
tν

)
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+ log Eν

(
λ2

(
− θ

(at t)ν
+ θ2

2(at t)2ν
+ o

(
1

(at t)2ν

))
tν

)

= log Eν

(
λ1

aν
t

(
θ + θ2

2(at t)ν
+ (at t)

νo

(
1

(at t)2ν

)))

+ log Eν

(
λ2

aν
t

(
−θ + θ2

2(at t)ν
+ (at t)

νo

(
1

(at t)2ν

)))
.

Then, by taking into account the asymptotic behaviour of the Mittag-Leffler function
in (2), we have

lim
t→∞

1

1/at

logE
[
e

θ
at

(at t)
α1(ν)Yν,λ(t)

t

]
= (λ1θ)1/ν for θ > 0,

and

lim
t→∞

1

1/at

logE
[
e

θ
at

(at t)
α1(ν)Yν,λ(t)

t

]
= (−λ2θ)1/ν for θ < 0.

Thus the limit in (8) is checked.

Remark 3.2. The set {x ∈ R : I
(1)
MD(x) < ∞} = R (see Proposition 3.3) coincides

with the support of the weak limit in Proposition 3.2.

Remark 3.3. Assume that λ1 = λ2. Then: if ν1 = ν2, the rate function I
(1)
LD in Propo-

sition 3.1 is a symmetric function (we can say this, even if an explicit expression of
I

(1)
LD is not available, because 


(1)
ν,λ is a symmetric function); the weak limit in Propo-

sition 3.2 is a symmetric random variable; the rate function I
(1)
MD in Proposition 3.3 is

a symmetric function.

4 Noncentral moderate deviations for the type 2 process

The results in this section can be derived directly from the results in [3]; indeed, by
taking into account Remark 2.3, the fractional Skellam process of type 2 is a particular
compound fractional Poisson process. So we only give the statements of propositions
without proofs.

Proposition 4.1. Let 

(2)
ν,λ be the function defined by



(2)
ν,λ(θ) :=

{
(λ1(e

θ − 1) + λ2(e
−θ − 1))1/ν, if λ1(e

θ − 1) + λ2(e
−θ − 1) ≥ 0,

0, if λ1(e
θ − 1) + λ2(e

−θ − 1) < 0.

(9)
Then {Zν,λ(t)

t
: t > 0} satisfies the LDP with speed vt = t and good rate function I

(2)
LD

defined by

I
(2)
LD(x) := sup

θ∈R
{
θx − 


(2)
ν,λ(θ)

}
.
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Remark 4.1. The LDP in Proposition 4.1 with λ1 = λ2 = λ coincides with the LDP
in Proposition 4.2 in [4] with α1 = α2 = β1 = β2 = λ. Indeed the function �ν in
that proposition is defined by

�ν(θ) :=
{
(�(θ))1/ν, if �(θ) ≥ 0,

0, if �(θ) < 0,

where, after some computations, one can check that

�(θ) = λ(e2θ + 1)

eθ
− 2λ = λ

(
eθ − 1 + e−θ − 1

)
.

The next two propositions can be derived from Propositions 3.2–3.3 in [3]. By

Remark 2.3 we have Zν,λ(t)
d= ∑Nν,λ1+λ2 (t)

k=1 Xk , where

μ := E(Xk) = λ1 − λ2

λ1 + λ2
and σ 2 := Var(Xk) = 4λ1λ2

(λ1 + λ2)2

coincide with μ and σ 2 in [3]. Moreover, we set

α2(ν) :=
{

1 − ν/2, if μ = 0, i.e. if λ1 = λ2,

1 − ν, if μ �= 0, i.e. if λ1 �= λ2,
(10)

which coincides with α(ν) in [3]. Also note that, if λ1 = λ2 = λ for some λ > 0,

we take into account that
√

4λ1λ2
λ1+λ2

= √
2λ in Proposition 4.2, and λ1+λ2

2λ1λ2
= 1

λ
in

Proposition 4.3.

