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1 Introduction

Several extensions of the exponential distribution are available in the stochastic lit-
erature. They are very useful in different practical areas including engineering sci-
ences, meteorology and hydrology, communications and telecommunications, ener-
getics, chemical and metallurgical industry, epidemiology, insurance and banking,
etc. One of the most important is the Weibull distribution firstly introduced in [18].
We refer also to the books [11–13] for some relatively new results. The original Kies
distribution, introduced firstly in [7], appears as the fractional linear transformation
t = y

y+1 ⇔ y = t
1−t

in the Weibull distribution. This way its domain turns from the
positive real half-line (Weibull) to the interval (0, 1). Analogously, the transformation
t = by+a

y+1 ⇔ y = t−a
b−t

, a < b, leads to the Kies distribution on the interval (a, b) –
we refer to [8, 14, 19].

Later many authors turn to different modifications of these distributions. Refs.
[1, 3, 9, 10] use a power transformation to define new families. Some composite
distributions are proposed in [3], see also [1, 4, 16, 20].

Alternatively, we propose a polynomial transformation to be used before the frac-
tional linear one leading to the Kies distribution. The importance of the arising dis-
tribution is due to the following property. It turns out that if ξ1, ξ2, . . . , ξn are inde-
pendent Kies distributed random variables defined on one and the same domain, then
the new distribution describes the random variable min{ξ1, ξ2, . . . , ξn} – this moti-
vates us to entitled it min-Kies distribution. Generally said, this distribution is more
situated to the left part of its domain. We examine its properties taking a special atten-
tion on the probability density function (PDF, hereafter). It exhibits a quite variable
behavior due to the polynomial component – the initial point can be zero, finite, or
infinitely large; many peaks are possible, etc. We discuss also the cumulative distri-
bution function (CDF), its complement (CCDF), the quantile function (QF), some
expectations, etc. We study also the tail behavior using some risk measures arising in
the financial mathematics – Value-at-Risk (VaR), Average-Value-at-Risk (AVaR), and
Expectile-Based-Risk-Measure (ERM). Another important characteristic we examine
is the so-called saturation in the sense of the Hausdorff distance. In fact, it measures
the speed of occurrence of the random variables – a property which determines a large
usefulness in many real life fields. We derive some semiclosed form formulas.

Analogously to the min-Kies distribution we define the max-Kies one – it de-
scribes the random variable max{ξ1, ξ2, . . . , ξn}. We explore its properties using some
duality arguments. They are based on a transformation which symmetrically changes
the left and right distribution’s parts, thus the mass of a max-Kies distribution is more
positioned in the right part of the domain.

Finally, we present some numerical results using a real statistical data for the
S&P500 financial index on the one side, and for the unemployment insurance issues
on the other. Note that we can describe a left-skewed sample as well as a right-skewed
one by the min- or max-Kies distributions.

The paper is structured as follows. We present the base we use later in Section 2.
The properties of the min-Kies distribution are examined in Section 3. Its tail behavior
and the Hausdorff saturation are investigated in Sections 4 and 5. The max-Kies dis-
tribution is considered in Section 6. The numerical results are provided in Section 7.
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2 Preliminaries

The following notations shall be used hereafter: an uppercae letter for the cumulative
distribution function of a distribution, the overlined letter for the complementary cu-
mulative distribution function, the corresponding lowercase letter for the probability
density function, and the letter Q for the quantile function. Thus if F(t) is the CDF,
then F(t), f (t), and QF (t) are the corresponding CCDF, PDF, and QF, respectively.

Let a < b, λ, and β be positive constants. The Kies distribution on the domain
(a, b) is defined through its CDF as

H(t) = 1 − exp

(
−λ

(
t − a

b − t

)β)
. (1)

Hence, its CCDF is

H(t) = exp

(
−λ

(
t − a

b − t

)β)
.

The PDF can be obtained differentiating CDF (1) as

h(t) = λβ(b − a)
(t − a)β−1

(b − t)β+1 exp

(
−λ

(
t − a

b − t

)β)
. (2)

To characterize this distribution we need to obtain the shape of PDF (2). We do this
in the proposition below following the approach used in Proposition 2.1 from [20].

Proposition 2.1. Let us consider the Kies distribution with parameter set {a, b, λ, β}.
The right endpoint of the PDF is zero, h(b) = 0. Let the function γ (t) be defined as

γ (t) = λβ(b − a)

(
t − a

b − t

)β

− 2t − β(b − a) + a + b. (3)

The following statements characterize the whole PDF.

1. If β = 1, then the left endpoint of the PDF is h(a) = λ
b−a

. If λ ≥ 2, then the
PDF is a decreasing function. Otherwise, if λ < 2, then the PDF increases in
the interval (a, b − λb−a

2 ) and decreases for t ∈ (b − λb−a
2 , b).

2. If β > 1, then h(a) = 0. Function (3) has a unique root in the interval (a, b)

and the PDF increases before it and decreases after.

3. If β < 1, then h(a) = ∞. We need the derivative of function (3) which is

γ ′(t) = λβ2(b − a)2 (t − a)β−1

(b − t)β+1 − 2. (4)

Let t be defined as

t = (a + b) − β(b − a)

2
. (5)

If γ ′(t) ≥ 0, then the PDF is a decreasing function. Otherwise, if γ ′(t) < 0,
then derivative (4) has two roots in the interval (a, b) which we denote by
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t1 < t2. If γ (t2) ≥ 0, then the PDF is again a decreasing function. Finally,
if γ (t2) < 0, then the function (3) has two roots in the interval (a, b) too; let
us denote them by t1 < t2. The PDF decreases for t ∈ (a, t1), increases for
t ∈ (t1, t2), and again decreases for t ∈ (t2, b). Thus it has a local minimum at
t1 and a local maximum at t2.

