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Abstract The existence and uniqueness of the global positive solution are proved for the
system of stochastic differential equations describing a two-species Lotka–Volterra mutualism
model disturbed by white noise, centered and noncentered Poisson noises. For the considered
system, sufficient conditions of stochastic ultimate boundedness, stochastic permanence, non-
persistence and strong persistence in the mean are obtained.
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1 Introduction

In nature we can find many examples where the interaction of two or more species is
to the advantage of all. These population systems are described by mutualism mod-
els. The simplest two-spices Lotka–Volterra mutualism model and its properties are
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presented in J.D. Murray [1]. A deterministic nonautonomous two-species Lotka–
Volterra mutualism model is described by the system

dxi(t) = xi(t)
(
ri(t) − aii(t)xi(t) + aij (t)xj (t)

)
dt, i, j = 1, 2, i �= j,

where xi(t), i = 1, 2, denote population densities of each species at time t , ri(t) > 0,
i = 1, 2, denote the intrinsic growth rates of species xi(t), i = 1, 2. The carrying
capacities of species xi(t) at time t are ri(t)/aii(t) > 0, i = 1, 2, and coefficients
aij (t) > 0, i, j = 1, 2, i �= j , describe the influence of the j -th population upon the
i-th population at time t .

In the real world population systems are often subject to environmental noise.
Therefore, it is natural to describe such systems by the systems of stochastic differen-
tial equations. In the paper by Peiyan Xia et al. [2], the authors consider the stochastic
nonautonomous two-species Lotka–Volterra mutualism model of the form

dxi(t) = xi(t)
[(

ri(t) − aii(t)xi(t) + aij (t)xj (t)
)
dt + σi(t)dwi(t)

]
, (1)

i, j = 1, 2, i �= j , where ri(t), aij (t), σi(t), i = 1, 2, are all positive, continuous and
bounded functions on [0,+∞), and w1(t), w2(t) are mutually independent Wiener
processes. The authors show that the stochastic system (1) has a unique global (no
explosion in a finite time) solution for any positive initial value and that the p-th mo-
ment of the solution is bounded. The sufficient conditions for stochastic permanence,
persistence in the mean, nonpersistence and global attractivity of the system (1) are
obtained.

In the paper by L. Shaikhet and A. Korobeinikov [3], the authors studied the
asymptotic properties of Lotka–Volterra competition and mutualism models driven
by autonomous system of stochastic differential equations

dx(t) = a1x(t)
(
1 − b11x(t) − b12y(t)

)
dt + σ1x(t)dw1(t),

dy(t) = a2y(t)
(
1 − b21x(t) − b22y(t)

)
dt + σ2y(t)dw2(t).

Here, a1 and a2 are per capita rates of growth of populations x(t) and y(t), re-
spectively, b11, b12, b21 and b22 reflect the intraspecific competition (b11 > 0 and
b22 > 0) and interspecies interaction (b12 and b21). For competing or symbiotic
species, a1 > 0, a2 > 0. For competing populations b12 > 0, b21 > 0, and for
symbiotic populations b12 < 0, b21 < 0. The authors showed that solutions to the
considered system with positive initial conditions converge to a certain compact re-
gion in the model phase space and oscillate around this region thereafter. So, the so-
lutions of the considered stochastic system are bounded and the system is persistent.
The necessary condition of the species extinction is obtained, sufficient conditions of
the extinction of competing species, for which b12 > 0, b21 > 0 are derived, but suf-
ficient conditions of the extinction of symbiotic species, for which b12 < 0, b21 < 0,
were not obtained in this paper.

