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Abstract The Gaussian-Volterra process with a linear kernel is considered, its properties are
established and projection coefficients are explicitly calculated, i.e. one of possible prediction
problems related to Gaussian processes is solved.
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1 Introduction

Starting with the famous fractional Brownian motion (fBm), the models involving
the noise represented by Gaussian-Volterra processes (GVp’s) become very popular
and are even more popular now, because they have non-Markov property, so, in some
sense, they have a memory, and at the same time, the phenomenon of memory is
observed in almost all real processes: in economics, finance, cellular and other types
of communications, in neural networks and other areas. In this connection, GVp’s
were studied in many papers, including [2, 6, 8, 10–12, 16, 20], where the properties
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of GVp’s themselves were studied, and [1–5, 7, 15, 19], where stochastic differential
equations involving such processes as the noise were studied.

In general, GVp is a process of the form

Yt =
∫ t

0
K(t, s) dWs, t ≥ 0,

where W is a Wiener process, K(t, s) : R+ × [0, t] → R, t ≥ 0, is a measurable
Volterra kernel, such that ∫ t

0
K2(t, s) ds < ∞, t ≥ 0.

With this setting, Y is correctly defined square-integrable stochastic process. If Y is
an fBm, Yt = BH

t , then ([17])

K(t, s) = CH

[(
t

s

)H−1/2

(t − s)H−1/2

−
(

H − 1

2

)
s1/2−H

∫ t

s

uH−3/2(u − s)H−1/2du

]
, (1)

where H ∈ (0, 1) is the Hurst index. For H ∈ (1/2, 1) the kernel K(t, s) is simplified
to

K(t, s) = (H − 1

2
)CH s1/2−H

∫ t

s

uH−1/2(u − s)H−3/2du, (2)

where constant CH in (1) and (2) equals

CH =
(

2H�( 3
2 − H)

�(H + 1
2 )�(2 − 2H)

)1/2

,

and �(·) is the Euler gamma function. Representations (1) and (2) have the follow-
ing advantages and disadvantages. Advantage is that fBm is a process with stationary
increments. What about disadvantages? First, such kernels are very particular, there-
fore, it is natural to consider their generalizations and investigate the properties of
such generalized GVp’s. This was, in particular, done in the papers [16, 12, 10, 15].

Second, the kernels (1), (2) are comparatively complicated. This leads to a com-
plicated form of the covariance function

EBH
s BH

t = 1

2
(t2H + s2H − |t − s|2H ), t, s ≥ 0,

and this circumstance, in turn, leads to complicated form of the covariance matrix
of the vector created from the values or from the increments of fBm. In particu-
lar, there are still two unsolved problems, related to the determinant of covariance
matrix of fBm-vectors. These problems are considered in [9, 13] and [14]. For ex-
ample, the following problem is still unsolved: let �H

i = BH
i − BH

i−1, i ≥ 1. Con-
sider the projection E(�H

1 |�H
2 , . . . ,�H

n ) for any n ≥ 2. According to the theo-
rem of normal correlation, there exist real-valued coefficients c2, . . . , cn such that
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E(�H
1 |�H

2 , . . . ,�H
n ) = ∑n

i=2 ci�
H
i . The hypothesis “for H > 1

2 all coefficients
are strictly positive” was checked numerically in [13], and analytically for small n,
however, it was not proved analytically. If solved, it would give the key to studying
the properties of matrices in the Cholesky expansion of covariance matrices of fBm
and its increments, however, as we say, it is still unsolved. Therefore our idea in the
present paper is to consider a very simple GVp of the form

Xt =
∫ t

0
(t − s) dWs, (3)

and establish the properties of this process and of the coefficients of the respective
projection, i.e. to consider the respective prediction problem and try to guess which
properties of the kernel imply selected properties of prediction coefficients. In order
to distinguish this process from other Gaussian-Volterra processes, we call it the sim-
plest Gaussian-Volterra process (the simplest GVp), although, of course, this name
is somewhat arbitrary. We establish that X mimics several properties of fBm with
H > 1/2: it is self-similar, non-Markov, has a long memory, its increments over
nonoverlapping intervals are positively correlated. However, unlike fBm, its incre-
ments are not stationary, and we can assume that it is precisely this property that is
determining the signs of projection coefficients, since we established that in our case
the coefficients are not all positive, moreover, they are alternating. Note that this is
apparently one of the few cases when the coefficients can be calculated explicitly;
we use a combinatorial approach for this, solving the system of linear equations and
calculating all determinants by some recurrence and combinatorics. And we can state
that the form of kernel itself does not make it possible to predict the properties of
projection coefficients.

