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Abstract The paper presents an analytical proof demonstrating that the Sandwiched Volterra
Volatility (SVV) model is able to reproduce the power-law behavior of the at-the-money im-
plied volatility skew, provided the correct choice of the Volterra kernel. To obtain this result, the
second-order Malliavin differentiability of the volatility process is assessed and the conditions
that lead to explosive behavior in the Malliavin derivative are investigated. As a supplementary
result, a general Malliavin product rule is proved.

Keywords SVV model, stochastic volatility, sandwiched process, Gaussian Volterra noise,
Malliavin calculus
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1 Introduction

One of the well-established benchmarks for evaluating option pricing models is com-
paring the model-generated Black–Scholes implied volatility surface (τ, κ) �→ σ̂ (τ, κ)

with the empirically observed one (τ, κ) �→ σ̂emp(τ, κ). In this context, τ represents
the time to maturity and κ := log K

erτ S0
is the log-moneyness with K denoting the

strike, S0 the current price of an underlying asset and r being the instantaneous inter-
est rate. In particular, for any fixed τ , the values of σ̂emp(τ, κ) plotted against κ are
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known to produce convex “smiley” patterns with negative slopes at-the-money (i.e.
when κ ≈ 0). Furthermore, as reported in, e.g., [8, 16, 20] or [12, Subsection 2.2],
the smile at-the-money becomes progressively steeper as τ → 0 with a rule-of-thumb
behavior ∣∣∣∣ σ̂emp(τ, κ) − σ̂emp(τ, κ

′)
κ − κ ′

∣∣∣∣ ∝ τ− 1
2 +H , κ, κ ′ ≈ 0, H ∈

(
0,

1

2

)
. (1)

The phenomenon (1) is known as the power law of the at-the-money implied volatility
skew, and if one wants to replicate it, one may look for a model with∣∣∣∣∂σ̂

∂κ
(τ, κ)

∣∣∣∣
κ=0

= O
(
τ− 1

2 +H
)
, τ → 0. (2)

However, it turns out that the property (2) is not easy to obtain: for example, as
discussed in [1, Section 7.1] or [23, Remark 11.3.21], classical Brownian diffusion
stochastic volatility models fail to produce implied volatilities with power law (2). In
the literature, (2) is usually replicated by introducing a volatility process with a very
low Hölder regularity within the rough volatility framework popularized by Gatheral,
Jaisson and Rosenbaum in their landmark paper [20]. The efficiency of this approach
can be explained as follows.

• On the one hand, a theoretical result of Fukasawa [17] suggests that the volatil-
ity process cannot be Hölder continuous of a high order in continuous nonar-
bitrage models exhibiting the property (2). In other words, the roughness of
volatility is, in some sense, a necessary condition to reproduce (2) (at least in
the fully continuous setting).

• On the other hand, as proved in the seminal 2007 paper [1] by Alòs, León
and Vives, the short-term explosion (2) of the implied volatility skew can be
deduced from the explosion of the Malliavin derivative of volatility. In partic-
ular, the latter characteristic is exhibited by fractional Brownian motion with
H < 1/2, a common driver in the rough volatility literature.

However, despite the ability to reproduce the power law (2), rough volatility mod-
els are not perfect. In particular,

– in the specific context of a fractional Brownian motion, roughness contradicts
the observations [6, 14, 15, 24, 29] of long memory on the market;

– in addition, volatility processes with long memory seem to be better in repli-
cating the shape of implied volatility for longer maturities [7, 18, 19];

– furthermore, there is no guaranteed procedure of transition between physi-
cal and pricing measures: it is not always clear whether the volatility process
σ = {σ(t), t ∈ [0, T ]} hits zero and therefore the integral

∫ t

0
1

σ 2(s)
ds that

is typically present in martingale densities (see, e.g., [5]) may be poorly de-
fined;
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– just like many classical Brownian stochastic volatility models (see, e.g., [2]),
they may suffer from moment explosions in price, which results in complica-
tions with the pricing of some assets, quadratic hedging, and numerical meth-
ods.

For more details on rough volatility, we refer the reader to the recent review [12,
Subsection 3.3.2] or the regularly updated literature list on the subject [28].

Recently, a series of papers [9–11] introduced the Sandwiched Volterra Volatility
(SVV) model which accounts for all the problems mentioned above. More precisely,
the volatility process Y = {Y(t), t ∈ [0, T ]} is assumed to follow the stochastic
differential equation

Y(t) = y0 +
∫ t

0
b
(
s, Y (s)

)
ds + Z(t)

driven by a general Hölder continuous Gaussian Volterra process

Z(t) =
∫ t

0
K(t, s)dB(s).

The special part of the equation above is the drift b. It is assumed that there are two
continuous functions 0 < ϕ < ψ such that for some ε > 0

b(t, y) ≥ C

(y − ϕ(t))γ
, y ∈ (

ϕ(t), ϕ(t) + ε
)
,

b(t, y) ≤ − C

(ψ(t) − y)γ
, y ∈ (

ψ(t) − ε, ψ(t)
)
.

Such an explosive nature of the drift resembling the one in SDEs for Bessel processes
(see, e.g., [27, Chapter XI]) or singular SDEs of [21] ensures that, with probability 1,

0 < ϕ(t) < Y(t) < ψ(t),

which immediately solves the moment explosion problem (see, e.g., [9, Theorem
2.6]) and allows for a transparent transition between physical and pricing measures
[9, Subsection 2.2]. In addition, the flexibility in the choice of the kernel K should
allow to replicate both the long memory and the power law behavior (2).

The main goal of this paper is to give the theoretical justification to the latter
claim: we prove that, with the correct choice of the Volterra kernel K, the SVV model
indeed reproduces (2). In order to do that, we employ the fundamental result [1, The-
orem 6.3] by Alòs, León and Vives mentioned above and check that the Malliavin
derivative DY(t) indeed exhibits explosive behavior. The difficulty of this approach
is as follows. While the first-order Malliavin differentiability of Y(t) is established in
[9, Section 3] with

DsY(t) = K(t, s) +
∫ t

s

K(u, s)b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
du,
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[1, Theorem 6.3] actually demands the existence of the second-order Malliavin deriva-
tive. In principle, it is intuitively clear how this derivative should look like:

DrDsY (t) = Dr

∫ t

s

K(u, s)b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
du

=
∫ t

s

K(u, s)Dr

[
b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}]
du

=
∫ t

s

K(u, s) exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
Dr

[
b′
y

(
u, Y (u)

)]
du

+
∫ t

s

K(u, s)b′
y

(
u, Y (u)

)
Dr

[
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}]
du

=
∫ t

s

K(u, s)b′′
yy

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
Dr

[
Y(u)

]
du

+
∫ t

s

K(u, s)b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
×

×
∫ t

u

b′′
yy

(
v, Y (v)

)
Dr

[
Y(v)

]
dvdu. (3)

However, justifying the computations in (3) is far from straightforward. For example,
the functions y �→ b′

y(t, y) and y �→ b′′
yy(t, y) demonstrate explosive behavior as

y → ϕ(t)+ and y → ψ(t)− for any t ∈ [0, T ]. This makes it impossible to use the
classical Malliavin chain rules such as [25, Proposition 1.2.3] requiring boundedness
of the derivative or [25, Proposition 1.2.4] demanding the Lipschitz condition. In
order to overcome this issue, we have to use some special properties of the volatility
process established in [11] and tailor a version of the Malliavin chain rule specifically
for our needs.

The paper is organized as follows. In Section 2, we provide some necessary de-
tails about the sandwiched volatility process Y . In Section 3, we prove second-order
Malliavin differentiability of Y(t). Finally, in Section 4, we use [1, Theorem 6.3] to
determine conditions on the kernel under which the SVV model reproduces (2). In
Appendix A, we gather some necessary facts from Malliavin calculus, list some of
the notation and, in addition, we prove a general Malliavin product rule to fit our
purposes and that we were not able to find in the literature.

2 Preliminaries on sandwiched processes

In this section, we gather all the necessary details about the main object of our study:
the class of sandwiched processes driven by Hölder-continuous Gaussian Volterra
noises.