If we want to take into account abrupt environmental perturbations, such as epi-
demics, fires, earthquakes, etc. in the considered models, we must introduce Poisson
noises into the population models for describing such discontinuous systems. In the
paper by Y. Gao and X. Zhang [4], the authors considered a two-dimensional au-
tonomous stochastic Lotka–Volterra mutualistic parasite–host system with “white”
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noise and “small” jumps, corresponding to the centered Poisson measure

dxi(t) = xi(t)
[(

(−1)i−1ri − aiixi(t) + aij xj (t)
)
dt + σidwi(t)

]
+

∫
Z

γi(z)xi

(
t−

)
Ñ(dt, dz), i, j = 1, 2, i �= j,

where xi(t
−), i = 1, 2, are the left limits of xi(t), i = 1, 2, wi(t), i = 1, 2, are mutu-

ally independent standard one-dimensional Wiener processes, Ñ(t, A) = N(t, A) −
tλ(A), A is a Borel set in R, λ(Z) < +∞, N(t, A) is the Poisson measure, which is
independent of wi(t), i = 1, 2, ri > 0, aij > 0, σi > 0, i, j = 1, 2. The sufficient
conditions for extinction and persistent in the mean of species xi(t), i = 1, 2, are ob-
tained. Then, the authors established the sufficient criteria for stability in distribution
of the considered parasite–host system.

In the paper by J. Bao et al. [5], the authors studied the stochastic competitive
multi-species Lotka–Volterra model under the action of the one-dimensional “white”
noise and jumps, generated by a centered Poisson measure. The authors proved that
the model admits a unique global positive solution, which has a uniformly finite p-th
moment with p > 0. Stochastic ultimate boundedness, existence of invariant measure
and long-term behaviors of solutions are discussed.

The paper by Q. Liu et al. [6] is devoted to the study of two-species mutualism
model driven by the system of the autonomous stochastic differential equations

dxi(t) = xi(t)

[(
ri − bixi(t)

Ki + κixj (t)
− εixi(t)

)
dt + αiidwii(t) + αij xi(t)dwij (t)

]

+
∫
Z

γi(z)xi

(
t−

)
Ñ(dt, dz), i, j = 1, 2, i �= j,

where wij (t), i, j = 1, 2, are mutually independent standard one-dimensional Wiener
processes, independent of N(t, A). It is shown that the positive solution of the con-
sidered system is stochastically ultimate bounded. Then authors establish sufficient
and necessary conditions for the stochastic permanence and extinction of the system.

The impact of centered and noncentered Poisson noises to the stochastic nonau-
tonomous mutualism model is studied in the paper by Olg. Borysenko and O. Bory-
senko [7]. The authors considered the system of nonautonomous stochastic differen-
tial equations

dxi(t) = xi(t)

[
ai1(t) + ai2(t)x3−i (t)

1 + x3−i (t)
− ci(t)xi(t)

]
dt + σi(t)xi(t)dwi(t)

+
∫
R

γi(t, z)xi(t)ν̃1(dt, dz) +
∫
R

δi(t, z)xi(t)ν2(dt, dz),

xi(0) = xi0 > 0, i = 1, 2,

where wi(t), i = 1, 2, are mutually independent standard one-dimensional Wiener
processes, ν̃1(t, A) = ν1(t, A)−t
1(A), νi(t, A), i = 1, 2, are mutually independent
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Poisson measures, which are independent of wi(t), i = 1, 2, E[νi(t, A)] = t
i(A),
i = 1, 2, 
i(A), i = 1, 2, are a finite measures on the Borel sets A in R. The ex-
istence and uniqueness of the global positive solution to the considered system is
proved. The authors obtain sufficient conditions of stochastic ultimate boundedness,
stochastic permanence, nonpersistence in the mean, strong persistence in the mean
and extinction of the solution to the considered system.