Proposition 4.2. Let α2(ν) be defined in (10). Then:

• if λ1 = λ2 = λ for some λ > 0, then {tα2(ν) Zν,λ(t)

t
: t > 0} converges weakly

to
√

2λLν(1)W , where W is a standard Normal distributed random variable,
and independent to Lν(1);

• if λ1 �= λ2, then {tα2(ν) Zν,λ(t)

t
: t > 0} converges weakly to (λ1 − λ2)Lν(1).

Proposition 4.3. Let α2(ν) be defined in (10). Then, for every family of positive num-

bers {at : t > 0} such that (1) holds, the family of random variables { (at t)
α2(ν)Zν,λ(t)

t
:

t > 0} satisfies the LDP with speed 1/at and good rate function I
(2)
MD,λ defined by:

• if λ1 = λ2 = λ for some λ > 0,

I
(2)
MD,λ(x) := (

(ν/2)ν/(2−ν) − (ν/2)2/(2−ν)
)(x2

λ

)1/(2−ν)

;

• if λ1 > λ2,

I
(2)
MD,λ(x) :=

{
(νν/(1−ν) − ν1/(1−ν))( x

λ1−λ2
)1/(1−ν), if x ≥ 0,

∞, if x < 0;
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• if λ1 < λ2,

I
(2)
MD,λ(x) :=

{
(νν/(1−ν) − ν1/(1−ν))( x

−(λ2−λ1)
)1/(1−ν), if x ≤ 0,

∞, if x > 0.

Remark 4.2. The sets {x ∈ R : I
(2)
MD,λ(x) < ∞} (see Proposition 4.3) coincide with

the supports of the weak limits in Proposition 4.2: we mean R if λ1 = λ2, [0,∞) if
λ1 > λ2, and (−∞, 0] if λ1 < λ2.

Remark 4.3. Assume that λ1 = λ2. Then: the rate function I
(2)
LD in Proposition 4.1

is a symmetric function (we can say this, even if an explicit expression of I
(2)
LD is not

available, because 

(2)
ν,λ is a symmetric function); the weak limit in Proposition 4.2 is

a symmetric random variable; the rate function I
(2)
MD in Proposition 4.3 is a symmetric

function.

5 Comparisons between rate functions

In this section we compare the rate functions for the two types of fractional Skellam
process, and for different values of ν. Moreover, we present some plots.

5.1 Results and remarks

All the LDPs presented in the previous sections are governed by rate functions that
uniquely vanish at x = 0. So, as we explain below, it is interesting to compare the
rate functions, at least around x = 0.

Remark 5.1. Throughout this section we always assume that ν1 = ν2 = ν for some
ν ∈ (0, 1). So we simply write 


(1)
ν,λ in place of the function 


(1)
ν,λ in Proposition 3.1

(see (4)).

We start by comparing I
(1)
LD in Proposition 3.1 and I

(2)
LD in Proposition 4.1.

Proposition 5.1. Assume that ν1 = ν2 = ν for some ν ∈ (0, 1). Then I
(1)
LD(0) =

I
(2)
LD(0) = 0 and, for x �= 0, we have I

(2)
LD(x) > I

(1)
LD(x) > 0.

Proof. We start noting that, for the function 

(1)
ν,λ in Proposition 3.1 (see Remark 5.1

and (4)) and the function 

(2)
ν,λ in Proposition 4.1 (see (9) respectively), we have



(1)
ν,λ(0) = 


(2)
ν,λ(0) = 0; 


(1)
ν,λ(θ) > 


(2)
ν,λ(θ) for θ �= 0. (11)

The first statement in (11) is immediate. For the second statement we have two cases
(for completeness we remark that λ1(e

θ − 1) + λ2(e
−θ − 1) ≥ 0 for all θ ∈ R if

λ1 = λ2).