Proof. The PDF values at the endpoints can be derived directly from formula (2). We
have to obtain the PDF shape. Suppose first that β = 1. The PDF and its derivative
are

h(t) = λ
b − a

(b − t)2 exp

(
−λ

t − a

b − t

)
,

h′(t) = λ
b − a

(b − t)4 exp

(
−λ

t − a

b − t

)[−2t + 2b − λ(b − a)
]
.

The PDF shape follows the form of the derivative h′(t).
Suppose that β �= 1. The PDF can be written as

h(t) = e−η(t)η′(t), (6)

where the function η(t) is

η(t) = λ

(
t − a

b − t

)β

.

The derivative of the PDF can be written as

h′(t) = e−η(t)
(
η′′(t) − (

η′(t)
)2)

,

where the derivatives of the function η(t) are

η′(t) = λβ(b − a)
(t − a)β−1

(b − t)β+1 ,

η′′(t) = λβ(b − a)
(t − a)β−2

(b − t)β+2

[
2t + β(b − a) − (a + b)

]
.

Some calculations lead to

h′(t) = −e−η(t)λβ(b − a)
(t − a)β−2

(b − t)β+2 γ (t), (7)

where the function γ (t) is defined in equation (3). Its derivative is given by for-
mula (4). If β > 1, then the derivative γ ′(t) increases from a negative to a positive
value in the interval (a, b). Therefore the function γ (t) starts from the negative value
γ (a) = (b − a)(1 − β) decreases to a negative minimum and increases to infinity.
Therefore, derivative (7) has unique root in the interval (a, b) and hence PDF (6)
increases before it and decreases after.

Suppose now that β < 1. The second derivative of function (3) is

γ ′′(t) = λβ2(b − a)2 (t − a)β−2

(b − t)β+2

[
2t + β(b − a) − (a + b)

]
.
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Let t be defined as in (5). Note that t ∈ (a, b) since β < 1. The second derivative
γ ′′(t) is negative for t ∈ (a, t) and positive for t ∈ (t, b) and thus the derivative γ ′(t)
decreases for t ∈ (a, t) and increases for t ∈ (t, b). If γ ′(t) ≥ 0, then γ ′(t) > 0 for
every t ∈ (a, b). Hence γ (t) is an increasing function and thus it is positive because
γ (a) = (1 − β)(b − a) > 0. Therefore PDF (6) is a decreasing function.

Suppose that γ ′(t) < 0 and therefore the equation γ ′(t) = 0 has two roots t1 < t2
and γ ′(t) > 0 for t ∈ {(a, t1) ∪ (t2, b)} and γ ′(t) < 0 for t ∈ (t1, t2, ). If γ (t2) ≥ 0,
then the function γ (t) is positive in the whole interval (a, b) and thus PDF (6) is again
a decreasing function. Finally, if γ (t2) < 0, then the equation γ (t) = 0 has two roots
t1 < t2 in the interval (a, b) and γ (t) > 0 for t ∈ {(a, t1) ∪ (t2, b)} and γ (t) < 0 for
t ∈ (t1, t2). This confirms the shape of PDF (6).

3 Min-Kies distribution

We establish the min-Kies family through the following definitions.

Definition 3.1. Let the set P consist of all polynomial style functions defined on the
interval x ∈ (0,∞),

P(x; λ, β) =
n∑

i=1

λix
βi , (8)

where n is a positive integer, λ and β are positive vectors of dimension n, and β1 >

β2 > · · · > βn > 0.
We shall denote by p(x; λ, β) the inverse function of (8) in the domain (0,∞).

Note that it is well defined since function (8) increases from P(0; λ, β) = 0 to
P(∞; λ, β) = ∞.

The following lemma holds.

Lemma 3.2. Let the functions A(·) and α(·) be defined as

A(t) = P

(
t − a

b − t
; λ, β

)
,

α(y) = a + bp(y; λ, β)

1 + p(y; λ, β)
,

(9)

where the functions P(·; λ, β) and p(·; λ, β) are the same as in Definition 3.1. Then
α(y) is the inverse function of A(t), on the domains y ∈ (0,∞) and t ∈ (a, b).

Proof. Note first that the inverse function really exists, because the functions t−a
b−t

and
P(x) are increasing. We have only to check A(α(y)) = y:

A
(
α(y)

) = P

( a+bp(y;λ,β)
1+p(y;λ,β)

− a

b − a+bp(y;λ,β)
1+p(y;λ,β)

; λ, β

)
= P

(
p(y; λ, β)

) = y.

Definition 3.3. Let a and b be constants such that 0 ≤ a < b, and n, λ, and β satisfy
the conditions of Definition 3.1. We define a new distribution named min-Kies via its
CDF as

F(t) = 1 − exp

(
−P

(
t − a

b − t
; λ, β

))
≡ 1 − exp

(
−

n∑
i=1

λi

(
t − a

b − t

)βi
)

. (10)
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Alternatively, we may define the new Kies style distribution as its CCDF.

Corollary 3.4. The CCDF of the min-Kies distribution can be obtained as the product
of the corresponding original Kies CCDFs:

F(t) =
n∏

i=1

H(t; a, b, λi, βi),

where H(t; a, b, λi, βi) are the CCDFs of the original Kies distributions with param-
eters {a, b, λi, βi}.

The following theorem discloses the theoretical importance of the min-Kies dis-
tribution and motivates its name.

Theorem 3.5. Let P1(·) and P2(·) belong to the set P – note that this set is closed
w.r.t. the sum-operator. Let us denote by ξP a min-Kies distributed random vari-
able with underlying polynomial function P(·). The set of such independent random
variables is closed w.r.t. the min-operation in the sense that the random variables
min{ξP1 , ξP2} and ξP1+P2 are identically distributed.

