
Modern Stochastics: Theory and Applications 11 (2) (2024) 217–245
https://doi.org/10.15559/24-VMSTA248

A law of the iterated logarithm for small counts in
Karlin’s occupancy scheme

Alexander Iksanova,∗, Valeriya Kotelnikovaa

aFaculty of Computer Science and Cybernetics, Taras Shevchenko National
University of Kyiv, Ukraine

iksan@univ.kiev.ua (A. Iksanov), valeria.kotelnikova@unicyb.kiev.ua (V. Kotelnikova)

Received: 19 November 2023, Revised: 18 January 2024, Accepted: 18 January 2024,
Published online: 30 January 2024

Abstract In the Karlin infinite occupancy scheme, balls are thrown independently into an in-
finite array of boxes 1, 2, . . . , with probability pk of hitting the box k. For j, n ∈ N, denote by
K∗

j
(n) the number of boxes containing exactly j balls provided that n balls have been thrown.

Small counts are the variables K∗
j
(n), with j fixed. The main result is a law of the iterated loga-

rithm (LIL) for the small counts as the number of balls thrown becomes large. Its proof exploits
a Poissonization technique and is based on a new LIL for infinite sums of independent indica-
tors

∑
k≥1 1Ak(t) as t → ∞, where the family of events (Ak(t))t≥0 is not necessarily mono-

tone in t . The latter LIL is an extension of a LIL obtained recently by Buraczewski, Iksanov and
Kotelnikova (2023+) in the situation when (Ak(t))t≥0 forms a nondecreasing family of events.

Keywords Independent indicators, infinite occupancy, law of the iterated logarithm, small
counts

MSC2020 MSC 60F15, 60G50, 60C05

1 Introduction

1.1 Definition of the model

Let (pk)k∈N be a discrete probability distribution with pk > 0 for infinitely many k.
The infinite occupancy scheme is defined by independent allocation of balls over an
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infinite array boxes 1, 2, . . . , with probability pk of hitting the box k. The scheme
is usually called the Karlin occupancy scheme because of Karlin’s remarkable work
[12]. We are aware of the two articles [1] and [5] which preceded [12]. A survey of
the literature on the infinite occupancy up to 2007 is given in [9]. An incomplete list
of very recent contributions includes [3, 4, 6, 7]. Among other things, the authors of
[9] discuss applications of the scheme to ecology, database query optimization and
literature. Another portion of possible applications can be found in Section 1.1 of
[10].

There are deterministic and Poissonized versions of Karlin’s occupancy scheme.
In a deterministic version the nth ball is thrown at time n ∈ N. For j, n ∈ N, denote
by Kj (n) and K∗

j (n) the number of boxes hit by at least j balls and exactly j balls,
respectively, up to and including time n. Observe that K1(n) is the number of occu-
pied boxes at time n. Sometimes the variables K∗

j (n), with j fixed, are referred to as
small counts.

To define the other version of the scheme we need an additional notation. Let
(Sk)k∈N denote a random walk with independent jumps having an exponential distri-
bution of unit mean. The counting process π := (π(t))t≥0 given by π(t) := #{k ∈
N : Sk ≤ t} for t ≥ 0 is a Poisson process on [0,∞) of unit intensity.

In a Poissonized version of Karlin’s occupancy scheme the nth ball is thrown
at time Sn, n ∈ N, and it is assumed that the allocation process is independent of
(Sk)k∈N, hence of π . Thus, in the time interval [0, t] there are π(t) balls thrown in
the Poissonized version and �t	 balls thrown in the deterministic version. While the
occupancy counts of distinct boxes are dependent in the deterministic version, these
are independent in the Poissonized version. The latter fact is a principal advantage of
the Poissonized version. It is justified by the thinning property of Poisson processes.
For j ∈ N and t ≥ 0, denote by Kj(t) and K∗

j (t) the number of boxes containing
at least j balls and exactly j balls, respectively, in the Poissonized scheme at time t .
The random variables

Kj(t) =
∑
k≥1

1{the box k contains at least j balls at time t}

and
K∗

j (t) =
∑
k≥1

1{the box k contains exactly j balls at time t} (1)

are the infinite sums of independent indicators. As a consequence, their analysis is
much simpler than that of Kj (n) and K∗

j (n) which are infinite sums of dependent
indicators.

1.2 Main results

Put
ρ(t) := #{k ∈ N : 1/pk ≤ t}, t > 0,

and note that ρ(t) = 0 for t ∈ (0, 1]. Following Karlin [12] we assume that ρ varies
regularly at ∞ of index α ∈ [0, 1], that is, ρ(t) ∼ tαL(t) as t → ∞ for some L

slowly varying at ∞. An encyclopaedic treatment of slowly and regularly varying
functions can be found in Section 1 of [2].
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The function ρ is said to belong to the de Haan class � if, for all λ > 0,

lim
t→∞

ρ(λt) − ρ(t)

�(t)
= log λ (2)

for some � slowly varying at ∞. The function � is called auxiliary. According to
Theorem 3.7.4 in [2], the class � is a subclass of the class of slowly varying func-
tions. Further detailed information regarding the class � is given in Section 3 of [2]
and in [8]. Denote by ��,∞ the subclass of the de Haan class � with the auxiliary
functions � satisfying limt→∞ �(t) = ∞.

In the case α ∈ (0, 1], according to Theorems 3, 5 and 5’ in [12], both K∗
j (t) and

K∗
j (n), centered by their means and normalized by their standard deviations, converge

in distribution to a random variable with the standard normal distribution. In the case
ρ ∈ ��,∞, Corollary 1.6 in [11] provides functional central limit theorems for K∗

j (t)

and K∗
j (n), properly scaled. Our purpose is to prove laws of the iterated logarithm

(LILs) for K∗
j (t) as t → ∞ and K∗

j (n) as n → ∞. While doing so, we treat the three
cases separately: α = 0, α ∈ (0, 1) and α = 1. The reason is that the forms of the
LILs are slightly or essentially different in these cases. If ρ is slowly varying at ∞
and satisfies an additional assumption, then the actual limit relation is either a law of
the single logarithm or a LIL. However, to keep the presentation simple we prefer to
call LILs all the limit relations involving upper or lower limits which appear in the
paper.

In Theorems 1, 2 and 3 we present LILs for the Poissonized variables K∗
j (t) as

t → ∞. Theorem 1 covers a subcase of the case α = 0 in which ρ ∈ ��,∞ with
particular �.

Theorem 1. Assume that (2) holds. If � in (2) satisfies

�(t) ∼ (log t)β l(log t), t → ∞, (3)

for some β > 0 and l slowly varying at ∞, then, for each j ∈ N,

lim sup
t→∞

K∗
j (t) − EK∗

j (t)

(Var K∗
j (t) log Var K∗

j (t))1/2 =
(

2

β

)1/2

a.s. (4)

and

lim inf
t→∞

K∗
j (t) − EK∗

j (t)

(Var K∗
j (t) log Var K∗

j (t))1/2 = −
(

2

β

)1/2

a.s. (5)

If � in (2) satisfies
�(t) ∼ exp

(
σ(log t)λ

)
, t → ∞, (6)

for some σ > 0 and λ ∈ (0, 1), then, for each j ∈ N,

lim sup
t→∞

K∗
j (t) − EK∗

j (t)

(Var K∗
j (t) log log Var K∗

j (t))1/2 =
(

2

λ

)1/2

a.s. (7)

and

lim inf
t→∞

K∗
j (t) − EK∗

j (t)

(Var K∗
j (t) log log Var K∗

j (t))1/2 = −
(

2

λ

)1/2

a.s. (8)
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In both cases

EK∗
j (t) ∼ �(t)

j
, t → ∞, (9)

and

Var K∗
j (t) ∼

(
1

j
− (2j − 1)!

(j !)222j

)
�(t), t → ∞. (10)

Remark 1. Treatment of the situations in which ρ is slowly varying at ∞, yet ρ /∈ �,
is beyond our reach. To reveal complications arising in this case we only mention
that even the large-time asymptotics of t �→ Var K∗

j (t) is not known. To find the
asymptotics, a second-order relation for ρ like (2) seems to be indispensable. If α ∈
(0, 1], then the regular variation of ρ alone ensures that, for all λ > 0,

lim
t→∞

ρ(λt) − ρ(t)

ρ(t)
= λα − 1.

Thus, no extra conditions are needed in this case.

Remark 2. Our present proof only works provided that, for some a > 0, ρ(t) =
O((�(t))a) as t → ∞. In view of this, Theorem 1 does not cover the diverging
slowly varying functions � which grow slower than any positive power of the log-
arithm, for instance, �(t) ∼ log log t as t → ∞. Indeed, it can be checked that
limt→∞ �(t) = ∞ entails limt→∞(ρ(t)/ log t) = ∞, whence trivially, for all a > 0,
limt→∞(ρ(t)/(�(t))a) = ∞.

The following results are concerned with the cases α ∈ (0, 1) and α = 1, respec-
tively.

Theorem 2. Assume that, for some α ∈ (0, 1) and some L slowly varying at +∞,

ρ(t) ∼ tαL(t), t → ∞.

Then, for each j ∈ N,

lim sup
t→∞

K∗
j (t) − EK∗

j (t)

(Var K∗
j (t) log log Var K∗

j (t))1/2 = 21/2 a.s. (11)

and

lim inf
t→∞

K∗
j (t) − EK∗

j (t)

(Var K∗
j (t) log log Var K∗

j (t))1/2 = −21/2 a.s., (12)

EK∗
j (t) ∼ α


(j − α)

j ! tαL(t) (13)

and
Var K∗

j (t) ∼ cj, αtαL(t), t → ∞, (14)

where 
 is the Euler gamma function and

cj, α := α

(

(j − α)

j ! − 2α
(2j − α)

22j (j !)2

)
> 0. (15)
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Theorem 3. Assume that, for some L slowly varying at +∞,

ρ(t) ∼ tL(t), t → ∞.