Fix some T ∈ (0,∞) and consider a kernel K : [0, T ]2 → R satisfying the
following assumptions.

Assumption 1. The kernel K is of Volterra type, i.e. K(t, s) = 0 whenever t ≤ s,
and
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(K1) K is square-integrable, i.e.∫ T

0

∫ T

0
K2(t, s)dsdt < ∞,

(K2) there exists H ∈ (0, 1) such that for all λ ∈ (0,H) and 0 ≤ t1 ≤ t2 ≤ T∫ T

0

(
K(t2, s) − K(t1, s)

)2
ds ≤ Cλ|t2 − t1|2λ,

where Cλ > 0 is some constant depending on λ.

Remark 1. Note that items (K1) and (K2) of Assumption 1 jointly imply that

sup
t∈[0,T ]

∫ T

0
K2(t, s)ds < ∞. (4)

Let B = {B(t), t ∈ [0, T ]} be a standard Brownian motion. Assumption 1 allows
to define a Gaussian Volterra process

Z(t) :=
∫ t

0
K(t, s)dB(s), t ∈ [0, T ], (5)

and, moreover, Assumption 1(K2) together with [3, Theorem 1 and Corollary 4]
implies that Z has a modification with Hölder continuous trajectories of any order
λ ∈ (0,H). In what follows, we always use this modification of Z: in other words,
with probability 1, for any λ ∈ (0,H) there exists a random variable � = �(λ) > 0
such that for all 0 ≤ t1 ≤ t2 ≤ T∣∣Z(t2) − Z(t1)

∣∣ ≤ �|t2 − t1|λ. (6)

Furthermore, as stated in [3, Theorem 1], the random variable � from (6) can be
chosen such that

E
[
�r

]
< ∞ for all r ∈ R. (7)

In what follows, we assume that (7) always holds.
Next, denote

D := {
(t, y) ∈ [0, T ] × R | ϕ(t) < y < ψ(t)

}
,

D := {
(t, y) ∈ [0, T ] × R | ϕ(t) ≤ y ≤ ψ(t)

}
.

(8)

Take H ∈ (0, 1) from Assumption 1(K2), consider two H -Hölder continuous func-
tions ϕ, ψ : [0, T ] → R such that

0 < ϕ(t) < ψ(t) for all t ∈ [0, T ],
and define a function b: D → R as

b(t, y) := θ1(t)

(y − ϕ(t))γ1
− θ2(t)

(ψ(t) − y)γ2
+ a(t, y), (9)

where the coefficients in (9) satisfy the following assumption.
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Assumption 2. The constants γ1, γ2 > 0 and functions θ1, θ2, a are such that

(B1) γ1 > 1
H

− 1, γ2 > 1
H

− 1 with H ∈ (0, 1) being from Assumption 1(K2);

(B2) the functions θ1, θ2: [0, T ] → R are strictly positive and continuous;

(B3) the function a: [0, T ] ×R → R is locally Lipschitz in y uniformly in t , i.e. for
any N > 0 there exists a constant CN > 0 that does not depend on t such that∣∣a(t, y2) − a(t, y1)

∣∣ ≤ CN |y2 − y1|, t ∈ [0, T ], y1, y2 ∈ [−N,N ];

(B4) a: [0, T ] × R → R is two times differentiable w.r.t. the spatial variable y with
a, a′

y , a′′
yy all being continuous on [0, T ] × R.

Remark 2. Note that b′
y is bounded from above on D: indeed,

b′
y(t, y) = − γ1θ1(t)

(y − ϕ(t))γ1+1 − γ2θ2(t)

(ψ(t) − y)γ2+1 + a′
y(t, y)

< max
(t,y)∈D

a′
y(t, y) < ∞.

Finally, fix ϕ(0) < y0 < ψ(0) and consider a stochastic differential equation of
the form

Y(t) = y0 +
∫ t

0
b
(
s, Y (s)

)
ds + Z(t), t ∈ [0, T ]. (10)

By [11, Theorem 4.1], under Assumptions 1 and 2, the SDE (10) has a unique strong
solution Y = {Y(t), t ∈ [0, T ]}. Moreover, with probability 1,

ϕ(t) < Y(t) < ψ(t) for all t ∈ [0, T ]. (11)

Remark 3. Motivated by the property (11), we will call the solution Y of (10) a
sandwiched process.

In what follows, we will need to analyze the behavior of the stochastic processes
|b(t, Y (t))|, |b′

y(t, Y (t))| and |b′′(t, Y (t))|, t ∈ [0, T ]. In this regard, the property (11)
alone is not sufficient: the process Y can, in principle, approach the bounds ϕ and ψ

which results in an explosive growth of the processes mentioned above. Luckily, [11,
Theorem 4.2] provides a refinement of (11) allowing for a more precise control of Y

near ϕ and ψ . We give a slightly reformulated version of this result below.

Theorem 1. Let Assumptions 1 and 2 hold and λ ∈ (0,H), � = �(λ) > 0 be
from (6). Then there exist deterministic constants CY = CY (λ) > 0 and β = β(λ) >

0 such that

ϕ(t) + CY

(1 + �)β
≤ Y(t) ≤ ψ(t) − CY

(1 + �)β
for all t ∈ [0, T ].

In particular, since � can be chosen to have moments of all orders, for all r ≥ 0

E

[
sup

t∈[0,T ]
1

(Y (t) − ϕ(t))r

]
< ∞, E

[
sup

t∈[0,T ]
1

(ψ(t) − Y(t))r

]
< ∞.
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We finalize this section by citing the first-order Malliavin differentiability result
for the sandwiched process (10) proved in [9, Section 3].

Theorem 2. Let Assumptions 1 and 2 hold and Y be the sandwiched process given
by (10). Then, for any t ∈ [0, T ], Y(t) ∈ D

1,2 and, with probability 1, for a.a.
s ∈ [0, T ]

DsY(t) = K(t, s) +
∫ t

s

K(u, s)b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
du. (12)

Remark 4. The result above actually holds for more general drifts than the one
given in (9). The same is also, in principle, true for the results of the subsequent
sections. Namely, it would be sufficient to assume that there exist deterministic con-
stants c > 0, r > 0, γ > 1

H
− 1 and 0 < y∗ < maxt∈[0,T ] |ψ(t) − ϕ(t)| such that

• b: D → R is continuous on D and has continuous partial derivatives b′
y , b′′

yy ;

• for any 0 < ε < 1
2 maxt∈[0,T ] |ψ(t) − ϕ(t)|,

∣∣b(t, y2)−b(t, y1)
∣∣ ≤ c

εr
|y2−y1|, t ∈[0, T ], ϕ(t)+ε ≤ y1 ≤ y2 ≤ ψ(t)−ε;

• b has an explosive growth to ∞ near ϕ and explosive decay to −∞ near ψ of
order γ > 1

H
− 1, i.e.

b(t, y) ≥ c

(y − ϕ(t))γ
, y ∈ (

ϕ(t), ϕ(t) + y∗
)
,

b(t, y) ≤ − c

(ψ(t) − y)γ
, y ∈ (

ψ(t) − y∗, ψ(t)
);

• for all (t, y) ∈ D, the partial derivatives b′
y and b′′

yy satisfy

−C

(
1 + c

(y − ϕ(t))r
+ c

(ψ(t) − y)r

)
< b′

y(t, y) < C

and

|b′′
yy | ≤ C

(
1 + c

(y − ϕ(t))r
+ c

(ψ(t) − y)r

)
.

However, since (9) is the most natural choice satisfying these assumptions, we stick
to this shape for notational convenience.

3 Second-order Malliavin differentiability

Let Assumptions 1 and 2 hold and Y = {Y(t), t ∈ [0, T ]} be the sandwiched process
defined by (10) with the drift (9).

Notation. Here and in the sequel, C will denote any positive deterministic constant
the exact value of which is not relevant. Note that C may change from line to line (or
even within one line).
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The main goal of this section is to establish the second-order Malliavin differ-
entiability of the sandwiched process (10) and compute the corresponding derivative
explicitly. As mentioned above, the main difficulty lies in controlling the behavior of
b(t, Y (t)), b′

y(t, Y (t)) and b′′
yy(t, Y (t)) whenever Y(t) approaces the bounds. Luck-

ily, Theorem 1 gives all the necessary tools to do that as summarized in the following
proposition.

