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Abstract A novel theoretical result on estimation of the local time and the occupation time
measure of an α-stable Lévy process with α ∈ (1, 2) is presented. The approach is based
upon computing the conditional expectation of the desired quantities given high frequency
data, which is an L2-optimal statistic by construction. The corresponding stable central limit
theorems are proved and a statistical application is discussed. In particular, this work extends
the results of [20], which investigated the case of the Brownian motion.
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1 Introduction

1.1 The setting and overview

In this paper we consider a pure jump α-stable Lévy process X = {Xt }t≥0 with
α ∈ (1, 2), defined on a filtered probability space (�,F , {Ft }t≥0,P). The distribution
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law of the process X is uniquely determined by the characteristic function

E
[
exp(iξXt )

] = exp

(
−iξ tη − σ t |ξ |α

(
1 − iβ tan

(
πα

2

)
sgn(ξ)

))
(1.1)

for ξ ∈ R, t ≥ 0, η ∈ R, β ∈ [−1, 1] and σ > 0. We will focus on estimation
of the occupation time measure and the local time of X given high frequency data
{Xi/n}1≤i≤�nT �, with T > 0 being fixed and n → ∞. We recall that for a < b the
occupation time of X at the set (x,∞) over the interval [a, b], denoted by O[a,b](x),
is defined as

O[a,b](x) :=
∫ b

a

1(x,∞)(Xs)ds.

The local time of X at point x ∈ R over the interval [a, b] denoted as L[a,b](x) is
defined implicitly via the occupation density formula:

O[a,b](x) =
∫ ∞

x

L[a,b](y)dy P-a.s. (1.2)

(if it exists). Throughout the paper we use the abbreviation Lt := L[0,t] and Ot :=
O[0,t]. The existence and smoothness properties of local times of stochastic processes
have been extensively studied in the 70s and 80s; we refer to articles [3–6, 10, 11]
among many others. In particular, in the setting of pure jump α-stable Lévy processes,
the local time exists only for α ∈ (1, 2) (cf. [21]). Furthermore, there exists a version
of the local time, which is continuous in space and time. Indeed, according to [4,
Theorems 2 and 3] and [2, Theorem 4.3], there exists a version of the local time with
property

Lt(·) is P-a.s. locally Hölder continuous with index (α − 1)/2 − ε,

for any ε ∈ (0, (α − 1)/2). Moreover, for all ε ∈ (0, 1 − 1/α) and T > 0, there exists
a deterministic constant CT > 0, such that

sup
0≤s≤t≤T

|Lt(x) − Ls(x)| ≤ CT |t − s|(1−1/α)−ε
P-a.s. (1.3)

In particular, L(·)(x) is P-a.s. locally Hölder continuous with index (1 − 1/α) − ε for
any ε ∈ (0, 1 − 1/α). Throughout the paper we consider the aforementioned Hölder
continuous version of the local time.

The goal of this article is to introduce the L2-optimal estimators of Lt(x) and
Ot(x), and study their asymptotic properties. For this purpose we define the σ -algebra
An := σ({Xi/n; i ∈ N}) and construct the estimators via

Sn
L,t (x) = E

[
Lt(x) | An

]
and Sn

O,t (x) = E
[
Ot(x) | An

]
.

By construction, Sn
L,t (resp. Sn

O,t ) is an L2-optimal approximation of Lt(x) (resp.
Ot(x)). We will show a functional stable convergence for both statistics, which ex-
hibit a mixed normal limit. Our main tool is Jacod’s stable central limit theorem for
partial sums of high frequency data stated in [13].
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1.2 Related literature

Functional limit theorems for estimators of local times have been studied for numer-
ous stochastic models. In the setting of α-stable Lévy processes and related models,
such estimators often take the form G(x, φ)n = {G(x, φ)nt ; t ≥ 0}, with

G(x, φ)nt = n
1
α
−1

�nt�∑
i=1

φ
(
n

1
α (X i−1

n
− x)

)
, (1.4)

where φ ∈ L1(R). Consistency and asymptotic mixed normality for statistics
G(x, φ)n and related functionals have been investigated in [7, 14] in the setting of
Brownian motion and continuous stochastic differential equations. Some optimality
results for estimation of the local time and the occupation time measure of a Brow-
nian motion can be found in [20]. Estimation errors for occupation time functionals
of stationary Markov processes have been studied in [1]. Limit theorems for statis-
tics of the form (1.4) in the case of the fractional Brownian motion are discussed in
[15, 17, 18, 23], although the complete weak limit theory is far from being under-
stood.

While estimation of the local time and the occupation time measure has an interest
in its own right, accurate estimation of these objects can be useful for related statis-
tical problems. For example, nonparametric estimators of the diffusion coefficient in
a continuous stochastic differential equation often involve local times in the mixed
normal limit, see, e.g., [9]. In a similar spirit, local times and mixed normal local
times appear as fundamental limits for additive functionals of a variety of Gaussian
processes (see Papanicolaou, Stroock and Varadhan [22], Jaramillo, Nourdin, Nualart
and Peccati [16] as well as Minhao Hong, Heguang Liu and Fangjun Xu [12]), thus
serving as simplifying probabilistic models for otherwise complex probabilistic ob-
jects. Efficient estimation of local times and occupation times is very beneficial for
statistical inference in this framework.

Our main result about the asymptotic theory for local times is mostly related to
the articles [17–20, 26]. The paper [17] addresses consistency in the case of the lin-
ear fractional stable motions, a class which in particular includes stable Lévy pro-
cesses.

Theorem 1.1 (Theorem 4 in [17]). Suppose that φ : R → R is a function satisfying
φ, φ2 ∈ L1(R;R). Then, for every t > 0,

G(x, φ)nt
L2(�)→

∫
R

φ(y)dy · Lt(x) as n → ∞.

