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Abstract In this article, a non-Gaussian long memory process is constructed by the aggre-
gation of independent copies of a fractional Lévy Ornstein–Uhlenbeck process with random
coefficients. Several properties and a limit theorem are studied for this new process. Finally,
some simulations of the limit process are shown.
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1 Introduction

An Ornstein–Uhlenbeck (OU) process is a diffusion process introduced by the physi-
cists Leonard Salomon Ornstein and George Eugene Uhlenbeck [27] to describe the
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stochastic behavior of the velocity of a particle undergoing Brownian motion. The
OU process X = {X(t), t ≥ 0} is the solution of the Langevin equation

dX(t) = αX(t)dt + σdB(t), t ≥ 0, (1)

where X(0) = x ∈ R, B = {B(t), t ≥ 0} is a Brownian motion and α, σ are
constants. This process is stationary, Gaussian and Markovian; in fact, it is the only
stochastic process which has all these three properties. This process is used for mod-
eling in many different fields such as physics, biology and finance among others (see
[1, 6, 14, 27, 23, 28] and references therein) and it has been widely generalized.

Different extensions of the Ornstein–Uhlenbeck processes have been obtained
replacing the Brownian motion in (1) by more general noise processes; for example,
Lévy OU [2], fractional OU [7], subfractional OU [22] or Hermite OU processes [16].
These are introduced by solution of the Langevin equation with driving noise given by
a Lévy process, fractional Brownian motion, subfractional Brownian motion, Hermite
process, respectively.

In the study of long-range dependence, Igoli and Terdik [13] defined a gener-
alization of OU process with this property. This process is called Gamma-mixed
Ornstein–Uhlenbeck process and it is built via aggregation of a sequence of Ornstein–
Uhlenbeck processes with random coefficients. Let us be more precise, given a se-
quence (Xk)k∈N of stochastic processes such that for each k ≥ 1, the process Xk is
the solution of the Langevin equation

dXk(t) = αkX(t)dt + dB(t), (2)

where B is a Brownian motion with time parameter t ∈ R and (−αk)k∈N are indepen-
dent random variables (also independent of B) with Gamma distribution �(1 − h, λ)

with h ∈ (0, 1) and λ > 0. The aggregated process is given by

Yn(t) = 1

n

n∑
k=1

Xk(t),

and it converges, as n → ∞, to a stochastic process Y which is a stationary Gaus-
sian process, semimartingale, asymptotically self-similar and it has long-range depen-
dence. This limit process is the so-called Gamma-mixed Ornstein–Uhlenbeck pro-
cess. In a similar way, in [9] and [10] the authors studied the generalized cases where
B in (2) is a fractional Brownian motion and Hermite process, respectively; they
define the fractional Ornstein–Uhlenbeck process mixed with a Gamma distribution
and the Hermite Ornstein–Uhlenbeck process mixed with a Gamma distribution, both
processes exhibit long range dependence, the first one is a Gaussian process but the
second one is not Gaussian.

The aim of this paper is to define and study some properties of the Gamma mixed
fractional Lévy Ornstein–Uhlenbeck process obtained as the limit of the aggregated
OU processes with random coefficients of Gamma distribution and driven by frac-
tional Lévy process.

The fractional Lévy process (fLp) was defined in [18] as a generalization of the
moving average representation of a fractional Brownian motion given by Mandelbrot
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and Van Ness [17] replacing the Brownian motion in this integral representation by
a Lévy process with zero mean, finite variance and without Gaussian part. FLp is
almost surely Hölderian, has stationary increments and long range dependence, but
unlike fractional Brownian motion, this process is neither Gaussian nor self-similar
process. The authors of [11] introduced the fractional Lévy Ornstein–Uhlenbeck pro-
cess (fLOUp) as the unique stationary pathwise solution of the Langevin equation
driven by a fLp and prove that its increments exhibit long range dependence. Re-
cently, many authors have studied fLp and the fractional Lévy Ornstein–Uhlenbeck
process on theoretical and applicable levels, see, for example, [4, 3, 12, 15, 24, 26, 29]
and the references therein.

This paper is organized as follows. In Section 2 we give a brief introduction to the
fLp and the stochastic calculus related to this. Fractional Lévy Ornstein–Uhlenbeck
process with random coefficient is introduced in Section 3. In Section 4, we define
the aggregated process of fLOUp with random coefficients and study its limit pro-
cess, which we will call Gamma mixed fractional Lévy Ornstein–Uhlenbeck process.
Finally, in Section 5 we present some simulations of the paths of the Gamma mixed
fractional Lévy Ornstein–Uhlenbeck process.

2 Preliminaries

In this section, we briefly recall some relevant aspects of the fractional Lévy process
(fLp), its main properties and stochastic integrals with respect to this fLp. This pro-
cess will be used in the remainder of the paper. We work on a complete probability
space (�L,FL,PL) and we denote by EL the expectation in this space.