In this paper, we consider the nonautonomous stochastic mutualism model with
jumps generated by centered and noncentered Poisson measures. So, the novelty of
considered model is following: we investigate the nonautonomous stochastic Lotka–
Volterra model and we take into account not only “small” jumps, corresponding to
the centered Poisson measure but also the “large” jumps, corresponding to the non-
centered Poisson measure. This model is driven by the system of nonautonomous
stochastic differential equations

dxi(t) = xi(t)
[(

ri(t) − aii(t)xi(t) + aij (t)xj (t)
)
dt + σi(t)dwi(t)

]
+

∫
R

γi(t, z)xi

(
t−

)
ν̃1(dt, dz) +

∫
R

δi(t, z)xi

(
t−

)
ν2(dt, dz),

xi(0) = xi0 > 0, i, j = 1, 2, i �= j, (2)

where xi(t
−), i = 1, 2, are the left limits of xi(t), i = 1, 2, wi(t), i = 1, 2, are mutu-

ally independent standard one-dimensional Wiener processes, ν̃1(t, A) = ν1(t, A) −
t
1(A), νi(t, A), i = 1, 2, are mutually independent Poisson measures, which are
independent of wi(t), i = 1, 2, E[νi(t, A)] = t
i(A), i = 1, 2, 
i(A), i = 1, 2, are
finite measures on the Borel sets A in R.

As far as we know, there are no papers devoted to the dynamical properties of the
stochastic mutualism model (2), even in the case of a centered Poisson noise.

In the following we will use the notations X(t) = (x1(t), x2(t)), X0 = (x10, x20),

|X(t)| =
√

x2
1(t) + x2

2(t), R2+ = {X ∈ R
2 : x1 > 0, x2 > 0},

βi(t) = σ 2
i (t)

2
+

∫
R

[
γi(t, z) − ln

(
1 + γi(t, z)

)]

1(dz)

−
∫
R

ln
(
1 + δi(t, z)

)]
2(dz), (3)

i = 1, 2. For the bounded, continuous function f (t), t ∈ [0,+∞), let us denote

f sup = sup
t≥0

f (t), f inf = inf
t≥0

f (t).

We prove that system (2) has a unique, positive, global solution for any positive
initial value and this solution is stochastically ultimate bounded. The sufficient con-
ditions for stochastic permanence, nonpersistence and strong persistence in the mean
of the system are derived.

The rest of this paper is organized as follows. In Section 2, we prove the exis-
tence of the unique global positive solution to the system (2). In Section 3, we prove
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the stochastic ultimate boundedness of the solution to the system (2). In Section 4,
we obtain conditions under which the solution to the system (2) is stochastically per-
manent and strong persistence in the mean. In Section 5 the sufficient conditions for
nonpersistence of the system (2) are obtained.

2 Existence of a global solution

Let (�,F , P) be a probability space, wi(t), i = 1, 2, t ≥ 0, are mutually independent
standard one-dimensional Wiener processes on (�,F , P), and νi(t, A), i = 1, 2, are
mutually independent Poisson measures defined on (�,F , P) independent of wi(t),
i = 1, 2. Here E[νi(t, A)] = t
i(A), i = 1, 2, ν̃i (t, A) = νi(t, A) − t
i(A),
i = 1, 2, 
i(·), i = 1, 2, are finite measures on the Borel sets in R. On the probabil-
ity space (�,F , P) we consider an increasing, right continuous family of complete
sub-σ -algebras {Ft }t≥0, where Ft = σ {wi(s), νi(s, A), s ≤ t, i = 1, 2}.

We need the following assumption.

Assumption 1. It is assumed, that aij (t) > 0, i, j = 1, 2, ri(t) > 0, σi(t), i = 1, 2,
are bounded, continuous on t functions, γi(t, z), δi(t, z), i = 1, 2, are continuous on
t functions, ln(1 + γi(t, z)), ln(1 + δi(t, z)), i = 1, 2, are bounded, 
i(R) < ∞,
i = 1, 2 and a

sup
12 a

sup
21 < ainf

11 ainf
22 .

In what follows we will assume that Assumption 1 holds.

Theorem 1. There exists a unique global solution X(t) to the system (2) for any
initial value X(0) = X0 > 0, and P{X(t) ∈ R

2+} = 1.