Then, for each j ≥ 2, relation (11) holds,

EK∗
j (t) ∼ 1

j (j − 1)
tL(t) (16)

and

lim
t→∞

Var K∗
j (t)

tL(t)
= 1

j (j − 1)
− (2j − 2)!

22j−1(j !)2 = cj, 1. (17)

Assume that, for each small enough γ > 0,

lim
n→∞

L̂(exp((n + 1)1+γ ))

L̂(exp(n1+γ ))
= 0, (18)

where L̂(t) := ∫ ∞
t

y−1L(y)dy, being well-defined for large t , is a function slowly
varying at ∞ and satisfying

lim
t→∞

L(t)

L̂(t)
= 0. (19)

Then relation (11) holds with j = 1. If (18) does not hold, then

lim sup
t→∞

K∗
1 (t) − EK∗

1 (t)

(Var K∗
1 (t) log log Var K∗

1 (t))1/2 ≤ 21/2 a.s. (20)

and

lim inf
t→∞

K∗
1 (t) − EK∗

1 (t)

(Var K∗
1 (t) log log Var K∗

1 (t))1/2 ≥ −21/2 a.s. (21)

In any event
Var K∗

1 (t) ∼ EK∗
1 (t) ∼ tL̂(t), t → ∞. (22)

Theorems 1, 2 and 3 will be deduced in Section 4 from the LIL for infinite sums
of independent indicators given in Theorem 5.

Finally, we present LILs for the variables K∗
j (n).

Theorem 4. Under the assumptions of Theorems 1, 2 or 3, for j ∈ N, all the LILs
stated there hold true with K∗

j (n), EK∗
j (n) and VarK∗

j (n) replacing K∗
j (t), EK∗

j (t)

and Var K∗
j (t), and n → ∞ replacing t → ∞.

A transfer of results available for the Poissonized version to the deterministic
version is called de-Poissonization. Theorem 4 will be deduced in Section 4 from
Theorems 1, 2 and 3 with the help of a de-Poissonization technique.

Remark 3. Following the referee’s suggestion, for the sake of comparison, we now
provide a verbal description of the LILs obtained in [3]. Under the assumptions of
Theorems 1, 2 and 3, the limit relations (4), (5), (7), (8), (11), (12), (20) and (21) hold
true with Kj(t), EKj(t) and Var Kj(t) replacing K∗

j (t), EK∗
j (t) and Var K∗

j (t). Also,
these limit relations hold true with Kj (n), EKj (n) and VarKj (n) replacing K∗

j (t),
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EK∗
j (t) and Var K∗

j (t), and n → ∞ replacing t → ∞. Typically, the means and the
variances of K∗

j (t) and Kj(t), and K∗
j (n) and Kj (n) exhibit the same rate of growth,

up to a multiplicative constant. The only exception is that, under the assumptions of
Theorem 1, for j ∈ N,

EK∗
j (t) ∼ �(t)

j
, t → ∞, and EK∗

j (n) ∼ �(n)

j
, n → ∞,

whereas

EKj(t) ∼ ρ(t), t → ∞, and EKj (n) ∼ ρ(n), n → ∞.

The latter relations are secured by Lemma 10 and the formula

lim
n→∞ |EKj(n) − EKj (n)| = 0

which can be found in Lemma 1 of [9].

2 LIL for infinite sums of independent indicators

Let (A1(t))t≥0, (A2(t))t≥0, . . . be independent families of events defined on a com-
mon probability space (�,F ,P). Assume that

∑
k≥1 P(Ak(t)) < ∞, for each t ≥ 0,

and then put
X(t) :=

∑
k≥1

1Ak(t), t ≥ 0.

Since, for t ≥ 0, b(t) := EX(t) = ∑
k≥1 P(Ak(t)) < ∞, we infer X(t) < ∞ almost

surely (a.s.) and further

a(t) := Var X(t) =
∑
k≥1

P
(
Ak(t)

)(
1 − P

(
Ak(t)

)) ≤ b(t) < ∞.

Under the assumption that, for each k ∈ N and 0 ≤ s < t , Ak(s) ⊆ Ak(t)

a LIL for X(t) can be found in Theorem 1.6 of [3]. As an application, LILs for
Kj(t) were proved in that paper, see Theorems 3.1, 3.3 and 3.4 therein. According
to (1), the variable K∗

j (t) is a particular instance of X(t). However, for each k ∈ N,
the corresponding events (Ak(t))t≥0 are not monotone in t , and therefore, a LIL for
K∗

j (t) cannot be deduced from Theorem 1.6 of [3]. This serves a motivation for the
present section. Here, dropping the monotonicity assumption we provide sufficient
conditions under which a LIL for X(t) holds.

We shall prove a LIL for X(t) under the assumptions (A1)–(A5) and (B1)–(B21)
or (B22) given below. The lack of monotonicity only affects our proof for the upper
bound of lim supt→∞ to be done under (A1)–(A5). In view of this, (A2)–(A5) are
modified versions of the corresponding assumptions in [3]. (B1), (B21) and (B22)
coincide with the corresponding assumptions in [3] under which the lower bound of
lim supt→∞ was found in the cited article.

(A1) limt→∞ a(t) = ∞.
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(A2) There exist independent a.s. nondecreasing stochastic processes (1(t))t≥0,
(2(t))t≥0, . . . taking values in {0, 1, 2, . . . ,M} for some M ∈ N and satisfy-
ing

(a) for each k ∈ N, 0 ≤ s < t , |1Ak(t) − 1Ak(s)| ≤ k(t) − k(s) a.s.;

(b) for each t ≥ 0, f (t) := EY(t) < ∞, where Y(t) := ∑
k≥1 k(t) for

t ≥ 0;

(c) b(0) ≤ f (0).

(A3) Under (A2), there exists μ∗ ≥ 1 such that f (t) = O((a(t))μ
∗
) as t → ∞. In

view of (28) and a(t) ≤ b(t) for t ≥ 0, necessarily μ∗ ≥ 1. Put

μ := inf
{
μ∗ : f (t) = O

((
a(t)

)μ∗)}
. (23)

If μ = 1, we assume additionally that either f is eventually continuous or

lim inft→∞
(
log f (t − 1)/ log f (t)

)
> 0;

and that
f (t)/a(t) = O

(
zq

(
a(t)

))
, t → ∞, (24)

where zq(t) := (log t)qL(log t) for some q ≥ 0 and L is slowly varying at ∞
and, if q > 0, f (t)/a(t) = O(zs(a(t))) for s ∈ (0, q).

Before introducing our next assumption we need some preparation. In view of
(A1) and a(t) ≤ f (t) for t ≥ 0, we infer limt→∞ f (t) = ∞. For each � ∈ (0, 1), put

μ� := μ + � if μ > 1 and q� := q + � if μ = 1. (25)

In other words, if μ > 1, we work with μρ , if μ = 1, we work with qρ . Assum-
ing (A3), fix any κ ∈ (0, 1) and � ∈ (0, 1) and put

tn = tn(κ, μ) := inf
{
t > 0 : f (t) > vn(κ, μ)

}
(26)

for n ∈ N, where vn(κ, 1) = vn(κ, 1, q, �) = exp(n(1−κ)/(q�+1)) and vn(κ, μ) =
vn(κ, μ, �) = nμ�(1−κ)/(μ�−1) for μ > 1. Plainly, the sequence (tn)n∈N is nonde-
creasing with limn→∞ tn = +∞.

(A4) Fix any κ ∈ (0, 1) and � ∈ (0, 1). There exists a function a0 satisfying a(t) ∼
a0(t) as t → ∞, and, for each n large enough, there exists sn = sn(κ, μ) ∈
[tn(κ, μ), tn+1(κ, μ)] such that a0(t) ≥ a0(sn) for all t ∈ [tn, tn+1].

(A5) For each n large enough, there exists A > 1 and a partition tn = t0, n < t1, n <

· · · < tj, n = tn+1 with j = jn satisfying

1 ≤ f (tk, n) − f (tk−1, n) ≤ A, 1 ≤ k ≤ j,

and, for all ε > 0, (jn exp(−ε(a(sn))
1/2)) is a summable sequence.
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Remark 4. (A2a) and (A2b) entail, for 0 ≤ s < t ,

|b(t) − b(s)| ≤ E

∑
k≥1

|1Ak(t) − 1Ak(s)| ≤ f (t) − f (s). (27)

Inequality (27) with s = 0 and (A2c) together imply that

b(t) ≤ f (t) − f (0) + b(0) ≤ f (t), t ≥ 0. (28)

Remark 5. Here is an example of X satisfying (A2) which is motivated by a prospec-
tive application of the LIL for X(t) to the variables K∗

j (t). Let (B1(t))t≥0, (B2(t))t≥0,

. . . and (C1(t))t≥0, (C2(t))t≥0, . . . be two families of independent events satisfying

(i) for each k ∈ N and t ≥ 0, Ck(t) ⊆ Bk(t);

(ii) for each k ∈ N and 0 ≤ s < t , Bk(s) ⊆ Bk(t) and Ck(s) ⊆ Ck(t);

(iii) for t ≥ 0,
∑

k≥1 P(Bk(t)) < ∞.