The paper is organized as follows: in Section 2 the main properties of the simplest
Gaussian-Volterra process are established, in Section 3 we give the combinatorial
method for calculation of the determinant of covariance matrix of the increments
of the simplest GVp, together with supplementing numerics, and in Section 4 we
give the explicit formulas for the projection coefficients and establish that they are
alternating. At any step, we check our calculations using several methods.

2 The main properties of the simplest Gaussian-Volterra process

Let (�,F , P) be a complete probability space, W = {Wt, t ≥ 0} be a Wiener pro-
cess on this space, and we consider its continuous modification. Denote F = {Ft =
FW

t , t ≥ 0} the filtration generated by W . Consider the simplest GVp of the form (3)
and establish its basic properties.

Proposition 1. 1) X = {Xt, t ≥ 0} is a zero-mean Gaussian process with the
covariance function

EXtXs = (t ∧ s)2

6
(3 t ∨ s − t ∧ s), s, t ≥ 0.

2) Process X admits a representation

Xt =
∫ t

0
Wsds, t ≥ 0, (4)
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it is continuously differentiable, and

FX
t = FW

t , t ≥ 0.

3) Process X is non-Markov.

4) Process X is α-self-similar with exponent α = 3/2, is nonstationary and has
nonstationary increments.

5) Increments of X in the case of nonoverlapping intervals are positively corre-
lated.

6) Process X has a long memory in the sense that EXs(Xt−Xs) → ∞ as t → ∞.

Proof. 1) Obviously,

EXtXs =
∫ t∧s

0
(t − u)(s − u)du =

∫ t∧s

0
(ts − tu − su + u2)du

= ts(t ∧ s) − (t + s)
(t ∧ s)2

2
+ (t ∧ s)3

3
= (t ∧ s)2

6
(3 t ∨ s − t ∧ s). (5)

2) Representation (4) immediately follows from (3) if we integrate by parts. Con-
tinuous differentiability is also evident, since we consider continuous modification of
Wiener process. Furthermore,

Wt = lim
�t↓0

Xt − Xt−�t

�t
= (X−)′t ,

with the left-hand derivative of X on the very right side, where FW
t ⊂ FX

t . The
inverse relation follows from (4).

3) On the one hand, according to (4),

E(Xt |FX
s ) = Xs + Ws(t − s) for any 0 ≤ s ≤ t. (6)

On the other hand, according to the theorem of normal correlation,

E(Xt |Xs) = aXs,

where

a = EXsXt

EX2
s

=
s2

6 (3t − s)

s3

3

= 3t − s

2s
. (7)

Equalities (6) and (7) imply non-Markov property of X.
4) Self-similarity and nonstationarity of the process itself immediately follow

from (5), while nonstationarity of its increments follows from the equalities (here
s < t)

E(Xt − Xs)
2 = EX2

t − 2EXtXs + EX2
s = t3

3
− s2

3
(3t − s) + s3

3

= t3

3
− ts2 + 2s3

3
, (8)
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while

EX2
t−s = (t − s)3

3
= t3

3
− ts2 + 2s3

3
+ 2ts2 − t2s − s3

= E(Xt − Xs)
2 − s(t − s)2 = E(Xt − Xs)

2.

5) If the increments are subsequent, i.e. 0 ≤ u < s < t , then

E(Xs − Xu)(Xt − Xs) = 1

2
(s2 − u2)(t − s) > 0.

In the general case, when 0 ≤ u < v ≤ s < t , we have that

E(Xv − Xu)(Xt − Xs) = 1

2
(v2 − u2)(t − s) > 0. (9)

6) Indeed,

EXs(Xt − Xs) = s2

6
(3t − s) − s3

3
= s2

2
(t − s) → ∞, t → ∞.

Remark 1. Formula (9) means that in some sense, the increments of the simplest
GVp over nonoverlapping intervals are stationary in the right-hand interval, because
the value depends only on the length t − s, but is not stationary in the left-hand
interval.

3 Calculation of the determinant of covariance matrix of increments of the
simplest GVp. Combinatorial approach

Let �i = Xi − Xi−1, i ≥ 1. According to formula (9), for l > k,

E�k�l = 1

2
(l − (l − 1))(k2 − (k − 1)2) = 1

2
(2k − 1) = k − 1

2
(10)

and this value does not depend on l, see Remark 1.
Also, according to (8),

E�2
k = E(Xk − Xk−1)

2 = k3

3
− k(k − 1)2 + 2(k − 1)3

3
= k − 2

3
. (11)

Let us record the covariance matrix of increments, starting from 1 and to n:

A1,n = (E�k�l)
n
k,l=1 =

⎛
⎜⎜⎜⎜⎝

E�2
1 E�1�2 . . . E�1�n

E�2�1 E�2
2 . . . E�2�n

...
...