Proof. The idea of proof is taken from [2]. The coefficients of the system (2) are
locally Lipschitz continuous. Therefore, for any initial value X0 there exists a unique
local solution X(t) = (x1(t), x2(t)) on [0, τe), where supt<τe

|X(t)| = +∞ (cf.
Theorem 6, p. 246, [8]). To show this solution is global, we need to show that τe =
+∞ a.s. Let n0 ∈ N be sufficiently large for xi0 ∈ [1/n0, n0], i = 1, 2. For any
n ≥ n0 we define the stopping time

τn = inf

{
t ∈ [0, τe) : X(t) /∈

(
1

n
, n

)
×

(
1

n
, n

)}
.

Clearly, τn is increasing as n → +∞. Set τ∞ = limn→∞ τn, whence τ∞ ≤ τe a.s. If
we prove that τ∞ = ∞ a.s., then τe = ∞ a.s. and X(t) ∈ R

2+ a.s. for all t ∈ [0,+∞).
So, we need to show that τ∞ = ∞ a.s. If this statement is false, there are constants
T > 0 and ε ∈ (0, 1), such that P{τ∞ < T } > ε. Hence, there is n1 ≥ n0 such that

P{τn < T } > ε, ∀n ≥ n1. (4)

For the nonnegative function

V (X) =
2∑

i=1

bi(xi − 1 − ln xi), b1 = a
sup
21 , b2 = a

sup
12 , xi > 0, i = 1, 2,
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by the Itô formula, system (2), and definition of the stochastic integral with respect to
the noncentered Poisson measure ν2(dt, dz) we derive

V
(
X(T ∧ τn)

) = V (X0) +
T ∧τn∫
0

L
(
x1(t), x2(t), t

)
dt

+
2∑

i=1

bi

{ T ∧τn∫
0

(
xi(t) − 1

)
σi(t)dwi(t) +

T ∧τn∫
0

∫
R

[
γi(t, z)xi

(
t−

)
− ln

(
1 + γi(t, z)

)]
ν̃1(dt, dz)

+
T ∧τn∫
0

∫
R

[
δi(t, z)xi

(
t−

) − ln
(
1 + δi(t, z)

)]
ν̃2(dt, dz)

}
, (5)

where

L(x1, x2, t) =
2∑

i=1

bi

[
(xi − 1)

(
ri(t) − aii(t)xi

) + βi(t) + xi

∫
R

δi(t, z)
2(dz)

]

+ b1(x1 − 1)a12(t)x2 + b2(x2 − 1)a21(t)x1.

Using the inequality x1x2 ≤ εx2
1 + x2

2/(4ε), ε > 0, we derive the estimate

L(x1, x2, t) ≤ x2
1

(
2a

sup
21 a

sup
12 ε − a

sup
21 ainf

11

)
+ x1

[(
r

sup
1 + a

sup
11 + δ̃

sup
1 
2(R)

)
a

sup
21 − a

sup
12 ainf

21

] − a
sup
21

(
r inf

1 − β
sup
1

)
+ x2

2

(
a

sup
21 a

sup
12

2ε
− a

sup
12 ainf

22

)
+ x2

[(
r

sup
2 + a

sup
22 + δ̃

sup
2 
2(R)

)
a

sup
12

− a
sup
21 ainf

12

]
− a

sup
12

(
r inf

2 − β
sup
2

)
, δ̃

sup
i = sup

t≥0,z∈R
δi(t, z), i = 1, 2.

From the condition a
sup
12 a

sup
21 < ainf

11 ainf
22 we can choose ε such that

a
sup
21

2ainf
22

< ε <
ainf

11

2a
sup
12

.

Therefore, we obtain

2a
sup
21 a

sup
12 ε − a

sup
21 ainf

11 < 0,
a

sup
21 a

sup
12

2ε
− a

sup
12 ainf

22 < 0,

and under conditions of the theorem, there is a constant K > 0, such that L(x1, x2, t)

≤ K . Hence, from (5) we have

V
(
X(T ∧ τn)

) ≤ V (X0) + K(T ∧ τn) +
2∑

i=1

bi

⎧⎨
⎩

T ∧τn∫
0

(
xi(t) − 1

)
σi(t)dwi(t)
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+
T ∧τn∫
0

∫
R

[
γi(t, z)xi

(
t−

) − ln
(
1 + γi(t, z)

)]
ν̃1(dt, dz)

+
T ∧τn∫
0

∫
R

[
δi(t, z)xi

(
t−

) − ln
(
1 + δi(t, z)

)]
ν̃2(dt, dz)

⎫⎬
⎭ .

