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Abstract Finite mixtures with different regression models for different mixture components
naturally arise in statistical analysis of biological and sociological data. In this paper a model
of mixtures with varying concentrations is considered in which the mixing probabilities are
different for different observations. A modified local linear estimation (mLLE) technique is
developed to estimate the regression functions of the mixture component nonparametrically.
Consistency of the mLLE is demonstrated. Performance of mLLE and a modified Nadaraya–
Watson estimator (mNWE) is assessed via simulations. The results confirm that the mLLE
technique overcomes the boundary effect typical to the NWE.

Keywords Nonparametric regression, mixture with varying concentrations, boundary effect,
consistency

1 Introduction

Models of mixtures with varying concentrations (MVC) naturally arise in statistical
analysis of sociological and biomedical data [9, 11]. The MVC model is a generaliza-
tion of a classical finite mixture model FMM [10, 12] in which the concentrations of
components in the mixture are different for different observations. Statistics of data
described by MVC models is considered in [8].

Regression models provide powerful technology of dependencies analysis in mul-
tivariate data. For applications of parametric regression mixture models in behavioral
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science, see [5]. In context of the MVC model, linear [6] and nonlinear [7] regres-
sion models were considered. A modification of the Nadaraya–Watson estimator for
MVC is considered in [1]. It is well known that for homogeneous data the Nadaraya–
Watson estimator suffers from so-called boundary effect: it has particularly severe
bias at the boundary points of the regressor support [3]. As a remedy to cure this sick-
ness a local-linear regression (LLR) technique (or, more general local-polynomial) is
used [2]. A modification of local-linear estimator for MVC is proposed in [4].

This paper focuses on the investigation of the modified LLR estimator properties.
In Section 2 we describe the MVC model and particularly the model of regression
mixture with varying concentrations. In Section 3 modifications of the Nadaraya–
Watson (mNWE) and local-linear estimators (mLLE) for MVC are presented. Sec-
tion 4 is devoted to the conditions for consistency of mLLE. Results of simulations
are presented in Section 5. Concluding remarks are placed in Section 6.

2 Regression mixture

Consider a sample with n subjects O1, . . . , On, where each subject belongs to one of
M subpopulations (mixture components). The number of components κj = κ(Oj ),
which the j -th subject belongs to, is unknown. But the probability pm

j ;n = P(κj = m)

that Oj belongs to m-th component is known for all 1 ≤ j ≤ n and 1 ≤ m ≤ M .
The probabilities {pm

j ;n} are called the mixing probabilities or concentrations of the
components in the mixture.

For each subject one observes a set of observed variables ξj = ξ(Oj ) ∈ R
d . Let

Fm(A) := P(ξ(O) ∈ A|κ(O) = m) be the (unknown) distribution of ξ(O) if O

belongs to the m-th component. Then

P(ξj ∈ A) =
M∑

m=1

pm
j ;nF

m(A), A ∈ B
(
R

d
)
, (1)

where B(Rd) is the Borel σ -algebra on R
d .

In what follows we assume that ξj , j = 1, . . . , n, are independent random vec-
tors. Formula (1) is called the MVC model. A partial case of MVC is the mixture
of regressions, at which a regression model is assumed for each mixture component
distribution Fm(A), m = 1, . . . ,M .

In this paper we restrict ourselves to bivariate vectors of observed features. For
each subject Oj in the sample a vector ξj = (Xj , Yj ) is observed, where Xj =
X(Oj ) and Yj = Y(Oj ) are the regressor and response connected by the following
regression model:

Yj = g(κj )(Xj ) + εj , 1 ≤ j ≤ n, (2)

where g(m) is an unknown regression function, which corresponds to the m-th com-
ponent of mixture, εj = ε(Oj ) is a random error term. The error terms have zero
mean and finite variance for each mixture component:

E
[
ε(Oj ) | κ(Oj ) = m

] = 0, Var
[
ε(Oj ) | κ(Oj ) = m

] = σ 2
(m) < ∞, 1 ≤ j ≤ n.