Proposition 1. There exists a random variable ξ > 0 such that

• for any p ≥ 1, E[ξp] < ∞;

• for any t ∈ [0, T ],∣∣b(
t, Y (t)

)∣∣ + ∣∣b′
y

(
t, Y (t)

)∣∣ + ∣∣b′′
yy

(
t, Y (t)

)∣∣ < ξ.

In particular, for any p ≥ 1,

E

[
sup

t∈[0,T ]
(∣∣b(

t, Y (t)
)∣∣p + ∣∣b′

y

(
t, Y (t)

)∣∣p + ∣∣b′′
yy

(
t, Y (t)

)∣∣p)]
< ∞.

Proof. Fix λ ∈ (0,H) and take the corresponding � > 0 from (6) and CY , β > 0
being from Theorem 1. Then

∣∣b(
t, Y (t)

)∣∣ = |θ1(t)|
(Y (t) − ϕ(t))γ1

+ |θ2(t)|
(ψ(t) − Y(t))γ2

+ ∣∣a(
t, Y (t)

)∣∣
≤ supt∈[0,T ] |θ1(t)|(1 + �)βγ1

C
γ1
Y

+ supt∈[0,T ] |θ2(t)|(1 + �)βγ2

C
γ2
Y

+ sup
(t,y)∈D

∣∣a(t, y)
∣∣

:= ξ0,∣∣b′
y

(
t, Y (t)

)∣∣ = γ1|θ1(t)|
(Y (t) − ϕ(t))γ1+1 + γ2|θ2(t)|

(ψ(t) − Y(t))γ2+1 + ∣∣a′
y

(
t, Y (t)

)∣∣
≤ γ1 supt∈[0,T ] |θ1(t)|(1 + �)β(γ1+1)

C
γ1+1
Y

+ γ2 supt∈[0,T ] |θ2(t)|(1 + �)β(γ2+1)

C
γ2+1
Y

+ sup
(t,y)∈D

∣∣a′
y(t, y)

∣∣
:= ξ1,∣∣b′′

yy

(
t, Y (t)

)∣∣ = γ1(γ1 + 1)|θ1(t)|
(Y (t) − ϕ(t))γ1+2 + γ2(γ2 + 1)|θ2(t)|

(ψ(t) − Y(t))γ2+2 + ∣∣a′′
yy

(
t, Y (t)

)∣∣
≤ γ1(γ1 + 1) supt∈[0,T ] |θ1(t)|(1 + �)β(γ1+2)

C
γ1+2
Y
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+ γ2(γ2 + 1) supt∈[0,T ] |θ2(t)|(1 + �)β(γ2+2)

C
γ2+2
Y

+ sup
(t,y)∈D

∣∣a′′
yy(t, y)

∣∣
:= ξ2.

Note that ξ0, ξ1 and ξ2 have moments of all orders by the properties of �, see (7), and
hence, putting

ξ := ξ0 + ξ1 + ξ2,

we obtain the required result.

As noted in Theorem 2, Y(t) ∈ D
1,2 for each t ≥ 0. In fact, Proposition 1 together

with the shape (12) of the derivative allows to establish a more general result.

Proposition 2. For any t ∈ [0, T ] and p > 1, Y(t) ∈ D
1,p.

Proof. Note that, by (11), E[|Y(t)|p] < ∞ for any p > 1, so, by Lemma 1 from the
Appendix, it is sufficient to prove that

E

[(∫ T

0

(
DsY(t)

)2
ds

) p
2
]

< ∞

for any p > 1. Note that, by Remark 2,

exp

{∫ t

s

b′
y

(
v, Y (v)

)
dv

}
< exp{cT },

where
c := max

(t,y)∈D
a′
y(t, y),

and, by Proposition 1, there exists a random variable ξ having all moments such that

sup
s∈[0,T ]

∣∣b′
y

(
s, Y (s)

)∣∣ ≤ ξ.

Hence∣∣DsY(t)
∣∣

≤ ∣∣K(t, s)
∣∣ +

∫ t

s

∣∣K(u, s)
∣∣∣∣b′

y

(
u, Y (u)

)∣∣ exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
du

≤ ∣∣K(t, s)
∣∣ + ξ exp{cT }

∫ t

s

∣∣K(u, s)
∣∣du. (13)

By Assumption 1 and Remark 1,

(∫ T

0
K2(t, s)ds

) p
2

< ∞,
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therefore

E

[(∫ T

0

(
DsY(t)

)2
ds

) p
2
]

≤ C

(∫ T

0
K2(t, s)ds

) p
2

+ CE

[(∫ T

0

∫ t

0
K2(u, s)

(
b′
y

(
u, Y (u)

))2 exp

{
2

∫ t

u

b′
y

(
v, Y (v)

)
dv

}
duds

) p
2
]

≤ C

(∫ T

0
K2(t, s)ds

) p
2

+ CE
[
ξp

]
exp{pcT }

(∫ T

0

∫ t

0
K2(u, s)duds

) p
2

< ∞,

(14)
which ends the proof.

Our next goal is to establish the Malliavin chain rule for the random variables
b′
y(t, Y (t)) and exp{∫ t

u
b′
y(v, Y (v))dv}.

Proposition 3. For any 0 ≤ u ≤ t ≤ T and p > 1,

1) b′
y(t, Y (t)) ∈ D

1,p with

Ds

[
b′
y

(
t, Y (t)

)] = b′′
yy

(
t, Y (t)

)
DsY(t), (15)

2) exp{∫ t

u
b′
y(v, Y (v))dv} ∈ D

1,p with

Ds

[
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}]

= exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}∫ t

u

b′′
yy

(
v, Y (v)

)
DsY(v)dv. (16)

Proof. 1) We shall start from proving that b′
y(t, Y (t)) ∈ D

1,p. Note that b′
y is not a

bounded function itself and it does not have bounded derivatives – hence the classical
chain rule from [25, Section 1.2] cannot be applied here in a straightforward manner.
In order to overcome this issue, we will use the approach in the spirit of [26, Lem-
ma A.1] or [9, Proposition 3.4]. For the reader’s convenience, we divide the proof
into steps.

Step 0. First of all, observe that b′(t, Y (t)) ∈ L2(�) as a direct consequence of
Proposition 1. Also, for any p > 1,

E

[(∫ T

0

(
b′′
yy

(
t, Y (t)

)
DsY(t)

)2
ds

) p
2
]

< ∞.

Indeed, again by Proposition 1 together with the proof of Proposition 2, we have

E

[(∫ T

0

(
b′′
yy

(
t, Y (t)

)
DsY(t)

)2
ds

) p
2
]
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≤ E

[
ξp

(∫ T

0

(
DsY(t)

)2
ds

) p
2
]

≤ (
E

[
ξ2p

]) 1
2

(
E

[(∫ T

0

(
DsY(t)

)2
ds

)p]) 1
2

< ∞.

Therefore, by Lemma 1, it is sufficient to prove that b′
y(t, Y (t)) ∈ D

1,2 with (15)
being the corresponding Malliavin derivative.

Step 1. Let φ ∈ C1(R) be a compactly supported function such that φ(x) = x

whenever |x| ≤ 1 and |φ(x)| ≤ |x| for all |x| > 1. Fix t ∈ [0, T ] and, for m ≥ 1, put

fm(y) := mφ

(
b′
y(t, y)

m

)
.

Observe that

f ′
m(y) = b′′

yy(t, y)φ′
(

b′
y(t, y)

m

)
is bounded. Indeed, let 0 < εm < ψ(t) − ϕ(t) be such that

−γ1θ1(t)

ε
γ1+1
m

+ max
ϕ(t)≤x≤ψ(t)

a′
y(t, x) < m inf supp φ

and

−γ2θ2(t)

ε
γ2+1
m

+ max
ϕ(t)≤x≤ψ(t)

a′
y(t, x) < m inf supp φ.