For each k ∈ N and t ≥ 0, put Ak(t) := Bk(t) \ Ck(t) and k(t) := 1Bk(t) + 1Ck(t).
The so defined k is a.s. nondecreasing. Since, for 0 ≤ s < t , 1Ck(s) ≤ 1Ck(t) and
1Bk(s) ≤ 1Bk(t) a.s. we conclude that

|1Ak(t) − 1Ak(s)| = |1Bk(t) − 1Ck(t) − 1Bk(s) + 1Ck(s)| ≤ k(t) − k(s) a.s.

While (A2b) is a consequence of (iii), (A2c) is justified by P(Ak(0)) = P(Bk(0)) −
P(Ck(0)) ≤ Ek(0).

Putting Ck(t) := � for all k ∈ N and t ≥ 0 we recover the case of monotone in t

families (Ak(t))t≥0 treated in [3].

Remark 6. The assumption imposed in [3] meaning that, for each k ∈ N, the family
(Ak(t))t≥0 is nondecreasing in t simplifies significantly the analysis of (43). Indeed,
for any θ > 0, we then infer supv∈[0,θ] |X(t + v) − X(t)| = X(t + θ) − X(t) and
supv∈[0,θ] |b(t + v) − b(t)| = b(t + θ) − b(t). In the absence of the monotonicity
assumption, it is necessary to find some monotone majorant for |X(t + v) − X(t)|
which is sufficiently close to the true supremum.

One may expect that f behaving like f (t) = O(b(t)) as t → ∞ should do
the job. What is not trivial is that f satisfying limt→∞(f (t)/b(t)) = ∞ may also
be suitable. For instance, consider the setting of Theorem 1 and X(t) := K∗

j (t) for
j ∈ N. By (9), b(t) ∼ const �(t) as t → ∞, and by (63) and (48), f (t) ∼ const ρ(t)

as t → ∞. Applying Lemma 9 we conclude that indeed limt→∞(f (t)/b(t)) = ∞.

Remark 7. A sufficient condition for (A4) is either eventual lower semi-continuity
or eventual monotonicity of a0. The former means that lim infy→x a0(y) ≥ a0(x), for
all large enough x.

Remark 8. A sufficient condition for (A5) is that f is eventually strictly increasing
and eventually continuous. Indeed, one can then choose a partition that satisfies, for
large n, f (tk, n)−f (tk−1, n) = 1 for k ∈ N, k ≤ j−1 and f (tj, n)−f (tj−1, n) ∈ [1, 2).
As a consequence,

jn = ⌊
vn+1(κ, μ) − vn(κ, μ)

⌋ = o
(
a(sn)

)
, n → ∞,
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by Lemma 2(b) below, so that the sequence (jn exp(−ε(a(sn))
1/2)) is indeed sum-

mable.

Assuming (A1) and (A3), fix any γ > 0 and put

τn = τn(γ, μ) := inf
{
t > 0 : a(t) > wn(γ, μ)

}
(29)

for large n ∈ N with μ as given in (23). Here, with q as given in (24), wn(γ, 1) =
wn(γ, 1, q) = exp(n(1+γ )/(q+1)) if μ = 1 and wn(γ, μ) = n(1+γ )/(μ−1) if μ > 1.

(B1) The function a is eventually continuous or limt→∞(log a(t−1)/ log a(t)) = 1
if μ = 1 and limt→∞(a(t − 1)/a(t)) = 1 if μ > 1.

(B21) For sufficiently large t > 0 and each ς > 0, let Rς(t) denote a set of positive
integers satisfying the following two conditions: for each ς > 0 and each
γ > 0, both close to 0, there exists n0 = n0(ς, γ ) ∈ N such that the sets
Rς(τn0(γ, μ)), Rς(τn0+1(γ, μ)), . . . are disjoint; and

lim
t→∞

Var(
∑

k∈Rς (t) 1Ak(t))

Var X(t)
= 1 − ς.

(B22) For sufficiently large t > 0, let R0(t) denote a set of positive integers sat-
isfying the following two conditions: for each γ > 0 close to 0 there exists
n0 = n0(γ ) ∈ N such that the sets R0(τn0(γ, μ)), R0(τn0+1(γ, μ)), . . . are
disjoint; and

lim
t→∞

Var(
∑

k∈R0(t)
1Ak(t))

Var X(t)
= 1. (30)

Now we are ready to present a LIL for infinite sums of independent indicators.

Theorem 5. Suppose (A1)–(A5), (B1) and either (B21) or (B22). Then, with μ ≥ 1
and q ≥ 0 as defined in (23) and (24), respectively,

lim sup
t→∞

X(t) − EX(t)

(2(q + 1)Var X(t) log log Var X(t))1/2 = 1 a.s.

and

lim inf
t→∞

X(t) − EX(t)

(2(q + 1)Var X(t) log log Var X(t))1/2 = −1 a.s.

if μ = 1 and

lim sup
t→∞

X(t) − EX(t)

(2(μ − 1)Var X(t) log Var X(t))1/2 = 1 a.s.

and

lim inf
t→∞

X(t) − EX(t)

(2(μ − 1)Var X(t) log Var X(t))1/2 = −1 a.s.

if μ > 1.

Our proof of Theorem 5 given in Section 3.2 is a modified version of the proof of
Theorem 1.6 in [3].
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3 Proof of Theorem 5

3.1 Auxiliary results

We start with a simple inequality which will be used in the last part of the proof of
Proposition 2.

Lemma 1. Suppose (A2). Then, for ϑ ∈ R and t > s ≥ 0,

E exp
(
ϑ

(
Y(t) − Y(s)

)) ≤ exp
((

eϑM − 1
)(

f (t) − f (s)
))

.

Proof. For k ∈ N and t > s ≥ 0, 1{k(t)−k(s)>0} = 1{k(t)−k(s)≥1} ≤ k(t) −
k(s) a.s. The equality stems from the fact that k only takes nonnegative integer
values. Hence, for ϑ ∈ R and 0 ≤ s < t ,

E exp(ϑ
(
Y(t) − Y(s)

) =
∏
k≥1

E exp
(
ϑ

(
k(t) − k(s)

))

=
∏
k≥1

(
1 + E

(
eϑ(k(t)−k(s)) − 1

)
1{k(t)−k(s)>0}

)

≤
∏
k≥1

(
1 + (

eϑM − 1
)
E1{k(t)−k(s)>0}

)

≤ exp

((
eϑM − 1

)∑
k≥1

E
(
k(t) − k(s)

))

= exp
((

eϑM − 1
)(

f (t) − f (s)
))

.

For each B ≥ 0 and each D > 1, put

g1, B(t) := (B+1) log log t, t > e, and gD(t) := (D−1) log t, t > 1. (31)

Lemma 2 does two things. First, it explains the choice of the sequences (tn) and (vn)

and the functions g1, q� and gμ� (even though (tn) is not present in Lemma 2 explic-
itly, it is of crucial importance for defining the sequence (sn)). Second, it secures a
successful application of the Borel–Cantelli lemma in the proof of Proposition 2.

Lemma 2. Suppose (A1), (A3) and (A4). Fix any � ∈ (0, 1), any κ ∈ (0, 1) and let
q� and μ� be as defined in (25).
(a) If μ in (23) is equal to 1, then exp(−g1, q� (a(sn(κ, 1)))) = O(n−(1−κ)) as n →
∞, and if μ > 1, then exp(−gμ�(a(sn(κ, μ)))) = O(n−(1−κ)).
(b) There exists an integer r ≥ 2 such that (((vn+1(κ, μ) − vn(κ, μ))/a(sn))

r ) is a
summable sequence.

Proof. (a) Using the definition of tn, the fact that f is nondecreasing and (A3), we
conclude that, as n → ∞,

exp
(
n(1−κ)/(q�+1)

) ≤ f
(
tn(κ, 1)

) ≤ f
(
sn(κ, 1)

) = O
(
a
(
sn(κ, 1)

)
zq

(
a
(
sn(κ, 1)

)))
(32)

and, for μ > 1,

nμ�(1−κ)/(μ�−1) ≤ f
(
tn(κ, μ)

) ≤ f
(
sn(κ, μ)

) = O
((

a
(
sn(κ, μ)

))μ�
)
, n → ∞.

(33)



A LIL for small counts in Karlin’s occupancy scheme 227

Since limt→∞(log zq(t)/ log t) = 0, we infer

exp
(−g1, q�

(
a
(
sn(κ, 1)

))) = (
log a

(
sn(κ, 1)

))−(q�+1) = O
(
n−(1−κ)

)
, n → ∞.

Also, for μ > 1,

exp
(−gμ�

(
a
(
sn(κ, μ)

))) = (
a
(
sn(κ, μ)

))−(μ�−1) = O
(
n−(1−κ)

)
, n → ∞.

(b) We start by proving that (A3) with μ = 1 entails

log a
(
sn(κ, 1)

) = O
(
n(1−κ)/(q�+1)

)
, n → ∞. (34)

Assume that f is eventually continuous. Then f (tn(κ, 1)) = vn(κ, 1) for large enough
n and thereupon log a(sn(κ, 1)) ≤ log f (sn(κ, 1)) ≤ log f (tn+1(κ, 1)) = (n +
1)(1−κ)/(q�+1) for large n. Assuming that lim inft→∞(log f (t − 1)/ log f (t)) > 0,
we obtain (34) as a consequence of log f (tn+1(κ, 1) − 1) ≤ (n + 1)(1−κ)/(q�+1) and
log a(sn(κ, 1)) ≤ log f (sn(κ, 1)) ≤ log f (tn+1(κ, 1)).