It is assumed that Xj and εj are independent for fixed κj .
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Let Fm
X (A) = P(X(O) ∈ A | κ(O) = m) be the distribution of the regressor

for m-th component. In what follows we assume that Fm
X (A) is dominated by the

Lebesgue measure for all 1 ≤ m ≤ M . The corresponding probability densities are
denoted by f (m)(x). These density functions are unknown.

Our aim is to estimate the unknown regression function g(m)(x) for m-th compo-
nent of mixture in (2).

3 Estimators

3.1 Nonparametric regression in homogeneous samples

Let us recall how nonparametric regression estimators are defined in the case of
homogeneous data. That is, we will assume here that (2) holds with M = 1 and
g(x) = g(1)(x) is to be estimated.

The classical Nadaraya–Watson estimator (NWE) ĝNW
n (x0) for g(x0) is defined

by

ĝNW
n (x0) =

∑n
j=1 YjK(

x0−Xj

h
)∑n

j=1 K(
x0−Xj

h
)

,

where K : R → R is a kernel function, h > 0 is a bandwidth. The kernel K defines
the weight of an observation (Xj , Yj ) in the estimator. A typical example of K used
in NWE is the Epanechnikov kernel KEp(t) = 3

4 (1 − t2)1{|t | < 1}, where 1{A} is
an indicator function of an event A. The bandwidth can be interpreted as the width of
the neighborhood around x0 to which we localize the estimator of g(x0).

To construct the local linear estimator (LLE) one considers the localized least
squares functional of the form

J (x0; a, b) =
n∑

j=1

K

(
x0 − Xj

h

)(
Yj − (

a + b(x0 − Xj)
))2

. (3)

Let (â(x0), b̂(x0)) be the point of minimum of J (x0; a, b) over (a, b) ∈ R
2. Then

LLE for g(x0) is
ĝLL

n (x0) = â(x0).

The estimator ĝLL(x0) can be calculated by (8)–(9) below with the weights wj ;n =
K((x0 − Xj)/h).

3.2 The minimax weighting coefficients

To modify the estimators for MVC data we will need the minimax coefficients for
components distribution estimation defined in [9].

Let pm = (pm
1;n, . . . , p

m
n;n)

T be the vector of concentrations for the m-th compo-
nent of mixture, m = 1, . . . ,M .

The averaging operation will be denoted by angle brackets:

〈v〉n := 1

n

n∑
j=1

vj , for any v = (v1, . . . , vn)
T ∈ R

n.
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Arithmetic operations with vectors in the angle brackets are performed entry-wise:

〈
pmpk

〉
n

= 1

n

n∑
j=1

pm
j ;np

k
j ;n.

Note that 〈pmpk〉n can be considered as an inner product on R
n.

In what follows we assume that {pm}Mm=1 are linearly independent. Denote by
�n = (〈pkpl〉n)Mk,l=1 the Gram matrix of {pm}Mm=1. The weighting coefficients ak

j ;n,
defined by

ak
j ;n = 1

det �n

M∑
m=1

(−1)m+kγkmpm
j ;n, (4)

where γkm is (k,m)-th minor of �n, are called minimax weighting coefficients. These
weights can also be obtained by the formula(

a1
j ;n, . . . .a

M
j ;n

) = (
p1

j ;n, . . . , p
M
j ;n

)
�−1

n .

The vector of minimax coefficients for the m-th component will be denoted by am =
(am

1;n, . . . , a
m
n;n)

T . These coefficients can be used in weighted empirical distributions

F̂ m
n (A) = 1

n

n∑
j=1

am
j ;n1{ξj ∈ A}.

Observe that 〈
pkam

〉
n

=
{

1 if k = m,

0 if k 	= m,
for all 1 ≤ m ≤ M. (5)

By (5) and (1)

E
[
F̂ m

n (A)
] =

M∑
k=1

〈
ampk

〉
n
F k(A) = Fm(A),

so F̂ m
n (A) is an unbiased estimator for Fm(A). It is shown in [9] that under the MVC

model (1) F̂ m
n (A) is a minimax estimator for Fm(A) in the class of all unbiased esti-

mators.

3.3 Nonparametric estimators for MVC

Here and below we assume that ξj , j = 1, . . . , n, are described by the regression
MVC model (2).