. . .
...

E�n�1 E�n�2 . . . E�2
n

⎞
⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2
3 1 − 1

2 1 − 1
2 · · · 1 − 1

2 1 − 1
2

1 − 1
2 2 − 2

3 2 − 1
2 · · · 2 − 1

2 2 − 1
2

1 − 1
2 2 − 1

2 3 − 2
3 · · · 3 − 1

2 3 − 1
2

...
...

...
. . .

...
...

1 − 1
2 2 − 1

2 3 − 1
2 · · · (n − 1) − 2

3 (n − 1) − 1
2

1 − 1
2 2 − 1

2 3 − 1
2 · · · (n − 1) − 1

2 n − 2
3 ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and denote by D1,n its determinant. Also denote

pn =
(

2 + √
3
)n −

(
2 − √

3
)n

.

Theorem 1. 1) The determinant D1,n = det(A1,n) equals

D1,1 = 1

3
, D1,n =

√
3

6n+1 (7pn−1 − 2pn−2), n ≥ 2. (12)

2) The determinant D1,n decreases in n and satisfies the inequalities

5

42
D1,n−1 <

5
√

3

6n+1 pn−1 < D1,n <
2

3
D1,n−1, n ≥ 2. (13)

Proof. Evidently, the matrix A1,n and, respectively, its determinant D1,n can be trans-
formed as follows:

D1,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3

1
2

1
2 · · · 1

2
1
2

1
2

4
3

3
2 · · · 3

2
3
2

1
2

3
2

7
3 · · · 5

2
5
2

...
...

...
. . .

...
...

1
2

3
2

5
2 · · · 3(n−1)−2

3
2(n−1)−1

2
1
2

3
2

5
2 · · · 2(n−1)−1

2
3n−2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Write the determinant D1,n in the recurrent form. Subtracting the penultimate
column from the last column, we have

D1,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3

1
2

1
2 · · · 1

2 0

1
2

4
3

3
2 · · · 3

2 0

1
2

3
2

7
3 · · · 5

2 0
...

...
...

. . .
...

...

1
2

3
2

5
2 · · · (n − 1) − 2

3
1
6

1
2

3
2

5
2 · · · (n − 1) − 1

2
5
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

0

D1,n−1
...

1
6

1
2 . . . (n − 1) − 1

2
5
6

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Next, we subtract the penultimate row from the last row and then expand the
determinant over the last column, arriving at

D1,n =

∣∣∣∣∣∣∣∣∣∣∣∣

0

D1,n−1
...

1
6

0 . . . 1
6

2
3

∣∣∣∣∣∣∣∣∣∣∣∣
= 2

3
D1,n−1 − 1

6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3

1
2

1
2 · · · 1

2
1
2

4
3

3
2 · · · 3

2
1
2

3
2

7
3 · · · 5

2
...

...
...

. . .
...

0 0 0 · · · 1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The last determinant has size (n − 1) × (n − 1). We expand it on the last row and
obtain the recurrent form

D1,n = 2

3
D1,n−1 − 1

36
D1,n−2. (14)

This recurrent formula demonstrates that the determinant D1,n decreases in n.
Now we find a general direct formula for determinant D1,n using the recurrence

formula (14).
A sequence with such a recurrent formula is considered in [18, Example 1.34,

p. 86–89]. Namely,

a1 = a, a2 = b, an = (x + y)an−1 − xyan−2, n ≥ 1, x = y.

In this case, according to [18, p. 87] the direct formula has the form

an = b
xn−1 − yn−1

x − y
− axy

xn−2 − yn−2

x − y
. (15)

Find x, y for our case. We have the following system{
x + y = 2

3

xy = 1
36

⇔
{

x = 2
3 − y

y2 − 2
3y + 1

36 = 0
⇔

{
x1,2 = 2∓√

3
6

y1,2 = 2±√
3

6

.

We chose the pair x = 2+√
3

6 , y = 2−√
3

6 (in this case x − y > 0). Taking into
account the fact that D1,1 = 1

3 , D1,2 = 7
36 , and x − y = 1√

3
, we get

D1,n = 7

36

√
3 · pn−1

6n−1 − 1

3

1

36

√
3 · pn−2

6n−2 .

Thus, we establish (12).
From (12) we get strict positivity of D1,n and the bound 5

√
3

6n+1 pn−1 < D1,n be-
cause for any 0 < b < 1 < a the function ax − bx increases in x > 0.