Proof. We need to slightly modify the proof of the well known fact that the product of
the CDFs of two independent random variables is the CDF of their maximum. Using
the lower index to distinguish the distribution terms in Corollary 3.4, we derive

FP1+P2(t) = FP1(t)FP2(t)

= P(ξP1 > t)P(ξP2 > t)

= P(ξP1 > t)P(ξP2 > t | ξP1 > t)

= P(ξP1 > t, ξP2 > t)

= P
(
min{ξP1ξP2} > t

)
.

The corollary below gives the PDF of the min-Kies distribution.

Corollary 3.6. The probability density of the min-Kies distribution defined on the
interval (a, b) is

f (t) = exp

(
−P

(
t − a

b − t
; λ, β

))
P ′

(
t − a

b − t
; λ, β

)
b − a

(b − t)2

= exp

(
−

n∑
i=1

λi

(
t − a

b − t

)βi
)

b − a

(b − t)2

n∑
i=1

λiβi

(
t − a

b − t

)βi−1

= F(t)
b − a

(b − t)2

n∑
i=1

λiβi

(
t − a

b − t

)βi−1

. (11)

The behavior of the min-Kies PDF given in formulas (11) is more complicated
than the original one, it depends on all basic distributions. Hence, we cannot derive
closed form results analogous to Proposition 2.1. However, the following statements
hold.

Proposition 3.7. The right endpoint of PDF (11) is f (b) = 0. The following state-
ments hold for the left endpoint.
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1. If βn < 1, then f (a) = ∞.

2. If βn > 1, then f (a) = 0.

3. If βn = 1, then f (a) = λn

b−a
.

Let the function Y(y) be defined on the positive real half-line as

Y(y) = P ′′(y; λ, β)(1 + y) + 2P ′(y; λ, β) − (
P ′(y; λ, β)

)2
(1 + y) (12)

and its roots be y1 < y2 < · · · < yk for some integer k. The PDF has extrema at the

points tj = yj b+a

yj +1 . The characterization of these extrema is as follows.

1. If one of the following statements holds

• {βn > 1},
• {n = 1, β1 = 1, λ1 < 2},
• {n > 1, βn = 1, βn−1 < 2},
• {n > 1, βn = 1, βn−1 > 2, λn < 2},
• {n > 1, βn = 1, βn−1 = 2, λn ≤ 1 + √

1 + 2λn−1},
then the constant k is odd, the maxima are for the odd j ’s, the minima are for
the even ones, and the PDF is increasing at the point t = a.

2. On the opposite, if one of the following statements holds

• {βn < 1},
• {n = 1, β1 = 1, λ1 ≥ 2},
• {n > 1, βn = 1, βn−1 > 2, λn ≥ 2},
• {n > 1, βn = 1, βn−1 = 2, λn > 1 + √

1 + 2λn−1},
then k is even, the minima are for the odd j ’s, the maxima are for the even
ones, and the PDF is decreasing at the point t = a.

Proof. The results when n = 1 are proven in Proposition 2.1. Suppose now that
n > 1. We derive the PDF value at the left endpoint using the second presentation
from equations (11) and having in mind β1 > β2 > · · · > βn > 0. Let us turn to the
PDF shape. We derive the PDF’s derivative using the first statement from (11) as

f ′(t) = e−A(t)
(
A′′(t) − (

A′(t)
)2)

, (13)

where the function A(·) is defined in equation (9). Its derivatives are

A′(t) = b − a

(b − t)2 P ′
(

t − a

b − t
; λ, β

)
,

A′′(t) = (b − a)2

(b − t)4 P ′′
(

t − a

b − t
; λ, β

)
+ 2

b − a

(b − t)3 P ′
(

t − a

b − t
; λ, β

)
.
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Therefore

A′′(t) − (
A′(t)

)2

= b − a

(b − t)3

[
b − a

b − t
P ′′

(
t − a

b − t
; λ, β

)
+ 2P ′

(
t − a

b − t
; λ, β

)

− b − a

b − t

(
P ′

(
t − a

b − t
; λ, β

))2]
.

Changing the variables as y = t−a
b−t

, or equivalently t = yb+a
y+1 , we derive

A′′(t) − (
A′(t)

)2

= (y + 1)3

(b − a)2

[
(y + 1)P ′′(y; λ, β) + 2P ′(y; λ, β) − (y + 1)

(
P ′(y; λ, β)

)2]
.

Hence, derivative (13) can be written as

f ′(t) = e−P(y;λ,β) (y + 1)3

(b − a)2 Y(y),

where the function Y(·) is given by formula (12). Hence the min-Kies PDF has
extrema namely for the roots of function Y(·), y1, y2, . . . , yk , transformed to t1 =
y1b+a
y1+1 , t2 = y2b+a

y2+1 , . . . , tk = ykb+a
yk+1 . We have already proved that f (a) = ∞ when

βn < 1. Having in mind that f (b) = 0 we conclude that k is even, the minima are
for the odd j ’s, and maxima are for the even ones. Analogously, we obtain the PDF
shape when βn > 1 having in mind f (a) = 0 and f (b) = 0.

Suppose now that βn = 1. We need to find the value Y(0+) to obtain the PDF
behavior at the left endpoint t = a. Let us decompose the function P(y; λ, β) as

P(y; λ, β) = P1(y; λ, β) + P0(y; λ, β), where

P0(y) = λny,

P1(y) =
n−1∑
i=1

λiy
βi .

Hence, the value of the function Y(y) near the left endpoint y = 0 can be written as

Y
(
0+) = P ′′(0+; λ, β

) + 2P ′(0+; λ, β
) − (

P ′(0+; λ, β
))2

= P ′′
0

(
0+) + 2P ′

0

(
0+) − (

P ′
0

(
0+))2

+ P ′′
1

(
0+) + 2P ′

1

(
0+) − (

P ′
1

(
0+))2

− 2P ′
0

(
0+)

P ′
1

(
0+)

. (14)

We have P ′′
0 (0+) = 0 and P ′

0(0
+) = λn. Also, the inequalities β1 > · · · > βn−1 >

βn = 1 show P ′
1(0

+) = 0. Hence, equation (14) turns to

Y
(
0+) = 2λn − λ2

n + P ′′
1

(
0+)

.
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If βn−1 < 2, then P ′′
1 (0+) = +∞ and therefore Y ′′(0+) = +∞, too. Therefore

the PDF f (t) increases at its left-point t = a and thus the number of extrema k is odd
and the odd ones are maxima.