In [1] a modified NWE (mNWE) for g(m)(x0) is proposed of the form

ĝNW(m)
n (x0) =

∑n
j=1 am

j ;nYjK(
x0−Xj

h
)∑n

j=1 am
j ;nK(

x0−Xj

h
)

. (6)

It is shown in [1] that, under suitable assumptions, ĝ
NW(m)
n (x0) is a consistent and

asymptotically normal estimator of g(m)(x0).
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To derive a modified local linear estimator (mLLE) we start with the weighted
least squares functional

J (m)(x0; a, b) =
n∑

j=1

am
j ;nK

(
x0 − Xj

h

)(
Yj − (

a + b(x0 − Xj)
))2

. (7)

Observe that some weights am
j ;n can be negative, so this functional can attain negative

values and be unbounded from below. Despite this we consider the stationary point
of J (m)(x0; a, b), i.e. the solution (â(x0), b̂(x0)) to the equation system{

∂
∂a

J (m)(x0; a, b) = 0,
∂
∂b

J (m)(x0; a, b) = 0.

The mLLE for g(m)(x0) is defined as ĝ
LL(m)
n (x0) := â(x0). By a simple algebra it can

be calculated as

ĝLL(m)
n (x0) = SY SXX − SXSXY

S1SXX − (SX)2 , (8)

where

S1 =
n∑

j=1

wm
j ;n, SX =

n∑
j=1

wm
j ;n(x0 − Xj), SY =

n∑
j=1

wm
j ;nYj ,

SXX =
n∑

j=1

wm
j ;n(x0 − Xj)

2, SXY =
n∑

j=1

wm
j ;nYj (x0 − Xj),

(9)

wm
j ;n = am

j ;nK
(
(x0 − Xj)/h

)
.

Since ĝ
NW(m)
n (x0) = SY /S1, we have

ĝLL(m)
n (x0) = ĝNW(m)

n (x0) − S1SXY − SXSY

S1SXX − (SX)2 · SX

S1
. (10)

So, mLLE can be considered as the mNWE with an additional correction term. This
term takes a value close to zero if SX/S1 ≈ 0. As we will see below, this is usually
the case if x0 is an interior point of the regressor support and K is an even function.
Therefore if x0 lies in the interior of the regressor support, mLLE behavior is nearly
the same as of mNWE. But at the boundary points the correction makes the bias of
mLLE smaller than of mNWE.

4 Consistency of the modified local-linear regression estimator

The consistency conditions of the weightened local-linear estimator are given in the
following theorem.

Theorem 1. Let 1 ≤ m ≤ M be a fixed number of components. Assume that:

1. x0 is a continuity point of f (m)(x) and g(m)(x);
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2. h = hn, such that hn → 0 and nhn → +∞ as n → ∞;

3. the kernel function K is bounded on R and satisfies
∫ ∞
−∞ |K(z)|z2dz < ∞ and∫ ∞

−∞ K2(z)z4dz < ∞;

4. g(k)(x), f (k)(x) are bounded on x ∈ R for all 1 ≤ k ≤ M;

5. f (m)(x0) > 0;

6. �(K) := ∫ +∞
−∞ K(z)dz

∫ +∞
−∞ z2K(z)dz − (

∫ +∞
−∞ zK(z)dz)2 	= 0;

7. there exists c0 > 0, such that det �n ≥ c0 for all n ≥ 1.

Then ĝ
LL(m)
n (x0) is a consistent estimator of g(m)(x0), i.e.

ĝLL(m)
n (x0)

P−→ g(m)(x0), n → ∞.

Remarks.

1. Assumption 2 of the theorem is necessary. This is also required for the LLR
estimator in case of homogeneous sample, see Theorem 1 of [2].

2. If the kernel K has a bounded support then Assumption 4 can be relaxed to a
local version: g(k) and f (k) are bounded in some open neighborhood of x0.

3. If the kernel K(z) is nonnegative the assumption �(K) 	= 0 is equivalent to
K(·) 	= 0 on a set of positive Lebesgue measure.