2.1 Fractional Lévy process

The fractional Lévy process Ld = {Ld
t , t ∈ R}, with d ∈ (0, 1/2), is a non-Gaussian

process defined as follows (see [18]):

Ld
t =

∫
R

f
(d)
t (s)dL(s), t ∈ R, (3)

where the kernel function f
(d)
t is given by

f
(d)
t (s) = 1

�(d + 1)
[(t − s)d+ − (−s)d+], s ∈ R, (4)

and L = {L(t), t ∈ R} is a zero-mean two-sided Lévy process with EL[(L(1))2] <

∞ and without Brownian component, i.e.

L(t) = L(1)(t)1{t≥0} − L(2)(−t)1{t≤0},

where L(1) and L(2) are two independent copies of the same one-sided Lévy process.
The following Lemma (see [18, 15]) establishes that the fLp is well defined in the

L2(�L)-sense and gives its characteristic function.
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Lemma 1. Let L = {L(t)}t∈R be a two-sided Lévy process without a Brownian
component such that EL[L(1)] = 0 and EL[(L(1))2] < ∞. For t ∈ R, let ft ∈
L2(�). Then the integral S(t) := ∫

R
ft (u)dL(u) exists in the L2(�L) sense and

EL[S(t)] = 0. Furthermore, S(t) satisfies the isometry

EL[(S(t))2] = EL[(L(1))2]‖ft (·)‖L2(R), t ∈ R,

the covariance function of process S is given by

�̃(s, t) = cov(S(s), S(t)) = EL[(L(1))2]
∫
R

ft (u)fs(u)du, s, t ∈ R,

and the characteristic function of S(t1), . . . , S(tm) for t1 < · · · < tm and m ∈ N is
given by

EL

⎡
⎣exp

⎛
⎝i

m∑
j=1

θjS(tj )

⎞
⎠

⎤
⎦ = exp

⎛
⎝∫

R

ψ

⎛
⎝ m∑

j=1

θjftj (s)

⎞
⎠ ds

⎞
⎠ ,

for θj ∈ R, j = 1, . . . , m, where

ψ(u) =
∫
R

(eiux − 1 − iux)ν(dx), u ∈ R,

and ν is the Lévy measure of L.

From (3) we can see that the covariance function of Ld is given by

EL(Ld
t Ld

s ) = 1

2
V 2

d

(
|t |2d+1 + |s|2d+1 − |t − s|2d+1

)
, t, s ∈ R, (5)

where V 2
d = E(L2

1)

2�(2d+2) sin(π(d+1/2))
. Up to a scaling constant, this is the covariance of

a fractional Brownian motion.
The fractional Lévy process Ld defined by (3) has the following properties (see

[18] for their proofs).

• For any β ∈ (0, d), the sample paths of Ld are a.s. β- Hölder continuous.

• Ld is a process with stationary increments and symmetric, i.e. {Ld−t }t∈R (d)=
{−Ld

t }t∈R.

• Ld cannot be self-similar. However, Ld is asymptotically self-similar with pa-
rameter 0 < d < 0.5, i.e.

lim
c→∞

{
Ld

ct

cd

}
t∈R

(d)=
{
Bd

t

}
t∈R ,

where the equality is in the sense of finite-dimensional distributions and B =
{Bd

t }t∈R is a fractional Brownian motion of index d .
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• For h > 0, the covariance between two increments Ld
t+h − Ld

t and Ld
s+h − Ld

s ,
where s + h ≤ t and t − s = nh is

δd(n) = V 2
d h2d+1

[
(n + 1)2d+1 + (n − 1)2d+1 − 2n2d+1

]
= V 2

d d(2d + 1)h2d+1n2d−1 + O(n2d−2), n → ∞. (6)

• The increments of Ld exhibit long memory in the sense that for d > 0, we have

∞∑
n=1

δd(n) = ∞.

In the following, we recall two results from the reference [18] concerning to stochastic
integrals with respect to fractional Lévy process.

Let L1(R) and L2(R) be the spaces of integrable and square integrable real func-
tions, respectively, and H the completion of L1(R) ∩ L2(R) with respect to the
norm ‖g‖2

H = EL[(L(1))2] ∫
R
(I d−g)2(u)du, where (I d−g) denotes the right-sided

Riemann–Liouville fractional integral defined by

(I d−g)(x) = 1

�(d)

∫ ∞

x

g(t)(t − x)d−1dt.

Lemma 2. If g ∈ H , then∫
R

g(s)dLd
s =

∫
R

(I d−g)(s)dLs,

where the equality is in the L2 sense.

The next second-order property of the stochastic integral with respect to fLp will
be a key tool in this article.