We proceed by noting that, as n → ∞,

vn+1(κ, 1) − vn(κ, 1) = exp
(
(n + 1)(1−κ)/(q�+1)

) − exp
(
n(1−κ)/(q�+1)

)
∼ (

(1 − κ)/(q� + 1)
)
n((1−κ)/(q�+1))−1 exp

(
n(1−κ)/(q�+1)

)
and, for μ > 1,

vn+1(κ, μ) − vn(κ, μ) = (n + 1)μ�(1−κ)/(μ�−1) − nμ�(1−κ)/(μ�−1)

∼ (
μ�(1 − κ)/(μ� − 1)

)
n(1−μ�κ)/(μ�−1).

Write

1

a(sn(κ, 1))
= O

((
log a

(
sn(κ, 1)

))q� exp
(−n(1−κ)/(q�+1)

))

= O
(
nq�(1−κ)/(q�+1) exp

(−n(1−κ)/(q�+1)
))

, n → ∞.

Here, the first equality is implied by zq(t) = O((log t)q� ) as t → ∞ and (32), and
the second equality is a consequence of (34). In the case μ > 1, invoking (33) we
infer

1

a(sn(κ, μ))
= O

(
n−(1−κ)/(μ�−1)

)
, n → ∞.

Thus, we have proved that, for μ ≥ 1,

vn+1(κ, μ) − vn(κ, μ)

a(sn)
= O

(
n−κ

)
, n → ∞.

Choosing any integer r ≥ 2 satisfying rκ > 1 completes the proof of part (b).

For k ∈ N and t ≥ 0, put X∗(t) := X(t)−EX(t) and ηk(t) := 1Ak(t) −P(Ak(t)).
Note that

X∗(t) =
∑
k≥1

ηk(t), t ≥ 0,
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and that η1(t), η2(t), . . . are independent centered random variables.
Lemma 3 provides a uniform bound for higher moments of the increments of X∗.

The bound serves a starting point of the chaining argument in the spirit of Lemma 4.
A result of an application of Lemma 4 to the present setting is given in Lemma 5.

Lemma 3. Suppose (A2). Let r ∈ N and t, s ≥ 0. Then

E
(
X∗(t) − X∗(s)

)2r ≤ Dr max
(|f (t) − f (s)|r , |f (t) − f (s)|) (35)

for a positive constant Dr which does not depend on t and s.

Proof. In view of the representation

X∗(t) − X∗(s) =
∑
k≥1

(
1Ak(t) − P

(
Ak(t)

) − 1Ak(s) + P
(
Ak(s)

)) =:
∑
k≥1

ηk(s, t),

the variable X∗(t) − X∗(s) is an infinite sum of independent centered random vari-
ables with finite moment of order 2r .

Invoking Rosenthal’s inequality (Theorem 3 in [14]) in the case r ≥ 2 we infer

E
(
X∗(t) − X∗(s)

)2r ≤ Cr max

((∑
k≥1

E
(
ηk(s, t)

)2
)r

,
∑
k≥1

E
(
ηk(s, t)

)2r
)

.

In the case r = 1, the inequality trivially holds with C1 = 1 as is seen from

E
(
X∗(t) − X∗(s)

)2 =
∑
k≥1

E
(
ηk(s, t)

)2
.

In view of (A2), for r ∈ N and 0 ≤ s < t ,

∑
k≥1

E
(
ηk(s, t)

)2r

≤ 22r−1
∑
k≥1

(
E(1Ak(t) − 1Ak(s))

2r + (
P
(
Ak(t)

) − P
(
Ak(s)

))2r)

≤ 22r−1
∑
k∈N

(
E|1Ak(t) − 1Ak(s)| + ∣∣P(

Ak(t)
) − P

(
Ak(s)

)∣∣)

≤ 22r
∑
k≥1

E
(
k(t) − k(s)

) = 22r
(
f (t) − f (s)

)
.

Here, we have used (a + b)2r ≤ 22r−1(a2r + b2r ), a, b ∈ R, for the first inequality,
the fact that |1Ak(t) − 1Ak(s)| ∈ {0, 1} a.s. and |P(Ak(t)) − P(Ak(s))| ∈ [0, 1] for the
second and (A2a) for the third. The argument for the case 0 ≤ t < s is analogous.

Combining fragments together we conclude that (35) holds with Dr :=
122rCr .

The next result is borrowed from Lemma 2 in [13].
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Lemma 4. Let ξ1, ξ2, . . . be random variables. Fix any m ∈ N and assume that

E|ξi+1 + · · · + ξk|λ1 ≤ (ui+1 + · · · + uk)
λ2 , 0 ≤ i < k ≤ m,

for some λ1 > 0, some λ2 > 1 and some nonnegative numbers u1, . . . , um. Then

E

(
max

1≤k≤m
|ξ1 + · · · + ξk|

)λ1 ≤ Aλ1,λ2(u1 + · · · + um)λ2

for a positive constant Aλ1,λ2 .

Lemma 5. Suppose (A2) and (A5). Then, for any integer r ≥ 2, there exists a positive
constant Ar such that

E

(
max

1≤k≤j

∣∣X∗(tk−1, n) − X∗(tn)
∣∣)2r ≤ Ar

(
vn+1(κ, μ) − vn(κ, μ)

)r
. (36)

Here, j and (tk, n)0≤k≤j are as defined in (A5), and vn(κ, μ) is as defined in (26).

Proof. We first show that the assumption of Lemma 4 holds with λ1 = 2r , λ2 = r ,
m = j − 1, ξk := X∗(tk, n) − X∗(tk−1, n) and uk := D

1/r
r (f (tk, n) − f (tk−1, n)) for

k ∈ N, where Dr is the constant defined in Lemma 3. Let 0 ≤ i < k ≤ j − 1. By
(A5), f (tk, n) − f (ti, n) = ∑k

l=i+1(f (tl, n) − f (tl−1, n)) ≥ 1. This in combination
with Lemma 3 yields

E|ξi+1 + · · · + ξk|2r = E
(
X∗(tk, n) − X∗(ti, n)

)2r

≤ Dr max
((

f (tk, n) − f (ti, n)
)r

, f (tk, n) − f (ti, n)
)

= Dr

(
f (tk, n) − f (ti, n)

)r =
( k∑

l=i+1

ul

)r

,

thereby proving that the assumption of Lemma 4 does indeed hold. Hence, inequal-
ity (36) follows from Lemma 4 and the definition of tn:

E

(
max

1≤k≤j
|X∗(tk−1, n) − X∗(tn)|

)2r

= E

(
max

1≤k≤j−1
|ξ1 + · · · + ξk|

)2r

≤ A2r, r

(j−1∑
l=1

ul

)r

= A2r, rDr

(
f (tj−1, n) − f (tn)

)r

≤ A2r, rDr

(
vn+1(κ, μ) − vn(κ, μ)

)r
.

3.2 Proof of Theorem 5

We start with a lemma and a proposition which are in essence Lemma 4.13 and Propo-
sition 4.7 in [3]. Although our present assumption (A3) is slightly different from the
corresponding assumption in [3], we have checked that the proofs of the aforemen-
tioned results in [3] go through.
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Lemma 6. Suppose (A1), (A3), (B1) and either (B21) or (B22), and let μ ≥ 1 be as
given in (23). For sufficiently small δ > 0, pick γ ∈ (0, (

√
5 − 1)/2) > 0 satisfying

(1 + γ )(1 − δ2/8) < 1. Then

lim sup
n→∞

(
lim inf
n→∞

) 1

(2a(νn)h0(a(νn))1/2

∑
k≥1

ηk(νn) ≥ 1 − δ
(≤ −(1 − δ)

)
a.s.,

where νn is either τn or �τn	, and τn = τn(γ, μ), with γ chosen above, is as defined
in (29).

Proposition 1. Suppose (A1), (A3), (B1) and either (B21) or (B22). Then, with μ ≥ 1
and q ≥ 0 as defined in (23) and (24), respectively,

lim sup
t→∞

(
lim inf
t→∞

) X∗(t)
(2(q + 1)a(t) log log a(t))1/2 ≥ 1 (≤ −1) a.s.

and

lim sup
t→∞

(
lim inf
t→∞

) X∗(t)
(2(μ − 1)a(t) log a(t))1/2 ≥ 1 (≤ −1) a.s.

in the cases μ = 1 and μ > 1, respectively.

Proposition 2 is a counterpart of Proposition 4.6 in [3]. Although it is tempting
to believe that the proof of Proposition 4.6 in [3] goes through as well, this is not the
case. First, in the proof of (43), instead of dealing with the process X and its mean
b (which are not monotone anymore), we work with their nondecreasing majorants
Y and f . It is not obvious that Y and f are bounded from above similarly to X

and b. Second, unlike in [3] we do not require that the variance a is asymptotically
nondecreasing. Hence, putting a(tn) in the denominator of (37) is not allowed.

Proposition 2. Suppose (A1)–(A5). Then, with μ ≥ 1 and q ≥ 0 as defined in (23)
and (24), respectively,

lim sup
t→∞

(
lim inf
t→∞

) X∗(t)
(2(q + 1)a(t) log log a(t))1/2 ≤ 1 (≥ −1) a.s.

and

lim sup
t→∞

(
lim inf
t→∞

) X∗(t)
(2(μ − 1)a(t) log a(t))1/2 ≤ 1 (≥ −1) a.s.

in the cases μ = 1 and μ > 1, respectively.