4. The requirement that f (m)(x0) > 0 is crucial. If f (m)(x) = 0 for all x in
some neighborhood of x0, then X(m) will not attain values at this neighbor-
hood, hence g(m)(x0) cannot be estimated nonparametrically. On the other
hand, when x0 is a boundary point of the support of X(m), consistent estimation
is possible.

5. Condition det �n > 0, is equivalent to linear independence of concentrations
vectors {pk}, k = 1, . . . ,M . Assumption 7 can be considered as an asymp-
totic version of the linear independence condition. It is worth noting that this
assumption outrules the classical FMMs at which pm

j ;n = pm does not depend
on m.

Proof. Multiplying both the numerator and denominator in (8) by (nh2
n)

−2, one ob-
tains

ĝLL(m)
n (x0) =

SY

nhn

SXX

nh3
n

− SX

nh2
n

SXY

nh2
n

S1
nhn

SXX

nh3
n

− ( SX

nh2
n
)2

. (11)

Let us analyze each term separately.
We will start from SXX/(nh3

n).

E
[
SXX

nh3
n

]
= 1

nh3
n

n∑
j=1

am
j ;nE

[
K

(
(x0 − Xj)/hn

)
(x0 − Xj)

2]
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= 1

nh3
n

n∑
j=1

am
j ;n

M∑
k=1

pk
j ;nE

[
K

((
x0−X(O)

)
/hn

)(
x0−X(O)

)2 | κ(O)=k
]

= 1

h3
n

M∑
k=1

〈
ampk

〉
n
E

[
K

((
x0 − X(O)

)
/hn

)(
x0 − X(O)

)2 | κ(O) = k
]

= 1

h3
n

E
[
K

((
x0 − X(O)

)
/hn

)(
x0 − X(O)

)2 | κ(O) = m
]
,

due to (5). So

E
[

SXX

nh3
n

]
= 1

h3
n

+∞∫
−∞

K
(
(x0 − x)/hn

)
(x0 − x)2f (m)(x)dx.

The substitution
z = (x0 − x)/hn, dz = −dx/hn, (12)

yields

E
[
SXX

nh3
n

]
=

+∞∫
−∞

K(z)z2f (m)(x0 − hnz)dz.

By Assumptions 1 and 2, K(z)z2f (m)(x0 − hnz) → K(z)z2f (m)(x0) for all z ∈ R.
By Assumption 4, there exists Cf < ∞, such that f (m)(x) < Cf for all x ∈ R. By
Assumption 3,

∫ ∞
−∞ |K(z)|z2dz < ∞, so Cf |K(z)|z2 is an integrable majorant of

K(z)z2f (m)(x0 − hnz) and by the Lebesgue dominated convergence theorem

E
[
SXX

nh3
n

]
→ f (x0)

∫ ∞

−∞
K(z)z2dz, as n → ∞. (13)

Let us bound the variance of SXX/(nh3
n):

Var
[
SXX

nh3
n

]
= 1

(nh3
n)

2

n∑
j=1

(
am
j ;n

)2 Var
[
K

(
(x0 − Xj)/hn

)
(x0 − Xj)

2]

≤ 1

n2h6
n

n∑
j=1

(
am
j ;n

)2E
[(

K
(
(x0 − Xj)/hn

)
(x0 − Xj)

2)2]

= 1

n2h6
n

n∑
j=1

(
am
j ;n

)2
M∑

k=1

pk
j ;nE

[(
K

((
x0−X(O)

)
/hn

))2(
x0−X(O)

)4 | κ(O) = k
]

= 1

nh6
n

M∑
k=1

〈(
am

)2pk
〉
n

+∞∫
−∞

(
K

(
(x0 − x)/hn

))2
(x0 − x)4f (k)(x)dx.

Applying once more the substitution (12) we obtain

Var
[

SXX

nh3
n

]
≤ 1

nhn

M∑
k=1

〈(
am

)2pk
〉
n

+∞∫
−∞

(
K(z)

)2
z4f (k)(x0 − hnz)dz. (14)
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Observe that 〈(
am

)2pk
〉
n

≤
(

max
1≤j≤n

|am
j ;n|

)2

since 0 ≤ pk
j ;n ≤ 1.