Lemma 3. If |f |, |g| ∈ H , then

EL

[∫
R

f (s)dLd
s

∫
R

g(s)dLd
s

]
= Cd

∫
R

∫
R

f (t)g(s)|t − s|2d−1dsdt,

where

Cd = �(1 − 2d)E[L2
1]

�(d)�(1 − d)
. (7)

The following result from Ref. [11] establishes the solution of the Langevin equa-
tion driven by a fractional Lévy process.

Theorem 1. Let Ld be an fLp, d ∈ (0, 1/2) and λ > 0. Then the unique stationary
pathwise solution of the Langevin equation

dXd,λ(t) = λXd,λ(t)dt + dLd
t

is given a.s. by

Xd,λ(t) =
∫ t

−∞
eλ(t−u)dLd(u), t ∈ R. (8)

This process is called the fractional Lévy Ornstein–Uhlenbeck processes (fLOUp).
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3 Ornstein–Uhlenbeck process with random coefficient

In this section, we study the fractional Lévy Ornstein–Uhlenbeck processes (fLOUp)
with random coefficients. First, we establish the existence of the solution, and then
some properties of the process are shown.

We consider the fractional Lévy Ornstein–Uhlenbeck process V d = {V d(t), t ∈
R} given as the solution of

dV d(t) = λV d(t)dt + dLd(t), t ∈ R, (9)

where Ld is an fLp with d ∈ (0, 1/2) and defined on (�L,FL,PL); and the co-
efficient λ is a random variable defined on the probability space (�λ,Fλ,Pλ) and
independent of Ld . We assume that −λ follows a Gamma distribution with parame-
ters 1 − h and α, i.e. −λ ∼ �(1 − h, α) with h ∈ (0, 1) and α > 0.

We denote by P the product probability measure on � = �L × �λ and EL,
Eλ, E denote the expectation with respect to the probability measure PL, Pλ and P,
respectively.

From Theorem 1, the SDE given by (9) has the explicit solution

V d(t) =
∫ t

−∞
eλ(t−u)dLd(u), t ∈ R, (10)

where the initial condition is given by

V d(0) =
∫ 0

−∞
e−λudLd(u).

By Lemma 2, we can get

V d(t) = 1

�(d)

∫
R

∫ t

−∞
eλ(t−v)(v − u)d−1+ dvdL(u), t ∈ R.

We will prove that for every ωλ ∈ �λ, the process V d is well defined in L2(�L).
In fact, by Lemma 3 we have that for Cd = �(1−2d)

�(d)�(1−d)
EL[(L(1))2]

EL[(V d(t))2] = Cd

∫ t

−∞

∫ t

−∞
eλ(t−u)eλ(t−v)|u − v|2d−1dudv

= Cd

∫ ∞

0

∫ ∞

0
eλ(u+v)|u − v|2d−1dudv

= 2Cd

∫ ∞

0

∫ u

0
eλ(u+v)(u − v)2d−1dvdu

= 2Cd

∫ ∞

0
e2λu

∫ u

0
e−λvv2d−1dvdu

= 2Cd

∫ ∞

0
e−λvv2d−1

∫ ∞

v

e2λududv

= −Cd

λ

∫ ∞

0
eλvv2d−1dv = Cd

(−λ)2d+1 �(2d). (11)
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Remark 1. For c �= 0, by (11) we have that EL[(V d(ct))2] = Cd

(−λ)2d+1 �(2d). Hence

the processes V d is not self-similar.

Lemma 4. The process V d (for fixed ωλ ∈ �λ) is stationary, i.e. for b > 0 and
t1 < · · · < tn, with n ∈ N

(V d(t1 + b), . . . , V d(tn + b))
(d)= (V d(t1), . . . , V

d(tn)),

where
(d)= means equality in the sense of finite-dimensional distributions.

Proof. For b > 0, u1, . . . , un and −∞ < t1 < · · · < tn, n ∈ R, by the stationarity
of the increments of Ld we get

n∑
i=1

uiV
d(ti + b) =

n∑
i=1

ui

∫ ti+b

−∞
eλ(ti+b−u)dLd(u)

(d)=
n∑

i=1

ui

∫ ti

−∞
eλ(ti−u)dLd(u)

=
n∑

i=1

uiV
d(ti).

We will provide a spectral representation of the process V d , given by (10), based
on the results from [19, 21] already used in Ref. [20] to construct a long memory
process based on a CARMA process driven by a Lévy processes.

Let L = {L(t)}t∈R be a two sided square integrable Lévy process withEL[L(1)]=
0 and EL[(L(1))2] = �L, then there exists a random orthogonal measure �L with
spectral measure FL such that EL[�L(�)] = 0 for any bounded Borel set �,

FL(dt) = �L

2π
dt.