Proof of Proposition 2. In view of (A4), it is enough to show that, for each � ∈
(0, 1) and each positive κ sufficiently close to 0,

lim sup
n→∞

supu∈[tn, tn+1] X∗(u)

(2a(sn)h�(a(sn)))1/2 ≤ 1 + κ a.s., (37)

where tn = tn(κ, μ) and sn = sn(κ, μ) are as defined in (26) and (A4), respectively,
h� = g1, q� if μ in (23) is equal to 1 and h� = gμ� if μ > 1 (see (31) for the
definitions of g1, q� and gμ� ). Indeed, if (37) holds true, then, for large enough n, a.s.
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lim sup
t→∞

X∗(t)
(2a(t)h�(a(t)))1/2 = lim sup

t→∞
X∗(t)

(2a0(t)h�(a0(t)))1/2

≤ lim sup
n→∞

supu∈[tn, tn+1] X∗(u)

(2a0(sn)h�(a0(sn)))1/2 = lim sup
n→∞

supu∈[tn, tn+1] X∗(u)

(2a(sn)h�(a(sn)))1/2 ≤ 1 + κ.

The relation lim inft→∞ X∗(t)
(2a(t)h�(a(t)))1/2 ≥ −1 − κ a.s. does not require a separate

proof. It follows from the argument for lim sup upon replacing ηk(t) with −ηk(t).
To obtain (37), we first prove in Lemma 7 that

lim supn→∞
X∗(sn)

(2a(sn)h�(a(sn)))1/2 ≤ 1 + κ a.s. (38)

and then show that

lim
n→∞

supu∈[tn, tn+1] |X∗(u) − X∗(sn)|
(a(sn)h�(a(sn)))1/2 = 0 a.s. (39)

Lemma 7. Suppose (A1), (A3) and (A4). Then relation (38) holds for any κ ∈
(0, (

√
5 − 1)/2).

Proof. Fix any κ ∈ (0, (
√

5 − 1)/2). We first show that there exists ρ = ρ(κ) > 0
satisfying

(1 − κ)(1 + κ)2(2 − exp
(
2(1 + κ)ρ

))
> 1. (40)

To prove this, note that our choice of κ ensures (1 − κ)(1 + κ)2 > 1. Observe next
that as positive ρ approaches 0, 2 − exp(2(1 + κ)ρ) becomes arbitrary close to 1,
thereby justifying 2 − exp(2(1 + κ)ρ) > (1 − κ)−1(1 + κ)−2.

By Lemma 4.1 in [3], for ϑ ∈ R and t ≥ 0,

E exp
(
ϑX∗(t)

) ≤ exp
(
2−1ϑ2 exp(|ϑ |)a(t)

)
.

Fix any θ ∈ R and put ϑ = θ/(2a(sn)h�(a(sn)))
1/2. Observe that, for large enough n,

h�(a(sn))/a(sn) ≤ 2ρ2 for ρ satisfying (40). An application of Markov’s inequality
then yields, for large n as above,

P

{
X∗(sn)

(2a(sn)h�(a(sn)))1/2 > 1 + κ

}
≤ e−(1+κ)θ

E exp

(
θ

X∗(sn)
(2a(sn)h�(a(sn)))1/2

)

≤ exp

(
−(1 + κ)θ + θ2

4h�(a(sn))
exp

(
ρ|θ |

h�(a(sn))

))
.

Putting θ = 2(1 + κ)h�(a(sn)) and then invoking Lemma 2(a), we obtain

P

{
X∗(sn)

(2a(sn)h�(a(sn)))1/2 > 1 + κ

}

≤ exp
(−(1 + κ)2(2 − exp

(
2(1 + κ)ρ

))
h�

(
a(sn)

))

= O

(
1

n(1−κ)(1+κ)2(2−exp(2(1+κ)ρ))

)
, n → ∞.
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According to (40),

∑
n≥n0

P

{
X∗(tn)

(2a(tn)h�(a(tn)))1/2 > 1 + κ

}
< ∞

for some n0 ∈ N large enough. An application of the Borel–Cantelli lemma completes
the proof of Lemma 7.

Next, in order to prove (39) it suffices to show that

lim
n→∞

supu∈[tn, tn+1] |X∗(u) − X∗(tn)|
(a(sn))1/2 = 0 a.s. (41)

and

lim
n→∞

|X∗(tn) − X∗(sn)|
(a(sn))1/2 = 0 a.s. (42)

Since (42) is a consequence of (41), we are left with proving (41).

PROOF OF (41). Let tn = t0, n < · · · < tj, n = tn+1 be a partition defined in (A5).
With this at hand, write

sup
u∈[tn, tn+1]

∣∣X∗(u) − X∗(tn)
∣∣

= max
1≤k≤j

sup
v∈[0, tk, n−tk−1, n]

∣∣(X∗(tk−1, n) − X∗(tn)
)+(

X∗(tk−1, n + v)−X∗(tk−1, n)
)∣∣

≤ max
1≤k≤j

∣∣X∗(tk−1, n) − X∗(tn)
∣∣

+ max
1≤k≤j

sup
v∈[0, tk, n−tk−1, n]

∣∣(X∗(tk−1, n + v) − X∗(tk−1, n)
)∣∣ a.s.

By Markov’s inequality and Lemma 5, for any r > 0 and all ε > 0,

P

{
max

1≤k≤j
|X∗(tk−1, n) − X∗(tn)| > ε

(
a(sn)

)1/2
}

≤ E(max1≤k≤j |X∗(tk−1, n) − X∗(tn)|)2r

ε2r (a(sn))r
≤ Ar(vn+1(κ, μ) − vn(κ, μ))r

ε2r (a(sn))r
.

By Lemma 2(b), there exists an integer r ≥ 2 such that the right-hand side forms a
sequence which is summable in n. Hence, an application of the Borel–Cantelli lemma
yields

lim
n→∞

max1≤k≤j |X∗(tk−1, n) − X∗(tn)|
(a(sn))1/2 = 0 a.s.

Next, we work towards proving that

lim
n→∞

max1≤k≤j supv∈[0, tk, n−tk−1, n] |X∗(tk−1, n + v) − X∗(tk−1, n)|
(a(sn))1/2 = 0 a.s. (43)

According to (A2), for any 0 ≤ s < t , |X(t) − X(s)| ≤ Y(t) − Y(s) a.s., where the
process Y is a.s. nondecreasing. Taking into account Remark 4 we obtain

sup
v∈[0, tk, n−tk−1, n]

∣∣X∗(tk−1, n + v) − X∗(tk−1, n)
∣∣
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≤ sup
v∈[0, tk, n−tk−1, n]

∣∣X(tk−1, n + v) − X(tk−1, n)
∣∣

+ sup
v∈[0, tk, n−tk−1, n]

∣∣b(tk−1, n + v) − b(tk−1, n)
∣∣

≤ sup
v∈[0, tk, n−tk−1, n]

(
Y(tk−1, n + v) − Y(tk−1, n)

)

+ sup
v∈[0, tk, n−tk−1, n]

(
f (tk−1, n + v) − f (tk−1, n)

)

= Y(tk, n) − Y(tk−1, n) + f (tk, n) − f (tk−1, n) a.s.

By (A1) and (A5),

max1≤k≤j (f (tk, n) − f (tk−1, n))

(a(sn))1/2 ≤ A

(a(sn))1/2 → 0, n → ∞. (44)

Finally, for all ε > 0,

P

{
max

1≤k≤j

(
Y(tk, n) − Y(tk−1, n)

)
> ε

(
a(sn)

)1/2
}

≤
j∑

k=1

P
{
Y(tk, n) − Y(tk−1, n) > ε

(
a(sn)

)1/2}

≤ e−ε(a(sn))1/2
j∑

k=1

EeY(tk, n)−Y(tk−1, n)

≤ e−ε(a(sn))1/2
j∑

k=1

exp
((

eM − 1
)(

f (tk, n) − f (tk−1, n)
))

≤ exp
(
A

(
eM − 1

))
je−ε(a(sn))1/2

, (45)

having utilized Markov’s inequality for the second inequality, Lemma 1 for the third
and (A5) for the fourth. Invoking (A5) once again we conclude that the right-hand
side is summable in n. Hence, an application of the Borel–Cantelli lemma yields

lim
n→∞

max1≤k≤j (X(tk, n) − X(tk−1, n))

(a(sn))1/2 = 0 a.s.

The proofs of both (41) and Proposition 2 are complete.

4 Proofs related to Karlin’s occupancy scheme

4.1 Auxiliary results

For ease of reference, we state two known results. The former is an obvious extension
of Theorem 1.5.3 in [2]. The latter is Lemma 6.2 in [3].

Lemma 8. Let f be a function which varies regularly at ∞ of positive index and
g a positive nondecreasing function with limt→∞ g(t) = ∞. Then there exists a
nondecreasing function h satisfying f (g(t)) ∼ h(t) as t → ∞.
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Lemma 9. (a) Conditions (2) and (3) entail

ρ(t) ∼ (β + 1)−1(log t)β+1l(log t), t → ∞. (46)

(b) Conditions (2) and (6) entail

ρ(t) ∼ (σλ)−1 exp
(
σ(log t)λ

)
(log t)1−λ, t → ∞. (47)

4.2 Asymptotic behavior of EKj(t) and Var Kj(t)

Given next is a collection of results on the asymptotics of EKj(t) and Var Kj(t) taken
from Lemma 6.5 of [3]. Recall that ��,∞ denotes the subclass of the de Haan class
� with the auxiliary functions �, see (2), satisfying limt→∞ �(t) = ∞.

Lemma 10. Assume that ρ ∈ ��,∞. Then, for each j ∈ N,

EKj(t) ∼ ρ(t), t → ∞, (48)

and

Var Kj(t) ∼
(

log 2 −
j−1∑
k=1

(2k − 1)!
(k!)222k

)
�(t), t → ∞.