Then,

• if y ∈ (ϕ(t), ϕ(t) + εm), then

b′
y(t, y) = − γ1θ1(t)

(y − ϕ(t))γ1+1 − γ2θ2(t)

(ψ(t) − y)γ2+1 + a′
y(t, y)

≤ −γ1θ1(t)

ε
γ1+1
m

+ max
ϕ(t)≤x≤ψ(t)

a′
y(t, x)

< m inf supp φ,

so
b′
y(t,y)

m
/∈ supp φ, fm(y) = 0 and f ′

m(y) = 0;

• if y ∈ (ψ(t) − εm,ψ(t)), then, similarly,

b′
y(t, y) = − γ1θ1(t)

(y − ϕ(t))γ1+1 − γ2θ2(t)

(ψ(t) − y)γ2+1 + a′
y(t, y)

≤ −γ2θ2(t)

ε
γ2+1
m

+ max
ϕ(t)≤x≤ψ(t)

a′
y(t, x)

< m inf supp φ,

so
b′
y(t,y)

m
/∈ supp φ, fm(y) = 0 and f ′

m(y) = 0;
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• on the compact set [ϕ(t) + εm,ψ(t) − εm], both fm and its derivative f ′
m are

continuous and hence bounded.

Therefore, the function fm satisfies the conditions of the classical Malliavin chain rule
[25, Proposition 1.2.3], so fm(Y (t)) ∈ D

1,2 and, with probability 1 for a.a. s ∈ [0, T ],

Dsfm

(
Y(t)

) = b′′
yy

(
t, Y (t)

)
φ′

(
b′
y(t, Y (t))

m

)
DsY(t).

Now it remains to prove that

fm

(
Y(t)

) → b′(t, Y (t)
)

in L2(�) and
Dfm

(
Y(t)

) → b′′
yy

(
t, Y (t)

)
DY(t)

in L2(� × [0, T ]) as m → ∞; then the result will follow immediately from the
closedness of the Malliavin derivative operator D.

Step 2: fm(Y (t)) → b′(t, Y (t)) in L2(�) as m → ∞. By the definitions of
fm and φ, fm(Y (t)) → b′(t, Y (t)) a.s. as m → ∞. Moreover, with probability 1,
|fm(Y (t))| ≤ |b′

y(t, Y (t))| ∈ L2(�) and hence the required convergence follows
from the dominated convergence theorem.

Step 3: Dfm(Y (t)) → b′′
yy(t, Y (t))DY(t) in L2(� × [0, T ]) as m → ∞. By the

definitions of fm and φ, with probability 1,(
b′′
yy

(
t, Y (t)

)
φ′

(
b′
y(t, Y (t))

m

))2 ∫ T

0

(
DsY(t)

)2
ds

→ (
b′′
yy

(
t, Y (t)

))2
∫ T

0

(
DsY(t)

)2
ds

as m → ∞. Moreover, since φ has compact support, maxy∈R(φ′(y))2 < ∞, so we
can write∫ T

0

(
Dsfm

(
Y(t)

))2
ds =

(
b′′
yy

(
t, Y (t)

)
φ′

(
b′
y(t, Y (t))

m

))2 ∫ T

0

(
DsY(t)

)2
ds

≤ max
y∈R

(
φ′(y)

)2(
b′′
yy

(
t, Y (t)

))2
∫ T

0

(
DsY(t)

)2
ds ∈ L2(�).

Therefore, by the dominated convergence theorem,

E

[∫ T

0

(
Dsfm

(
Y(t)

) − b′′
yy

(
t, Y (t)

)
DsY(t)

)2
ds

]
→ 0, m → ∞,

which proves the first claim of the Proposition.
2) Let us proceed with the second claim and verify that

exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
∈ D

1,p
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with (16) being the corresponding Malliavin derivative. Note that, since b′
y is bounded

from above, exp{∫ t

u
b′
y(v, Y (v))dv} is also bounded from above and hence is an

element of Lp(�) for any p > 1. Moreover, by Proposition 1, boundedness of
exp{∫ t

u
b′
y(v, Y (v))dv} and (13), we can write

E

[(∫ T

0

(
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}∫ t

u

b′′
yy

(
v, Y (v)

)
DsY(v)dv

)2

ds

) p
2
]

≤ CE

[
ξp

(∫ T

0

∫ t

u

(
DsY(v)

)2
dvds

) p
2
]

≤ CE

[
ξp

(∫ T

0

∫ t

u

K2(v, s)dvds

) p
2
]

+ C exp{pcT }E[
ξ2p

](∫ T

0

∫ t

u

∫ v

s

K2(u, s)dudvds

) p
2

< ∞,

and hence it is sufficient to prove that exp{∫ t

u
b′
y(v, Y (v))dv} ∈ D

1,2.
Since the Malliavin derivative operator D is closed and the expression∫ t

u
b′′
yy(v, Y (v))DsY (v)dv is well-defined by Proposition 1, Step 1 of the current

proof and Hille’s theorem [22, Theorem 1.2.4] guarantee that∫ t

u

b′
y

(
v, Y (v)

)
Y(v)dv ∈ D

1,2

and

Ds

∫ t

u

b′
y

(
v, Y (v)

)
Y(v)dv =

∫ t

u

b′′
yy

(
v, Y (v)

)
DsY(v)dv.

Finally, the function x �→ ex satisfies the conditions of the chain rule from [9, Propo-
sition 3.4] and hence exp{∫ t

u
b′
y(v, Y (v))dv} ∈ D

1,2 and (16) holds.

Proposition 3 and Lemma 2 together allow us to deduce the following corollary.

Corollary 1. For any 0 ≤ s < t ≤ T and p > 1,

b′
y

(
s, Y (s)

)
exp

{∫ t

s

b′
y

(
v, Y (v)

)
dv

}
∈ D

1,p

and

Du

[
b′
y

(
s, Y (s)

)
exp

{∫ t

s

b′
y

(
v, Y (v)

)
dv

}]

= b′′
yy

(
s, Y (s)

)
exp

{∫ t

s

b′
y

(
v, Y (v)

)
dv

}
DuY(s)

+ b′
y

(
s, Y (s)

)
exp

{∫ t

s

b′
y

(
v, Y (v)

)
dv

}∫ t

s

b′′
yy

(
v, Y (v)

)
DuY(v)dv. (17)
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Proof. For fixed 0 ≤ s < t ≤ T , denote

X1 := b′
y

(
s, Y (s)

)
, X2 := exp

{∫ t

s

b′
y

(
v, Y (v)

)
dv

}
.

By Proposition 3 and Lemma 2 from the Appendix, it is sufficient to check that for
all p ≥ 2

(i) the product X1X2 ∈ Lp(�),

(ii) E[(∫ T

0 (X2DuX1)
2)

p
2 ] < ∞ and

(iii) E[(∫ T

0 (X1DuX2)
2)

p
2 ] < ∞.

All conditions (i)–(iii) can be checked in a straightforward manner using Proposi-
tion 1 and the arguments similar to the proof of Proposition 2.

We are now ready to formulate the main result of this section.

Theorem 3. For any t ∈ [0, T ] and p ≥ 2,

1) Y(t) ∈ D
2,p,

2) with probability 1 and for a.a. r, s ∈ [0, T ],

DrDsY (t) =
∫ t

s

K(u, s)F1(t, u)

(∫ t

u

b′′
yy

(
v, Y (v)

)
DrY(v)dv

)
du

+
∫ t

s

K(u, s)F2(t, u)DrY (u)du, (18)

where

F1(t, u) := b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
,

F2(t, u) := b′′
yy

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}
.

Proof. Our goal is to prove that Y(t) ∈ D
2,p and

DrDsY (t) =
∫ t

s

K(u, s)Dr

[
b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}]
du

=
∫ t

s

K(u, s)Dr

[
F1(t, u)

]
du,

since, in such case, (18) follows immediately from Corollary 1. Recall that

DsY(t) = K(t, s) +
∫ t

s

K(u, s)F1(t, u)du.