Also, the random measure �L is uniquely determined by

�L([a, b)) =
∫
R

e−iαa − e−iαb

2πiα
L(dα), (12)

for all −∞ < a < b < ∞. Moreover,

L(t) =
∫
R

eiαt − 1

iα
�L(dα), t ∈ R.

Hence, for any function f ∈ L2(C),∫
R

f (α)�L(dα) = 1

2π

∫
R

∫
R

e−iαtf (α)dαL(dt) = 1√
2π

∫
R

f̂ (t)L(dt), (13)∫
R

f̂ (t)L(dt) =
∫
R

∫
R

eiαt f̂ (t)dt�L(dα) = √
2π

∫
R

f (α)�L(dα), (14)

where

f̂ (t) = 1√
2π

∫
R

e−iαtf (α)dα and f (α) = 1√
2π

∫
R

eiαt f̂ (t)dα.
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Lemma 5. Let V d be an fLpOU with arandom coefficient, given by (10). Then the
spectral representation of V d is

V d(t) =
∫
R

eitα 1

iα − λ
�M(dα), t ∈ R, (15)

where

�M([a, b]) =
∫
R

e−ias − e−ibs

2πis
dLd(s).

Proof. By Theorem 2.8 in [19], we know that

Ld(t) =
∫
R

(eiαt − 1)(iα)−(d+1)�L(dα), t ∈ R.

Furthermore, following the proof of Theorem 2.8, Remark 2.9 and equality (2.31) in
the same reference, we can obtain

V d(t) =
∫
R

eλ(t−u)1(−∞,t)(u)dLd(u)

=
∫
R

∫
R

eiαueλ(t−u)1(−∞,t)(u)du�M(dα)

=
∫
R

eitα 1

iα − λ
�M(dα).

Thus, the result is achieved.

Corollary 1. With almost no major effort, we can obtain, by Remark 2.9 in [19], that

V d(t) =
∫
R

eitα 1

iα − λ
(iα)−d�L(dα), t ∈ R.

4 Gamma mixed fractional Lévy Ornstein–Uhlenbeck process

In this section, first, we will study a process defined by the aggregation of independent
fLOUp with random coefficient λ such that −λ ∼ �(1 − h, α) (see Section 3). Then
we study its limit process, which we call Gamma mixed fractional Lévy Ornstein–
Uhlenbeck process. Some properties of this limit process are given, namely, we give
the characteristic function of the finite-dimensional distributions of the process, we
determine its covariance, stationarity and long memory property; and finally, we an-
alyze the asymptotic behavior with respect to the parameter α, and prove that this
process will tend to a fractional Lévy process when α goes to ∞.

4.1 Aggregated fractional Lévy Ornstein–Uhlenbeck process

Consider a sequence of fLOUp with random coefficients V d
k = (V d

k (t), t ∈ R),
k ≥ 1, given by

V d
k (t) =

∫ t

−∞
eλk(t−u)dLd(u), t ∈ R, k ≥ 1, (16)
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where Ld is an fLp with d ∈ (0, 1/2) defined on (�L,FL,PL). The random vari-
ables λk are assumed independent and identically distributed defined on the proba-
bility space (�λ,Fλ,Pλ), and for k ≥ 1 we assume that −λk follows the Gamma
distribution with parameters 1 − h and α, i.e. −λk ∼ �(1 − h, α) with h ∈ (0, 1) and
α > 0. Furthermore, we also assume that the random variables (λk)k≥1 are indepen-
dent of Ld .

The m-aggregated fractional Lévy Ornstein–Uhlenbeck processs Zd
m = (Zd

m(t),
t ∈ R) is defined by

Zd
m(t) = 1

m

m∑
k=1

V d
k (t), (17)

for m ≥ 1 and d ∈ (0, 1/2).

Lemma 6. For all m ≥ 1, the m-aggregated fractional Lévy Ornstein–Uhlenbeck
processs Zd

m is stationary and

EL[(Zd
m(t))2] = Cd

m2 2�(2d)

m∑
k=1

m∑
j=1

1

−(λk + λj )(−λk)2d
,

where Cd is given by (7).