Assume that ρ(t) ∼ tαL(t) as t → ∞ for some α ∈ (0, 1] and some L slowly
varying at ∞. If α ∈ (0, 1) and j ∈ N or α = 1 and j ≥ 2, then, as t → ∞,

EKj(t) ∼ 
(j − α)

(j − 1)! ρ(t), (49)

and

lim
t→∞

Var Kj(t)

ρ(t)
=

(j−1∑
i=0


(i + j − α)

i!(j − 1)!2i+j−1−α
− 
(j − α)

(j − 1)!
)

> 0. (50)

If α = 1, then

Var K1(t) ∼ EK1(t) ∼ tL̂(t), t → ∞. (51)

4.3 Asymptotic behavior of EK∗
j (t) and Var K∗

j (t)

For j ∈ N, the asymptotics of t �→ EK∗
j (t) as stated in Theorems 1, 2 and 3 can

be found in Lemma 6.5 of [3]. Next, we show that, for j ∈ N, the functions t �→
Var K∗

j (t) exhibit the asymptotics given in the aforementioned theorems.

Lemma 11. Assume that ρ ∈ ��,∞. Then, for each j ∈ N,

Var K∗
j (t) ∼

(
1

j
− (2j − 1)!

(j !)222j

)
�(t), t → ∞. (52)

Assume that ρ(t) ∼ tαL(t) as t → ∞ for some α ∈ (0, 1] and some L slowly
varying at ∞. If α ∈ (0, 1) and j ∈ N or α = 1 and j ≥ 2, then, as t → ∞,

lim
t→∞

Var K∗
j (t)

tαL(t)
= cj, α > 0 (53)

with cj, α as defined in (15) and (17).
If α = 1, then

Var K∗
1 (t) ∼ tL̂(t), t → ∞. (54)
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Proof. Assume that ρ ∈ ��,∞. Putting u = v = 0 in formula (11) of [11] we
obtain (52).

According to formula (6) in [9],

Var K∗
j (t) = EK∗

j (t) − 2−2j

(
2j

j

)
EK∗

2j (2t), t ≥ 0, j ∈ N. (55)

Note that (55) does not require even regular variation assumption on ρ.
Assume that ρ is regularly varying at ∞ of index α = 1. We first discuss the prop-

erties of the function L̂ stated in Theorem 3. By Lemma 3 in [12], limt→∞ t−1ρ(t) =
0 and

∫ ∞
1 y−2ρ(y)dy ≤ 1. This implies that the function L̂(t) = ∫ ∞

t
y−1L(y)dy

is well-defined for large t and thereupon limt→∞ L̂(t) = 0. According to Propo-
sition 1.5.9b [2], L̂ is slowly varying at ∞ and satisfies (19). This in combination
with (16), (22) and (55) entails (54).

Assume now α ∈ (0, 1) and j ∈ N or α = 1 and j ≥ 2. Then invoking (55) and
either (13) or (16) we obtain

lim
t→∞

Var K∗
j (t)

tαL(t)
= lim

t→∞
EK∗

j (t)

tαL(t)
− 2−2j

(
2j

j

)
lim

t→∞
EK∗

2j (2t)

tαL(t)
= cj, α.

We are left with showing that the constants cj, α are positive for α ∈ (0, 1) and j ∈ N

and α = 1 and j ≥ 2 or equivalently

2α
(2j − α)

22j j !
(j − α)
< 1.

This is a consequence of

2α
(2j − α)

22j j !
(j − α)
<

2 (2j − 1)!
22j j !(j − 1)! = (2j − 1)!

(2j)!!(2j − 2)!! < 1,

where (2n)!! := 2 · 4 · . . . · (2n) for n ∈ N. Here, the last inequality is justified with
the help of mathematical induction. The proof of Lemma 11 is complete.

4.4 Proof of Theorems 1, 2 and 3

For k ∈ N and t ≥ 0, denote by πk(t) the number of balls in box k at time t in the
Poissonized version. It has already been mentioned in Section 1.1 that the thinning
property of Poisson processes implies that the processes (π1(t))t≥0, (π2(t))t≥0, . . .

are independent. Moreover, for k ∈ N, (πk(t))t≥0 is a Poisson process with inten-
sity pk . As a consequence, both K∗

j (t) and Kj(t) can be represented as the sums of
independent indicators

K∗
j (t) =

∑
k=1

1{πk(t)=j} and Kj(t) =
∑
k=1

1{πk(t)≥j}, t ≥ 0, j ∈ N.

Hence, it is reasonable to prove the desired LILs for the small counts by applying
Theorem 5.

As a preparation, we start with a lemma which facilitates checking condition
(B22) of Theorem 5.
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Lemma 12. Assume that either ρ ∈ ��,∞ or ρ is regularly varying at ∞ of index
α ∈ (0, 1]. If ρ ∈ ��,∞ and j ∈ N or α ∈ (0, 1) and j ∈ N or α = 1 and j ≥ 2, then
for any positive functions c and d satisfying limt→∞ c(t) = ∞, limt→∞(c(t)/t) = 0
and limt→∞(d(t)/t) = ∞,

Var

(∑
k≥1

1{c(t)<1/pk≤d(t)}1{πk(t)=j}
)

∼ Var K∗
j (t), t → ∞.

Proof. We start by proving a simple but an important inequality. Since

Cov (1{πk(t)≥j},1{πk(t)≥j+1})
= P

{
πk(t) ≥ j + 1

} − P
{
πk(t) ≥ j

}
P
{
πk(t) ≥ j + 1

} ≥ 0,

we infer

Var(1{πk(t)=j})
= Var(1{πk(t)≥j} − 1{πk(t)≥j+1})
= Var(1{πk(t)≥j+1}) + Var(1{πk(t)≥j}) − 2Cov (1{πk(t)≥j},1{πk(t)≥j+1})
≤ Var1{πk(t)≥j+1} + Var1{πk(t)≥j}.

Therefore, it is enough to show that in the setting of the lemma, for all j ≥ 2 in
the case α = 1 and for all j ∈ N in the other cases,

Var

(∑
k≥1

1{1/pk>d(t)}1{πk(t)≥j}
)

= o
(
Var K∗

j (t)
)
, t → ∞, (56)

and

Var

(∑
k≥1

1{1/pk≤c(t)}1{πk(t)≥j}
)

= o
(
Var K∗

j (t)
)
, t → ∞. (57)

According to formulae (86), (87), (79) and (80) in [3],

Var

(∑
k≥1

1{1/pk>d(t)}1{πk(t)≥j}
)

= o
(
�(t)

)
, t → ∞, (58)

Var

(∑
k≥1

1{1/pk≤c(t)}1{πk(t)≥j}
)

= o
(
�(t)

)
, t → ∞, (59)

Var

(∑
k≥1

1{1/pk>d(t)}1{πk(t)≥j}
)

= o
(
ρ(t)

)
, t → ∞ (60)

and

Var

(∑
k≥1

1{1/pk≤c(t)}1{πk(t)≥j}
)

= o
(
ρ(t)

)
, t → ∞. (61)

In view of (52) or (53), depending on the setting, relations (58) or (60), (59) or (61)
are equivalent to (56) and (57).
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Proof of Theorems 1, 2 and 3. We first prove Theorem 3 in the case j = 1. This
setting is much simpler than the others, as the LIL for

K∗
1 (t) = K1(t) − K2(t) (62)

can be derived from the already available LILs for K1(t) and K2(t).
The statements of Theorem 3 concerning the function L̂ has already been justi-

fied in the proof of Lemma 11. According to (51) and (54), Var K∗
1 (t) ∼ Var K1(t) ∼

tL̂(t) as t → ∞. Invoking the latter relation, (50) and (19) we conclude that
Var K2(t) ∼ 2−1tL(t) = o(Var K1(t)) as t → ∞. By Theorem 3.4 and Remark 1.7
in [3],

lim sup
t→∞

(
lim inf
t→∞

) K2(t) − EK2(t)

(Var K2(t) log log Var K2(t))1/2 = 21/2 (−21/2) a.s.

As a consequence, K2(t) − EK2(t) = o((Var K1(t) log log Var K1(t))
1/2) a.s. as

t → ∞. Now, in view of (62),

lim sup
t→∞

(
lim inf
t→∞

) K∗
1 (t) − EK∗

1 (t)

(Var K∗
1 (t) log log Var K∗

1 (t))1/2

= lim sup
t→∞

(
lim inf
t→∞

) K1(t) − EK1(t)

(Var K1(t) log log Var K1(t))1/2 a.s.

Armed with this, the claim of Theorem 3 in the case j = 1 is secured by Theorem 3.4
in [3]. Indeed, the theorem states that depending on whether relation (18) holds or
not, the right-hand side is either equal to 21/2 (−21/2) or is not larger than 21/2 (not
smaller than −21/2) a.s.

In the remaining part of the proof we treat simultaneously Theorems 1 and 2 and
the case j ≥ 2 of Theorem 3. It has already been announced that our plan is to derive
the LILs from Theorem 5. Hence, now we work towards checking the conditions of
the aforementioned theorem in the present setting.

CONDITION (A1) holds according to (52) in conjunction with limt→∞ �(t) = ∞,
(53) and (54).