Clearly, for any 0 ≤ r, s < t ≤ T ,

DrK(t, s) = 0,

so, by closedness of D and Hille’s theorem [22, Theorem 1.2.4], it is enough to show
that
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(i) for a.a. 0 ≤ s ≤ u < t ≤ T , K(u, s)F1(t, u) ∈ D
1,p and

(ii) for a.a. 0 ≤ s < t ≤ T ,

∫ T

0

(
E

[(∫ T

0

(
Dr

[
K(u, s)F1(t, u)

])2
dr

) p
2
]) 1

p

du

=
∫ T

0
K(u, s)

(
E

[(∫ T

0

(
Dr

[
F1(t, u)

])2
dr

) p
2
]) 1

p

du

< ∞.

Item (i) above follows immediately from Corollary 1. As for item (ii), observe that,
by Proposition 1, (13) as well as the boundedness of exp{∫ t

u
b′
y(v, Y (v))dv}, we have

(
Dr

[
F1(t, u)

])2 ≤ C

((
b′′
yy

(
u, Y (u)

))2
exp

{
2

∫ t

u

b′
y

(
v, Y (v)

)
dv

}(
DrY(u)

)2

+ (
b′
y

(
u, Y (u)

))2 exp

{
2

∫ t

u

b′
y

(
v, Y (v)

)
dv

}
×

×
∫ t

u

(
b′′
yy

(
v, Y (v)

)
DrY(v)

)2
dv

)

≤ C

(
ξ2(DrY(u)

)2 + ξ4
∫ t

u

(
DrY(v)

)2
dv

)

≤ Cξ2
(
K2(u, r) +

∫ u

r

K2(z, r)dz

)

+ Cξ4
(∫ t

u

K2(v, r)dv +
∫ t

u

∫ v

r

K2(z, r)dzdv

)
.

Hence, for any p ≥ 2, Remark 1 implies∫ T

0

(
Dr

[
F1(t, u)

])2
dr ≤ Cξ2

(∫ T

0
K2(u, r)dr +

∫ T

0

∫ u

r

K2(z, r)dzdr

)

+ Cξ4
∫ T

0

∫ t

u

K2(v, r)dvdr

+ Cξ4
∫ T

0

∫ t

u

∫ v

r

K2(z, r)dzdvdr

≤ C
(
ξ2 + ξ4),

so, since ξ has moments of all orders, (ii) holds, which finalizes the proof.

Finally, denote L
2,p := Lp([0, T ];D2,p). We complete the section with the fol-

lowing result.

Corollary 2. For any p ≥ 2, Y ∈ L
2,p.
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Proof. By the definition of the ‖ · ‖2,p-norm in (32) from Appendix A, it is sufficient
to check that ∫ T

0
E

[|Y(t)|p]
< ∞, (19)

∫ T

0
E

[(∫ T

0

(
DsY(t)

)2
ds

) p
2
]
dt < ∞ (20)

and ∫ T

0
E

[(∫ T

0

∫ T

0

(
DrDsY (t)

)2
dsdr

) p
2
]
dt < ∞. (21)

By (11), (19) holds automatically. Next, (20) can be easily deduced from (14). Finally,
using Proposition (1) and the boundedness of exp{∫ t

u
b′
y(v, Y (v))dv}, it is easy to

prove a bound similar to (14) for

E

[(∫ T

0

∫ T

0

(
DrDsY (t)

)2
dsdr

) p
2
]
,

which implies (21). By this, the proof is complete.

4 Power law in SVV model

Having the second-order Malliavin differentiability in place, we now possess all the
necessary tools to analyze the behavior of implied volatility skew of a model with the
sandwiched process (10) as stochastic volatility. Namely, we consider a (risk-free)
market model with the price process S = {S(t), t ∈ [0, T ]} of the form

S(t) = eX(t),

X(t) = x0 + rt − 1

2

∫ t

0
Y 2(s)ds +

∫ t

0
Y(s)

(
ρdB1(s) +

√
1 − ρ2dB2(s)

)
,

Y (t) = y0 +
∫ t

0
b
(
s, Y (s)

)
ds +

∫ t

0
K(t, s)dB1(s),

(22)

where B1, B2 are two independent Brownian motions, X = {X(t), t ∈ [0, T ]} de-
notes the (risk-free) log-price of an asset starting from some level x0 ∈ R, r is a
constant instantaneous interest rate, and ρ ∈ (−1, 1) is a correlation coefficient that
accounts for the leverage effect. As previously, the drift b and the Volterra kernel K
satisfy Assumptions 1 and 2.

Remark 5. The model (22) was initially introduced in [9] and, given the nature of
the volatility process, is called the Sandwiched Volterra Volatility (SVV) model.

The goal of this section is to establish conditions under which (22) reproduces the
power law (2) of the short-term at-the-money implied volatility. Namely, we have the
following result.
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Theorem 4. Let Assumptions 1 and 2 hold with H ∈ ( 1
6 , 1

2 ). Assume that the Volterra
kernel K is such that, for any 0 ≤ s < t ≤ T ,∣∣K(t, s)

∣∣ ≤ C|t − s|− 1
2 +H

for some constant C > 0, and

1

τ
3
2 +H

∫ τ

0

∫ τ

s

K(t, s)dtds → KY , τ → 0+, (23)

for some finite constant KY . Then, with probability 1, the SVV implied volatility σ̂

exhibits the property

lim
τ→0

τ
1
2 −H ∂σ̂

∂κ
(τ, κ)

∣∣∣∣
κ=0

= ρ

y0
KY .

In particular, if ρKY = 0, the SVV model (22) reproduces the power law (2) of the
at-the-money implied volatility skew.

Remark 6. The behavior of empirically observed implied volatilities (see, e.g., [12])
shows that realistic market models should produce σ̂ with

∂σ̂

∂κ
(τ, κ)

∣∣∣∣
κ=0

< 0. (24)

In the SVV setting (22), Theorem 4 guarantees that (24) holds for all small enough τ

provided that ρKY < 0.

Remark 7. The condition H > 1
6 in Theorem 4 is consistent with the recent empiri-

cal estimate H ≈ 0.19 for the SPX implied volatility obtained in [8].

To prove Theorem 4, we will apply the fundamental result [1, Theorem 6.3] which
connects the shape of the skew with the Malliavin derivative of the volatility.

Remark 8. In the recent literature (see, e.g., [4, 8, 12, 20]), it is typical to charac-
terize the implied volatility skew in terms of ∂σ̂

∂κ
with κ = log K

erτ+x0
being the log-

moneyness. In [1], a slightly different parametrization σ̂log-price(τ, x0) is considered
with

σ̂log-price(τ, x) = σ̂

(
τ, log

K

erτ
− x

)
.

With this parametrization,

∂σ̂log-price(τ, x)

∂x
= −∂σ̂ (τ, log K

erτ − x)

∂κ

and the power law (2) is equivalent to∣∣∣∣∂σ̂log-price

∂x
(τ, x)

∣∣∣∣
x=log K

erτ

= O
(
τ− 1

2 +H
)
, τ → 0.

With Remark 8 in mind, let us provide a slightly adjusted version of [1, Theo-
rem 6.3].
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Theorem 5. Consider a risk-free log-price

X(t) = x0 + rt − 1

2

∫ t

0
σ 2(s)ds +

∫ t

0
σ(s)

(
ρdB1(s) +

√
1 − ρ2dB2(s)

)
, (25)

where B1, B2 are two independent Brownian motions, x0 ∈ R is a deterministic initial
value, r is an instantaneous interest rate, ρ ∈ (−1, 1) is a correlation coefficient
and σ = {σ(t), t ∈ [0, T ]} is a square-integrable stochastic process with right-
continuous trajectories adapted to the filtration F = {Ft , t ∈ [0, T ]} generated
by B1.

Assume that

(H1) σ ∈ L
2,4 with respect to B1;

(H2) there exists a constant ϕ∗ > 0 such that, with probability 1, σ(t) > ϕ∗ for all
t ∈ [0, T ];

(H3) there exists a constant H ∈ (0, 1
2 ) such that, with probability 1, for any 0 <

s < t < T ,

E
[(

Dsσ(t)
)2] ≤ C

(t − s)1−2H
, (26)

E
[(

DrDsσ(t)
)2] ≤ C

(
t − r

t − s

)1−2H

, (27)

where C > 0 is some constant;

(H4) σ has a.s. right-continuous trajectories;

(H5) supr,s,t∈[0,τ ] E[(σ (s)σ (t) − σ 2(r))2] → 0 when τ → 0+.