Furthermore,

5
√

3

6n+1 pn−1 >
5
√

3

6n+1 pn−2 = 5
√

3

6n+17
7pn−2 >

5
√

3

6n+17
(7pn−2 − 2pn−3)

= 5

42
D1,n−1, n ≥ 3.
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For n = 2 we have the same estimate, i.e.

D1,2 = 7
√

3

63 2
√

3 = 7

36
>

5

42
· 1

3
= 5

42
D1,1.

Finally, inequality D1,n < 2
3D1,n−1 follows directly from (14) and positivity of

D1,n−2, n ≥ 3. If n = 2 then D1,2 = 7
36 < 2

3
1
3 = 2

3D1,1.

Remark 2. Even in our simple case it is not so trivial to establish that the matrix A1,n

is nondegenerate. However, equality (12) immediately gives us this result.

Remark 3. It is interesting to compare the direct calculations of determinant D1,n

with calculations by formulas (14) and (12). For n = 1, 2, 3, 4, 5 direct calculations
give us the following values:

D1,1 = 1

3
, D1,2 = 7

36
, D1,3 = 13

108
, D1,4 = 97

1296
, D1,5 = 181

3888
. (16)

Now, by the recurrent formula (14)

D1,3 = 2

3
D1,2 − 1

36
D1,1 = 13

108
, D1,4 = 2

3
D1,3 − 1

36
D1,2 = 97

1296
,

D1,5 = 2

3
D1,4 − 1

36
D1,3 = 181

3888
.

Finally, check the same values obtained by the final formula (12).

In particular, for n = 2, D1,2 =
√

3
63 (7 · 2

√
3) = 7

62 = 7
36 .

Now, calculate the determinant by (12) for n = 3, 4, 5 and compare with (16):

D1,3 =
√

3

64 [7p2 − 2p1] =
√

3

64

[
7 · 8

√
3 − 4

√
3
]

= 13

108
,

D1,4 =
√

3

65
[7p3 − 2p2] =

√
3

65

[
7

((
2 + √

3
)

−
(

2 − √
3
))

×
((

2 + √
3
)2 +

(
2 + √

3
) (

2 − √
3
)

+
(

2 − √
3
)2

)
− 2 · 8

√
3

]

=
√

3

65

[
7 · 2

√
3 · 15 − 2 · 8

√
3
]

= 97

64 = 97

1296
,

D1,5 =
√

3

66
[7p4 − 2p3] =

√
3

66

[
7 · 112

√
3 − 2 · 30

√
3
]

= 181

3888
,

where we took into account that(
2 + √

3
)2 +

(
2 − √

3
)2 = 2

(
22 + √

3
2) = 14,

(
2 + √

3
) (

2 − √
3
)

= 1,(
2 + √

3
)4 −

(
2 − √

3
)4 =

((
2 + √

3
)2 +

(
2 − √

3
)2

)
p2 = 112

√
3.

Thus, all three methods of calculation gave the same results, which also confirms
the validity of the formulas.
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Remark 4. Suppose that we need to calculate the determinant D2,n+1 = det(A2,n+1),
where A2,n+1 = (E�i�k)2≤i,k≤n+1.

Similarly to (12), we can establish the direct formula for D2,n+1 = det(A2,n+1),
with the help of the recurrent formula (14). Since A2,n+1 is an algebraic complement
to the element a11 = E�2

1 of the matrix A1,n+1 = (akl)
n+1
k,l=1, akl = E�k�l , ma-

trix A2,n+1 has dimension n, has the same form as the main covariance matrix of
increments but without the first row and the first column. Therefore the determinant
D2,n+1 = det(A2,n+1), n ≥ 3, can be calculated by the same recurrent formula as
D1,n = det(A1,n), n ≥ 3, but with another initial elements, namely,

D2,2 = 4

3
, D2,3 =

∣∣∣∣∣∣
4
3

3
2

3
2

7
3

∣∣∣∣∣∣ = 31

36
, D2,n+1 = 2

3
D2,n − 1

36
D2,n−1, n ≥ 3. (17)

Applying formula (15) for the same x = 2+√
3

6 , y = 2−√
3

6 and a = 4
3 , b = 31

36 we
arrive at

D2,n+1 = 31

36

√
3
pn−1

6n−1 − 4

3

1

36

√
3
pn−2

6n−2 =
√

3

6n+1

[
31pn−1 − 8pn−2

]
, n ≥ 3. (18)

Let us check the latter formula for n = 3, 4, 5:

D2,4 =

∣∣∣∣∣∣∣∣∣

4
3

3
2

3
2

3
2

7
3

5
2

3
2

5
2

10
3

∣∣∣∣∣∣∣∣∣
= 29

54
, D2,5 =

∣∣∣∣∣∣∣∣∣∣∣∣

4
3

3
2

3
2

3
2

3
2

7
3

5
2

5
2

3
2

5
2

10
3

7
2

3
2

5
2

7
2

13
3

∣∣∣∣∣∣∣∣∣∣∣∣
= 433

1296
, D2,6 = 101

486
.