• If θ > 0, then

λ1
(
eθ − 1

)
> max

{
λ1

(
eθ − 1

) + λ2
(
e−θ − 1

)
, 0

}
which yields 


(1)
ν,λ(θ) > 


(2)
ν,λ(θ) by taking the power with exponent 1/ν;
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• If θ < 0, then

λ2
(
e−θ − 1

)
> max

{
λ1

(
eθ − 1

) + λ2
(
e−θ − 1

)
, 0

}
which yields 


(1)
ν,λ(θ) > 


(2)
ν,λ(θ) again, by taking the power with exponent 1/ν.

Thus (11) is checked.
We also remark that, for every x ∈ R, there exist θ

(1)
x , θ

(2)
x ∈ R such that

I
(1)
LD(x) = θ(1)

x x − 

(1)
ν,λ

(
θ(1)
x

)
and I

(2)
LD(x) = θ(2)

x x − 

(2)
ν,λ

(
θ(2)
x

);
moreover θ

(1)
x = θ

(2)
x = 0 if x = 0, and θ

(1)
x , θ

(2)
x �= 0 if x �= 0. Then, if x �= 0, we

get

I
(1)
LD(x) = θ(1)

x x −

(1)
ν,λ

(
θ(1)
x

)
< θ(1)

x x −

(2)
ν,λ

(
θ(1)
x

) ≤ sup
θ∈R

{
θx −


(2)
ν,λ(θ)

} = I
(2)
LD(x),

where the strict inequality holds by (11), and by taking into account that θ(1)
x �= 0.

The next Proposition 5.2 provides a similar result which concerns the comparison
of I

(1)
MD in Proposition 3.3 and I

(2)
MD,λ in Proposition 4.3. In particular, it is possible to

obtain the same strict inequality, for all x �= 0, only if λ1 �= λ2 (note that in such a
case α1(ν) = α2(ν) = 1 − ν by (7) and (10)).

Proposition 5.2. We have I
(1)
MD(0) = I

(2)
MD,λ(0) = 0. Moreover, if x �= 0, we have two

cases.

1. If λ1 �= λ2, then I
(2)
MD,λ(x) > I

(1)
MD(x) > 0.

2. If λ1 = λ2 = λ for some λ > 0, there exists δν,λ > 0 such that: I
(2)
MD,λ(x) >

I
(1)
MD(x) > 0 if 0 < |x| < δν,λ, I

(1)
MD(x) > I

(2)
MD,λ(x) > 0 if |x| > δν,λ, and

I
(2)
MD,λ(x) = I

(1)
MD(x) > 0 if |x| = δν,λ.

Proof. The equalities I
(1)
MD(0) = I

(2)
MD,λ(0) = 0 (case x = 0) are immediate. So, in

what follows, we take x �= 0. We start with the case λ1 �= λ2, and we have two cases.

• Assume that λ1 > λ2. Then for x < 0 we have I
(1)
MD(x) < ∞ = I

(2)
MD,λ(x). For

x > 0 we have x
λ1

< x
λ1−λ2

, which is trivially equivalent to

I
(1)
MD(x) < I

(2)
MD,λ(x).

• Assume that λ1 < λ2. Then for x > 0 we have I
(1)
MD(x) < ∞ = I

(2)
MD,λ(x). For

x < 0 we have x
−λ2

< x
−(λ2−λ1)

, which is trivially equivalent to

I
(1)
MD(x) < I

(2)
MD,λ(x).
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Finally, if λ1 = λ2 = λ for some λ > 0, the statement to prove trivially holds
noting that, for two constants c

(1)
ν,λ, c

(2)
ν,λ > 0, we have I

(1)
MD(x) = c

(1)
ν,λ|x|1/(1−ν) and

I
(2)
MD,λ(x) = c

(2)
ν,λ|x|1/(1−ν/2).

Proposition 5.1 tells us that if we compare the rate functions in Propositions 3.1
and 4.1, the rate function of the fractional Skellam process of type 2 is larger than
that of the fractional Skellam process of type 1. Proposition 5.2 tells us the same for
the rate functions in Propositions 3.3 and 4.3 but, when λ1 = λ2, the rate function of
the fractional Skellam process of type 2 is larger only around x = 0.