CONDITION (A2) is justified by a representation 1{πk(t)=j} = 1{πk(t)≥j}−1{πk(t)≥j+1}
a.s., for all k, j ∈ N and t ≥ 0, see Remark 5. The corresponding function f is given
by

fj, α(t) :=
∑
k≥1

(
P
{
πk(t) ≥ j

} + P
{
πk(t) ≥ j + 1

}) = EKj(t) + EKj+1(t)

=
∑
k≥1

(
1 −

j−1∑
i=0

e−pkt
(pkt)

i

i!
)

+
∑
k≥1

(
1 −

j∑
i=0

e−pkt
(pkt)

i

i!
)

. (63)

We bring out the dependence on j and α to distinguish the so defined functions for the
different settings. By the same reasoning, we write aj, α instead of a, where a(t) =
Var K∗

j (t) for t ≥ 0.
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CONDITION (A3). Assume first that ρ ∈ ��,∞. According to (48) and (52), for each
j ∈ N, fj, 0(t) ∼ 2ρ(t) and aj, 0(t) ∼ C�(t) as t → ∞, respectively. Here and
hereafter, C denotes a constant whose value is of no importance and may vary from
formula to formula. Under (3), invoking (46) we conclude that (A3) holds with μ =
1/β + 1. Under (6), using (47) we infer μ = 1. Thus, we have to check the additional
conditions pertaining to the case μ = 1. First, the function fj,α is continuous. Second,
q = 1/λ − 1 and L(t) ≡ 1 for all t ≥ 0 by another appeal to (47).

Assume now that α ∈ (0, 1) and j ∈ N or α = 1 and j ≥ 2. Then, according
to (49) and (53), fj, α(t) ∼ Caj, α(t) as t → ∞, which entails μ = 1. Further, fj, α

is continuous, q = 0 and L(t) ≡ 1 for t ≥ 0.

CONDITION (A4). Denote by a0;j, α a version of a0 for the different settings. Assume
first that ρ ∈ ��,∞. Then, according to (52), aj, 0(t) ∼ C�(t) as t → ∞. Therefore,
under (3), a0;j, 0 can be chosen as a monotone equivalent of t �→ C(log t)β l(log t)

which exists by Lemma 8. Under (6), a0;j,0 can be chosen as a0;j, 0(t) :=
C exp(σ (log t)λ) for all t ≥ 1.

Assume now that α ∈ (0, 1) and j ∈ N or α = 1 and j ≥ 2. Then, according
to (53), a0;j, α can be chosen as a monotone equivalent of t �→ cj, αtαL(t) which
exists by Lemma 8.

Thus, in all settings (A4) holds according to Remark 7.

CONDITION (A5) holds according to Remark 8, for fj, α is continuous and strictly
increasing.

CONDITION (B1) holds in view of

aj, α(t) = Var K∗
j (t) =

∑
k≥1

e−pkt
(pkt)

j

j !
(

1 − e−pkt
(pkt)

j

j !
)

, t ≥ 0, (64)

which shows that aj, α is a continuous function.

CONDITION (B22). For t > 1, put c(t) := t/ log t and d(t) := t log t and then

R0(t) := {
k ∈ N : c(t) < 1/pk ≤ d(t)

}
.

By Lemma 12, in all settings relation (30), which is the second part of (B22), holds.
Passing to the first part of (B22), we are going to refer to the table below which

contains all the necessary information. In the first line, we list the values of μ which
have already been found while checking (A3). Recall that the definitions of wn(γ, μ)

and τn can be found right after formula (29) and in (29), respectively. We write wn

instead of wn(γ, μ) and Set. is a shorthand for Setting. Note that in the case α = 1
we only consider j ≥ 2.

Set. ρ ∈ ��,∞, (3) ρ ∈ ��,∞, (6) α ∈ (0, 1], j ∈ N

μ 1/β + 1 1 1
wn nβ(1+γ ) exp(nλ(1+γ )) exp(n1+γ )

τn ∼ en(1+γ )
o(en(1+γ )

) eσ−1/λn(1+γ )
(1 + o(1)) eα−1n(1+γ )

o(eα−1n(1+γ )
)
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We conclude that in all the settings τn+1/τn diverges to ∞ superexponentially fast,
whereas log τn only grows polynomially fast. Hence, for large enough n, c(τn+1) >

d(τn), which justifies the first part of (B22).
The proofs of Theorems 1, 2 and 3 are complete.

4.5 Proofs of Theorem 4

We start with some preparatory work. It is known, see, for instance, Lemma 1 in [9],
that for any probability distribution (pk)k∈N and j ∈ N,

lim
n→∞

∣∣EK∗
j (n) − EK∗

j (n)
∣∣ = 0. (65)

However, we are not aware of a counterpart of this relation for variances. Proposi-
tion 3 fills up this gap. Recall that ρ ∈ ��,∞ means that ρ ∈ � and that its auxiliary
function �, see (2), satisfies limt→∞ �(t) = ∞.

Proposition 3. Assume that either ρ ∈ ��,∞ or ρ is regularly varying at ∞ of index
α ∈ (0, 1]. Then, for j ∈ N,

lim
n→∞

VarK∗
j (n)

Var K∗
j (n)

= 1.

The proof of Proposition 3 is partly based on a lemma which is a slight extension
of Lemma 6.9 in [3]. The new aspect of the lemma is that unlike the cited result it
covers the case where j = 1 and l ≥ 1 simultaneously.

Lemma 13. Assume that either ρ ∈ ��,∞ or ρ is regularly varying at ∞ of index
α ∈ (0, 1]. Then for l ≥ j , l, j ∈ N,

∑
k≥1

(
n

l

)
pl

k(1 − pk)
n = O

(
Var K∗

j (n)
)
, n → ∞. (66)

Proof. According to the last formula in the proof of Lemma 6.9 in [3],

∑
k≥1

(
n

l

)
pl

k(1 − pk)
n ∼ EK∗

l (n + l), n → ∞.

According to formulae (9), (13), (16) and (22), the function t �→ EK∗
j (t) is regularly

varying at ∞ of index α ∈ [0, 1]. This entails EK∗
l (n + l) ∼ EK∗

l (n) as n → ∞.
If ρ ∈ ��,∞ or ρ is regularly varying at ∞ of index α ∈ (0, 1), then (66) is a

consequence of (9) and (10) or (13) and (14). If ρ is regularly varying at ∞ of index
α = 1 and either j, l ≥ 2 or j = l = 1, then (66) follows from (16) and (17) or (22),
respectively. Finally, under the latter regular variation assumption, if j = 1 and l ≥ 2,
then (66), with o replacing O, holds true according to (16), (22) and (19).

Proof of Proposition 3. We start by noting that, in view of (52), (53) or (54), for
j ∈ N,

lim
t→∞

Var K∗
j (t)

t
= 0. (67)
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In the case α = 1 this is secured by limt→∞ L̂(t) = 0, which follows from the
definition of L̂.

For k, j, n ∈ N, the event {the box k contains exactly j balls out of n} will be
denoted by Ak(j, n). Then

VarK∗
j (n) =

∑
k≥1

P
(
Ak(j, n)

)(
1 − P

(
Ak(j, n)

))

+
∑
i =k

(
P
(
Ai(j, n) ∩ Ak(j, n)

) − P
(
Ai(j, n)

)
P
(
Ak(j, n)

))
.

It is enough to prove that

lim
n→∞

∑
k≥1 P(Ak(j, n))(1 − P(Ak(j, n))) − Var K∗

j (n)

Var K∗
j (n)

= 0 (68)

and

lim
n→∞

∑
i =k(P(Ai(j, n) ∩ Ak(j, n)) − P(Ai(j, n))P(Ak(j, n)))

Var K∗
j (n)

= 0. (69)

PROOF OF (68). For k, j, n ∈ N,

P
(
Ak(j, n)

) =
(

n

j

)
p

j
k (1 − pk)

n−j .

In view of this and (64), the numerator in (68) is equal to

∑
k≥1

((
n

j

)
p

j
k (1 − pk)

n−j − e−pkn
(pkn)j

j !

−
((

n

j

)
p

j
k (1 − pk)

n−j

)2

−
(

e−pkn
(pkn)j

j !
)2)

.

According to the penultimate inequality in the proof of Lemma 2.13 in [11], for large
enough n and any j ≤ n,

−Bjpk ≤
(

n

i

)
p

j
k (1 − pk)

n−j − e−pkn
(pkn)j

j ! ≤ Ajpk

for some positive constants Aj and Bj . Therefore,

∑
k≥1

∣∣∣∣
(

n

j

)
p

j
k (1 − pk)

n−j − e−pkn
(pkn)j

j !
∣∣∣∣ ≤ max(Aj , Bj ) = o

(
Var K∗

j (n)
)
,

as n → ∞, since under our assumptions limn→∞ Var K∗
j (n) = ∞. Further, write

∑
k≥1

∣∣∣∣
((

n

j

)
p

j
k (1 − pk)

n−j

)2

−
(

e−pkn
(pkn)j

j !
)2∣∣∣∣
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=
∑
k≥1

∣∣∣∣
((

n

j

)
p

j
k (1−pk)

n−j −e−pkn
(pkn)j

j !
)∣∣∣∣

((
n

j

)
p

j
k (1−pk)

n−j +e−pkn
(pkn)j

j !
)

≤ 2
∑
k≥1

∣∣∣∣
(

n

j

)
p

j
k (1 − pk)

n−j − e−pkn
(pkn)j

j !
∣∣∣∣ = o

(
Var K∗

j (n)
)
, n → ∞.

The proof of (68) is complete.

PROOF OF (69). For k, i, j, n ∈ N,

P
(
Ai(j, n) ∩ Ak(j, n)

) − P
(
Ai(j, n)

)
P
(
Ak(j, n)

)

=
(

n

j

)(
n − j

j

)
p

j
i p

j
k (1 − pi − pk)

n−2j −
(

n

j

)(
n

j

)
p

j
i p

j
k (1 − pi)

n−j (1 − pk)
n−j

=: Cj (i, k, n).