At the same time, formula (18) gives the equalities

D2,4 =
√

3

64 [31p2 − 8p1] =
√

3

64

[
31 · 8

√
3 − 8 · 2

√
3
]

= 29

54
,

D2,5 =
√

3

65
[31p3 − 8p2] =

√
3

65

[
31 · 2

√
3 · 15 − 8 · 8

√
3
]

= 433

1296
,

D2,6 =
√

3

66
[31p4 − 8p3] =

√
3

66

[
31 · 8

√
3 · 14 − 2 · 15 · 8

√
3
]

= 101

486
,

while the recurrent formula gives the same equalities:

D2,4 = 2

3
D2,3 − 1

36
D2,2 = 2

3

31

36
− 1

36

4

3
= 29

54
,

D2,5 = 2

3
D2,4 − 1

36
D2,3 = 2

3

29

54
− 1

36

31

36
= 24 · 29 − 31

64 = 433

1296
,

D2,6 = 2

3
D2,5 − 1

36
D2,4 = 2

3

433

1296
− 1

36

29

54
= 433 − 31

63 · 32 = 101

486
.

That is, the values coincide, and therefore the formulas (17) and (18) have been con-
firmed.
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4 Projection problem and respective coefficients for the simplest GVp

Now we consider the problem of projection of �1 = X1 −X0 = X1 on n subsequent
increments �i = Xi − Xi−1, 2 ≤ i ≤ n + 1. More precisely, we can apply theorem
of normal correlation and obtain the presentation

E(�1|�2, . . . ,�n+1) =
n+1∑
i=2

c(i)
n �i, (19)

where c
(i)
n ∈ R, 2 ≤ i ≤ n + 1, are the respective projection coefficients.

Lemma 1. Coefficients {c(k)
n , 2 ≤ k ≤ n + 1} equal to the unique solution of the

system of linear equations

n+1∑
i=2

xiE�i�k = E�1�k, 2 ≤ k ≤ n + 1. (20)

Proof. We multiply both parts of (19) by �k, 2 ≤ k ≤ n + 1; taking expectation
and observing that �k is adapted to σ -field generated by {�2, . . . ,�n+1}, we get the
proof. The solution exists and is unique because the main determinant of the system
is D2,n+1 = det(A2,n+1), and according to Theorem 1 and Remark 4, determinant
D2,n+1 is strictly positive.

Corollary 1. Obviously, Lemma 1 implies that coefficients {c(k)
n , 2 ≤ k ≤ n+ 1} are

c
(k)
n = D

(k−1)
2,n+1

D2,n+1
, where D2,n+1 = det(E�i�j )

n+1
i,j=2 and D

(k−1)
2,n+1 is the determinant

obtained from D2,n+1 by replacing the (k − 1)th column with a vector b2,n+1 =
( 1

2 , . . . , 1
2 )T.

Theorem 2. Coefficients {c(k)
n , 2 ≤ k ≤ n+1} can be find by the following formulas:

1) n = 1, c
(2)
1 = 3

8
;

2) n = 2,

c
(2)
2 = 3

5pn−1 − pn−2

31pn−1 − 8pn−2
= (−1)n30

√
3

31pn−1 − 8pn−2
= 15

31
,

c
(3)
2 = (−1)n−16

√
3

31pn−1 − 8pn−2
=− 3

31
;

3) n ≥ 3,

c(n+2−m)
n = (−1)n−m

√
3

2 · 6n · D2,n+1

[
5pm−1 − pm−1

]
= (−1)n−m3

5pm−1 − pm−2

31pn−1 − 8pn−2
, 3 ≤ m ≤ n,

c(n)
n = (−1)n5

2 · 6n−1 · 1

D2,n+1
= (−1)n30

√
3

31pn−1 − 8pn−2
,
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c(n+1)
n = (−1)n−1

2 · 6n−1 · 1

D2,n+1
= (−1)n−16

√
3

31pn−1 − 8pn−2
.