Whence taking expectations, we have

E
[
V

(
X(T ∧ τn)

)] ≤ V (X0) + KT. (6)

Set �n = {ω ∈ � : τn ≤ T } for n ≥ n1. Then by (4), P(�n) = P{τn ≤ t} > ε,
∀n ≥ n1. Note that for every ω ∈ �n there is some i such that xi(τn, ω) equals either
n or 1/n. So,

V
(
X(τn)

) ≥ min{b1, b2} min

{
n − 1 − ln n,

1

n
− 1 + ln n

}
.

It then follows from (6) that

V (X0) + KT ≥ E
[
1�nV

(
X(τn)

)]
≥ ε min{b1, b2} min

{
n − 1 − ln n,

1

n
− 1 + ln n

}
,

where 1�n is the indicator function of �n. Letting n → ∞ leads to the contradiction
∞ > V (X0) + KT = ∞. This completes the proof of the theorem.

3 Stochastically ultimate boundedness

Definition 1 ([9]). The solution X(t) to the system (2) is said to be stochastically
ultimately bounded, if for any ε ∈ (0, 1), there is a positive constant χ = χ(ε) > 0,
such that for any initial value X0 ∈ R

2+, the solution to the system (2) has the property
that

lim sup
t→∞

P
{|X(t)| > χ

}
< ε.

Theorem 2. The solution X(t) to the system (2) is stochastically ultimately bounded
for any initial value X0 ∈ R

2+.

Proof. Let τn be the stopping time defined in Theorem 1. Applying the Itô formula to
the process V (t, xi(t)) = etx

p
i (t), i = 1, 2, p > 0, we obtain for i, j = 1, 2, i �= j ,

V
(
t ∧ τn, xi(t ∧ τn)

) = x
p
i0 +

t∧τn∫
0

esx
p
i (s)

{
1 + p

[
ri(s) − aii(s)xi(s)

+ aij (s)xj (s)
] + p(p − 1)σ 2

i (s)

2
+

∫
R

[(
1 + γi(s, z)

)p − 1 − pγi(s, z)
]

1(dz)
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+
∫
R

[(
1 + δi(s, z)

)p − 1
]

2(dz)

}
ds +

t∧τn∫
0

pesx
p
i (s)σi(s)dwi(s)

+
t∧τn∫
0

∫
R

esx
p
i

(
s−)[(

1 + γi(s, z)
)p − 1

]
ν̃1(ds, dz)

+
t∧τn∫
0

∫
R

esx
p
i

(
s−)[(

1 + δi(s, z)
)p − 1

]
ν̃2(ds, dz).

(7)

Under Assumption 1 there are constants Ki(p) > 0, i = 1, 2, such that

esx
p
i

{
1 + p

[
ri(s) − aii(s)xi + aij (s)xj

] + p(p − 1)σ 2
i (s)

2
+

+
∫
R

[(
1 + γi(s, z)

)p − 1 − pγi(s, z)
]

1(dz) +

∫
R

[(
1 + δi(s, z)

)p − 1
]

2(dz)

⎫⎬
⎭

≤ es
(
x

p
i Ki(p) − painf

ii x
p+1
i + pa

sup
ij x

p
i xj

)
.