By (4) and Assumption 7,

|ak
j ;n| =

∣∣∣∣ 1

det 	n

M∑
m=1

(−1)m+kγkmpm
j ;n

∣∣∣∣ ≤ c−1
0

M∑
m=1

|γkm| ≤ c−1
0 M! =: C0 < ∞,

since |γkm| ≤ (M − 1)!.
So

Var
[
SXX

nh3
n

]
≤ 1

nhn

MC2
0Cf

∫ ∞

−∞
K2(z)z4dz → 0, n → ∞,

by Assumption 2.
Combining this with (13) we obtain

SXX

nh3
n

P−→ f (m)(x0)

∫ +∞

−∞
K(z)z2dz, as n → ∞. (15)

Consider now asymptotics of SXY /(nh2). With (2) in mind by the same way as
above we obtain

E
[
SXY

nh2
n

]
= 1

h2
n

M∑
k=1

〈
ampk

〉
n
E

[
K

((
x0 − X(O)

)
/hn

)(
x0 − X(O)

)
Y(O) | κ(O) = k

]

= 1

h2
n

M∑
k=1

〈
ampk

〉
n
E

[
K

((
x0−X(O)

)
/hn

)(
x0−X(O)

)
g(κ(O))

(
X(O)

) | κ(O)=k
]

= 1

h2
n

+∞∫
−∞

K
(
(x0 − x)/hn

)
(x0 − x)g(m)(x)f (m)(x)dx.

(Here the assumption E[ε(O) | κ(O) = m] = 0 and conditional independence of
X(O) and ε(O) were used.)

The substitution (12) yields

E
[
SXY

nh2
n

]
=

∫ ∞

−∞
K(z)zg(m)(x0 − hnz)f

(m)(x − hnz)dz.

Applying the Lebesgue dominated convergence theorem, in view of Assumptions 1
and 6, we obtain

E
[

SXY

nh2
n

]
→ g(m)(x0)f

(m)(x0)

∫ ∞

−∞
K(z)zdz, as n → ∞. (16)
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Then

Var
[
SXY

nh2
n

]
≤ 1

(nh2
n)

2

n∑
j=1

(
am
j ;n

)2E
[(

K
(
(x0 − Xj)/hn

)
(x0 − Xj)Yj

)2]

= 1

nh4
n

M∑
k=1

〈(
am

)2pk
〉
n
E

[(
g(k)

(
X(O)

)
K

((
x0−X(O)

)
/hn

)(
x0−X(O)

))2 | κ(O)=k
]

+ 1

nh4
n

M∑
k=1

σ 2
(k)

〈(
am

)2pk
〉
n
E

[(
K

((
x0 − X(O)

)
/hn

)(
x0 − X(O)

))2 | κ(O) = k
]

= 1

nhn

M∑
k=1

〈(
am

)2pk
〉
n

∫ ∞

−∞
(
K(z)z

)2(
g(k)(x0 − hnz)

)2
f (k)(x0 − hnz)dz

+ 1

nhn

M∑
k=1

σ 2
(k)

〈(
am

)2pk
〉
n

∫ ∞

−∞
(
K(z)z

)2
f (k)(x0 − hnz)dz.

So, by Assumptions 2, 3 and 4 for some C < ∞, we obtain

Var
[
SXY

nh2
n

]
≤ C

nhn

→ 0, as n → ∞.

This with (16) yields

SXY

nh2
n

P−→ f (m)(x0)g
(m)(x0)

∫ +∞

−∞
K(z)zdz, as n → ∞. (17)

By the same way we obtain

SX

nh2
n

P−→ f (m)(x0)

∫ +∞

−∞
zK(z)dz,

SY

nhn

P−→ f (m)(x0)g
(m)(x0)

∫ +∞

−∞
K(z)dz,

S1

nhn

P−→ f (m)(x0)

∫ +∞

−∞
K(z)dz,

as n → ∞. Combining this with (11), (15) and (17) we obtain

ĝLL(m)
n (x0) =

SY

nhn

SXX

nh3
n

− SX

nh2
n

SXY

nh2
n

S1
nhn

SXX

nh3
n

− ( SX

nh2
n
)2

P−→

P−→ g(m)(x0)(f (x0))
2�(K)

(f (x0))2�(K)
= g(m)(x0), as n → ∞.