Finally, assume that there exists a constant Kσ > 0 such that, with probability 1,

1

τ
3
2 +H

∫ τ

0

∫ τ

s

E
[
Dsσ(t)

]
dtds − Kσ → 0, τ → 0+. (28)

Then, with probability 1,

lim
τ→0

τ
1
2 −H ∂σ̂log-price

∂x
(τ, x)

∣∣∣∣
x=log K

erτ

= − ρ

σ(0)
Kσ .

Remark 9. The original formulation of [1, Theorem 6.3] is slightly more general
than Theorem 5 above in the sense that

1) in [1, Theorem 6.3], the log-price X is allowed to have jumps;

2) the result in [1] is formulated for the future implied volatility surfaces
σ̂log-price(t0, τ,X(t0)), t0 ≥ 0.

Since we are interested in the continuous model (22), we removed the jump compo-
nent in (25) and, for the simplicity of notation, we put t0 = 0.
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Observe that the SVV model (22) automatically satisfies a number of assumptions
of Theorem 5:

• assumption (H2) with ϕ∗ := mint∈[0,T ] ϕ(t) > 0;

• assumption (H4) since Y is continuous a.s.;

• assumption (H1) by the results of Section 3 above.

Therefore, it remains to check (H3), (H5), and (28). Naturally, given the shape of the
Malliavin derivative (12), both (H3) and (28) require additional assumptions on the
kernel, so let us start with (H5).

Proposition 4. Let Assumptions 1 and 2 hold. Then with probability 1,

sup
r,s,t∈[0,τ ]

E
[(

Y(s)Y (t) − Y 2(r)
)2] → 0, τ → 0.

Proof. By [10, Lemma 3.6], there exists a positive random variable ϒ = ϒT such
that, for all t1, t2 ∈ [0, T ], ∣∣Y(t1) − Y(t2)

∣∣ ≤ ϒ |t1 − t2|λ

and, for any r > 0,

E
[
ϒr

]
< ∞.

Therefore, given that maxt∈[0,T ] Y(t) < maxt∈[0,T ] ψ(t) by (11),

E
[(

Y(s)Y (t) − Y 2(r)
)2]

= E
[(

Y(s)
(
Y(t) − Y(r)

) + Y(r)
(
Y(s) − Y(r)

))2]
≤ 2E

[
(Y 2(s)

(
Y(t) − Y(r)

)2] + 2E
[
Y 2(r)

(
Y(s) − Y(r)

)2]
≤ 2|t − r|2λ max

s∈[0,T ] ψ
2(s)E

[
ϒ2] + 2|s − r|2λ max

s∈[0,T ] ψ
2(s)E

[
ϒ2]

and hence, with probability 1,

sup
r,s,t∈[0,τ ]

E
[(

Y(s)Y (t) − Y 2(r)
)2] ≤ 4τ 2λ max

s∈[0,T ] ψ
2(s)E

[
ϒ2] → 0

as τ → 0+.

Our next step is to handle (28).

Proposition 5. Let Assumptions 1 and 2 hold and the Volterra kernel K satisfy (23)
for some finite constant KY . Then, with probability 1,

1

τ
3
2 +H

∫ τ

0

∫ τ

s

E
[
DsY(t)

]
dtds − KY → 0, τ → 0+.
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Proof. Recall that

F1(t, u) := b′
y

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}

and that, by Proposition 1, ∣∣F1(t, u)
∣∣ ≤ ecT ξ, (29)

where c := max
(t,y)∈D a′

y(t, y). Then we can write

1

τ
3
2 +H

∫ τ

0

∫ τ

s

E
[
DsY(t)

]
dtds

= 1

τ
3
2 +H

∫ τ

0

∫ τ

s

K(t, s)dtds

+ 1

τ
3
2 +H

∫ τ

0

∫ τ

s

∫ t

s

K(u, s)E
[
F1(t, u)

]
dudtds

= 1

τ
3
2 +H

∫ τ

0

∫ τ

s

K(t, s)dtds

+ 1

τ
3
2 +H

∫ τ

0

∫ τ

s

K(u, s)

(∫ τ

u

E
[
F1(t, u)

]
dt

)
duds.

The term 1

τ
3
2 +H

∫ τ

0

∫ τ

s
K(t, s)dtds converges to KY by (23). As for the second term,

note that, with probability 1, for any u ∈ [0, τ ],
∫ τ

u

∣∣E[
F1(t, u)

]∣∣dt ≤ CE[ξ ]τ

and hence, given (23), with probability 1,

1

τ
3
2 +H

∫ τ

0

∫ τ

s

K(u, s)

(∫ τ

u

E
[
F1(t, u)

]
dt

)
duds → 0, τ → 0+,

which ends the proof.

Finally, let us deal with (H3).

Proposition 6. Let Assumptions 1 and 2 hold with H ∈ ( 1
6 , 1

2 ) and the Volterra kernel
K be such that for any 0 ≤ s < t ≤ T

∣∣K(t, s)
∣∣ ≤ C|t − s|− 1

2 +H (30)

for some constant C > 0. Then the hypothesis (H3) from Theorem 5 holds for the
sandwiched volatility process σ = Y .
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Proof. Fix 0 < r, s < t . Then, taking into account (29), with probability 1,

∣∣DsY(t)
∣∣ ≤ ∣∣K(t, s)

∣∣ +
∫ t

s

∣∣K(u, s)
∣∣∣∣F1(t, u)

∣∣du

≤ C

(
|t − s|− 1

2 +H + ξ

∫ t

s

|u − s|− 1
2 +H du

)

≤ C(1 + T ξ)|t − s|− 1
2 +H

=: ζ |t − s|− 1
2 +H , (31)

which immediately implies (26). Next, by Proposition 1,∣∣b′′
yy

(
v, Y (v)

)∣∣ ≤ ξ

for any v ∈ [0, T ] and, for any 0 ≤ u ≤ t ≤ T ,

∣∣F2(t, u)
∣∣ =

∣∣∣∣b′′
yy

(
u, Y (u)

)
exp

{∫ t

u

b′
y

(
v, Y (v)

)
dv

}∣∣∣∣
≤ ecT ξ

with c := max
(t,y)∈D a′

y(t, y), so we can write

∣∣DrDsY (t)
∣∣

≤
∫ t

s

∣∣K(u, s)
∣∣∣∣F1(t, u)

∣∣(∫ t

u

∣∣b′′
yy

(
v, Y (v)

)∣∣∣∣DrY(v)
∣∣dv

)
du

+
∫ t

s

∣∣K(u, s)
∣∣∣∣F2(t, u)

∣∣∣∣DrY(u)
∣∣du

≤ C

(
ξ2

∫ t

s

∣∣K(u, s)
∣∣(∫ t

u

∣∣DrY(v)
∣∣dv

)
du + ξ

∫ t

s

∣∣K(u, s)
∣∣∣∣DrY(u)

∣∣du

)

= C

(
ξ2

∫ t

s

∣∣K(u, s)
∣∣(∫ t

u∨r

∣∣DrY(v)
∣∣dv

)
du + ξ

∫ t

r∨s

∣∣K(u, s)
∣∣∣∣DrY(u)

∣∣du

)
.

Taking into account (30) and (31),

∣∣DrDsY (t)
∣∣ ≤ C

(
ξ2ζ

∫ t

s

|u − s|− 1
2 +H

(∫ t

u∨r

|v − r|− 1
2 +H dv

)
du

+ ξζ

∫ t

r∨s

|u − s|− 1
2 +H |u − r|− 1

2 +H du

)

≤ C

(
ξ2ζ

∫ t

s

|u − s|− 1
2 +H |t − r| 1

2 +H du

+ ξζ

∫ t

r∨s

|u − s|− 1
2 +H |u − r|− 1

2 +H du

)
.
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Note that ∫ t

s

|u − s|− 1
2 +H |t − r| 1

2 +H du ≤ C|t − r| 1
2 +H |t − s| 1

2 +H

≤ C

(
t − r

t − s

) 1
2 −H

.