In [18, 19, 26] the authors prove the asymptotic mixed normality for contin-
uous version of the functional G(x, φ)n, but only in the zero energy setting, i.e.∫
R

φ(y)dy = 0. From the statistical point of view, this case is a less interesting
one as we would like to use statistics of the type (1.4) as an estimator of the local
time Lt(x). More importantly, in the setting

∫
R

φ(y)dy 
= 0 the methods developed
in [18, 19] do not apply.

We will use stable convergence theorems for high frequency statistics introduced
in [13] to show asymptotic mixed normality of standardised versions of Sn

L,t (x) and
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Sn
O,t (x). These results are strongly related to an earlier work [20], which considers the

same problem in the setting of the Brownian motion. While their limit theorems are
also based on the general results of [13], the technical aspects of the proof are more
involved in the case of pure jump Lévy processes. The details will be highlighted in
the proof section.

1.3 Outline of the paper

The rest of the paper is organised as follows. Section 2 presents some preliminaries,
main results and an application. Proofs of the main results are collected in Section 3.
Some technical statements are proved in Section 4.

2 Preliminaries and main results

In this section we present the spectral representation of local times, which will be
useful in the sequel. Furthermore, we introduce the notion of stable convergence and
establish the asymptotic theory for the estimators Sn

L and Sn
O .

2.1 Local times and stable convergence

The analysis of occupation times and local times is an integral part of the theory of
stochastic processes, which found manifold applications in probability during the past
decades. We recall that, for t > 0 and x ∈ R, the local time of the α-stable Lévy pro-
cess X, α ∈ (1, 2), up to time t at x can be formally defined as Lt(x) := ∫ t

0 δ0(Xs −
λ)ds, where δ0 denotes the Dirac delta function. A rigorous definition of the local time

is obtained by replacing δ0 by the Gaussian kernel φε(x) := (2πε)− 1
2 exp(− 1

2ε
x2)

and taking the limit in probability for ε → 0. For our purposes we will systematically
use the following spectral representation for Lt(x). The proof of the representation
gathered in the lemma below can be found in, e.g., [17, Proposition 11], for com-
pleteness we give the proof of the boundedness of the moments. It can be found in
Section 4.

Lemma 2.1. For every t > 0 and x ∈ R, the sequence{∫
[−m,m]

∫ t

0
e−iξ(Xs−x)dsdξ

}
m∈N

converges in L2(�). The limit as m → ∞, which we will denote by∫
R

∫ t

0
e−iξ(Xs−x)dsdξ,

satisfies

Lt(x) = 1

2π

∫
R

∫ t

0
e−iξ(Xs−x)dsdξ.

Moreover, for any p ∈ N, E[(Lt (x))p] < ∞.
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Recall furthermore that, by the definition of the occupation time Ot(x), for any
p ∈ N, E[(Ot (x))p] < tp.

In what follows we will use the notion of stable convergence, which is originally
due to Renyi [24]. Let (S, δ) be a Polish space. Let {Yn}n≥1 be a sequence of S-valued
and F-measurable random variables defined on (�,F ,P) and Y a random variable
defined on an enlarged probability space (�′,F ′,P′). We say that Yn converges stably
to Y , if and only if for any continuous bounded function g : S → R and any bounded
F-measurable random variable F , it holds that

lim
n→∞E

[
Fg(Yn)

] = E
′[Fg(Y )

]
.

In this case we write Yn
Stably→ Y . In this paper we deal with the space of cádlág

functions D([0, T ]) equipped with the Skorokhod J1-topology.

2.2 Main results

The following proposition provides an explicit expression of the statistics Sn
L,t

and Sn
O,t . The proof of Proposition 2.2 is based upon the Markov property of X and

the linearity in time of our objects.

Proposition 2.2. For i ≥ 1, define the increments �n
i X := X i

n
−Xi−1

n
. Consider the

function f : R2 → R given by f (x, y) := E[L[0,1](x) | X1 = y] and F(x, y) :=∫ ∞
x

f (r, y)dr . Then we obtain the identities

Sn
L,t (x) = n

1
α
−1

�nt�∑
i=1

f
(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) + En

L,t (x),

Sn
O,t (x) = 1

n

�nt�∑
i=1

F
(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) + En

O,t (x)

(2.5)

where En
L,t (x) and En

O,t (x) are defined as

En
L,t (x) := E

[
L[�nt�/n,t](x) | An

]
,

En
O,t (x) := E

[
O[�nt�/n,t](x) | An

]
.

Moreover, the processes {n 1
2 (1− 1

α
)En

L,t (x)}t≥0 and {n 1
2 (1+ 1

α
)En

O,t (x)}t≥0 converge to
zero in probability uniformly on compact intervals as n → ∞.

The proof of Proposition 2.2 will be given in Section 4. The next theorem is a
functional limit result for the error of the approximation of the occupation and local
times by their L2-optimal estimators.

Theorem 2.3. Fix x ∈ R and define the processes

Wn
L,t := n

1
2 (1− 1

α
)
(
Sn

L,t (x) − Lt(x)
)
,

Wn
O,t := n

1
2 (1+ 1

α
)
(
Sn

O,t (x) − Ot(x)
)
.
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The functional stable convergence holds with respect to J1 topology:

Wn
L

Stably→ kLBL(x), Wn
O

Stably→ kOBL(x), as n → ∞,

where B is a standard Brownian motion defined on an extended space and indepen-
dent of F . The constants kL and kO are defined as

k2
L :=

∫
R

E
[(
E

[
L1(y) | X1

] − L1(y)
)2]

dy,

k2
O :=

∫
R

E
[(
E

[
O1(z) | X1

] − O1(z)
)2]

dz.

