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Abstract Cox proportional hazards model is considered. In Kukush et al. (2011), Journal of
Statistical Research, Vol. 45, No. 2, 77–94 simultaneous estimators u�u�(⋅) and u�u� of baseline
hazard rate u�(⋅) and regression parameter u� are studied. The estimators maximize the objective
function that corrects the log-likelihood function for measurement errors and censoring. Param-
eter sets for u�(⋅) and u� are convex compact sets in u�[0, u�] and ℝu�, respectively. In present
paper the asymptotic normality for u�u� and linear functionals of u�u�(⋅) is shown. The results
are valid as well for a model without measurement errors. A way to compute the estimators is
discussed based on the fact that u�u�(⋅) is a linear spline.

Keywords Asymptotic normality of estimators, classical measurement error, Corrected
Maximum Likelihood Estimator, Cox proportional hazards model, estimator of baseline
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1 Introduction

We deal with Cox proportional hazards model where a lifetime 𝑇 ≥ 0 has the following
intensity function

𝜆(𝑡|𝑋; 𝜆, 𝛽) = 𝜆(𝑡) exp(𝛽𝖳𝑋), 𝑡 ≥ 0. (1.1)
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Here we say that positive random variable 𝜉 has intensity function �̃�(⋅) if

�̃�(𝑡) = lim
ℎ→0+

ℎ−1𝐏{𝑡 ≤ 𝜉 < 𝑡 + ℎ| 𝜉 ≥ 𝑡}, 𝑡 ≥ 0.

In (1.1) covariate 𝑋 is a random vector distributed in ℝu�, 𝜆(⋅) ∈ 𝛩u� ⊂ 𝐶[0, 𝜏]
is the baseline hazard function and 𝛽 is a parameter from 𝛩u� ⊂ ℝu�. We observe
only censored value 𝑌∶= min{𝑇, 𝐶}, where censor 𝐶 is distributed in [0, 𝜏]. Survival
function of 𝐶, 𝐺u�(𝑢) = 1 − 𝐹u�(𝑢), is unknown but we know 𝜏. Censorship indicator
𝛥 ∶= 𝕀{u�≤u�} is observed as well. 𝑋 is not observed directly, instead a surrogate data
𝑊 = 𝑋 + 𝑈 is observed, where 𝑈 has known and finite moment generating func-
tion 𝑀u�(𝛽) ∶= 𝐄𝑒u�𝖳u� . Here 𝐄 stands for expectation. A couple (𝑇, 𝑋), censor 𝐶 and
measurement error 𝑈 are stochastically independent. We mention that recently mea-
surement error models become quite popular, e.g., in [9] an autoregressive model with
measurement error was studied.

Consider independent copies of the model (𝑋u�, 𝑇u�, 𝐶u�, 𝑌u�, 𝛥u�), 𝑖 = 1, … , 𝑛. Based
on (𝑌u�, 𝛥u�, 𝑊u�), 𝑖 = 1, … , 𝑛, we estimate true values of 𝛽 and 𝜆(⋅) that we denote by
𝛽0 and 𝜆0(⋅), respectively. The latter is estimated on [0, 𝜏] only.

There are a lot of papers on estimation of 𝛽0 and cumulative hazard 𝛬(𝑡) =
∫u�

0 𝜆(𝑡) d𝑡. In [1] general ideas are presented based on partial likelihood. Same model
but with measurement errors is considered in [4], where, based on Corrected Score
method, consistent and asymptotically normal estimators are constructed for regres-
sion parameter and cumulative hazard function. Another approach is proposed in [6]
where doubly censored data are considered without measurement error. Here cumu-
lative hazard is estimated, and strong consistency and asymptotic normality of max-
imum likelihood estimators are proven. However, sometimes it is necessary to know
the behaviour of baseline hazard function 𝜆(⋅) itself, not cumulative hazard (see [10]).
Our model is presented in [2] and [5] where baseline hazard function is assumed to
belong to a parametric space while we consider 𝜆(⋅) from a compact set of 𝐶[0, 𝜏].

If values of 𝑋u� were measured without measurement error, we could use Maximum
Likelihood Estimator (MLE) which maximizes the log-likelihood function

�̃�u�(𝜆, 𝛽) ∶= 1
𝑛

u�

∑
u�=1

𝑞(𝑌u�, 𝛥u�, 𝑋u�; 𝜆, 𝛽),

where
̃𝑞(𝑌 , 𝛥, 𝑋; 𝜆, 𝛽) = 𝛥(log 𝜆(𝑌) + 𝛽𝖳𝑋) − 𝑒u�𝖳u� ∫

u�

0
𝜆(𝑢) d𝑢.