As for the integral
∫ t

r∨s
|u − s|− 1

2 +H |u − r|− 1
2 +H du, we have two cases:

• if 0 < r ≤ s < t , we can write∫ t

s

|u − s|− 1
2 +H |u − r|− 1

2 +H du ≤
∫ t

s

|u − s|−1+2H du

≤ C(t − s)2H ≤ C

(
t − r

t − s

) 1
2 −H

;

• similarly, if 0 < s < r < t and given that H > 1
6 , we have

∫ t

r

|u − s|− 1
2 +H |u − r|− 1

2 +H du ≤
∫ t

r

|u − r|−1+2H du

≤ C(t − r)2H ≤ C

(
t − r

t − s

) 1
2 −H

.

In any case,

∣∣DrDsY (t)
∣∣ ≤ Cξζ(ξ + 1)

(
t − r

t − s

) 1
2 −H

,

where ξ and ζ are random variables having all moments, and hence (27) holds.

Having in mind all of the results above, we are ready to prove the main result of
this section, namely Theorem 4.

Proof of Theorem 4. The results above show that the SVV model satisfies condi-
tions (H1)–(H5) of Theorem 5. Therefore, taking into account the reparametrization
described in Remark 8, Theorem 4 follows immediately from Theorem 5.

Example 1. Let 1
6 < H0 < H1 < · · · < Hn < 1 be such that H0 < 1

2 and αk > 0,
k = 0, . . . , n. Then the kernel

K(t, s) =
( n∑

k=0

αk(t − s)Hk− 1
2

)
1s<t

satisfies the assumptions of Theorem 4, so the corresponding SVV model generates
power law (2) with H = H0 provided that ρ < 0 in (22).
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A Selected results from the Malliavin calculus

A.1 The Malliavin derivative and the space D
k,p

Hereafter, we summarize the essentials of the Malliavin derivative with respect to
the classical Brownian motion. For more details, we refer the reader to the classical
books [25] or [13].

Denote by C
(∞)
p (Rn) the space of all infinitely differentiable functions with the

derivatives of at most polynomial growth. Let B = {B(t), t ∈ [0, T ]} be a standard
Brownian motion. For any h ∈ L2([0, T ]), denote

B(h) :=
∫ T

0
h(t)dB(t).

Definition 1. The random variables X of the form

X = f
(
B(h1), . . . , B(hn)

)
,

where n ≥ 1, f ∈ C
(∞)
p (Rn) and h1, . . . , hn ∈ L2([0, T ]) are called smooth. The set

of all smooth random variables is denoted by S .

Definition 2. Let X ∈ S . The Malliavin derivative of X (with respect to B) is the
L2([0, T ])-valued random variable of the form

DX :=
n∑

k=1

∂f

∂xk

(
B(h1), . . . , B(hn)

)
hk.

By [25, Proposition 1.2.1], the operator D is closable from Lp(�) to Lp(� ×
[0, T ]) for any p ≥ 1, and we use the same notation D for the closure. The domain
of this closure D in Lp(�), i.e. the closure of the class S with respect to the norm

‖X‖1,p :=
(
E

[|X|p] + E

[(∫ T

0
(DsX)2ds

) p
2
]) 1

p

,

is traditionally denoted by D
1,p. This definition can be iterated as described in [25,

p. 27] to introduce the iterated derivative DkX as a random variable with values in
(L2([0, T ]))⊗k ∼ L2([0, T ]k). One can also define Dk,p as the completion of S with
respect to the seminorm

‖X‖k,p :=
(
E

[|X|p] +
k∑

j=1

E
[‖DjX‖p

L2([0,T ]k)
]) 1

p

. (32)

Throughout the paper, we often use the following lemma which is essentially a
simplified version of [25, Proposition 1.5.5].

Lemma 1. Let p > 1 and X ∈ D
1,2 be such that

E
[|X|p]

< ∞
and

E

[(∫ T

0
(DsX)2ds

) p
2
]

< ∞.

Then X ∈ D
1,p.
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A.2 Generalized Malliavin product rule

Finally, let us prove a generalized version of the product rule from [25, Exercise
1.2.12] or [13, Theorem 3.4].

Lemma 2. Let X1, X2 ∈ D
1,2 be such that

(i) X1X2 ∈ L2(�);

(ii) X2DX1, X1DX2 ∈ L2(� × [0, T ]).
Then X1X2 ∈ D

1,2 and

D[X1X2] = X2DX1 + X1DX2.

If, in addition,

E
[|X1X2|p

]
< ∞, E

[(∫ T

0
(X2DuX1 + X1DuX2)

2du

) p
2
]

< ∞

for some p ≥ 2, then X1X2 ∈ D
1,p.

Proof. Let φ ∈ C∞(R) be a compactly supported function such that φ(x) = x

whenever |x| ≤ 1 and |φ(x)| ≤ |x| for all |x| > 1. For m ≥ 1, put

fm(x1, x2) := m2φ

(
x1

m

)
φ

(
x2

m

)

and observe that both partial derivatives

∂fm

∂x1
(x1, x2) = mφ′

(
x1

m

)
φ

(
x2

m

)
,

∂fm

∂x2
(x1, x2) = mφ

(
x1

m

)
φ′

(
x2

m

)

are bounded. Therefore, by the classical chain rule [25, Proposition 1.2.3],

Dfm(X1, X2) = m

(
φ′

(
X1

m

)
φ

(
X2

m

)
DX1 + φ

(
X1

m

)
φ′

(
X2

m

)
DX2

)
.

Now it is sufficient to prove that

fm(X1, X2) → X1X2 (33)

in L2(�) and

m

(
φ′

(
X1

m

)
φ

(
X2

m

)
DX1 + φ

(
X1

m

)
φ′

(
X2

m

)
DX2

)
→ X2DX1 + X1DX2 (34)

in L2(� × [0, T ]) as m → ∞.
Observe that |fm(X1, X2)| → X1X2 a.s. as m → ∞ and∣∣fm(X1, X2)

∣∣ ≤ X1X2 ∈ L2(�),
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so (33) holds by the dominated convergence theorem. Next, since φ′ is bounded, we
have that, with probability 1,

m

∣∣∣∣φ′
(

X1

m

)
φ

(
X2

m

)
DX1 + φ

(
X1

m

)
φ′

(
X2

m

)
DX2

∣∣∣∣
≤ max

x∈R
∣∣φ′(x)

∣∣(|X2DX1| + |X1DX2|
) ∈ L2(� × [0, T ]).

Therefore, since mφ′(X1
m

)φ(X2
m

)→X2 a.s. and mφ(X1
m

)φ′(X2
m

)→X1 a.s. as m → ∞,
(34) holds by the dominated convergence, which ends the proof of the first claim.

The second claim immediately follows from Lemma 1.

Funding

The present research is carried out within the frame and support of the ToppForsk
project nr. 274410 of the Research Council of Norway with the title STORM: Stochas-
tics for Time-Space Risk Models.