Remark 2.4. By the Dambis–Dubins–Schwarz theorem (cf. [25, Theorem 1.6, Sec-
tion 5.1]), Theorem 2.3 implies the stable convergence

Wn
L

Stably→ kL

∫ ·

0

√
Ls(x)B(ds), Wn

O

Stably→ kO

∫ ·

0

√
Ls(x)B(ds),

as n → ∞.

Remark 2.5. The statement above can be directly used to construct confidence re-
gions for Lt(x), Ot(x) if the law of the Lévy process X is known. Indeed, by proper-
ties of stable convergence, it holds for any fixed t > 0 as n → ∞:

n
1
2 (1− 1

α
)(Sn

L,t (x) − Lt(x))

kL

√
Sn

L,t (x)

d→ N (0, 1)

and
n

1
2 (1+ 1

α
)(Sn

O,t (x) − Ot(x))

kO

√
Sn

L,t (x)

d→ N (0, 1).

Asymptotic confidence sets for Lt(x) and Ot(x) readily follow from the above
central limit theorem.

Remark 2.6. The setting of α-stable Lévy processes, α ∈ (1, 2), is rather conve-
nient as we often use self-similarity of X in our arguments. However, it might not
be a necessary assumption. We conjecture that similar results can be shown for lo-
cally α-stable Lévy processes although some bias effects may appear in the limit
theory.

From the statistical point of view Theorem 2.3 provides lower bounds for esti-
mation of the path functionals Lt(x) and Ot(x). In particular, it shows that statistics
G(x, φ)n introduced in (1.4) do not produce L2-optimal estimates. On the other hand,
G(x, φ)n can be computed from data even when the exact law of X is unknown (use,
e.g., φ = 1[−1,1]) in contrast to L2-optimal statistics (recall that the functions f

and F depend on the parameters of the stable distribution). We remark however that
the limit theory for statistics G(x, φ)n is expected to be much more involved; see
the proofs in [14] for more details in the case of the Brownian motion. Hence, we
postpone the discussion to future research.
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3 Proof of main results

This section is devoted to the proof of the central limit theorem stated in the previous
section. Throughout the proofs we denote by C > 0 a generic constant, which may
change from line to line. In the proof of our main results the following lemma will be
repeatedly used. Its proof can be found in Section 4.

Lemma 3.1. Let us introduce ϕ1(y) := E[Lp
[0,1](y)] and ϕ2(y) := E[Op

[0,1](y)].
Then, for any x ∈ R, p ∈ N and i ∈ {1, . . . , n}, the following identities hold true.

(a) E[Lp

[ i−1
n

, i
n
](x) | F i−1

n
] = np( 1

α
−1)ϕ1(n

1
α (x − Xi−1

n
)),

(b) E[Op

[ i−1
n

, i
n
](x) | F i−1

n
] = n−p ϕ2(n

1
α (x − Xi−1

n
)).

Moreover, define the functions ϕ3(y) := E[E[L[0,1](y)|X1]L[0,1](y)] and ϕ4(y) :=
E[E[O[0,1](y)|X1]O[0,1](y)] and recall that f (x, y) = E[L1(x) | X1 = y] and
F(x, y) = ∫ ∞

x
f (r, y)dr . Then,

(c) E[f (n
1
α (x − Xi−1

n
), n

1
α �n

i X)L[ i−1
n

, i
n
](x) | F i−1

n
] = n

1
α
−1ϕ3(n

1
α (x − Xi−1

n
)),

(d) E[F(n
1
α (x − Xi−1

n
), n

1
α �n

i X)O[ i−1
n

, i
n
](x) | F i−1

n
] = n−1ϕ4(n

1
α (x − Xi−1

n
)).

Regarding the well-posedness of the elements mentioned above, it is worth noting
that ϕ1 and ϕ2 are finite, as shown in Lemma 2.1 and the comment below it. It is also
easy to verify that ϕ3 and ϕ4 are finite. In particular, demonstrating the finiteness of
ϕ3 requires the use of the Cauchy–Schwarz and Jensen inequalities, in combination
with the boundedness of the moments of L1 as established in Lemma 2.1.

3.1 Proof of Theorem 2.3

Proof. Our argument is based on a martingale approach. We first deal with the es-
timation of the local time. Recall that f (x, y) = E[L1(x) | X1 = y]. Because of
Proposition 2.2 and the linearity of the local time (in time), we can write

Wn
L,t = n

1
2 (1− 1

α
)
(
Sn

L,t (x) − L[0,t](x)
) =

�nt�∑
i=1

ZL
in − n

1
2 (1− 1

α
)Nn

L,t + n
1
2 (1− 1

α
)En

L,t (x),

(3.6)
where

ZL
in := n

1
2 ( 1

α
−1)f

(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) − n

1
2 (1− 1

α
)L[ i−1

n
, i
n
](x)

and
Nn

L,t = L[�nt�/n,t](x).

The term Nn
L appears due to the edge effect and it does not contribute to the limit

as stated in the following lemma, whose proof can be found in the next section and
immediately follows from (1.3).
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Lemma 3.2. The process Nn
L = {Nn

L,t ; t ≥ 0} satisfies the following convergence in
probability uniformly over compact sets:

lim
n

n
1
2 (1− 1

α
)Nn

L = 0.

Due to Proposition 2.2 and Lemma 3.2 we can write (3.6) as

Wn
L,t =

�nt�∑
i=1

ZL
in + oP(1).