Proof. The stationarity follows by Lemma 4.
From Lemma 3 and the change of variables ũ = t − u and ṽ = t − v, we can see

EL[(Zd
m(t))2]

= Cd

m2

∫ t

−∞

∫ t

−∞

m∑
k=1

m∑
j=1

eλk(t−u)eλj (t−v)|u − v|2d−1dvdu

= Cd

m2

m∑
k=1

m∑
j=1

∫ ∞

0

∫ ∞

0
eλku+λj v|u − v|2d−1dvdu

= Cd

m2

m∑
k=1

m∑
j=1

(∫ ∞

0

∫ u

0
eλku+λj v(u − v)2d−1dvdu

+
∫ ∞

0

∫ ∞

u

eλku+λj v(v − u)2d−1dvdu

)
EL[(Zd

m(t))2]

= Cd

m2

m∑
k=1

m∑
j=1

(∫ ∞

0
e(λk+λj )u

∫ u

0
e−λj vv2d−1dvdu

+
∫ ∞

0
e(λk+λj )u

∫ ∞

0
eλj vv2d−1dvdu

)

= Cd

m2

m∑
k=1

m∑
j=1

(∫ ∞

0
eλj vv2d−1

∫ ∞

v

e(λk+λj )ududv

+
∫ ∞

0
eλj vv2d−1

∫ ∞

0
e(λk+λj )ududv

)
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= Cd

m2

m∑
k=1

m∑
j=1

1

−(λk + λj )

(∫ ∞

0
eλkvv2d−1dv +

∫ ∞

0
eλj vv2d−1dv

)

= Cd

m2 �(2d)

m∑
k=1

m∑
j=1

1

−(λk + λj )

(
1

(−λk)2d
+ 1

(−λj )2d

)

= Cd

m2 2�(2d)

m∑
k=1

m∑
j=1

1

−(λk + λj )(−λk)2d
.

4.2 Limit of m-aggregated fractional Lévy Ornstein–Uhlenbeck process

By (10) we can see that Zd
m can be written as

Zd
m(t) =

∫ t

−∞
1

m

m∑
k=1

eλk(t−u)dLd(u)

=
∫ t

−∞
fm(t − u)dLd(u). (18)

Moreover, by the law of large numbers we get

1

m

m∑
k=1

eλk(t−u) → Eλ

[
eλ1(t−u)

]
=

(
α

α + t − u

)1−h

, (19)

as m → ∞, where the convergence is Pλ-almost surely.
Due to the previous result, a natural candidate to be the limit of the m-aggregated

fractional Lévy Ornstein–Uhlenbeck process is the process Zd = (Zd(t), t ∈ R)

given by

Zd(t) :=
∫ t

−∞

(
α

α + t − u

)1−h

dLd(u)

=
∫ t

−∞
g(t − u)dLd(u), (20)

where g(t) = ( α
α+t

)1−h. We refer to this process as the Gamma mixed fractional
Lévy Ornstein–Uhlenbeck process.

We can see that the process Zd belongs to L2(�L) if 0 < h < 1/2 − d . Actually,
by Lemma 3 and applying consecutively the change of variables ũ = t −u, ṽ = t −v,
x = u/α, y = v/α, r = 1/(1 + x), s = 1/(1 + y), and û = r/s, we obtain

EL

[
(Zd(t))2

]
= Cd

∫ t

−∞

∫ t

−∞
g(t − u)g(t − v)|u − v|2d−1dvdu

= Cd

∫ ∞

0

∫ ∞

0
g(u)g(v)|u − v|2d−1dvdu

= Cd

∫ ∞

0

∫ ∞

0

(
1 + u

α

)h−1 (
1 + v

α

)h−1 |u − v|2d−1dvdu
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= Cdα2d+1
∫ ∞

0

∫ ∞

0
(1 + x)h−1 (1 + y)h−1 |x − y|2d−1dydx

= Cdα2d+1
∫ 1

0

∫ 1

0
r1−hs1−h(rs)−2

∣∣∣∣1

r
− 1

s

∣∣∣∣
2d−1

drds

= 2Cdα2d+1
∫ 1

0
s−1−h

∫ s

0
r−h−2d

(
1 − r

s

)2d−1
drds

= 2Cdα2d+1
∫ 1

0
s−2(h+d)

∫ 1

0
û−h−2d(1 − û)2d−1dûds

= 2Cdα2d+1

1 − 2(h + d)
B(1 − h − 2d, 2d) = Cα,h,d .

Clearly, the condition 0 < h < 1/2 − d emerges from the last line.
Now, we present the main result of this section related to the limit of the aggre-

gated fractional Lévy Ornstein–Uhlenbeck process. This result is analogous to that
obtained in Theorem 3 in [10] for the m-aggregated fractional Ornstein–Uhlenbeck
processes.

Theorem 2. Let Zd
m and Zd be defined by (17) and (20), respectively. Assume that

0 < h < 1/2 − d . Then Pλ-a.s., for every t ∈ R,

Zd
m(t) −→ Zd(t) in L2(�L), (21)

and for a, b ∈ R,

Zd
m −→ Zd weakly in C[a, b] under PL, (22)

as m → ∞.