(Here Assumptions 5 and 6 where used.) This is just the statement of the theorem.
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5 Simulation results

5.1 Description of simulations
To assess quality of mLLE and compare it to mNWE we performed a small simulation
study. In all the simulation experiments we used a two-component MVC model with
concentrations defined as follows:

p1
j ;n = j

n
, p2

j ;n = 1 − j

n
, 1 ≤ j ≤ n.

The regression functions of the components were defined as

gm(x) = (−1)mx(1 − x), m = 1, 2.

The distribution of regressor X is uniform on [0, 1] for both the components. The
error terms had different distributions in different experiments.

Performance of the estimators was examined at two points x0 = 0.5 (an interior
point of the regressor support) and x0 = 0 (a boundary point).

For sample sizes n from 100 through 10000 we generated B = 1000 indepen-
dent samples from the model. Assuming that x0 is fixed, the mLLE ĝ

LL(m)
n (x0) and

the mNWE estimator ĝ
NW(m)
n (x0) were calculated by each generated sample. By the

obtained samples of the estimations we calculated the observed bias

Bias
(
ĝLL(m)

n (x0)
) = E∗

[
ĝLL(m)

n (x0) − gm(x0)
]

and variance

Var
(
ĝLL(m)

n (x0)
) = E∗

[(
ĝLL(m)

n (x0) − E∗
[
ĝLL(m)

n (x0)
])2]

.

(Similarly for ĝ
NW(m)
n .) Here m = 1, 2 and E∗[·] is a sample mean. For all of the

experiments we used the Epanechnikov kernel and the bandwidth parameter was
hn = Hn−1/5, where H = HNW

opt = 1.816 is a theoretically optimal value for
mNWE, see [1].

Three experiments were performed.

• Experiment 1. In this experiment the regression errors’ distribution was Gaus-
sian, εj ∼ N(0, 1.25) for both components, so this is the case of light-tailed
errors.

• Experiment 2. The regression errors were generated from the Student-T dis-
tribution with 10 degrees of freedom, i.e. εj ∼ T (10) for both components.
In this case the the variance of errors is the same as in the previous case, but
distribution is heavy-tailed.

• Experiment 3. In this experiment the errors’ distributions were different in the
first and second components: εj |{κj = 1} ∼ N(0, 1.25) and εj |{κj = 2} ∼
T (10).

For all of experiments, the numerical results are shown only for the first com-
ponent of mixture, since the biases and variances of the estimators for the second
component are nearly of the same magnitude, so they are not of significant inter-
est.
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5.2 Performance of mLLE

The results of Experiment 1 for mLLE are presented in Table 1.

Table 1. Experiment 1 results on the mLLE

x0 = 0 x0 = 0.5
n Bias Var Bias Var

100 −0.14934 9.78188 0.0783 0.05874
250 −0.04822 0.15793 0.0709 0.02123
500 −0.03528 0.09786 0.05721 0.01149

1000 −0.01801 0.04796 0.04349 0.00697
2500 −0.01372 0.0254 0.02951 0.00329
5000 −0.01285 0.01394 0.02405 0.00193

10000 −0.00887 0.00828 0.01492 0.0011

In this experiment the bias of mLLE at the boundary point x = 0 was even
smaller in magnitude then at the inner point x = 0.5 for large samples (n ≥ 250).
The variance of mLLE was smaller at the point x = 0.5. For the sample size n = 100
the mLLE had extremely large variance at x = 0. Since only nearly 50 observations
in such samples belong to the first component, this is a very small sample size for a
nonparametric estimation.

The results of Experiment 2 that are shown in Table 2.