(8)

From (7) and (8) for the process G(t, x1(t), x2(t)) = c1V (t, x1(t)) + c2V (t, x2(t)),
where ci > 0, i = 1, 2, some constants, which we will define later, we have

G
(
t ∧ τn, x1(t ∧ τn), x2(t ∧ τn)

) ≤ c1x
p

10 + c2x
p

20 +
t∧τn∫
0

es
[
c1

(
x

p

1 (s)K1(p)

− painf
11 x

p+1
1 (s) + pa

sup
12 x

p

1 (s)x2(s)
)

+ c2

(
x

p

2 (s)K2(p) − painf
22 x

p+1
2 (s)

+ pa
sup
21 x1(s)x

p
2 (s)

)]
ds +

2∑
i=1

ci

⎧⎨
⎩

t∧τn∫
0

pesx
p
i (s)σi(s)dwi(s)

+
t∧τn∫
0

∫
R

esx
p
i

(
s−)[(

1 + γi(s, z)
)p − 1

]
ν̃1(ds, dz)

+
t∧τn∫
0

∫
R

esx
p
i

(
s−)[(

1 + δi(s, z)
)p − 1

]
ν̃2(ds, dz)

⎫⎬
⎭ = c1x

p

10 + c2x
p

20

+
t∧τn∫
0

esL
(
x1(s), x2(s)

)
ds +

2∑
i=1

ciS
stoch
i , (9)

where Sstoch
i , i = 1, 2, are the sums of corresponding stochastic integrals in (9). From
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the Young inequality we have

x
p

1 x2 ≤ θ1x
p+1
1 + 1

p + 1

1

θ
p

1

(
p

p + 1

)p

x
p+1
2 , θ1 = p

p + 1

ainf
11

a
sup
12

,

x1x
p

2 ≤ θ2x
p+1
2 + 1

p + 1

1

θ
p

2

(
p

p + 1

)p

x
p+1
1 , θ2 = p

p + 1

ainf
22

a
sup
21

.

(10)

So, applying (10), we derive the estimate

L(x1, x2) ≤
2∑

i=1

ciKi(p)x
p
i − x

p+1
1

[
c1p

(
ainf

11 − a
sup
12 θ1

)

− c2a
sup
21

1

θ
p

2

(
p

p + 1

)p+1]
− x

p+1
2

[
c2p

(
ainf

22 − a
sup
21 θ2

)

− c1a
sup
12

1

θ
p
1

(
p

p + 1

)p+1]
.

Using the condition a
sup
12 a

sup
21 < ainf

11 ainf
22 , we can choose constants ci, i = 1, 2, such

that

a
sup
21

ainf
11

(
a

sup
21

ainf
22

)p

<
c1

c2
<

ainf
22

a
sup
12

(
ainf

11

a
sup
12

)p

. (11)

Due to (11) we have

c1p
(
ainf

11 − a
sup
12 θ1

) − c2a
sup
21

1

θ
p
2

(
p

p + 1

)p+1

> 0,

c2p
(
ainf

22 − a
sup
21 θ2

) − c1a
sup
12

1

θ
p
1

(
p

p + 1

)p+1

> 0.

Therefore, there is a constant C(p) > 0 such that L(x1, x2) ≤ C(p). So, taking the
expectation in (9), we obtain

E
[
G

(
t ∧ τn, x1(t ∧ τn), x2(t ∧ τn)

)] ≤ c1x
p

10 + c2x
p

20 + C(p)et .

Letting n → ∞ leads to the estimate

etE
[
c1x

p
1 (t) + c2x

p
2 (t)

] ≤ c1x
p
10 + c2x

p
20 + C(p)et .

So, we have

lim sup
t→∞

E
[
c1x

p
1 (t) + c2x

p
2 (t)

] ≤ C(p). (12)

For X = (x1, x2) ∈ R
2+ we have |X|p ≤ 2p/2

min(c1,c2)
(c1x

p
1 +c2x

p
2 ), therefore, from (12)

lim supt→∞ E[|X(t)|p] ≤ M(p) = 2p/2

min(c1,c2)
C(p). Let χ > (M(p)/ε)1/p , p > 0,

∀ε ∈ (0, 1). Then applying the Chebyshev inequality yields

lim sup
t→∞

P
{|X(t)| > χ

} ≤ 1

χp
lim sup
t→∞

E
[|X(t)|p] ≤ M(p)

χp
< ε.