We introduce here the notation E i−1
n

[·] for E[· | F i−1
n

], which will be useful in the

sequel.
In the next step we will apply Theorem 3-2 of [13]. In our setting, E i−1

n
[ZL

in] = 0

because of Equation (4.18) below. Then, it suffices to show the following conditions:

�nt�∑
i=1

E i−1
n

[|ZL
in|2

] P−→ k2
LLt (x) ∀t ∈ [0, 1], (3.7)

�nt�∑
i=1

E i−1
n

[
ZL

in�
n
i M

] P−→ 0 ∀t ∈ [0, 1], (3.8)

�nt�∑
i=1

E i−1
n

[|ZL
in|21{|ZL

in|>ε}
] P−→ 0 ∀ε > 0, (3.9)

where the condition (3.8) should hold for all square integrable continuous martin-
gales M . We emphasise that we have summarised the two conditions (3.12) and (3.14)
from [13, Theorem 3-2] into our constraint (3.8). Indeed, conditions (3.12) and (3.14)
in [13, Theorem 3-2] are formulated with respect to some continuous martingale M

which has to be chosen by the user according to the problem at hand. The conver-
gence in (3.8) holding for all bounded continuous martingales implies them both. It
entails, in particular, that the continuous process G of [13, Theorem 3-2] is in our
case identically zero.

We start by showing condition (3.7). Due to the identity f (x, y) = E[L[0,1](x) |
X1 = y] we can check that

�nt�∑
i=1

E i−1
n

[|ZL
in|2

] = n
1
α
−1

�nt�∑
i=1

ψ
(
n

1
α (x − Xi−1

n
)
)
, (3.10)

where ψ is given by

ψ(q) := E
[(
E

[
L[0,1](q) | X1

] − L[0,1](q)
)2]

.

Indeed, from the definition of ZL
in we have

�nt�∑
i=1

E i−1
n

[|ZL
in|2

] =
�nt�∑
i=1

[
n

1
α
−1

E i−1
n

[
f 2(n 1

α (x − Xi−1
n

), n
1
α �n

i X
)]
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+ n1− 1
α E i−1

n

[
L2

[ i−1
n

, i
n
](x)

]
− 2E i−1

n

[
f

(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
)
L[ i−1

n
, i
n
](x)

]]
=: I1 + I2 + I3.

We start studying I1. It is easy to see that

I1 = n
1
α
−1

�nt�∑
i=1

E i−1
n

[
f 2(n 1

α (x − Xi−1
n

), n
1
α �n

i X
)]

= n
1
α
−1

�nt�∑
i=1

g1
(
n

1
α (x − Xi−1

n
)
)
,

with g1(q) := E[f 2(q,X1)]. From Lemma 3.1(a) the following is straightforward:

I2 = n1− 1
α

�nt�∑
i=1

E i−1
n

[
L2

[ i−1
n

, i
n
](x)

]

= n
1
α
−1

�nt�∑
i=1

g2
(
n

1
α (x − Xi−1

n
)
)
,

where g2(q) := E[L[0,1](q)2]. We are left to study I3. From Lemma 3.1(c) we di-
rectly obtain

I3 = n
1
α
−1

�nt�∑
i=1

g3
(
n

1
α (x − Xi−1

n
)
)
,

with g3(q) := −2E[L[0,1](q)E[L[0,1](q) | X1]]. Putting everything together we get
(3.10) with ψ(q) = g1(q) + g2(q) + g3(q).

To apply Theorem 1.1 we need to check that ψ,ψ2 ∈ L1(R). By the Minkowski
and Jensen inequalities, ψ(q) ≤ 4E[L2[0,1](q)]. We therefore aim at showing that the

function E[L2[0,1](·)] belongs to L1(R). Let τq denote the first passage time of X over
the level q. Conditioning over τq , using the additivity of the local time, we deduce
the inequality

E
[
L2[0,1](q)

] ≤ E
[
L2[0,1](0)

]
P(τq < 1).

Moreover, by the Fourier representation of the local time (as stated in Lemma 2.1),
E[L2[0,1](0)] is bounded. On the other hand,

∫ ∞

0
P[τq < 1]dq =

∫ ∞

0
P

[
sup
s≤1

Xs > q
]
dq = E

[
sup
s≤1

Xs

]
. (3.11)

We recall that E[(sups≤1 Xs)
p] is bounded for any p ∈ (0, α) (see Corollary II.1.6

and Theorem II.1.7 in [25]). As α ∈ (1, 2), this implies the boundedness of
E[sups≤1 Xs]. Hence, by symmetry, ψ ∈ L1(R) and k2

L < ∞. Applying the same
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argument it is easy to show that also ψ2 ∈ L1(R), thanks to (3.11) and the bounded-
ness of E[L4[0,1](q)]. By Theorem 1.1 we conclude that

�nt�∑
i=1

E i−1
n

[|ZL
in|2

] P−→ k2
LLt (x),

where k2
L = ∫

R
ψ(y)dy < ∞.

In the next step we show condition (3.8). Let M be any continuous square inte-
grable martingale and denote by μ (resp. μ̃) the random measure (resp. compensated
random measure) associated with the pure jump Lévy process X. The martingale rep-
resentation theorem for jump measures investigated in Lemma 3 (ii) and Theorem 6
of [8] implies that ZL

in has an integral representation

ZL
in =

∫ i
n

i−1
n

∫
R

ηn
i (x, t)μ̃(dx, dt)

for some predictable square integrable process ηn
i . Using that the covariation between

any continuous martingale and any pure jump martingale is zero, we conclude that

E i−1
n

[
ZL

in�
n
i M

] = 0.

Thus, we obtain (3.8).
Finally, we show condition (3.9). The Cauchy–Schwarz inequality ensures that

E i−1
n

[|ZL
in|21{|ZL

in|>ε}
] ≤ ε−2

E i−1
n

[|ZL
in|4

]
.

Then, by the Markov inequality, it suffices to prove that

�nt�∑
i=1

E i−1
n

[|ZL
in|4

] P−→ 0.