Otherwise, if βn−1 > 2, then P ′′
1 (0+) = 0 and hence Y(0+) = 2λn − λ2

n. If
λn < 2, then Y(0+) > 0 and the same reasoning as above leads to the identical
results. On the other hand, if λn ≥ 2, then Y(0+) ≤ 0 and hence PDF f (t) decreases
at the left-point t = a. Therefore k is even and the minima are with odd numbers.

It remains to investigate the case βn−1 = 2. Note that P ′′
1 (0+) = 2λn−1 neverthe-

less n = 2 or n > 2, because β1 > · · · > βn−1 > 2 when n > 2. Therefore

Y
(
0+) = 2λn−1 + 2λn − λ2

n. (15)

Considering formula (15) as a quadratic function w.r.t. λn we see that Y(0+) > 0
for y ∈ (0, 1 + √

1 + 2λn−1) and Y(0+) < 0 for y > 1 + √
1 + 2λn−1. The same

reasoning as above finishes the proof.

We present in Figure 1, in the blue curves, the PDFs of some min-Kies distri-
butions, and the corresponding parameters are reported in Table 1. The distribution
domain is assumed to be the interval (1, 3), i.e. a = 1 and b = 3. As we can see
they exhibit variable shapes. Some typical ones can be viewed in Figure 1a, where
we consider two-component distributions. The used parameters are λ1 = 1, λ2 = 2,
β1 = 2, and β2 ∈ {0.5, 1, 1.5}. Proposition 3.7 has a confirmation – the PDF’s left
endpoint is the infinity when β2 = 0.5, it is λ1

b−a
= 1 when β2 = 1, and it is zero

when β2 = 1.5. Some PDFs with many peaks are presented in Figure 1b.
Next we discuss the quantile function.

Proposition 3.8. Let y ∈ (0, 1). The y-quantile of the min-Kies distribution is

Q(y) = bp(− ln(1 − y); λ, β) + a

p(− ln(1 − y); λ, β) + 1
.

See Definition 3.1 for the meaning of the functions p(·) and P(·).
Proof. We have to prove F(Q(y)) = y:

F
(
Q(y)

) = 1 − exp

(
−P

(
Q(y) − a

b − Q(y)
; λ, β

))

= 1 − exp

(
−P

( bp(− ln(1−y);λ,β)+a
p(− ln(1−y);λ,β)+1 − a

b − bp(− ln(1−y);λ,β)+a
p(− ln(1−y);λ,β)+1

; λ, β

))

= 1 − exp
(−P

(
p
(− ln(1 − y); λ, β

); λ, β
))

= y.

An important property of the min-Kies distributions is their finite moments.

Corollary 3.9. The min-Kies distributed random variables have finite moments.

Proof. Let ξ be a min-Kies distributed random variable and let m ∈ N. Its m-th
moment can be obtained via integrating by parts as

E
[
ξm

] =
∫ b

a

tmdF (t) = 1 − m

∫ b

a

tm−1F(t)dt
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Fig. 1. Min- and max- Kies PDFs

and therefore they are finite.

Although the expectations cannot be derived in closed form, Lemma 3.2 allows
us to present a numerical approach. It is based on the following proposition.
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Table 1. Parameters

parameter (A1) (A2) (A3) (B1) (B2) (B3)
n 2 2 2 5 10 5
λ1 1 1 1 48.8656 3.8367 7.7266
λ2 2 2 2 33.4292 9.5941 0.8782
λ3 – – – 5.6038 2.2675 7.4407
λ4 – – – 2.9209 2.7862 0.5300
λ5 – – – 2.4441 6.3067 4.4290
λ6 – – – – 2.6047 –
λ7 – – – – 8.7562 –
λ8 – – – – 9.5910 –
λ9 – – – – 2.0228 –
λ10 – – – — 0.9302 –
β1 2 2 2 48.5290 41.8723 39.8993
β2 0.5 1 1.5 38.6619 37.1788 35.9901
β3 – – – 34.0970 34.0846 32.7791
β4 – – – 5.8855 31.9772 27.8533
β5 – – – 1.0243 29.3628 1.6168
β6 – – – – 26.4715 –
β7 – – – – 23.3149 –
β8 – – – – 16.1187 –
β9 – – – – 1.8369 –
β10 – – – – 0.8744 –

saturation, prime 0.3678 0.4806 0.5469 0.4753 0.5164 0.4891
saturation, dual 0.9611 0.9635 0.9655 0.9999 0.9999 0.9999

compl. sat., prime 0.9611 0.9635 0.9655 0.9999 0.9999 0.9999
compl. sat., dual 0.3678 0.4806 0.5469 0.4753 0.5164 0.4891

Proposition 3.10. Let ξ be a min-Kies distributed random variable and the function
α(·) be defined as in formulas (9). Let also the function μ(·) be such that E[μ(ξ)] <

∞. Under these assumptions the expectation E[μ(ξ)] can be derived as the Laplace
transform of the function μ ◦ α(y) ≡ μ(α(y)) taken at the point one.