Since 𝑋u� is contaminated, we have to correct our objective function for measure-
ment error. Due to suggestion of Augustin [2] we construct a new objective function
𝑞 such that

𝐄[𝑞(𝑌u�, 𝛥u�, 𝑊u�; 𝜆, 𝛽)| 𝑌u�, 𝛥u�, 𝑋u�] = ̃𝑞(𝑌u�, 𝛥u�, 𝑋u�; 𝜆, 𝛽) a.s.

Then the corrected log-likelihood function is

𝑄u�(𝜆, 𝛽) ∶= 1
𝑛

u�

∑
u�=1

𝑞(𝑌u�, 𝛥u�, 𝑊u�; 𝜆, 𝛽), (1.2)
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where

𝑞(𝑌, 𝛥, 𝑊; 𝜆, 𝛽) = 𝛥(log 𝜆(𝑌) + 𝛽𝖳𝑊) − 𝑒u�𝖳u�

𝑀u�(𝛽)
∫

u�

0
𝜆(𝑢) d𝑢. (1.3)

As an estimator of true parameters (𝜆0, 𝛽0), we use a couple (𝜆u�, 𝛽u�) which max-
imizes (1.2).

Introduce further assumptions.
(i) 𝛩u� = {𝑓 ∶ [0, 𝜏] → ℝ| 𝑓 (𝑡) ≥ 𝑎, ∀𝑡 ∈ [0, 𝜏], 𝑓 (0) ≤ 𝐴, | 𝑓 (𝑡) − 𝑓 (𝑠)| ≤

𝐿|𝑡 − 𝑠|, ∀𝑡, 𝑠 ∈ [0, 𝜏]}, where 𝑎 > 0, 𝐴 > 𝑎 and 𝐿 > 0 are fixed constants.
(ii) 𝛩u� is a compact and convex set in ℝu�.
(iii) 𝐄𝑈 = 0 and for some > 0,

𝐄[𝑒2u�‖u�‖] < ∞ where 𝐷 ∶= max
u�∈u�u�

‖𝛽‖ + .

(iv) 𝐄[𝑒2u�‖u�‖] < ∞ where 𝐷 > 0 is defined in (iii).
(v) 𝜏 is right endpoint of the distribution of 𝐶, i.e., 𝐏{𝐶 > 𝜏} = 0 and for all > 0,

𝐏{𝐶 > 𝜏 − } > 0.
(vi) The covariance matrix of random vector 𝑋 is positive definite.
(vii) 𝛽0 is an interior point of 𝛩u�.
(viii) 𝜆0 ∈ 𝛩u�

u� for some > 0, where 𝛩u�
u� ∶= {𝑓 ∶ [0, 𝜏] → ℝ| 𝑓 (𝑡) ≥ 𝑎 + , ∀𝑡 ∈

[0, 𝜏], 𝑓 (0) ≤ 𝐴 − , | 𝑓 (𝑡) − 𝑓 (𝑠)| ≤ (𝐿 − )|𝑡 − 𝑠|, ∀𝑡, 𝑠 ∈ [0, 𝜏]}.
(ix) 𝐏{𝐶 > 0} = 1.

Remark. Assumptions (i) to (ix) allow us to consider model without measurement
error. One just has to set 𝑈u� = 0 and 𝑀u�(𝛽) = 1. All results of the article are valid
for this case as well.

In [7] the strong consistency of (𝜆u�, 𝛽u�) is proven and the rate of convergence is
presented. Our goal is to provide asymptotic normality for 𝛽u� and 𝜆u�. The paper is
organised as follows. Section 2 states the main results on the asymptotic normality.
Section 3 suggests the procedure for computation of the estimates. Section 4 proves
the stochastic boundedness results. Section 5 proves auxiliary results, Section 6 gives
the proof of the main result, and Section 7 concludes.

For a sequence of random variables {𝑥u�}, notation 𝑥u� = 𝑂u�(1) means that {𝑥u�} is
stochastically bounded. We assume that censor 𝐶 has pdf 𝑓u� (this is a technical as-
sumption that can be easily avoided). According to [7], Section 3, conditional density
of (𝑌, 𝛥) given 𝑋 at point (𝜆0, 𝛽0) equals

𝑓 (𝑦, 𝛿|𝑋) = 𝑓 u�
u� (𝑦|𝑋)𝐺1−u�

u� (𝑦|𝑋)𝑓 1−u�
u� 𝐺u�

u�(𝑦), (1.4)

where 𝑓u� is conditional pdf of 𝑇 given 𝑋 and 𝐺u� is conditional survival function:

𝑓u�(𝑡|𝑋) = 𝛬(𝑡|𝑋; 𝜆0, 𝛽0) exp(− ∫
u�

0
𝜆(𝑠|𝑋; 𝜆0, 𝛽0) d𝑠),

𝐺u�(𝑡|𝑋) = exp(− ∫
u�

0
𝜆(𝑠|𝑋; 𝜆0, 𝛽0) d𝑠).
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Let 𝑍 be a normed linear space. For a function 𝑓 ∶ 𝑍 → ℝ we denote 𝑓 (u�)(𝑥0) its 𝑛-th
Fréchet derivative at a point 𝑥0 ∈ 𝑍 . 𝑓 (u�)(𝑥0) is 𝑛-linear form and for ℎ1, … , ℎu� ∈ 𝑍
we denote ⟨𝑓 (u�)(𝑥0), (ℎ1, … , ℎu�)⟩ the action of 𝑓 (u�)(𝑥0). If ℎ1 = ⋯ = ℎu� we simply
write ⟨𝑓 (u�)(𝑥0), (ℎ1)u�⟩ where it does not cause ambiguity. If a functional 𝐹 acts on a
product space 𝑍1 × 𝑍2 then elements of this space are denoted as (ℎ1, ℎ2) ∈ 𝑍1 × 𝑍2
and ⟨𝐹, (ℎ1, ℎ2)⟩ stands for the action of 𝐹 on (ℎ1, ℎ2). For 𝑥, 𝑦 ∈ 𝑍 , the following set
is called an interval that connects 𝑥 and 𝑦

[𝑥, 𝑦] = {𝛼𝑥 + (1 − 𝛼)𝑦| 𝛼 ∈ [0, 1]}.

2 Main result

We make some more notations. Let

𝑎(𝑢) = 𝐄[𝑋𝑒u�𝖳
0u�𝐺u�(𝑢|𝑋)], 𝑏(𝑢) = 𝐄[𝑒u�𝖳

0u�𝐺u�(𝑢|𝑋)],

𝑝(𝑢, 𝑥) = exp(𝛽𝖳
0𝑋)𝐺u�(𝑢|𝑋),

𝑇(𝑢) = 𝐄[𝑋𝑋𝖳𝑝(𝑢, 𝑥)]𝐄[𝑝(𝑢, 𝑥)] − 𝐄[𝑋𝑝(𝑢, 𝑥)]𝐄[𝑋𝖳𝑝(𝑢, 𝑥))].

Denote

𝐴 = 𝐄[𝑋𝑋𝖳 exp(𝛽𝖳
0𝑋) ∫

u�

0
𝜆0(𝑢) d𝑢], 𝑀 = ∫

u�

0
𝑇(𝑢)𝐾(𝑢)𝐺u�(𝑢) d𝑢,

where 𝐾(𝑢) = u�0(u�)
u�(u�) . Also introduce a sequence of random vectors

𝜉u� ∶=
u�

∑
u�=1

u�,

with i.i.d. summands

u� = −
𝛥u�𝑎(𝑌u�)
𝑏(𝑌u�)

+
exp(𝛽𝖳

0𝑊u�)
𝑀u�(𝛽0)

∫
u�u�

0
𝑎(𝑢)𝐾(𝑢) d𝑢 +

𝜕𝑞
𝜕𝛽

(𝑌u�, 𝛥u�, 𝑊u�, 𝛽0, 𝜆0).

Let 𝛴u� = 4Cov( 1), 𝑚(𝜑u�) = ∫u�
0 𝜑u�(𝑢)𝑎(𝑢)𝐺u�(𝑢) d𝑢, 𝛴2

u� = 4Var[⟨𝑞′(𝑌, 𝛥, 𝑊,
𝜆0, 𝛽0), 𝜑⟩] with 𝜑 = (𝜑u�, 𝜑u�) ∈ 𝐶[0, 𝜏] × ℝu�.

Theorem 1. Assume conditions (i) to (ix). Then 𝑀 is invertible and

√𝑛(𝛽u� − 𝛽0)
u�
→ 𝑁u�(0, 𝑀−1𝛴u�𝑀−1). (2.1)

Moreover, for any Lipschitz continuous function 𝑓 on [0, 𝜏],

√𝑛 ∫
u�

0
(𝜆u� − 𝜆0)(𝑢)𝑓 (𝑢)𝐺u�(𝑢) d𝑢

u�
→ 𝑁(0, 𝜎2

u�(𝑓 )) (2.2)

where 𝜎2
u�(𝑓 ) = 𝜎2

u� with 𝜑 = (𝜑u�, 𝜑u�), 𝜑u� = −𝐴−1𝑚(𝜑u�), and 𝜑u� is a unique
solution to the Fredholm’s integral equation