References

[1] Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for
jump-diffusion models with stochastic volatility. Finance Stoch. 11(4), 571–589 (2007).
MR2335834. https://doi.org/10.1007/s00780-007-0049-1

[2] Andersen, L.B.G., Piterbarg, V.V.: Moment explosions in stochastic volatility models.
Finance Stoch. 11(1), 29–50 (2006). MR2284011. https://doi.org/10.1007/s00780-006-
0011-7

[3] Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient condi-
tions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014).
https://doi.org/10.1016/j.spl.2014.07.030. MR3257384

[4] Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6),
887–904 (2016). MR3494612. https://doi.org/10.1080/14697688.2015.1099717

[5] Biagini, F., Guasoni, P., Pratelli, M.: Mean-variance hedging for stochastic volatility mod-
els. Math. Finance 10(2), 109–123 (2000). MR1802593. https://doi.org/10.1111/1467-
9965.00084

[6] Bollerslev, T., Mikkelsen, H.O.: Modeling and pricing long memory in stock
market volatility. J. Econom. 73(1), 151–184 (1996). https://doi.org/10.1016/0304-
4076(95)01736-4

[7] Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility mod-
els. Math. Finance 8(4), 291–323 (1998). MR1645101. https://doi.org/10.1111/1467-
9965.00057

[8] Delemotte, J., De Marco, S., Segonne, F.: Yet another analysis of the SP500 at-the-
money skew: Crossover of different power-law behaviours. SSRN Electron. J. (2023).
https://doi.org/10.2139/ssrn.4428407

[9] Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Option pricing in Volterra sand-
wiched volatility model. arXiv:2209.10688 (2022). https://doi.org/10.48550/ARXIV.
2209.10688

[10] Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Drift-implicit Euler scheme for
sandwiched processes driven by Hölder noises. Numer. Algorithms 93(2), 459–491
(2023). MR4586188. https://doi.org/10.1007/s11075-022-01424-6

https://mathscinet.ams.org/mathscinet-getitem?mr=2335834
https://doi.org/10.1007/s00780-007-0049-1
https://mathscinet.ams.org/mathscinet-getitem?mr=2284011
https://doi.org/10.1007/s00780-006-0011-7
https://doi.org/10.1016/j.spl.2014.07.030
https://mathscinet.ams.org/mathscinet-getitem?mr=3257384
https://mathscinet.ams.org/mathscinet-getitem?mr=3494612
https://doi.org/10.1080/14697688.2015.1099717
https://mathscinet.ams.org/mathscinet-getitem?mr=1802593
https://doi.org/10.1111/1467-9965.00084
https://doi.org/10.1016/0304-4076(95)01736-4
https://mathscinet.ams.org/mathscinet-getitem?mr=1645101
https://doi.org/10.1111/1467-9965.00057
https://doi.org/10.2139/ssrn.4428407
http://arxiv.org/abs/arXiv:2209.10688
https://doi.org/10.48550/ARXIV.2209.10688
https://doi.org/10.48550/ARXIV.2209.10688
https://mathscinet.ams.org/mathscinet-getitem?mr=4586188
https://doi.org/10.1007/s11075-022-01424-6


194 G. Di Nunno, A. Yurchenko-Tytarenko

[11] Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Sandwiched SDEs with unbounded
drift driven by Hölder noises. Adv. Appl. Probab. 55(3), 927–964 (2023). MR4624032.
https://doi.org/10.1017/apr.2022.56

[12] Di Nunno, G., Kubilius, K., Mishura, Y., Yurchenko-Tytarenko, A.: From constant to
rough: A survey of continuous volatility modeling. Mathematics 11(19), 4201 (2023).
https://doi.org/10.3390/math11194201

[13] Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Ap-
plications to Finance, 1st edn. Springer, Berlin, Heidelberg (2009). MR2460554

[14] Ding, Z., Granger, C.W.J.: Modeling volatility persistence of speculative returns: A new
approach. J. Econom. 73(1), 185–215 (1996). MR1410004. https://doi.org/10.1016/0304-
4076(95)01737-2

[15] Ding, Z., Granger, C.W.J., Engle, R.F.: A long memory property of stock market returns
and a new model. J. Empir. Finance 1(1), 83–106 (1993). https://doi.org/10.1016/0927-
5398(93)90006-d

[16] Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K.: Maturity cycles in implied volatil-
ity. Finance Stoch. 8(4) (2004). MR2212113. https://doi.org/10.1007/s00780-004-0126-7

[17] Fukasawa, M.: Volatility has to be rough. Quant. Finance 21(1), 1–8 (2021). MR4188876.
https://doi.org/10.1080/14697688.2020.1825781

[18] Funahashi, H., Kijima, M.: Does the Hurst index matter for option prices under fractional
volatility? Ann. Finance 13(1), 55–74 (2017). MR3623799. https://doi.org/10.1007/
s10436-016-0289-1

[19] Funahashi, H., Kijima, M.: A solution to the time-scale fractional puzzle in the implied
volatility. Fractal Fract. 1(1), 14 (2017). https://doi.org/10.3390/fractalfract1010014

[20] Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–
949 (2018). MR3805308. https://doi.org/10.1080/14697688.2017.1393551

[21] Hu, Y., Nualart, D., Song, X.: A singular stochastic differential equation driven by frac-
tional Brownian motion. Stat. Probab. Lett. 78(14), 2075–2085 (2008). MR2458016.
https://doi.org/10.1016/j.spl.2008.01.080

[22] Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Volume I:
Martingales and Littlewood-Paley theory, 1st edn. Springer, Cham, Switzerland (2016).
MR3617205

[23] Lee, R.W.: Implied volatility: Statics, dynamics, and probabilistic interpretation. In:
Recent Advances in Applied Probability, pp. 241–268. Kluwer Academic Publishers,
Boston (2006). MR2102956. https://doi.org/10.1007/0-387-23394-6_11

[24] Lobato, I.N., Velasco, C.: Long memory in stock-market trading volume. J. Bus. Econ.
Stat. 18(4), 410–427 (2000). MR1802045. https://doi.org/10.2307/1392223

[25] Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin/Heidelberg
(2006). MR2200233

[26] Ocone, D.L., Karatzas, I.: A generalized Clark representation formula, with applica-
tion to optimal portfolios. Stoch. Stoch. Rep. 34(3–4), 187–220 (1991). MR1124835.
https://doi.org/10.1080/17442509108833682

[27] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin,
Heidelberg (1999). MR1725357. https://doi.org/10.1007/978-3-662-06400-9

[28] Rough Volatility Literature. https://sites.google.com/site/roughvol/home/rough-
volatility-literature?authuser=0. Accessed: 2023-10-30.

[29] Willinger, W., Taqqu, M.S., Teverovsky, V.: Stock market prices and long-range depen-
dence. Finance Stoch. 3(1), 1–13 (1999). https://doi.org/10.1007/s007800050049

https://mathscinet.ams.org/mathscinet-getitem?mr=4624032
https://doi.org/10.1017/apr.2022.56
https://doi.org/10.3390/math11194201
https://mathscinet.ams.org/mathscinet-getitem?mr=2460554
https://mathscinet.ams.org/mathscinet-getitem?mr=1410004
https://doi.org/10.1016/0304-4076(95)01737-2
https://doi.org/10.1016/0927-5398(93)90006-d
https://mathscinet.ams.org/mathscinet-getitem?mr=2212113
https://doi.org/10.1007/s00780-004-0126-7
https://mathscinet.ams.org/mathscinet-getitem?mr=4188876
https://doi.org/10.1080/14697688.2020.1825781
https://mathscinet.ams.org/mathscinet-getitem?mr=3623799
https://doi.org/10.1007/s10436-016-0289-1
https://doi.org/10.1007/s10436-016-0289-1
https://doi.org/10.3390/fractalfract1010014
https://mathscinet.ams.org/mathscinet-getitem?mr=3805308
https://doi.org/10.1080/14697688.2017.1393551
https://mathscinet.ams.org/mathscinet-getitem?mr=2458016
https://doi.org/10.1016/j.spl.2008.01.080
https://mathscinet.ams.org/mathscinet-getitem?mr=3617205
https://mathscinet.ams.org/mathscinet-getitem?mr=2102956
https://doi.org/10.1007/0-387-23394-6_11
https://mathscinet.ams.org/mathscinet-getitem?mr=1802045
https://doi.org/10.2307/1392223
https://mathscinet.ams.org/mathscinet-getitem?mr=2200233
https://mathscinet.ams.org/mathscinet-getitem?mr=1124835
https://doi.org/10.1080/17442509108833682
https://mathscinet.ams.org/mathscinet-getitem?mr=1725357
https://doi.org/10.1007/978-3-662-06400-9
https://sites.google.com/site/roughvol/home/rough-volatility-literature?authuser=0
https://sites.google.com/site/roughvol/home/rough-volatility-literature?authuser=0
https://doi.org/10.1007/s007800050049

	Introduction
	Preliminaries on sandwiched processes
	Second-order Malliavin differentiability
	Power law in SVV model
	Selected results from the Malliavin calculus
	The Malliavin derivative and the space Dk,p
	Generalized Malliavin product rule