Table 2. Experiment 2 results on the mLLE

x0 = 0 x0 = 0.5
n Bias Var Bias Var

100 −0.07368 0.50335 0.06813 0.05452
250 −0.0472 0.19456 0.06015 0.02402
500 −0.02049 0.09438 0.0523 0.01202

1000 −0.02602 0.05402 0.03873 0.00683
2500 −0.01697 0.02364 0.03016 0.00322
5000 −0.00879 0.01374 0.02307 0.00171

10000 −0.01294 0.00728 0.01571 0.00112

By these results we observe that the heavy-tailed regression errors did not signif-
icantly affect the mLLE performance. The bias at the boundary point is still of the
same magnitude as in the inner point of the regressor support.

The results of Experiment 3 are shown in Table 3.

Table 3. Experiment 3 results on the mLLE

x0 = 0 x0 = 0.5
n Bias Var Bias Var

100 −0.0646 0.47884 0.06129 0.05877
250 −0.06522 0.18535 0.06101 0.02189
500 −0.0309 0.09735 0.05424 0.0113

1000 −0.03353 0.05129 0.04028 0.00645
2500 −0.02261 0.02417 0.02939 0.00298
5000 −0.01109 0.01384 0.02022 0.00187

10000 −0.01169 0.00796 0.01528 0.00099
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In this experiment we observe the same pattern of decrease of mLLE biases and
variances as in Experiments 1 and 2. So difference of the errors distributions caused
no significant effect on the estimator.

5.3 Results on comparison of mLLE and mNWE

To compare performance of mLLE and mNWE we calculated the ratios of biases
for these two estimators Bias(ĝLL(1)

n (x0))/Bias(ĝNW(1)
n (x0)) and the ratios of their

variances Var(ĝLL(1)
n (x0))/Var(ĝNW(1)

n (x0)).
The results of the experiments for x0 = 0.5 are presented in Figure 1. Both the

biases and variances ratios are very close to 1 even for small sample sizes. They
apparently tend to 1 when n increases.

Fig. 1. Ratios of biases (left panel) and variances (right panel) of mLLE and mNWE at x0 = 0.5
in Experiment 1 (◦), Experiment 2 (�) and Experiment 3 (+)

The same ratios for x0 = 0 are presented in Figure 2. (Extremely high ratio
Var(ĝLL(1)

n (x0))/Var(gNW(1)
n (x0)) = 109.92 for n = 100 in Experiment 1 is not

presented to avoid collapsing of all other points.)
The left panel of Figure 2 shows that the bias of mLLE is significantly smaller

then of mNWE at the boundary point x0 = 0. The biases’ ratio for n = 10000 vary
from 0.097 in Experiment 1 to 0.14 in Experiment 2. On the other hand, the variances
of mLLE are larger then of mNWE (Three to four times larger for n = 10000). Recall
that the bandwidth h in the experiments was taken to be asymptotically optimal for
mNWE, not for mLLE. Increasing h one can achieve a reduction in variance due to a
moderate increase of the bias.

As an unknown referee noted, it can be of interest to compare the mean squared
errors of the estimators, i.e.

MSE
[
ĝ(m)

n (x)
] = E∗

(
ĝ(m)

n (x) − g(m)
)2 = Var

(
ĝ(m)

n (x)
) + Bias2(ĝ(m)

n (x)
)
.

In all the experiments the ratio

R = MSE
[
ĝLL(m)

n (x0)
]
/MSE

[
ĝNW(m)

n (x0)
]
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Fig. 2. Ratios of biases (left panel) and variances (right panel) of mLLE and mNWE at x0 = 0
in Experiment 1 (◦), Experiment 2 (�) and Experiment 3 (+)

was near to 1 at x0 = 0.5 for all sample sizes. At x0 = 0, R was larger then 1 for
smaller n (from 2.280 in Experiment 2 to 2.31 in Experiment 1 for n = 250) and
smaller then 1 for n = 10000 (from 0.8037 in Experiment 1, to 0.7461 in Experiment
3). So, the mLLE estimators outperformed the mNWE ones for large sample sizes.

6 Conclusion

We have discussed a modification of local linear regression technique for the nonpara-
metric estimation in the model of regression mixture. Consistency of the obtained
estimator is demonstrated. Results of simulations confirm significant reduction of
boundary effect by the use of mLLE. Much efforts are needed to develop a practi-
cal algorithm for bandwidth selection, especially at boundary points of the regressor
distribution support.
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