Proof. 1) If n = 1, then k = 2 and we have one equation c
(2)
1 E�2

2 = E�1�2. By

(10) and (11) we obtain c
(2)
1

4
3 = 1

2 , and c
(2)
1 = 3

8 .
2), 3) The system of the linear equations (20) is equivalent to the following matrix

equation

A2,n+1cn = b2,n+1,

where A2,n+1 has dimension n × n and this is the algebraic complement of the
element a11 = E�2

1 of the matrix A1,n+1 = (akl)
n+1
k,l=1, akl = E�k�l ; cn =

(c
(2)
n , . . . , c

(n+1)
n )T is the vector of unknown parameters of projection (19); b2,n+1 =

(a12, . . . , a1(n+1))
T = (E�1�2, . . . , E�1�n+1)

T = ( 1
2 , . . . , 1

2 )T.
Thus, we solve the equation

⎛
⎜⎜⎜⎜⎜⎝

a22 a23 · · · a2n a2(n+1)

a32 a33 · · · a3n a3(n+1)

...
. . .

...
...

...

an2 an3 · · · ann an(n+1)

a(n+1)2 a(n+1)3 · · · a(n+1)n a(n+1)(n+1)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c
(2)
n

c
(3)
n

...

c
(n)
n

c
(n+1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

a12
a13
...

a1n

a1(n+1)

⎞
⎟⎟⎟⎟⎟⎠

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

3
2

3
2 · · · 3

2
3
2

3
2

7
3

5
2 · · · 5

2
5
2

...
...

. . .
...

...
...

3
2

5
2

7
2 · · · n − 2

3 n − 1
2

3
2

5
2

7
2 · · · n − 1

2 (n + 1) − 2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c
(2)
n

c
(3)
n

...

c
(n)
n

c
(n+1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
1
2
...

1
2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to Corollary 1 we use Cramer’s rule and find the solutions in the form

c(k)
n = D

(k−1)
2,n+1

D2,n+1
, k = 2, n + 1.

Here D
(k−1)
2,n+1 is the determinant obtained from D2,n+1, in which we replaced the (k −

1)th column with the vector b2,n+1 = ( 1
2 , . . . , 1

2 )T. The determinants D2,n+1 are
obtained in Remark 4 and particularly in (17) and (18).

Therefore, we need to find D
(k−1)
2,n+1, 2 ≤ k ≤ n + 1. Write it in the recurrent form

and then derive the direct formula.
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First, let k = 2, then

D
(1)
2,n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

3
2

3
2

3
2 · · · 3

2
3
2

3
2

1
2

7
3

5
2

5
2 · · · 5

2
5
2

5
2

1
2

5
2

10
3

7
2 · · · 7

2
7
2

7
2

...
...

...
...

. . .
...

...
...

1
2

5
2

7
2

9
2 · · · (n − 1) − 2

3 (n − 1) − 1
2 (n − 1) − 1

2
1
2

5
2

7
2

9
2 · · · (n − 1) − 1

2 n − 2
3 n − 1

2
1
2

5
2

7
2

9
2 · · · (n − 1) − 1

2 n − 1
2 (n + 1) − 2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
can be calculated by the same recurrent formula as D1,n, n ≥ 3, but with another
initial elements. Namely,

D
(1)
2,2 = 1

2
, D

(1)
2,3 = 5

12
= 5

6
D

(1)
2,2, D

(1)
2,n+1 = 2

3
D

(1)
2,n − 1

36
D

(1)
2,n−1, n ≥ 3. (21)

Applying formula (15) for the same x = 2+√
3

6 , y = 2−√
3

6 and a = 1
2 , b = 5

12 we
arrive at

D
(1)
2,n+1 = 5

12

√
3
pn−1

6n−1 − 1

2

1

36

√
3
pn−2

6n−2 =
√

3

72

(
30

pn−1

6n−1 − pn−2

6n−2

)

=
√

3

6n

[
5pn−1 − pn−2

]
. (22)

Let us check the latter formula for n = 3:

D
(1)
2,4 =

∣∣∣∣∣∣∣∣∣

1
2

3
2

3
2

1
2

7
3

5
2

1
2

5
2

10
3

∣∣∣∣∣∣∣∣∣
= 19

2 · 62 = 19

72
.

By (22) we get

D
(1)
2,4 =

√
3

2 · 63 [5p2 − p1] =
√

3

2 · 63

[
5 · 8

√
3 − 2

√
3
]

= 2 · 3

2 · 63 [20 − 1] = 19

72
.

At the same time, the recurrent formula gives the equalities

D
(1)
2,4 = 2

3
D

(1)
2,3 − 1

36
D

(1)
2,2 = 2

3

5

12
− 1

36

1

2
= 19

72
.

Thus, we have obtained the same results for all three methods.
In the case k ≥ 3, a slightly modified approach should be used. For convenience,

we denote j = k − 1, and consider j ≥ 2, n ≥ 2. Here j is the number of the column
of the matrix A2,n+1, which we replaced by vector b2,n+1 to obtain the determinant

D
(j)
2,n+1.
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First of all we investigate the case j = n. We have

D
(n)
2,n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
3

3
2 · · · 3

2
3
2

1
2

3
2

7
3 · · · 5

2
5
2

1
2

...
...