The proof is completed.
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4 Stochastic permanence and strong persistence in the mean

Definition 2 ([10]). The solution X(t) to the system (2) is said to be stochastically
permanent if for any ε > 0, there are positive constants H = H(ε), h = h(ε) such
that for i = 1, 2

lim inf
t→∞ P

{
xi(t) ≤ H

} ≥ 1 − ε, lim inf
t→∞ P

{
xi(t) ≥ h

} ≥ 1 − ε,

for any inial value X0 ∈ R
2+.

Theorem 3. If mini=1,2 inft≥0(ri(t) − βi(t)) > 0, where ri(t) and βi(t) are defined
respectively in (2) and (3), then the solution X(t) to the system (2) with the initial
condition X0 ∈ R

2+ is stochastically permanent.

Proof. Using the same arguments as in the corresponding part of the proof of The-
orem 3 ([7]) and the condition mini=1,2 inft≥0(ri(t) − βi(t)) > 0, we can conclude
that for sufficiently small 0 < θ < 1 and sufficiently small λ = λ(θ) > 0 there exists
a constant K > 0 such that

d
[
eλt

(
1 + Ui(t)

)θ ] ≤ Keλtθdt − θeλt
(
1 + Ui(t)

)θ−1
Ui(t)σi(t)dwi(t)

+ eλt

∫
R

[(
1 + Ui(t

−)

1 + γi(t, z)

)θ

− (
1 + Ui

(
t−

))θ
]
ν̃1(dt, dz)

+ eλt

∫
R

[(
1 + Ui(t

−)

1 + δi(t, z)

)θ

− (
1 + Ui

(
t−

))θ
]
ν̃2(dt, dz), (13)

where Ui(t) = 1/xi(t), i = 1, 2. Let τn be the stopping time defined in Theorem 1.
Then by integrating (13) and taking the expectation we have

E
[
eλ(t∧τn)

(
1 + Ui(t ∧ τn)

)θ ] ≤
(

1 + 1

xi0

)θ

+ θ

λ
K

(
eλt − 1

)
.

If n → ∞, then we obtain the estimate

etE
[(

1 + Ui(t)
)θ ] ≤

(
1 + 1

xi0

)θ

+ θ

λ
K

(
eλt − 1

)
. (14)

From (14) we have

lim sup
t→∞

E

[(
1

xi(t)

)θ]
= lim sup

t→∞
E
[
Uθ

i (t)
]

≤ lim sup
t→∞

E
[(

1 + Ui(t)
)θ ] ≤ θK

λ
, i = 1, 2. (15)

From (12) and (15) by the Chebyshev inequality we can derive, that for arbitrary
ε ∈ (0, 1), there are positive constants H = H(ε) and h = h(ε) such that

lim inf
t→∞ P

{
xi(t) ≤ H

} ≥ 1 − ε, lim inf
t→∞ P

{
xi(t) ≥ h

} ≥ 1 − ε, i = 1, 2.

The proof is completed.



Stochastic Lotka–Volterra mutualism model with jumps 299

Definition 3 ([11]). The solution X(t) = (x1(t), x2(t)), t ≥ 0, to the system (2) is
said to be strongly persistent in the mean if for every initial data X0 > 0, we have

lim inft→∞ 1
t

t∫
0

xi(s)ds > 0 a.s., i = 1, 2.

Theorem 4. If p̄i∗ = lim inft→∞ 1
t

∫ t

0 pi(s)ds > 0, i = 1, 2, where pi(s) = ri(s) −
βi(s), i = 1, 2, ri(t) and βi(t) are defined respectively in (2) and (3), then

lim inf
t→∞

1

t

t∫
0

xi(s)ds ≥ p̄i∗
a

sup
ii

.