These inequalities between rate functions allow us to say that the convergence
of random variables for the fractional Skellam process of type 2 is faster than the
corresponding convergence for the fractional Skellam process of type 1. We explain
this by considering the LDPs in Proposition 3.1, with ν1 = ν2 = ν for some ν ∈
(0, 1), and in Proposition 4.1. Indeed, for every δ > 0 we have

lim
t→∞

1

t
log P

( |Yν,λ(t)|
t

>δ

)
=−J

(1)
LD (δ), where J

(1)
LD (δ) :=min

{
I

(1)
LD(δ), I

(1)
LD(−δ)

}
and

lim
t→∞

1

t
log P

( |Zν,λ(t)|
t

>δ

)
=−J

(2)
LD (δ), where J

(2)
LD (δ) :=min

{
I

(2)
LD(δ), I

(2)
LD(−δ)

};
therefore J

(2)
LD (δ) > J

(1)
LD (δ) > 0 and, for every ε ∈ (0, J

(2)
LD (δ)−J

(1)
LD (δ)), there exists

tε such that

P(
|Zν,λ(t)|

t
> δ)

P (
|Yν,λ(t)|

t
> δ)

< e−t (J
(2)
LD (δ)−J

(1)
LD (δ)−ε) for all t > tε,

where e−t (J
(2)
LD (δ)−J

(1)
LD (δ)−ε) → 0 as t → ∞.

We can follow the same lines to obtain a similar estimate starting from LDPs in
Propositions 3.3 and 4.3; in this case, when λ1 = λ2, δ has to be chosen small enough
(see Proposition 5.2). Here we do not repeat all the computations; however, we can
say that if we set

J
(1)
MD(δ) := min

{
I

(1)
MD(δ), I

(1)
MD(−δ)

}
and J

(2)
MD(δ) := min

{
I

(2)
MD,λ(δ), I

(2)
MD,λ(−δ)

}
,

we have J
(2)
MD(δ) > J

(1)
MD(δ) > 0 and, for every ε ∈ (0, J

(2)
MD(δ)−J

(1)
MD(δ)), there exists

tε such that

P(
(at t)

α2(ν)|Zν,λ(t)|
t

> δ)

P (
(at t)

α1(ν)|Yν,λ(t)|
t

> δ)

< e−(J
(2)
MD(δ)−J

(1)
MD(δ)−ε)/at for all t > tε,

where e−(J
(2)
MD(δ)−J

(1)
MD(δ)−ε)/at → 0 as t → ∞.
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Remark 5.2. We can say that it is not surprising that the convergence of random
variables for the fractional Skellam process of type 2 is faster than the corresponding
convergence for the fractional Skellam process of type 1. Indeed the fractional Skel-
lam process of type 1 is defined with two independent random time-changes for the
involved fractional Poisson processes; on the contrary, for the fractional Skellam pro-
cess of type 2, we have a unique independent random time-change. So, in some sense,
in the second case we have less randomness. Moreover, if we compare the asymptotic
behaviour (as t → ∞) of the variances provided by Remarks 3.1 and 3.2 in [20], i.e.

Var
[
Yν,λ(t)

] = tν(λ1 + λ2)

�(1 + ν)
+ (λ2

1 + λ2
2)t

2ν

ν

(
1

�(2ν)
− 1

ν�2(ν)

)

and

Var
[
Zν,λ(t)

] = tν(λ1 + λ2)

�(1 + ν)
+ (λ1 − λ2)

2t2ν

(
2

�(2ν + 1)
− 1

�2(1 + ν)

)
,

in the second case we have smaller asymptotic variances. Indeed, we have

lim
t→∞

Var[Yν,λ(t)]
t2ν

> lim
t→∞

Var[Zν,λ(t)]
t2ν

,

noting that

lim
t→∞

Var[Yν,λ(t)]
t2ν

= λ2
1 + λ2

2

ν

(
1

�(2ν)
− 1

ν�2(ν)