. . .
...

...

3
2

5
2 · · · (n − 1) − 1

2 n − 2
3

1
2

3
2

5
2 · · · (n − 1) − 1

2 n − 1
2

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We subtract the penultimate row from the last row, then expand the determinant over
the last row and get

D
(n)
2,n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
3

3
2 · · · 3

2
3
2

1
2

3
2

7
3 · · · 5

2
5
2

1
2

...
...

. . .
...

...

3
2

5
2 · · · (n − 1) − 1

2 n − 2
3

1
2

0 0 · · · 0 1
6 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −1

6
D

(n−1)
2,n = · · · = (−1)n−1

6n−1 D
(1)
2,2.

Thus,

D
(n)
2,n+1 = (−1)n−1

2 · 6n−1 . (23)

Further, consider j = n − 1. We have

D
(n−1)
2,n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
3

3
2 · · · 3

2
1
2

3
2

3
2

7
3 · · · 5

2
1
2

5
2

...
...

. . .
...

...
...

3
2

5
2 · · · (n − 1) − 1

2
1
2 n − 1

2
3
2

5
2 · · · (n − 1) − 1

2
1
2 (n + 1) − 2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we analogously subtract the penultimate row from the last row and expand
the determinant over the last row. That is,

D
(n−1)
2,n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
3

3
2 · · · 3

2
1
2

3
2

3
2

7
3 · · · 5

2
1
2

5
2

...
...

. . .
...

...

3
2

5
2 · · · (n − 1) − 1

2
1
2 n − 1

2

0 0 · · · 0 0 5
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 5

6
D

(n−1)
2,n .
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By (23) we arrive at

D
(n−1)
2,n+1 = 5

6

(−1)n−2

2 · 6n−2 = 5(−1)n

2 · 6n−1 . (24)

Note that (23) and (24) imply the relation D
(n−1)
2,n+1 = −5D

(n)
2,n+1. Moreover,

D
(n)
2,n+2 = 5

6D
(n)
2,n+1.

Next, we study the case 1 ≤ j ≤ n−2. Let us fix such j and consider determinant
D

(j)

2,j+m for m ≥ 3. The recurrent formula (14) is also valid for this determinant, that
is,

D
(j)
2,j+m = 2

3
D

(j)
2,j+1 − 1

36
D

(j)
2,j+2, m ≥ 3.

Here by equalities (23) and (24) we have D
(j)
2,j+1 = (−1)j−1

2·6j−1 and D
(j)
2,j+2 = 5(−1)j−1

2·6j

respectively, and D
(j)
2,j+2 = 5

6D
(j)
2,j+1.

Therefore, we obtain by (15)

D
(j)
2,j+m = D

(j)
2,j+2

√
3

6m−1 pm−1 − D
(j)
2,j+1

√
3

36 · 6m−2 pm−2

= D
(j)

2,j+1

√
3

[
5

6

pm−1

6m−1 − 1

36

pm−2

6m−2

]
= (−1)j−1

√
3

2 · 6m+j−1

[
5pm−1 − pm−2

]
.

Thus, we can rewrite the last equality in the form

D
(n+1−m)
2,n+1 = (−1)n−m

√
3

2 · 6n

[
5pm−1 − pm−2

]
. (25)

Now we use formulas (18), (22), (21), (23), (24) and the last one to find the
coefficients of projection. Namely,

c(n+1)
n = D

(n)
2,n+1

D2,n+1
= (−1)n−1

2 · 6n−1 · 1

D2,n+1
= (−1)n−16

√
3

31pn−1 − 8pn−2
,

c(n)
n = (−1)n5

2 · 6n−1 · 1

D2,n+1
= (−1)n30

√
3

31pn−1 − 8pn−2
,

and for 3 ≤ m ≤ n,

c(n+2−m)
n = (−1)n−m3

5pn−1 − pn−2

31pn−1 − 8pn−2
.

If n = 2, we have the particular case of previous results for k = n and k = n + 1.
Note, that in this case equality (25) (with m = n = 2) is also true and coincides with
(24) and with the second equality of (21). Indeed,

D2,3 =
√

3

2 · 62 5
((

2 + √
3
)

−
(

2 − √
3
))

= 5

12
.
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And on the other hand,

D2,3 = 5

2 · 6
= 5

12
.

Consequently, by the second equality of (17),

c
(2)
2 = 5

12

36

31
= 15

31
.

For completeness, we also get

c
(3)
2 = D

(2)
2,3

D2,3
= −1

12

36

31
= − 3

31
.