We shall use an appropriate decomposition of Cj

Cj (i, k, n) =
(

n

j

)(
n − j

j

)
p

j
i p

j
k

(
(1 − pi − pk)

n−2j − (1 − pi)
n−j (1 − pk)

n−j
)

−
(

n

j

)((
n

j

)
−

(
n − j

j

))
p

j
i p

j
k (1 − pi)

n−j (1 − pk)
n−j

=: C
(1)
j (i, k, n) + C

(2)
j (i, k, n).

To analyze C
(1)
j we argue as in the proof of Lemma 1 on p. 152 in [9]. Invoking an

expansion
(x − y)m = xm + O

(
mxm−1y

)
, m → ∞,

which holds for positive x and y, x > y, with x = (1 − pi)(1 − pk), y = pipk and
m = n − 2j , we infer

C
(1)
j (i, k, n)

=
(

n

j

)(
n − j

j

)
p

j
i p

j
k

(
(1 − pi)

n−2j (1 − pk)
n−2j

(
1 − (1 − pi)

j (1 − pk)
j
)

+ O
(
(n − 2j)pipk(1 − pi)

n−2j−1(1 − pk)
n−2j−1))

=: Fj (i, k, n) + Gj(i, k, n).

Next, we intend to show that the contributions of Fj (i, k, n), Gj(i, k, n) and

C
(2)
j (i, k, n) to the sum are negligible in comparison to Var K∗

j (n) as n → ∞.

ANALYSIS OF Gj . With Lemma 13 at hand, we obtain

∑
i =k

(
n

j

)(
n − j

j

)
(n − 2j)p

j+1
i p

j+1
k (1 − pi)

n−2j−1(1 − pk)
n−2j−1

≤
∑
i≥1

n

(
n

j

)
p

j+1
i (1 − pi)

n−2j−1
∑
k≥1

(
n − j

j

)
p

j+1
k (1 − pk)

n−2j−1
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= O

(
Var K∗

j (n)
Var K∗

j (n)

n

)
= o

(
Var K∗

j (n)
)
, n → ∞,

having utilized (67) for the last limit relation.

ANALYSIS OF Fj . For m ∈ N and x ∈ [0, 1], 1 − xm ≤ m(1 − x). Using this with
m = j and x = (1 − pi)(1 − pk) we conclude that 1 − (1 − pi)

j (1 − pk)
j ≤

j (pi + pk − pipk) ≤ j (pi + pk) and thereupon

Fj (i, k, n) ≤ j

(
n

j

)(
n − j

j

)
p

j
i p

j
k (1 − pi)

n−2j (1 − pk)
n−2j (pi + pk)

=: F
(1)
j (i, k, n) + F

(2)
j (i, k, n).

Further, invoking Lemma 13 yields

0 ≤
∑
i =k

F
(1)
j (i, k, n) ≤ j

∑
i≥1

(
n

j

)
p

j+1
i (1 − pi)

n−2j
∑
k≥1

(
n − j

j

)
p

j
k (1 − pk)

n−2j

= O

(Var K∗
j (n)

n
Var K∗

j (n)

)
= o

(
Var K∗

j (n)
)
, n → ∞.

Here, the latter asymptotic relation is a consequence of (67).
The argument for F

(2)
j is analogous, and we omit details.

ANALYSIS OF C
(2)
j . Notice that

(
n
j

) − (
n−j
j

) = O(nj−1) as n → ∞. Hence, mimick-

ing the argument used for the analysis of F
(1)
j we conclude that

∑
i =k

∣∣C(2)
j (i, k, n)

∣∣ = O

(∑
i =k

n2j−1p
j
i p

j
k (1 − pi)

n−j (1 − pk)
n−j

)

= O

(∑
i≥1

njp
j
i (1 − pi)

n−j
∑
k≥1

nj−1p
j
k (1 − pk)

n−j

)
= O

(
Var K∗

j (n)
Var K∗

j (n)

n

)

= o
(
Var Kj(n)

)
, n → ∞.

Combining all the fragments together we arrive at (69).

With Proposition 3 at hand, we are ready to prove the LIL stated in Theorem 4.
We argue along the lines of the proof of Theorem 3.7 in [3].

Proof of Theorem 4. The deterministic and Poissonized schemes discussed in Sec-
tion 1.1 are not necessarily defined on a common probability space. In other words,
we have not assumed so far that the schemes were defined by throwing one and the
same collection of balls. Our plan is to deduce LILs for K∗

j (n) from the correspond-
ing LILs for K∗

j (t). To this end, we need to couple the two schemes. Let X1, X2, . . .

be independent random variables with distribution (pk)k∈N, which are independent
of a Poisson process π and particularly its arrival sequence (Sn)n∈N. For all j, n ∈ N
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and t ≥ 0, we define coupled versions of Kj (n), K∗
j (n), Kj(t) and K∗

j (t) as follows,
keeping the notation for the variables unchanged:

Kj (n) = # of distinct values that the variables X1, X2, . . . , Xn

take at least j times,

K∗
j (n) = # of distinct values that the variables X1, X2, . . . , Xn

take exactly j times,

Kj (t) = # of distinct values that the variables X1, X2, . . . , Xπ(t)

take at least j times,

K∗
j (t) = # of distinct values that the variables X1, X2, . . . , Xπ(t)

take exactly j times,

To justify the construction, observe that the variable Xi can be thought of as the index
of a box hit by the ith ball. The most important conclusion of the preceding discussion
is that, for all j, n ∈ N, K∗

j (n) = K∗
j (Sn) a.s. (for the coupled variables).

We prove the result in several steps.
STEP 1. According to Step 2 of the proof of Theorem 3.7 in [3],

lim
n→∞

Kj(Sn) − Kj(n)

(Var Kj(n)m(Var Kj(n)))1/2 = 0 a.s.,

where m(t) = log t under (2) and (3) and m(t) = log log t under the other assump-
tions of Theorem 4.

By Lemmas 10 and 11, for j ∈ N, Var K∗
j (t) and Var Kj(t) are asymptotically

equivalent up to a constant, whence

lim
n→∞

Kj(Sn) − Kj(n)

(Var K∗
j (n)m(Var K∗

j (n)))1/2 = 0 a.s.

By Lemma 11, for j ∈ N, Var K∗
j+1(t) and Var K∗

j (t) are asymptotically equivalent
up to a constant, unless α = j = 1. In the latter case, invoking in addition (19) we
obtain Var K∗

j+1(t) = o(Var K∗
j (t)) as t → ∞. This in combination with the last

centered limit relation, in which we replace j with j + 1, yields

lim
n→∞

Kj+1(Sn) − Kj+1(n)

(Var K∗
j (n)m(Var K∗

j (n)))1/2 = 0 a.s.

Since, for j ∈ N, K∗
j (t) = Kj(t) − Kj+1(t) a.s., subtracting the last two centered

limit relations we arrive at

lim
n→∞

K∗
j (Sn) − K∗

j (n)

(Var K∗
j (n)m(Var K∗

j (n)))1/2 = 0 a.s.

STEP 2. Halves of LILs (4), (7), (11) and (20) ((5), (8), (12) and (21)) read

lim sup
n→∞

(
lim inf
n→∞

) K∗
j (n) − EK∗

j (n)

(Var K∗
j (n)m(Var K∗

j (n)))1/2 ≤ C (≥ −C) a.s.,
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where the case-dependent constant C is equal to the right-hand side of (4), (7), (11)
or (20) ((5), (8), (12) or (21)), respectively. This taken together with the conclusion
of Step 1, formula (65) and Proposition 3 enables us to obtain

lim sup
n→∞

(
lim inf
n→∞

) K∗
j (n) − EK∗

j (n)

(VarK∗
j (n)m(VarK∗

j (n)))1/2 ≤ C (≥ −C) a.s.

Here, we have used a decomposition

K∗
j (n)−EK∗

j (n) = (
K∗

j (Sn)−K∗
j (n)

)+ (
K∗

j (n)−EK∗
j (n)

)+ (
EK∗

j (n)−EK∗
j (n)

)
a.s. This finishes the proof of

lim sup
t→∞

(
lim inf
n→∞

) K∗
1(n) − EK∗

1(n)

(VarK∗
1(n) log log VarK∗

1(n))1/2 ≤ 21/2 (≥ −21/2) a.s.

in the situation that α = 1 and relation (18) fails to hold.
According to Lemma 6, for any δ > 0 and the deterministic sequence (τn) defined

in (29),

lim sup
n→∞

(
lim inf
n→∞

) K∗
j (�τn	) − EK∗

j (�τn	)
C(Var K∗

j (�τn	)m(Var K∗
j (�τn	)))1/2 ≥ 1 − δ

(≤ −(1 − δ)
)

a.s.

Combining these inequalities with the conclusion of Step 1, formula (65) and Propo-
sition 3 we arrive at

lim sup
n→∞

(
lim inf
n→∞

) K∗
j (n) − EK∗

j (n)

C(VarK∗
j (n)m(VarK∗

j (n)))1/2

≥ (≤) lim sup
n→∞

(
lim inf
n→∞

) K∗
j (�τn	) − EK∗

j (�τn	)
C(VarK∗

j (�τn	)m(VarK∗
j (�τn	)))1/2

≥ 1 − δ
(≤ −(1 − δ)

)
a.s.

Sending δ → 0+ yields

lim sup
n→∞

(
lim inf
n→∞

) K∗
j (n) − EK∗

j (n)

(VarK∗
j (n)m(VarK∗

j (n)))1/2 ≥ C (≤ −C) a.s.,

which finishes the proof.
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