Proof. Changing the variables as y = A(t) ⇔ t = α(y) – see formulas (9) – we
derive

E
[
μ(ξ)

] =
∫ b

a

(
μ(t) exp

(
−

n∑
i=1

λi

(
t − a

b − t

)βi
)

b − a

(b − t)2

n∑
i=1

λiβi

(
t − a

b − t

)βi−1)
dt

=
∫ b

a

μ(t)e−P( t−a
b−t

)d

(
P

(
t − a

b − t

))

=
∫ b

a

μ(t)e−A(t)dA(t)

=
∫ ∞

0
μ

(
α(y)

)
e−ydy.

This finishes the proof.

The following relation between the min-Kies distribution and the gamma function
stands.
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Proposition 3.11. Let the function A(·) be defined as in formulas (9). Then the
gamma function can be presented as the expectation

�(x) = E
[(

A(ξ)
)x−1]

,

where ξ is a min-Kies distributed random variable.

Proof. Applying Proposing 3.10 for the function μ(t) = (A(t))x−1, we derive

E
[
μ(ξ)

] =
∫ ∞

0
μ

(
α(y)

)
e−ydy

=
∫ ∞

0

(
A

(
α(y)

))x−1
e−ydy

=
∫ ∞

0
yx−1e−ydy = �(x).

4 Tail behavior

We investigate in this section the tail properties of the min-Kies distribution. We
shall present some results based on several risk measures arising from the financial
markets, namely, Value-at-Risk (VaR), Average-Value-at-Risk (AVaR), and Expectile-
Based-Risk-Measure (ERM), see Zaevski and Nedeltchev [21]. We also give a pre-
sentation of the mean residual life function (MRLF). Below we remind the definitions
of these measures.

Definition 4.1. Let ε ∈ (0, 0.5). The VaR, AVaR, ERM, and MRLF for an arbitrary
random variable ξ (for the MRLF and ERM we need a finite first or second moment,
respectively) are defined as follows.

1. The left VaR value at level ε is the quantile VaR(ε) = Q(ε). The right one is
VaR(ε) = Q(1 − ε).

2. The left and right AVaR values are

AVaR(ε) = 1

ε

∫ ε

0
VaR(u)du,

AVaR(ε) = 1

1 − ε

∫ 1

ε

VaR(u)du.

3. The ERM value is the solution w.r.t. the variable x of the equation

εE
[
(ξ − x)+

] = (1 − ε)E
[
(ξ − x)−

]
, (16)

where z+ and z− stand for max(z, 0) and max(−z, 0).

4. The MRLF is the conditional expectation

m(t) = E [ξ − t |ξ > t].
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Remark 4.2. In fact the original definition of the VaR is the opposite quantile. We
remove the minus sign since the domain of the Kies distribution is positioned on the
positive real half-line. The AVaR is derived by averaging all VaR’s below or above the
ε-quantiles.

The original definition of the expectile is the minimizer of the following quadratic
problem

ERM(ε) := arg min
x∈R

{
E

[
ε
(
(ξ − x)+

)2 + (1 − ε)
(
(ξ − x)−

)2]}
.

Simple calculations show that it achieves minimum for the solution of equation (16)
which is unique. Note that the expectile is well defined for random variables with a
finite second moment.

Definition 4.1 shows that VaR of the min-Kies distribution can be derived via
Proposition 3.8. Next two propositions discuss the AVaR, ERM, and MRLF.

Proposition 4.3. Tha AVaR values of a min-Kies distributed random variable can be
derived via the defined in equations (9) function α(·) as

AVaR(ε) = 1

ε

∫ − ln(1−ε)

0
e−yα(y)dy,

AVaR(ε) = 1

1 − ε

∫ ∞

− ln ε

e−yα(y)dy.

(17)

Proof. Let the constants x1 and x2 be such that 0 ≤ x1 < x2 ≤ 1. We shall denote
hereafter by I{·} the indicator function. Changing the variables as y = Q(u) ⇔ u =
F(y) and using Proposition 3.10 for μ(y) = yIy∈(Q(x1),Q(x2)) we derive

∫ x2

x1

Q(u)du =
∫ Q(x2)

Q(x1)

ydF (y)

= E[ξIξ∈(Q(x1),Q(x2))]
=

∫ ∞

0
e−yα(y)Iα(y)∈(Q(x1),Q(x2))dy.

Using Lemma 3.2 and having in mind A(y) = − ln(1 − F(y)) we derive that y ∈
(− ln(1 − x1),− ln(1 − x2)) when α(y) ∈ (Q(x1),Q(x2)). Therefore

∫ x2

x1

Q(u)du =
∫ − ln(1−x2)

− ln(1−x1)

e−yα(y)dy. (18)

Applying equation (18) for x1 = 0 and x2 = ε we derive the result for AVaR. The
result for AVaR is obtained for x1 = 1 − ε and x2 = 1.

We need the following lemma before to continue with the expectile tail measure
and the mean residual life function.
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Lemma 4.4. The truncated expectation for a min-Kies distributed random variable
ξ can be derived as

E
[
(ξ − t)+

] =
∫ +∞

A(t)

e−yα(y)dy − tF (t),

E
[
(ξ − t)−

] = tF (t) −
∫ A(t)

0
e−yα(y)dy.

(19)

Proof. We have to rewrite truncated expectations (19) as

E
[
(ξ − t)+

] = E[ξIξ>t ] − tF (t),

E
[
(ξ − t)−

] = tF (t) − E[ξIξ>t ]
and apply Proposition 3.10 for the functions μ(y) = yIy>t and μ(y) = yIy<t .

The statements below for the ERM and MRLF hold.

Proposition 4.5. The value of ε − ERM of a min-Kies distributed random variable is
the solution of the following equation w.r.t. the variable x

(1 − ε)

∫ A(x)

0
e−yα(y)dy + ε

∫ +∞

A(x)

e−yα(y)dy = εF (x) + (1 − ε)F (x).

Its mean residual life function can be presented as

m(t) =
∫ +∞
A(t)

e−yα(y)dy

F(t)
− t.