We have that

E i−1
n

[(
ZL

in

)4]
≤ C

(
n2( 1

α
−1)

E i−1
n

[
f 4(n 1

α (x − Xi−1
n

), n
1
α �n

i X
)] + n2(1− 1

α
)
E i−1

n

[
L4

[ i−1
n

, i
n
](x)

])
.

From Lemma 3.1(a) we conclude that

�nt�∑
i=1

E i−1
n

[|ZL
in|4

] ≤ Cn2( 1
α
−1)

�nt�∑
i=1

h
(
n

1
α (X i−1

n
− x)

)
,

where h(y) = E[f 4(y,X1) + L[0,1](y)4]. It is easy to check that h ∈ L1(R). Indeed,
similarly as in the proof of ψ ∈ L1(R), the Minkowski and Jensen inequalities imply

h(y) ≤ CE
[
L4[0,1](y)

] ≤ CE
[
L4[0,1](0)

]
P[τy < 1].
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Then the boundedness of moments of the local time in 0 together with (3.11) provides
h ∈ L1(R). As h2(y) ≤ CE[L8

[0,1](y)], following the same route it is easy to see that

h2 ∈ L1(R). Since α > 1, we deduce by Theorem 1.1 that

n2( 1
α
−1)

�nt�∑
i=1

h
(
n

1
α (X i−1

n
− x)

) P−→ 0.

This concludes the proof of Theorem 2.3 for the local time.
Now we proceed to the analysis of the occupation time. As for the local time case,

the proof is based on a martingale approach. The definition of Wn
O,t together with the

approximation of Sn
O,t as in Proposition 2.2 provides

Wn
O,t = n

1
2 (1+ 1

α
)
(
Sn

O,t − O[0,t](x)
) =

�nt�∑
i=1

ZO
in − n

1
2 (1+ 1

α
)Nn

O,t + En
O,t (x), (3.12)

where ZO
in is the principal term, given by

ZO
in := n

1
2 ( 1

α
−1)F

(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) − n

1
2 (1+ 1

α
)O[ i−1

n
, i
n
](x),

while
Nn

O,t := O[ �nt�
n

,t](x).

In a similar way as for Nn
L,t we can show that Nn

O,t is negligible. Indeed, the fol-
lowing lemma holds true. Its proof can be found in the next section and is a direct
consequence of (1.3).

Lemma 3.3. The process Nn
O = {Nn

O,t ; t ≥ 0} satisfies the following convergence
in probability, uniformly over compact sets:

lim
n

n
1
2 (1+ 1

α
)Nn

O = 0.

Due to Proposition 2.2 and Lemma 3.3 we can write (3.12) as

Wn
O,t =

�nt�∑
i=1

ZO
in + oP(1).

We are dealing with martingale differences. Indeed, E i−1
n

[ZO
in] = 0 because of Lem-

ma 3.1(b) with p = 1, the definition of F and the independence of the increments
of the process X. Therefore, similarly as before, our proof is based on [13, Theorem
3-2]. In particular, we want to show the following convergence statements:

�nt�∑
i=1

E i−1
n

[|ZO
in|2

] P−→ k2
OL[0,t](x) ∀t ∈ [0, 1], (3.13)

�nt�∑
i=1

E i−1
n

[
ZO

in�
n
i M

] P−→ 0 ∀t ∈ [0, 1], (3.14)
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�nt�∑
i=1

E i−1
n

[|ZO
in|21{|ZO

in|>ε}
] P−→ 0 ∀ε > 0. (3.15)

The condition expressed in (3.14) should hold for all square integrable continuous
martingales.

We start by proving (3.13). Similarly as for ZO
in, from the definition of F and

Lemma 3.1 (b) and (d), it follows

�nt�∑
i=1

E i−1
n

[|ZO
in|2

] = n
1
α
−1

�nt�∑
i=1

ψ̃
(
n

1
α (x − Xi−1

n
)
)
, (3.16)

with ψ̃ given by

ψ̃(z) := E
[(
E

[
O[0,1](z)|X1

] − O[0,1](z)
)2]

.

We want to show that ψ̃ ∈ L1(R). Let cz be a deterministic constant only depending
on z and observe that by the Jensen inequality, it is enough to show the integrability
of E[(O[0,1](z) − cz)

2], where cz is arbitrary. Take cz = 0 for z ≥ 0. Proceeding as
in the case of the local time, it is easy to see that

E
[
O2[0,1](z)

] ≤ CP(τz < 1) ∈ L1(R).

For z < 0 we choose instead cz = 1. Remarking that E[(1−O[0,1](z))2] ≤ P(τz < 1)

we obtain the same result. After that it is straightforward to prove that ψ̃2 ∈ L1(R),
observing that it is enough to show the integrability of E[(O[0,1](z) − cz)

4]. We can
then apply Theorem 1.1, which implies (3.13) with k2

O = ∫
R

ψ̃(z)dz.
Condition (3.14) is, as for the local time, a consequence of the martingale repre-

sentation for jump measures in Lemma 3 (ii) and Theorem 6 of [8].
Finally, we show condition (3.15). By the Cauchy–Schwarz and Markov inequal-

ities it is enough to prove that

�nt�∑
i=1

E i−1
n

[|ZO
in|4

] P−→ 0.