Proof. To establish weak convergence, we prove, first, the convergence of finite-
dimensional distributions of Zd

m to those of Zd , and second, that the sequence {Zd
m}

is tight.
By Lemma 3, (18) and (20), we have

EL[(Zd
m(t) − Zd(t))2]

= EL

⎡
⎣(∫ t

−∞

[
1

m

m∑
k=1

eλk(t−u) −
(

α

α + t − u

)h
]

dLd(u)

)2
⎤
⎦

= EL

[(∫ t

−∞
[fm(t − u) − g(t − u)] dLd(u)

)2
]

= Cd

∫ ∞

0

∫ ∞

0
(fm(u) − g(u))(fm(v) − g(v)))|u − v|2d−1dudv.

Now, following the lines of the proof of Theorem 3 (first part) in [10] and the fact that
0 < h < 1/2 − d , we can obtain that Pλ-a.s.

lim
m→∞EL[(Zd

m(t) − Zd(t))2] = 0.
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Hence we have the Pλ-a.s. convergence of the sequence (Zd
m)m≥1 in L2(�L) for

each t ∈ R, which in turn implies the Pλ-a.s. convergence of the finite-dimensional
distributions.

It remains to prove the tightness. Due to Theorem 12.3 in [5], it is sufficient to
show that EL[(Zd

m(t) − Zd
m(s))2] ≤ C(t − s)1+ρ for a ≤ s < t ≤ b, where ρ > 0

and C may depend upon parameters.
From Lemma 6 and (18)

Zd
m(t) − Zd

m(s)
(d)= Zd

m(t − s) − Zd
m(0)

(d)= 1

m

m∑
k=1

(eλk(t−s) − 1)

∫ 0

−∞
e−uλkdLd(u)

+
∫ t−s

0

1

m

m∑
k=1

eλk(t−s−u)dLd(u)

= I1 + I2.

Clearly, this implies

EL[(Zd
m(t) − Zd

m(s))2] ≤ 2EL[I 2
1 ] + 2EL[I 2

2 ].
We will estimate every term separately. In fact, by Lemma 3 we have

EL[I 2
1 ] = 1

m2

m∑
k1,k2=1

(eλk1 (t−s) − 1)(eλk2 (t−s) − 1)

× EL

[∫ 0

−∞
e−uλk1 dLd(u)

∫ 0

−∞
e−vλk1 dLd(v)

]

= 1

m2

m∑
k1,k2=1

(eλk1 (t−s) − 1)(eλk2 (t−s) − 1)

×
∫ 0

−∞

∫ 0

−∞
e−uλk1 e−vλk1 |u − v|2d−1dudv.

By arguments similar to those of [9], the law of large number and the fact that 0 <

h < 1/2 − d ,
EL[I 2

1 ] ≤ Cd,λ(t − s)2. (23)

With respect to I2, by Lemma 3 and making the change of variable z = u− v, we
get

EL[I 2
2 ] = EL

[∫ t−s

0

1

m

m∑
k=1

eλk(t−s−u)dLd(u) ·
∫ t−s

0

1

m

m∑
k=1

eλk(t−s−v)dLd(v)

]

= Cd

1

m2

m∑
k1,k2=1

∫ t−s

0

∫ t−s

0
eλk1 (t−s−u)eλk2 (t−s−v)|u − v|2d−1dudv
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= Cd

1

m2

m∑
k1,k2=1

eλk1 (t−s)eλk2 (t−s)

∫ t−s

0

∫ t−s

0
e−λk1 u−λk2v|u − v|2d−1dvdu

= 2Cd

1

m2

m∑
k1,k2=1

eλk1 (t−s)eλk2 (t−s)

∫ t−s

0
e−λk1 u

∫ u

0
e−λk2v(u − v)2d−1dvdu

= 2Cd

1

m2

m∑
k1,k2=1

eλk1 (t−s)eλk2 (t−s)

∫ t−s

0
e−u(λk1+λk2 )

∫ u

0
eλk2 zz2d−1dvdu

≤ 2Cd

1

m2

m∑
k1,k2=1

eλk1 (t−s)eλk2 (t−s)

∫ t−s

0
e−λk1 uu2ddu.

≤ 2Cd(t − s)1+2d 1

m

m∑
k2=1

eλk2 (t−s).

Then, using the fact that −λk ∼ �(1 − h, α) with h ∈ (0, 1) and α > 0, and t > s,
we obtain

EL[I 2
2 ] ≤ 2Cd(t − s)1+2d . (24)

Inequalities (23) and (24) imply

EL[(Zd
m(t) − Zd

m(s))2] ≤ CT,d,λ,α,h(t − s)1+2d . (25)

Hence, based on Kolmogorov’s continuity theorem, for all m ≥ 1, Zd
m has a contin-

uous modification, thereby fulfilling inequality (25) as well. Moreover, by (25) and
Theorem 12.3 in [5], we obtain the tightness of the family {Zd

m}.
By (21) and (25),

EL[(Zd(t) − Zd(s))2] ≤ C(t − s)1+2d ,

then there is a continuous modification of Zd . Finally, the weak convergence is ob-
tained from Theorem 8.2 in [5].