Proof. The first statement holds due to Definition 4.1 and Lemma 4.4. The second
statement can be obtained via the proven in [5] presentation of the MRLF

m(t) = E[(ξ − t)+]
F(t)

and Lemma 4.4.

5 Saturation in the Hausdorff sense

We define the Hausdorff distance in a sense of [15].

Definition 5.1. Let us consider the max-norm in R
2: if A and B are the points A =

(tA, xA) and B = (tB, xB), then ‖A−B‖ := max{|tA−tB |, |xA−xB |}. The Hausdorff
distance d(g, h) between two curves g and h in R

2 is

d(g, h) := max
{

sup
A∈g

inf
B∈h

‖A − B‖, sup
B∈h

inf
A∈g

‖A − B‖
}
.

We can view the Hausdorff distance as the highest optimal path between the
curves. Next we define the saturation of a distribution.
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Definition 5.2. Let F(·) be the CDF of a distribution with left-finite domain – [a, b),
−∞ < a < b ≤ ∞. Its saturation is the Hausdorff distance between the completed
graph of F(·) and the curve consisting of two lines – one vertical between the points
(a, 0) and (a, 1), and another horizontal between the points (a, 1) and (b, 1).

The following corollary holds for the saturation.

Corollary 5.3. The saturation d of a min-Kies random variable distributed on the
interval [a, b) is the unique solution of the equation

F(a + d) + d = 1. (20)

Something more, the saturation satisfies the restriction d < min{b − a, 1}.
Proof. Having in mind that the distribution’s left endpoint is a and Definitions 5.1
and 5.2, we see that the saturation has to satisfy F(a + d)+ d = 1. Equation (20) has
a unique root because l(t) = F(a + t) + t − 1 is an increasing continuous function
with endpoints l(0) = −1 < 0 and l(b − a) = b − a > 0.

Obviously d < 1 and therefore inequality d < min{b − a, 1} holds because
l(b − a) > 0.

Intuitively, the saturation has to depend only on the domain’s length b − a but not
on the particular values of a and b. We formalize this in the following proposition.

Proposition 5.4. The saturation d of the min-Kies distribution with domain [a, b)

satisfies the following equation

b − a = d

(
1 + 1

p(− ln d; λ, β)

)
. (21)

Proof. Using equation (20) we derive

P

(
d

b − a − d
; λ, β

)
= − ln d,

or equivalently
d

b − a − d
= p(− ln d; λ, β). (22)

We can easily check that equations (21) and (22) are equivalent.

Next two theorems provide a semi-closed form formula for the saturation.

Theorem 5.5. Let the function γ (y; c, C, ν) be defined for y > max{− ln(b−a), 0},
c > 0, C > 0, and ν > 0 as

γ (y; c, C, ν) = cy
(
(b − a)eCy − 1

)ν
.

If the parameters λi , i = 1, 2, . . . , n, can be presented as

λi = γ

(
y; ci,

n∑
i=1

ci, βi

)
(23)
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for some positive constants c1, c2, . . . , cn, then the min-Kies distribution’s saturation
is

d = exp

(
−y

n∑
i=1

ci

)
. (24)

Proof. Suppose that presentation (23) holds. Hence

λi = ciy

(
(b − a) exp

(
y

n∑
i=1

ci

)
− 1

)βi

= ciy

(
b − a − exp(−y

∑n
i=1 ci)

exp(−y
∑n

i=1 ci)

)βi

, i = 1, . . . , n,

and therefore

λi

(
exp(−y

∑n
i=1 ci)

b − a − exp(−y
∑n

i=1 ci)

)βi

= ciy, i = 1, . . . , n. (25)

Taking the exponent of opposite equations (25) and multiplying, we derive

exp

(
−P

(
exp(−y

∑n
i=1 ci)

b − a − exp(−y
∑n

i=1 ci)
; λ, β

))
= exp

(
−y

n∑
i=1

ci

)
.

Combining Corollary 5.3 with CDF (10) we see that the saturation is given namely
by formula (24).

Theorem 5.6. The equation

n∑
i=1

λi

y((b − a)ey − 1)βi
= 1 (26)

has a unique solution such that y > max{− ln(b − a), 0}. If it is denoted by y, then
the saturation is d = e−y .

Proof. Equation (26) has unique solution because its left hand-side is a decreasing
from infinity to zero function. Let the constants ci , i = 1, . . . , n, be defined as

ci = λi

y((b − a)ey − 1)βi
.

Hence presentations (23) hold for these values of ci . We finish the proof using Theo-
rem 5.5 and having in mind

∑n
i=1 ci = 1.

The CDFs with parameters given in Table 1 can be viewed in Figures 1c–1h, in
the blue curves. The saturations are presented by the blue squares and their values are
reported in Table 1, too, in the first line of its second part.
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6 Duality. Max-Kies distribution

We first introduce a specific distributional duality.

Definition 6.1. Let F(t) be the CDF of a distribution stated on the finite domain
(a, b). Then its dual distribution is defined via its CDF as G(t) = 1 − F(b + a − t).

The following corollary explain the essence of the dual distributions. In fact it
moves the left behavior of a distribution to the right side and vice versa.

Corollary 6.2. The probability density functions of the dual distribution g(t) can be
presented via the PDF of the original distribution f (t) as g(t) = f (b + a − t).

Definition 6.3. The max-Kies distribution is defined as dual of the min-Kies one.

Corollary 6.4. The cumulative distribution functions of the max-Kies distribution
can be presented as

G(t) = exp

(
−P

(
b − t

t − a

))
,

G(t) = 1 − exp

(
−P

(
b − t

t − a

))
.

The name max-Kies is motivated by the following proposition.

Proposition 6.5. Let ξi , i = 1, 2, . . . , n, be independent dual-Kies distributed ran-
dom variables on the domain (a, b) with parameters {λi, βi}. Then the random vari-
able max{ξ1, ξ2, . . . , ξn} has a max-Kies distribution.