By the definition of ZO
in and Lemma 3.1, following the same proof as to obtain (3.16),

it holds that
�nt�∑
i=1

E i−1
n

[|ZO
in|4

] = n2( 1
α
−1)

�nt�∑
i=1

h̃
(
n

1
α (x − Xi−1

n
)
)
,

where h̃(z) := E[(E[O[0,1](z) | X1] − O[0,1](z))4]. Regarding the integrability of h̃

and h̃2, proceeding as for ψ̃ , it is sufficient to show the result for E[(O[0,1](z)− cz)
4]

and E[(O[0,1](z) − cz)
8], respectively, with cz arbitrary. As before, the result follows

by choosing cz = 0 for z ≥ 0 and cz = 1 for z < 0, and using (3.11). We deduce by
Theorem 1.1 that

n2( 1
α
−1)

�nt�∑
i=1

h̃
(
n

1
α (X i−1

n
− x)

) P−→ 0,

which concludes the proof of our main theorem.
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4 Proof of the auxiliary results

This section is devoted to the proof of technical lemmas and proposition we have
previously stated and used in order to obtain our main result, gathered in Theorem 2.3.
Before we proceed, we introduce the function r(y) := e−iy , which will be useful in
the sequel.

4.1 Proof of Lemma 2.1
Proof. The Fourier representation is proven in [17, Proposition 11], we here prove
the boundedness of the moments of Lt(x). From the Fourier representation stated in
the first part of this lemma we have, for any p ∈ N,

E
[(

L[0,1](x)
)p]

= E

[(
1

2π

∫
R

∫
[0,1]

r
(
ξ1(Xu1 − x)

)
du1dξ1

)
× · · ·

×
(

1

2π

∫
R

∫
[0,1]

r
(
ξp(Xup − x)

)
dupdξp

)]

= 1

(2π)p

∫
Rp

∫
[0,1]p

r
(−(ξ1 + · · · + ξp)x

)
E

[
r(ξ1Xu1) × · · · × r(ξpXup)

]
dudξ .

(4.17)

The Fubini theorem, applied in the last identity, will be justified once we show that
|E[r(ξ1Xu1)×· · ·× r(ξpXup)]| is integrable, which will be proved next. We can now
assume without losing of generality that p is even and u1 ≤ u2 ≤ · · · ≤ up. Then,
the expectation above can be seen as

E
[
r
(
(ξ1+· · ·+ξp)Xu1

)
r
(
(ξ2+· · ·+ξp)(Xu2 − Xu1)

) × · · · × r
(
ξp(Xup − Xup−1)

)]
= E

[
r
(
(ξ1 + · · · + ξp)Xu1

)] × · · · × E
[
r
(
ξp(Xup − Xup−1)

)]
having employed the self-similarity of X and the stationarity and independence of its
increments. Relation (1.1) then implies that∣∣E[

r
(
(ξ1+· · ·+ξp)Xu1

)
r
(
(ξ2+· · ·+ξp)(Xu2 −Xu1)

) × · · · × r
(
ξp(Xup −Xup−1)

)]∣∣
= e−|ξ1+···+ξp |αu1 × · · · × e−|ξp |α(up−up−1).

Now, up to apply the change of variables ξj + · · · + ξp =: ηj for any j = 1, . . . , p,
it is easy to check that the absolute value in the integrand of (4.17) is integrable, thus
yielding the finiteness of the p-moment of Lt .

4.2 Proof of Proposition 2.2
Proof. Recall that An := σ({X i

n
; i ∈ N}) ⊂ F . We first deal with the analysis of the

local time. Observe that the problem is reduced to proving the following two claims:

(i) First of all show that

E
[
L[ i−1

n
, i
n
](x) | Xi−1

n
,�n

i X
] = n

1
α
−1f

(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
)
, (4.18)

for f (x, y) = E[L[0,1](x) | X1 = y].
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(ii) After that we prove that E (n)
L (x) satisfies

sup
0≤t≤T

n
1
2 (1− 1

α
)
∣∣E (n)

L,t (x)
∣∣ P−→ 0, (4.19)

for all T > 0.

If (i) and (ii) are satisfied, it is easy to check that the result on the local time stated in
Proposition 2.2 holds true. To prove this reduction we observe that by the independent
increments property of X,

S
(n)
L,t (x) = E

[
L[�nt�/n,t](x) | An

] +
�nt�∑
k=1

E
[
L[ k−1

n
, k
n
](x) | An

]

= E
[
L[�nt�/n,t](x) | An

] +
�nt�∑
k=1

E
[
L[ k−1

n
, k
n
](x) | Xk−1

n
,�n

kX
]
,

so that relation (4.18) implies the desired result. We now proceed with the proof
of (4.18) and (4.19). In order to show (4.18), we consider the approximated local
time Lε

t (x), defined by

Lε
t (x) :=

∫ t

0
φε(Xs − x)ds,

where φε(x) := (2πε)−1/2 exp{− 1
2ε

x2}. By [17], we have the convergence towards
zero of ‖Lt(x) − Lε

t (x)‖L2(�) → 0, which implies that

E
[
L[ i−1

n
, i
n
](x) | Xi−1

n
,�n

i X
] = lim

ε→0
E

[
Lε

[ i−1
n

, i
n
](x) | Xi−1

n
,�n

i X
]
,

where Lε
[a,b](x) := Lε

b(x) − Lε
a(x). By the self-similarity of X, for every a, b ∈ R,

E
[
Lε

[ i−1
n

, i
n
](x) | Xi−1

n
= a,�n

i X = b
]

= E

[∫ i
n

i−1
n

φε(Xs − x)ds | Xi−1
n

= a,�n
i X = b

]

= E

[∫ i
n

i−1
n

φε

(
n−1/αXns − x

)
ds | n−1/αXi−1 = a, n−1/α(Xi − Xi−1) = b

]

=
∫ i

n

i−1
n

E
[
φε

(
n−1/α(Xns −Xi−1)+a−x

) |n−1/αXi−1 =a, n−1/α(Xi −Xi−1)=b
]
ds,

where the last identity follows by the Fubini theorem, which is applicable due to
the fact that φε is bounded and the domain of integration is compact. The inde-
pendent increments property of X implies that Xi−1 is independent of the vector
(Xs − Xi−1, Xi − Xi−1). Moreover, by the stationarity of the increments of X, we
have that