4.3 Properties of Zd

Now we study some properties of the limit process Zd .

Lemma 7. Let Zd be given by (20) with h ∈ (0, 1/2 − d). Then the characteristic
function of Zd(t1), Z

d(t2), . . . , Z
d(tm) with t1 < t2 < · · · < tm is given by

EL

⎡
⎣exp

⎛
⎝i

m∑
j=1

θjZ
d(tj )

⎞
⎠

⎤
⎦ = exp

⎛
⎝∫

R

ψ

⎡
⎣ m∑

j=1

θj f̃tj ,h,α(s)

⎤
⎦ ds

⎞
⎠ ,

where

f̃tj ,h,α(s) = d

∫ tj

−∞

(
α

α + tj − v

)1−h

(v − s)d−1+ dv.

Proof. The result follows by Lemma 1 in Section 2 (also see Proposition 3.3 in [15])
and the fact that Zd belongs to L2(�L) for h ∈ (0, 1/2 − d).
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Lemma 8. Let Zd be given by (20) with h ∈ (0, 1/2 − d). Then Zd is a stationary
process with long memory.

Proof. By (20), the stationarity of the increments of Ld and making the change of
variable ũ = u − b, we can get, for every b > 0,

Zd(t + b) =
∫ t+b

−∞

(
α

α + t + b − u

)1−h

dLd(u)

(d)=
∫ t

−∞

(
α

α + t − u

)1−h

dLd(u) = Zd(t).

With respect to the long memory property we will study the nonsummability of the
covariance. Since Zd is a stationary process, we have

EL[Zd(a)Zd(t + a)] = EL[Zd(0)Zd(t)].
Then Lemma 3 implies

EL[Zd(0)Zd(t)] = Cd

∫ 0

−∞

∫ t

−∞

(
α

α + t − u

)1−h (
α

α − v

)1−h

|u − v|2d−1dudv

= Cdα2−2h

∫ 0

−∞

∫ t

−∞
(α + t − u)h−1 (α − v)h−1 |u − v|2d−1dudv

= Cdα2−2ht2h+2d−1

×
∫ 0

−∞

∫ 1

−∞

(α

t
+ 1 − y

)h−1 (α

t
− x

)h−1 |x − y|2d−1dxdy

∼ Cdα2−2ht2h+2d−1

×
∫ 0

−∞

∫ 1

−∞
(1 − y)h−1 (−x)h−1 |x − y|2d−1dxdy

= Cd,α,ht
2h+2d−1.

Then the long memory property is obtain by just noticing that h + d > 0.

Remark 2. Even if d = 0, the long memory property is satisfied if h > 0.

Remark 3. We can see that the process Zd has the property

ρ(t)

ρ(0)
∼ Cα,h,d t2h+2d−1, with ρ(t) = EL[Zd(0)Zd(t)],

i.e. the process is almost self-similar (see [13, page 13] for details).

With respect to the behavior of the process Zd with respect to the parameter α we
have the following result.

Lemma 9. Let t ≥ 0 and d ∈ (0, 1/2). Then the random variable

Zd(t) − Zd(0)

converges in L2(�L) as α → ∞ to the random variable Ld(t).
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Proof. By (20) we obtain

Zd(t) − Zd(0)

=
∫ t

−∞

(
α

α + t − u

)1−h

dLd(u) −
∫ 0

−∞

(
α

α − u

)1−h

dLd(u)

=
∫
R

[(
α

α + t − u

)1−h

1(−∞,t)(u) −
(

α

α − u

)1−h

1(−∞,0)(u)

]
dLd(u)

=
∫
R

ft,d(u)dLd(u).

Clearly, ft,d converges to 1(0,t) as α → ∞. Therefore, our candidate for a limit will
be Ld(t). In fact, by Lemma 3

EL[(Zd(t) − Zd(0) − Ld(t))2]

= Cd

∫
R

∫
R

[(
α

α + t − u

)1−h

1(−∞,t)(u) −
(

α

α − u

)1−h

1(−∞,0)(u) − 1(0,t)(u)

]

×
[(

α

α + t − v

)1−h

1(−∞,t)(v) −
(

α

α − v

)1−h

1(−∞,0)(v) − 1(0,t)(v)

]

× |u − v|2d−1dudv.

Finally, the result is obtained by means of the dominated convergence theorem.

If α → 0, then we get the following result.