Proof. The proof is based on the fact that the CDF of the max-Kies distribution
is the product of the CDFs of the underlying original Kies ones. See the proof of
Theorem 3.5.

The probability density and the quantile functions of the max-Kies distribution
can be presented as

g(t) = exp

(
−P

(
b − t

t − a
; λ, β

))
P ′

(
b − t

t − a
; λ, β

)
b − a

(t − a)2 ,

QG(y) = ap(− ln y; λ, β) + b

p(− ln y; λ, β) + 1
.

(27)

The PDF’s shape can be deduced through Proposition 3.7 having in mind Corol-
lary 6.2. It turns out that g(a) = 0, whereas the right endpoint g(b) can be zero,
finite, or infinitely large. As a rule, the behavior of the max-Kies distribution consid-
ered from b to a is the same as the behavior of the corresponding min-Kies one but
taken from a to b. In this light the max-Kies distribution behaves at the right endpoint
as the min-Kies one at the left endpoint.

Let the functions A(t) and α(y) from equations (9) be defined now as

Ã(t) = P

(
b − t

t − a
; ; λ, β

)
,

α̃(y) = b + ap(y; λ, β)

1 + p(y; λ, β)
.

(28)
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Under these assumptions Proposition 3.10 for the expectations still holds.
We discuss now briefly the tail behavior of the max-Kies distribution. The results

are similar to their min-Kies analogous and we omit the proofs. The VaR-values, left
and write, are again expressed by the quantile function – it is now given by equa-
tions (27). The AVaR values need a little modification compared to formulas (17)

AVaR(ε) = 1

ε

∫ ∞

− ln ε

e−yα̃(y)dy,

AVaR(ε) = 1

1 − ε

∫ − ln(1−ε)

0
e−yα̃(y)dy.

Having in mind that formulas (19) for the truncated expectations still hold for
the max-Kies distributions, we conclude that Proposition 4.5 for the expectile tail
measure and the mean residual life function are true – the difference is that we have
to use now the given in (28) functions Ã(·) and α̃(·) instead of those from (9).

Finally, let us turn to the saturation of the max-Kies distribution. We formulate
the analogues of the results derived in Section 5 in the following theorem.

Theorem 6.6. The saturation d of the max-Kies distribution satisfies the equation

b − a = d
[
1 + p

(− ln(1 − d); λ, β
)]

. (29)

Let the set ϒ be R
+ if b − a ≥ 1 and ϒ = (0,− ln(1 − b + a)) when b − a < 1.

If the parameters λi , i = 1, . . . , n, can be presented as

λi = ciy

(
exp(y

∑n
i=1 ci) − 1

(b − a − 1) exp(y
∑n

i=1 ci) + 1

)βi

(30)

for some positive constants c1, . . . , cn and y ∈ ϒ , then the max-Kies saturation is

d = 1 − exp

(
−y

n∑
i=1

ci

)
.

Something more, the equation w.r.t. the variable y

n∑
i=1

λi

y

[
(b − a − 1)ey + 1

ey − 1

]βi

= 1 (31)

has a unique solution in the set ϒ . If we denote it by y, then the saturation is d =
1 − e−y .

Proof. Equation (29) can be proven analogously to Proposition 5.4. Let us turn to
the second part of the theorem. Note that the condition y ∈ ϒ guarantees that the
constants λi defined by formula (30) are positive reals. Using these formulas we de-
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rive

1 − d = exp

(
−y

n∑
i=1

ci

)

= exp

(
−

n∑
i=1

λi

(
(b − a − 1) exp(y

∑n
i=1 ci) + 1

exp(y
∑n

i=1 ci) − 1

)βi
)

= exp

(
−

n∑
i=1

λi

(
b − a − 1 + exp(−y

∑n
i=1 ci)

1 − exp(−y
∑n

i=1 ci)

)βi
)

= exp

(
−

n∑
i=1

λi

(
b − a − d

d

)βi
)

= exp

(
−P

(
b − a − d

d

))
= G(a + d).

This equation together with Corollary 5.3 (note that it holds for the max-Kies distri-
bution, too) proves the second part of the theorem.

Let us consider the left hand-side of equation (31) as a function of the variable
y ∈ ϒ . It starts from +∞ and decreases to zero. Hence, equation (31) has unique
solution. We finish the proof applying the values

ci = λi

y

[
(b − a − 1)ey + 1

ey − 1

]βi

to the previous statement of the theorem. Note that
∑n

i=1 ci = 1.

We need to define a saturation of another style to continue the investigation on the
max-Kies distribitions.

Definition 6.7. The complementary saturation when −∞ ≤ a < b < ∞ is the
Hausdorff distance between the completed graph of F(·) and the curve consisting
of the following two lines – a horizontal between the points (a, 0) and (b, 0) and a
vertical between the points (b, 0) and (b, 1).

The following analogue of Corollary 5.3 is true.

Proposition 6.8. Let us denote by d the complementary saturation of the distribution
F(·) on the interval (a, b]. Then it is the unique solution of the equation

F(b − d) = d. (32)

Something more, d < min{b − a, 1}. We have as an immediate corollary that, if
b − a = 1, then the sum of both saturations is equal to the domain’s length – this
means that the distribution achieves its saturations at one and the same point.

Proof. The proof is very similar to the proof of Corollary 5.3 and we omit it. We
can easily check that if b = a + 1 and d + d = 1, then equations (32) and (20) are
equivalent.
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The following theorem allows us to derive the complementary saturation for the
min- and max-Kies distributions.

Theorem 6.9. The saturation of the prime distribution coincides with the comple-
mentary saturation of the dual distribution.

Proof. Equation (20) together with Definition 6.1 leads to statement (32). Proposi-
tion 6.8 finishes the proof.