Remark 5. In order to check the obtained results, we calculate the projection coeffi-
cients for some values of n, by another method.

By formulas from Theorem 2 we obtain, for n = 3,

c
(2)
3 = 3

5p2 − p1

31p2 − 8p1
= 3

5 · 8
√

3 − 2
√

3

31 · 8
√

3 − 8 · 2
√

3
= 57

116
,

c
(3)
3 = (−1)330

√
3

31p2 − 8p1
= −30

√
3

29 · 8
√

3
= − 15

116
, c

(4)
3 = (−1)26

√
3

29 · 8
√

3
= 3

116
;

and for n = 4,

c
(2)
4 = 3

5p3 − p2

31p3 − 8p2
= 3

5 · 30
√

3 − 8
√

3

31 · 30
√

3 − 8 · 8
√

3
= 213

433
,

c
(3)
4 = −3

5p2 − p1

433 · 2
√

3
= − 57

433
, c

(4)
4 = (−1)430

√
3

433 · 2
√

3
= 15

433
,

c
(5)
4 = (−1)36

√
3

433 · 2
√

3
= − 3

433
.

On the other hand, we can solve the system of equations (20) using standard
methods (Gaussian elimination). Thus, we get the following results.

If n = 3 then⎧⎪⎪⎨
⎪⎪⎩

8c
(2)
3 + 9c

(3)
3 + 9c

(4)
3 = 3

9c
(2)
3 + 14c

(3)
3 + 15c

(4)
3 = 3

9c
(2)
3 + 15c

(3)
3 + 20c

(4)
3 = 3

⇒

⎧⎪⎪⎨
⎪⎪⎩

c
(2)
3 = 57

116

c
(3)
3 = − 15

116

c
(4)
3 = 3

116

.

In the case n = 4,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8c
(2)
4 + 9c

(3)
4 + 9c

(4)
4 + 9c

(5)
4 = 3

9c
(2)
4 + 14c

(3)
4 + 15c

(4)
4 + 15c

(5)
4 = 3

9c
(2)
4 + 15c

(3)
4 + 20c

(4)
4 + 21c

(5)
4 = 3

9c
(2)
4 + 15c

(3)
4 + 21c

(4)
4 + 26c

(5)
4 = 3

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
(2)
4 = 213

433

c
(3)
4 = − 57

433

c
(4)
4 = 15

433

c
(5)
4 = − 3

433

.

As we see, the results coincide.
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In: Malyarenko, A., Ni, Y., Rančić, M., Silvestrov, S. (eds.) Stochastic Processes, Sta-
tistical Methods, and Engineering Mathematics. SPAS 2019. Springer Proceedings in
Mathematics & Statistics, vol. 408, pp. 249–276. Springer, Cham (2022). MR4607849.
https://doi.org/10.1007/978-3-031-17820-7_13

[17] Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and
other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999).
MR1704556. https://doi.org/10.2307/3318691

[18] Perestyuk, M., Vyshenskyi, V.: Combinatorics: First Steps. Nova Science Publishers, In-
corporated (2021). https://doi.org/10.52305/FIZC1542

[19] Ross, M., Smith, M.T., Álvarez, M.: Learning nonparametric Volterra kernels with Gaus-
sian processes. In: Beygelzimer, A., Dauphin, Y., Liang, P., Wortman Vaughan, J. (eds.)
Advances in Neural Information Processing Systems. NeurIPS 2021, vol. 34, pp. 24099–
24110. Curran Associates, Inc. (2021).

[20] Valdivia, A.: Information loss on Gaussian Volterra process. Electron. Commun. Probab.
22, 1–5 (2017). MR3724558. https://doi.org/10.1214/17-ECP79

https://doi.org/10.3390/fractalfract6110620
https://doi.org/10.3390/fractalfract6110620
https://doi.org/10.3390/risks8010011
https://mathscinet.ams.org/mathscinet-getitem?mr=4588243
https://doi.org/10.1090/tpms/1190
https://mathscinet.ams.org/mathscinet-getitem?mr=4607849
https://doi.org/10.1007/978-3-031-17820-7_13
https://mathscinet.ams.org/mathscinet-getitem?mr=1704556
https://doi.org/10.2307/3318691
https://doi.org/10.52305/FIZC1542
https://mathscinet.ams.org/mathscinet-getitem?mr=3724558
https://doi.org/10.1214/17-ECP79

	Introduction
	The main properties of the simplest Gaussian-Volterra process
	Calculation of the determinant of covariance matrix of increments of the simplest GVp. Combinatorial approach
	Projection problem and respective coefficients for the simplest GVp