)
and

lim
t→∞

Var[Zν,λ(t)]
t2ν

= (λ1 − λ2)
2
(

2

�(2ν + 1)
− 1

�2(1 + ν)

)
,

where

2

�(2ν + 1)
− 1

�2(1 + ν)
= 2

2ν�(2ν)
− 1

ν2�2(ν)
= 1

ν

(
1

�(2ν)
− 1

ν�2(ν)

)

and (λ1 − λ2)
2 < λ2

1 + λ2
2.

Now we consider comparisons between rate functions for different values of ν ∈
(0, 1). We mean the rate functions in Propositions 3.1 and 4.1, and we restrict our
attention to a comparison around x = 0. In view of what follows, we consider some
slightly different notation: I

(1)
LD,ν in place of I

(1)
LD in Proposition 3.1, with ν1 = ν2 = ν

for some ν ∈ (0, 1), and I
(2)
LD,ν in place of I

(2)
LD in Proposition 4.1.

Proposition 5.3. Let ν, η ∈ (0, 1) be such that η < ν. Then, for k ∈ {1, 2}, we
have I

(k)
LD,η(0) = I

(k)
LD,ν(0) = 0 and, for some δ > 0, I

(k)
LD,η(x) > I

(k)
LD,ν(x) > 0 for

0 < |x| < δ.

Proof. We take an arbitrarily fixed k ∈ {1, 2}. Then, for every x ∈ R, there exists
θ

(ν,k)
x ∈ R such that

I
(k)
LD,ν(x) = θ(ν,k)

x x − 

(k)
ν,λ

(
θ(ν,k)
x

);
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we recall that we are referring to the function 

(1)
ν,λ in (4) (see also Remark 5.1) and

to the function 

(2)
ν,λ in (9). We can also say that θ

(ν,k)
x = 0 if and only if x = 0 and,

moreover, there exists δ > 0 such that 0 ≤ 

(1)
ν,λ(θ

(ν,k)
x ) < 1 if |x| < δ. Then, by

taking into account the same formulas with η in place of ν, it is easy to check that

0 ≤ 

(k)
η,λ

(
θ(ν,k)
x

)
< 


(k)
ν,λ

(
θ(ν,k)
x

)
< 1

(see (4) and (9); moreover we take into account that 1
η

> 1
ν

), whence we obtain

I
(k)
LD,ν(x) = θ(ν,k)

x x − 

(k)
ν,λ

(
θ(ν,k)
x

)
< θ(ν,k)

x x − 

(k)
η,λ

(
θ(ν,k)
x

) ≤ sup
θ∈R

{
θx − 


(k)
η,λ(θ)

} = I
(k)
LD,η(x).

This completes the proof.

As a consequence of Proposition 5.3 we can present some estimates that allow
us to compare the convergence to zero of different families of random variables for
different values of ν ∈ (0, 1). Roughly speaking we can say the smaller the ν, the
faster the convergence of the random variables to zero. This could be explained by
presenting a modified version of the computations presented just after the proof of
Proposition 5.2; here we omit the details.

5.2 Some plots

We start with Figure 1 which shows the rate functions I
(2)
LD(x) and I

(1)
LD(x) when ν1 =

ν2 = ν for various sets of parameters (λ1, λ2, ν). In each case the plots agree with
the statements in Proposition 5.1, i.e. I

(2)
LD(x) > I

(1)
LD(x) > 0 for x �= 0 and I

(2)
LD(0) =

I
(1)
LD(0) = 0. In particular, if λ1 = λ2, the rate functions are symmetric (around zero)

as announced in Remarks 3.3 and 4.3.
In Figure 2 we present the plots of I

(1)
MD(x) and I

(2)
MD,λ(x) when λ1 = λ2. For each

set of parameters, the plots agree with the statement of Proposition 5.2: I
(1)
MD(x) is

smaller than I
(2)
MD,λ(x) when x is within a bounded interval that includes zero, and

becomes larger outside of that interval.
Finally in Figure 3 we present the plots of I

(1)
LD(x) and I

(2)
LD(x) for different values

of ν. These plots agree with the statements in Proposition 5.3.