(Xs − Xi−1, Xi − Xi−1)
Law= (Xs−i+1, X1).
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This identity combined with a suitable change of variables yields

E
[
Lε

[ i−1
n

, i
n
](x) | Xi−1

n
= a, n1/α�n

i X = b
]

= n−1
∫ 1

0
E

[
φε

(
n−1/αXu + a − x

) | X1 = n1/αb
]
ds

= n1/α−1
∫ 1

0
E

[
φεn−2/α

(
Xu + an1/α − xn1/α

) | X1 = n1/αb
]
ds

= n1/α−1
E

[∫ 1

0
φεn−2/α

(
Xu + an1/α − xn1/α

)
ds | X1 = n1/αb

]
.

Using the fact that∫ 1

0
φεn−2/α

(
Xu + an1/α − xn1/α

)
du

L2(�)→ L1
(
n1/α(x − a)

)
,

as ε → 0, we obtain

lim
ε→0

E
[
Lε

[ i−1
n

, i
n
](x) | Xi−1

n
= a, n1/α�n

i X = b
]

= n1/α−1
E

[
L1

(
n1/α(x − a)

) | X1 = n1/αb
]
.

This finishes the proof of (4.18).
We are left with the problem of showing (4.19).
Due to (1.3), for every T , ε > 0 and x ∈ R, we have

sup
0≤t≤T

|L[ �nt�
n

,t](x)| ≤ Cn−1+ 1
α
+ε,

for any ε ∈ (0, 1 − 1/α). Relation (4.19) follows from here.
Next we deal with identity (2.5). By (1.2) and (4.18), we have that

E
[
Ot(x) | An

] =
�nt�∑
i=1

E
[
O[ i−1

n
, i
n
](x) | An

] + E
[
O[ �nt�

n
,t](x) | An

]

=
�nt�∑
i=1

∫ ∞

x

E
[
L[ i−1

n
, i
n
](y) | An

]
dy + E

[
O[ �nt�

n
,t](x) | An

]

= n
1
α
−1

∫ ∞

x

�nt�∑
i=1

f
(
n

1
α (y−Xi−1

n
), n

1
α �n

i X
)
dy+E

[
O[ �nt�

n
,t](x) | An

]

= 1

n

�nt�∑
i=1

F
(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) + E

[
O[ �nt�

n
,t](x) | An

]
,

where the last identity follows from a suitable change of variables. Consequently,
we deduce (2.5). In addition, by definition of occupation O[a,b](x) we have that
|E[O[ �nt�

n
,t](x) | An]| ≤ n−1, therefore

sup
0≤t≤T

n
1
2 (1+ 1

α
)
E

[
O[ �nt�

n
,t](x) | An

] ≤ n
1
2 (1/α−1),

which converges towards zero. The proof is now complete.
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4.3 Proof of Lemma 3.1

Proof. Part (a)
Equation (4.18) provides the desired result for p = 1 as the increments are indepen-
dent and so, in particular, Xi−1

n
is independent from �n

i X. We thus study the case

p ≥ 2. The representation of the local time as in Lemma 2.1 leads us to

E i−1
n

[
L

p

[ i−1
n

, i
n
](x)

]
= E i−1

n

[
1

(2π)p

∫
Rp

∫
[ i−1

n
, i
n
]p

r
(
ξ1(Xs1 − x)

) · · · r(ξp(Xsp − x)
)
dsdξ

]
,

where we recall that E i−1
n

[·] = E[·|F i−1
n

] and r(y) = e−iy .

The change of variables sj =: i−1
n

+ uj

n
for j = 1, . . . , p yields

1

np

1

(2π)p

∫
Rp

∫
[0,1]p

r
(
(ξ1 + · · · + ξp)(X i−1

n
− x)

)
× E i−1

n

[
r
(
ξ1(X i−1

n
+ u1

n
− Xi−1

n
)
) × · · · × r

(
ξp(X i−1

n
+ up

n
− Xi−1

n
)
)]

dudξ

= n−p 1

(2π)p

∫
Rp

∫
[0,1]p

r
(
(ξ1 + · · · + ξp)(X i−1

n
− x)

)
× E

[
r(ξ1Xu1

n
) × · · · × r(ξpXup

n
)
]
dudξ ,

using also the independence and stationarity of the increments of X, as well as the
Fubini theorem, which is justified as in the proof of Lemma 2.1. As the process X is
self-similar, we obtain

n−p 1

(2π)p

∫
Rp

∫
[0,1]p

r
(
(ξ1 + · · · + ξp)(X i−1

n
− x)

)
× E

[
r
(
ξ1n

− 1
α Xu1

) × · · · × r
(
ξpn− 1

α Xup

)]
dudξ .

Applying the change of variables ξ̃j = n− 1
α ξj for j = 1, . . . , p, we get

np( 1
α
−1) 1

(2π)p

∫
Rp

∫
[0,1]p

r
(
(ξ̃1 + · · · + ξ̃p)n

1
α (X i−1

n
− x)

)
× E

[
r(ξ̃1Xu1) × · · · × r(ξ̃pXup)

]
dud ξ̃

= np( 1
α
−1)ϕ1

(
n

1
α (x − Xi−1

n
)
)
.