Lemma 10. Let t ≥ 0 and let us define Z̃d(t) by

Z̃d(t) = αh−1
∫ t

0
Zd(s)ds.

Then, as α → 0, the random variable Z̃d(t) converges in L2(�L) to the random
variable Yd(t) given by

Yd(t) := 1

h

∫
R

[(t − u)h+ − (−u)h+]dLd(u). (26)

Proof. By (20), we get

Z̃d(t) = αh−1
∫ t

0

∫ s

−∞

(
α

α + s − u

)1−h

dLd(u)ds

=
∫ t

0

∫ s

−∞
(α + s − u)h−1 dLd(u)ds

=
∫ t

−∞

∫ t

v∨0
(α + s − v)h−1 dsdLd(v)

= 1

h

∫ t

−∞

[
(α + t − v)h − (α + (v ∨ 0) − v)h

]
dLd(v)
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= 1

h

∫ t

−∞
rα,t,h(v)dLd(v).

We can see that rα,t,h(v) converges to (t − v)h+ − (−v)h+ for every v as α → 0.
Therefore, the result is obtained by arguments similar to the proof of Lemma 9.

Lemma 11. Let Yd = (Y d(t))t≥0 with Yd(t) be given by (26). Then Yd is a station-
ary process with

EL[(Y d(t))2] = t2h+2d+1
EL[(Y d(1))2].

Proof. By (26) and taking b > 0,

Yd(t + b) − Yd(b) = 1

h

∫
R

[(t + b − u)h+ − (b − u)h+]dLd(u)

(d)= 1

h

∫
R

[(t − v)h+ − (−v)h+]dLd(v) = Yd(t),

here we have used the change of variable v = u−b and the fact that Ld is a stationary
increment process. With respect to the second part of the statement, we have that

EL[(Y d(t))2]

= 1

h2 Cd

∫
R

∫
R

((t − u)h+ − (−u)h+)((t − v)h+ − (−v)h+)|u − v|2d−1dvdu

= t2h+2d+1 1

h2 Cd

×
∫
R

∫
R

((1 − u)h+ − (−u)h+)((1 − v)h+ − (−v)h+)|u − v|2d−1dvdu

= t2h+2d+1
EL[(Y d(1))2].

Remark 4. Let us note that we can write

Ỹ d (t) =
∫
R

mt(u)dLd(u),

where mt(u) = 1
h
[(t − u)h+ − (−u)h+]. Then Proposition 11 and Theorem 3.1 in [15]

imply

Yd(t) =
∫
R

mt(u)dLd(u) =
∫
R

(I
g
−m)(u)dL(s),

where (see Section 3 in the same reference for details)

(I
g
−m)(u) :=

∫ ∞

u

mt (v)g′(v − u)dv =
∫
R

mt(v)g′(v − u)dv

and g(u) = (u)d+. This implies that Yd can be seen as a type of generalized fractional
Lévy process (see [15] for details).
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Fig. 1. Sample paths of a fractional Lévy process for different values of d. The approximation
is made using the Riemann–Stieltjes approximation with the driving Lévy process being a
stationary Gamma process with a = 5 and b = 15 (a = 1 and b = 2)

5 Simulations

In this section we are interested in obtaining some simulations related to the pro-
cess Zd . First, let us recall how we can simulate a fractional Lévy process.

In order to simulate sample paths of Ld we use the Riemann–Stieltjes approxi-
mation, that is, we approximate Ld in the following way (see [18] for details):

Ld(t) ≈ 1

�(d + 1)

⎛
⎝ 0∑

k=−n2

[(
t − k

n

)d

−
(

− k

n

)d
] (

L(k+1)/n − Lk/n

)

+
�nt�∑
k=0

(
t − k

n

)d (
L(k+1)/n − Lk/n

)⎞⎠ .

Remark 5. An optimal form of simulating Ld is shown in [25]. Here, we have used
the Riemann–Stieltjes approximation. This approximation can also be optimal if we
take an = n2−d/1−d . An advantage of this procedure is that a simulatation of in-
crements of a Lévy process is relatively easy (see [8] for details about this simula-
tion).
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Fig. 2. Sample paths Zd of the limit process for different α and h = 0.12 (a = 1, b = 2)

Fig. 3. Sample paths Zd of the limit process for different α and h = 0.12 (a = 5, b = 5)
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To simulate the process Zd , we will use the Riemann type approximation

Zd,(n)(t) = α1−h

�nt�∑
k=−an

(
α + t − k

n

)h−1 (
Ld

(
k + 1

n

)
− Ld

(
k

n

))
, t ∈ R,

where we take an = n2 as in [18].
It can seen that the processes Ld and Zd inherit some of the features of the un-

derlying Lévy process (see [8] for details on the simulation of Lévy processes). Also,
as expected, the paths of the process are more irregular; this is due the lack of the
Gaussian part in the underlying Lévy proces in the definition of Ld and Zd . Finally,
the processes appear to be more regular for α small.
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