6 Concluding remarks

In this paper we prove noncentral moderate deviations for two fractional Skellam
processes presented in the literature. The main tool used in the proofs is the Gärtner–
Ellis theorem (see Theorem 1) which can be applied because the involved moment
generating functions are available in a closed form given in terms of the Mittag-Leffler
function.

For the classical (nonfractional) Skellam process we can obtain a classical mod-
erate deviation result that fills the gap between the two following asymptotic regimes:
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Fig. 1. Top left: (λ1, λ2, ν) = (1, 3, .7). Top right: (λ1, λ2, ν) = (5, 1, .3). Bottom left:
(λ1, λ2, ν) = (2, 2, .5). Bottom right: (λ1, λ2, ν) = (.5, .5, .5)

Fig. 2. Left: λ1 = λ2 = 2, ν = .5. Right: λ1 = λ2 = .5, ν = .3

Fig. 3. Left: I
(1)
LD(x) with λ1 = 1, λ2 = 3. Right: I

(2)
LD(x) with λ1 = 1, λ2 = 3
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1. The convergence of
Sλ(t)

t
− (λ1 + λ2) in probability to zero, which is governed

by a LDP with speed t ;

2. The weak convergence of
√

t(
Sλ(t)

t
− (λ1 +λ2)) to a centered Normal distribu-

tion.

In general, the applications of the Gärtner–Ellis theorem for random time-changed
processes are quite standard. However, in order to obtain noncentral moderate devia-
tion results as the ones in this paper, it is important to have a random time-change with
a slowing effect as happens here with the inverse of the stable subordinator; in this

way we have normalized processes that tend to zero (as happens for
Nν1,λ1 (t)−Nν2,λ2 (t)

t

and
Sλ(Lν(t))

t
here). In future work one could consider more general models with (in-

dependent) random time-changes in terms of an inverse of a general subordinator
(see, e.g., the recent reference [15]) with the same slowing effect.

The results in this work (and in [3]) concern one-dimensional cases. It could be
nice to obtain sample-path versions of these results. One could try to combine the
sample-path results for light-tailed Lévy processes in [9] (which can be applied to
nonfractional Skellam processes) with possible sample-path results for the inverse of
the stable subordinator; unfortunately the derivation of sample-path results for the
inverse of the stable subordinator seems to be a difficult task.

We conclude with a discussion on the connection between the scaling exponents
of the normalizing factors for the moderate deviations of the fractional Skellam pro-
cesses, and the concept of long-range dependence (LRD). We recall (see, e.g., Def-
inition 2.1 in [16]) that a nonstationary stochastic process {X(t) : t ≥ 0} has the
long-range dependence if we have the following property for the correlation coeffi-
cient:

Cov(X(t),X(s))√
Var[X(t)]Var[X(s)] ∼ c(s)t−h (as t → ∞),

for some c(s) > 0 and h ∈ (0, 1). Then we have the following statements on the
scaling exponents α1(ν) in (7) and α2(ν) in (10).

• For the fractional Skellam process of type 1 with ν1 = ν2 = ν for some ν ∈
(0, 1), we have the LRD for {Yν,λ(t) : t ≥ 0} with h = 1 − α1(ν) = ν

(this is a consequence of eqs. (19) and (20) and Remark 2 in [16], and some
computations).

• For the fractional Skellam process of type 2 we have the LRD for {Zν,λ(t) :
t ≥ 0} with

h = 1 − α2(ν) =
{
ν/2, if λ1 = λ2,

ν, if λ1 �= λ2

(this is a consequence of eqs. (2.11)–(2.16) in [17] with k = 1, and some
computations).
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