Therefore, the solution X(t) to the system (2) with the initial condition X0 ∈ R
2+ will

be strongly persistent in the mean.

Proof. For the system (2) by the Itô formula, we have for i, j = 1, 2, i �= j ,

ln xi(t) = ln xi0 +
t∫

0

pi(s)ds −
t∫

0

aii(s)xi(s)ds +
t∫

0

aij (s)xj (s)ds

+
t∫

0

σi(s)dwi(s) +
t∫

0

∫
R

ln
(
1 + γi(s, z)

)
ν̃1(ds, dz)

+
t∫

0

∫
R

ln
(
1 + δi(s, z)

)
ν̃2(ds, dz) ≥ ln xi0 +

t∫
0

pi(s)ds − a
sup
ii

t∫
0

xi(s)ds + Mi(t),

(16)

where the martingales

Mi(t) =
t∫

0

σi(s)dwi(s) +
t∫

0

∫
R

ln
(
1 + γi(s, z)

)
ν̃1(ds, dz)

+
t∫

0

∫
R

ln
(
1 + δi(s, z)

)
ν̃2(ds, dz), i = 1, 2, (17)

have quadratic variation

〈Mi,Mi〉(t) =
t∫

0

σ 2
i (s)ds +

t∫
0

∫
R

ln2(1 + γi(s, z)
)

1(dz)ds

+
t∫

0

∫
R

ln2(1 + δi(s, z)
)

2(dz)ds ≤ Kt, i = 1, 2.

The rest of the proof is the same as the proof of Theorem 6 in [7]. The proof is
completed.
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5 Nonpersistence

Definition 4 ([2]). System (2) is said to be nonpersistent, if there are positive con-
stants q1, q2 such that limt→∞ x

q1
1 (t)x

q2
2 (t) = 0 a.s.

Theorem 5. If ainf
22 p̄∗

1 + a
sup
12 p̄∗

2 < 0, or ainf
11 p̄∗

2 + a
sup
21 p̄∗

1 < 0, where

p̄∗
i = lim sup

t→∞
1

t

∫ t

0
pi(s)ds, pi(t) = ri(t) − βi(t), i = 1, 2,

ri(t) and βi(t) are defined respectively in (2) and (3), then the system (2) with the
initial condition X0 ∈ R

2+ will be nonpersistent.

Proof. We prove the assertion of the theorem under condition ainf
22 p̄∗

1 + a
sup
12 p̄∗

2 < 0.
The proof of the theorem under condition ainf

11 p̄∗
2 + a

sup
21 p̄∗

1 < 0 is similar. From the
equality in (16), we have

ainf
22 ln x1(t) + a

sup
12 ln x2(t) = ainf

22 ln x10 + a
sup
12 ln x20 + ainf

22

t∫
0

p1(s)ds

+ a
sup
12

t∫
0

p2(s)ds − ainf
22

t∫
0

a11(s)x1(s)ds + a
sup
12

t∫
0

a21(s)x1(s)ds

+ ainf
22

t∫
0

a12(s)x2(s)ds − a
sup
12

t∫
0

a22(s)x2(s)ds + ainf
22 M1(t) + a

sup
12 M2(t)

≤ ainf
22 ln x10 + a

sup
12 ln x20 + ainf

22

t∫
0

p1(s)ds + a
sup
12

t∫
0

p2(s)ds

+ ainf
22 M1(t) + a

sup
12 M2(t), (18)

where the martingales Mi(t), i = 1, 2, are defined in (17). Then the strong law of
large numbers for local martingales ([12]) yields limt→∞ Mi(t)/t = 0, i = 1, 2, a.s.
Therefore, from (18) we have

lim sup
t→∞

1

t

[
ainf

22 ln x1(t) + a
sup
12 ln x2(t)

] ≤ ainf
22 p̄∗

1 + a
sup
12 p̄∗

2 < 0 a.s.

So, limt→∞ x
ainf

22
1 (t)x

a
sup
12

2 (t) = 0 a.s. The proof is completed.
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