The PDFs of the dual distributions are presented in Figures 1a and 1b, in the red
curves, and the parameters are given in Table 1. The complementary saturations are
the lengths of the red squares’ sides. All saturations are reported in Table 1, too.

7 Numerical results

We shall provide now two numerical experiments to check how the defined in this
paper distributions describe real statistical samples. The first one is based on the his-
torical data for the S&P 500 financial index whereas the second one is for the unem-
ployment insurance issues. We shall use the min-Kies distribution because both are
left-skewed.

7.1 S&P 500 index

We shall calibrate now the min-Kies distribution to the statistical data used in [20].
There have been used 10 717 daily observations for the S&P 500 index between Jan-
uary 2, 1980 and July 1, 2022. We are interested in the market shocks which are
defined as the dates at which the index falls with more than two percents. Our statis-
tical sample is formed by the length of the periods between two shocks – totally of
N = 357 observations in the range between 1 and 950. Note that these observations
are divided to 1000 because the paper [20] is devoted on the Kies style distribution
stated on the interval (0, 1). We preserve this scaling in the current paper to keep
the used statistical sample. Also, in such a way some eventual comparisons are pos-
sible. Let us denote the scaled observations by ti , i = 1, 2, . . . , N , thus they form
the domain (min{ti}, max{ti}). We shall divide this interval into a grid with m = 50
uniformly spaced nodes. Let l

emp
i , i = 1, 2, . . . , m, be the empirical PDF values at

these nodes. We derive them as

l
emp
i = mNi

N(max{ti} − min{ti}) ,

where Ni is the number of the observations falling in the i-th subinterval. Also, let
us denote by γ the set of parameters of a min-Kies distribution and by lKies

i (γ ),
i = 1, 2, . . . , m, the corresponding PDF values of the distribution arising from the
parameters γ . Using a modification of the standard least squares method we define
the cost function as

L(γ ) :=
m∑

i=1

∣∣ln(
l
emp
i + ε

) − ln
(
lKies
i (γ ) + ε

)∣∣. (33)
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Table 2. Numerical estimations

par. (A0) (A1) (A2) (A3) (A4) (B1) (B2) (B3) (B4)
n 1 1 2 3 4 1 2 3 4
λ0 15.7857 15.1377 3053.03 19444234.9 11623604.4 101.708 13.4539 74.0164 193.5577
λ1 – – 6.6251 32.1833 15.6489 – 7.2452 0.0123 0.0078
λ2 – – – 3.9017 3.2997 – – 8.5378 0.0111
λ3 – – – – 0.3394 – – – 9.1257
β0 0.7120 0.6800 4.8953 11.8106 9.6112 2.3473 13.7467 13.3751 14.4112
β1 – – 0.3609 1.8377 1.3580 – 1.2393 6.1671 6.9765
β2 – – – 0.2259 0.2136 – – 1.2787 5.9488
β3 – – – – 0.1186 – – – 1.2987
a 0 0.0048 0.0064 0.0077 0.0080 0.0257 1.1141 1.1132 1.1125
b 1 0.9900 1.0076 1.0165 0.9912 18.8619 8.3748 8.9268 9.1328

error 25.3491 25.2108 22.1423 21.3855 21.0382 4.7166 3.4270 3.3980 3.3908

Note that we introduce in formula (33) a logarithmic correction because some param-
eters lead to an infinitely large initial PDF’s value. This logarithm necessitates the use
of an additional constant ε because some of the empirical PDF values are zero. We
set ε = 0.01.

We calibrate the min-Kies distribution with one, two, three, and four components
minimizing cost function (33) over all possible parameter sets γ . As we mentioned
above, the values reported in [20] are calibrated under the assumption that the Kies
distribution is stated at the interval (0, 1). We recalibrate now abandoning this re-
striction, i.e. the interval endpoints are included in the searched parameter set γ . We
minimize cost function (33) using nonlinear programming since we have a multi-
dimensional optimization problem – note that there are four, six, eight, and ten pa-
rameters for different min-Kies models. Since the starting point is very essential for
the minimizing algorithm, we use the already derived parameters for the initial point
for the next Kies distribution. The received values are reported in Table 2, first five
columns entitled by the letter (A). The result derived in [20] are in the column (A0).
The number n placed at the first line shows the components of the min-Kies distri-
bution. We can make two major conclusions. First, the distributions domain is very
closed to the unit interval. On the other hand, it is natural the additional components
to lead to a better fit. We can see from the obtained errors that the two component dis-
tribution leads to an admissible result, whereas the three and four components provide
very good estimations. We present all PDFs in Figure 2a.

7.2 Unemployment insurance issues

We shall use now a monthly historical data for the unemployment insurance issues
in the period between 1971 and 2018 – totally 574 observations. The data can be
found at https://data.worlddatany-govns8zxewg or in [17, pp. 162–164]. The same
data is also used in [2, 6, 22]. We divide all values by 50 000 since their minimum is
49 263. Thus the range turns from [49 263, 308 352] to [0.9853, 6.1670]. This scaling
leads to more convenient domain as well as to some calculation simplifications. The
results are reported in the second part of Table 2. We can see that the two-, three-, and
four-component distributions approximate similar domains, namely near the interval
(1, 9). Also, the returned errors are statistically indistinguishable. On the contrary, the

https://data.worlddatany-govns8zxewg
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Fig. 2. Applications
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original Kies distribution (n = 1) returns a quite different support, (0.0257, 18.8619),
as well as a significantly larger error. Hence, we conclude that only one additional
component is sufficient and it has a significant importance. All PDFs can be viewed
in Figure 2b. Note that the logarithmic correction in the cost function (33) leads to a
better fit in the tails than in the distribution’s center.

We can see a major difference between these examples – the initial point for the
first PDF is the infinity whereas it is zero for the second one. This is due to the
coefficient βn and its position w.r.t. the unit, see Proposition 3.7.
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