Indeed, we can see

1

(2π)p

∫
Rp

∫
[0,1]p

r
(−(ξ1 + · · · + ξp)y

)
E

[
r(ξ1Xu1) × · · · × r(ξpXup)

]
dudξ

= E
[(

L[0,1](y)
)p] = ϕ1(y),

because of (4.17). It is important to remark that, in the proof above, it is possible to
obtain the desired result, as we consider the conditional expectation with respect to
F i−1

n
, and we used several times the independence of the increments.
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Part (b)
The definition of the occupation time provides

E i−1
n

[
O

p

[ i−1
n

, i
n
](x)

]
= E i−1

n

[(∫ ∞

x

L[ i−1
n

, i
n
](y1)dy1

)
× · · · ×

(∫ ∞

x

L[ i−1
n

, i
n
](yp)dyp

)]

=
∫ ∞

x

· · ·
∫ ∞

x

E i−1
n

[
L[ i−1

n
, i
n
](y1) × · · · × L[ i−1

n
, i
n
](yp)

]
dy.

The change in the order of integration is justified by the Tonelli theorem, which is
valid due to the fact that L[a,b](x) ≥ 0 for all a ≤ b and x ≥ 0.

Acting as in the proof of part (a) it is then easy to check that

E i−1
n

[
O

p

[ i−1
n

, i
n
](x)

]
= np( 1

α
−1)

(2π)p

∫
[x,∞]p

∫
Rp

∫
[0,1]p

r
(
ξ̃1n

1
α (X i−1

n
− y1)

) × · · · × r
(
ξ̃pn

1
α (X i−1

n
− yp)

)
× E

[
r(ξ̃1Xu1) × · · · × r(ξ̃pXup)

]
dud ξ̃dy.

To conclude the analysis we apply the change of variable ỹj := n
1
α (yj − Xi−1

n
) for

j = 1, . . . , p. We get

n−p

(2π)p

∫
[n 1

α (x−X i−1
n

),∞]p

∫
Rp

∫
[0,1]p

r(−ξ̃1ỹ1) × · · · × r(−ξ̃pỹp)

× E
[
r(ξ̃1Xu1) × · · · × r(ξ̃pXup)

]
dud ξ̃dỹ

= n−pϕ2
(
n

1
α (x − Xi−1

n
)
)
,

with

ϕ2(z)

=
∫

[z,∞]p
1

(2π)p

∫
Rp

∫
[0,1]p

E
[
r
(
ξ1(Xu1 − y1)

)×· · ·×r
(
ξp(Xup −yp)

)]
dudξdy

=
∫

[z,∞]p
E

[
L[0,1](y1) × · · · × L[0,1](yp)

]
dy1 · · · dyp = E

[
O

p

[0,1](z)
]
,

where the next to last identity is justified by the Tonelli theorem. The proof of this
part is therefore completed.

Part (c)
According to (4.18), one has

f
(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) = n1− 1

α E
[
L[ i−1

n
, i
n
](x) | Xi−1

n
,�n

i X
]
.

Then, following the proof of part (a), one can easily obtain

f
(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) = E

[
L[0,1]

(
n

1
α (x − Xi−1

n
)
) | X1

]
. (4.20)
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From the representation of the local time as in Lemma 2.1 we conclude the identity

E i−1
n

[
f

(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
)
L[ i−1

n
, i
n
](x)

]
= 1

2π

∫
R

∫ i
n

i−1
n

E i−1
n

[
E

[
L[0,1]

(
n

1
α (x − Xi−1

n
)
) | X1

]
r
(
ξ(Xs − x)

)]
dsdξ.

The change of variable s := i−1
n

+ u
n

provides the quantity above is equal to

1

n

1

2π

∫
R

∫ 1

0
r
(
ξ(X i−1

n
− x)

)
× E i−1

n

[
E

[
L[0,1]

(
n

1
α (x − Xi−1

n
)
) | X1

]
r
(
ξ(X i−1

n
+ u

n
− Xi−1

n
)
)]

dudξ

= n
1
α
−1 1

2π

∫
R

∫ 1

0
r
(
ξ̃n

1
α (X i−1

n
−x)

)
E

[
E

[
L[0,1]

(
n

1
α (x−Xi−1

n
)
) |X1

]
r(ξ̃Xu)

]
dudξ̃ ,

where the independence of the increments, the self-similarity of the process X and

the change of variable ξ̃ := n− 1
α ξ are used. The proof is concluded once we observe

that this is n
1
α
−1ϕ3(n

1
α (x − Xi−1

n
)), as

1

2π

∫
R

∫ 1

0
E

[
E

[
L[0,1](z) | X1

]
r
(
ξ̃ (Xu − z)

)]
dudξ̃

= E
[
E

[
L[0,1](z) | X1

]
L[0,1](z)

] = ϕ3(z).

Part (d)
We remark that, from the definition of F , Equation (4.20) and a suitable change of
variable, the following holds:

F
(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
) = n

1
α

∫ ∞

x

f
(
n

1
α (y − Xi−1

n
), n

1
α �n

i X
)
dy

= n
1
α

∫ ∞

x

E
[
L[0,1]

(
n

1
α (y − Xi−1

n
)
)|X1

]
dy

= E
[
O[0,1]

(
n

1
α (x − Xi−1

n
)
) | X1

]
.

Then, following the same route as in the proof of parts (b) and (c), it is easy to check
that

E
[
F

(
n

1
α (x − Xi−1

n
), n

1
α �n

i X
)
O[ i−1

n
, i
n
](x) | F i−1

n

]
= n−1

E
[
O[0,1]

(
n

1
α (x − Xi−1

n
)
)
E

[
O[0,1]

(
n

1
α (x − Xi−1

n
)
) | X1

]]
= n−1ϕ4(n

1
α (x − Xi−1

n
),

as required.

4.4 Proof of Lemmas 3.2 and 3.3
Proof. It follows by arguments analogous to part (ii) in Proposition 2.2. In particular,
the statement of Lemma 3.2 is a straightforward consequence of the Hölder property
in (1.3).
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