𝜑u�
𝐾(𝑢)

− 𝑎𝖳(𝑢)𝐴−1𝑚(𝜑u�) = 𝑓 (𝑢). (2.3)
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Corollary 2. Let 0 < < 𝜏. Assume that 1
u�u�

is Lipschitz continuous on [0, 𝜏 − ].
Under conditions (i) to (ix), for any Lipschitz continuous function 𝑓 on [0, 𝜏] with
support on [0, 𝜏 − ],

√𝑛 ∫
u�−u�

0
(𝜆u� − 𝜆0)(𝑢)𝑓 (𝑢) d𝑢

u�
→ 𝑁(0, 𝜎2

u�(𝑓 )) (2.4)

where 𝜎2
u�(𝑓 ) = 𝜎2

u� with 𝜑 = (𝜑u�, 𝜑u�), 𝜑u� = −𝐴−1𝑚(𝜑u�), and 𝜑u� is a unique
solution to the Fredholm’s integral equation

𝜑u�
𝐾(𝑢)

− 𝑎𝖳(𝑢)𝐴−1𝑚(𝜑u�) =
𝑓 (𝑢)

𝐺u�(𝑢)
.

Here by definition u� (u�)
u�u�(u�) = 0.

Note that the corollary immediately follows from the theorem after 𝑓 is substituted
by u�

u�u�
.

3 Computation of estimators

Since 𝛩u� is infinite-dimensional, computation of (𝜆u�, 𝛽u�) is not a parametric problem
in general setting. We refer to the ideas of I.J. Schoenberg [11]. We will show that
maximum of (1.2) is attained on a linear spline with nodes located at points 𝑌u�, 𝑖 =
1, … , 𝑛 and some other points that can be calculated.

Let 𝑖1, … , 𝑖u� ∈ 1, … , 𝑛 be such a numbering that 𝑌u�1 ≤ ⋯ ≤ 𝑌u�u�, i.e., (𝑌u�1, … , 𝑌u�u�)
is a variational series of (𝑌1, … , 𝑌u�). Alongside with (𝜆u�, 𝛽u�) we consider (𝜆u�, 𝛽u�),
where 𝜆u� is the following function. We set 𝜆u�(𝑌u�u�) = 𝜆(𝑌u�u�), 𝑘 = 1, … , 𝑛. For each
interval [𝑌u�u� , 𝑌u�u�+1

], 𝑘 = 1, … , 𝑛 − 1, perform the next procedure. Draw straight lines

𝐿1
u�u�

(𝑡) = 𝜆(𝑌u�u�) + 𝐿(𝑌u�u� − 𝑡) (3.1)

and
𝐿2

u�u�
(𝑡) = 𝜆(𝑌u�u�+1

) + 𝐿(𝑡 − 𝑌u�u�+1
), (3.2)

where 𝐿 is defined in (i).
Denote 𝐵u�u� the intersection of 𝐿1

u�u�
(𝑡) and 𝐿2

u�u�
(𝑡). 𝐵u�0 ∶= 0, 𝐵u�u� ∶= 𝜏, 𝑌u�0 ∶= 0,

𝑌u�u�+1
∶= 𝜏. We set

𝜆u�(𝑡) =
⎧{
⎨{⎩

max{𝐿1
u�u�

(𝑡), 𝑎} if 𝑡 ∈ [𝑌u�u� , 𝐵u�u�],
max{𝐿2

u�u�
(𝑡), 𝑎} if 𝑡 ∈ [𝐵u�u� , 𝑌u�u�+1

].
(3.3)

Note that 𝜆u� ≥ 𝜆u� because 𝜆u� ∈ 𝛩u�. Then

∫
u�u�u�+1

u�u�u�

𝜆u�(𝑢) d𝑢 ≥ ∫
u�u�u�+1

u�u�u�

𝜆u�(𝑢) d𝑢.

Thus, one can easily see that

𝑄u�(𝜆u�, 𝛽u�) ≤ 𝑄u�(𝜆u�, 𝛽u�)

implying 𝜆u� = 𝜆u� so that we conclude with the following statement.
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Theorem 3. Under conditions (i) and (ii), function 𝜆u� that maximizes 𝑄u� is a linear
spline constructed in (3.3).

Using maximization in (3.3) makes computation of (𝜆u�, 𝛽u�) inconvenient. Thus,
we propose to modify the estimators. As soon as condition (viii) is satisfied and esti-
mator (𝜆u�, 𝛽u�) is strongly consistent, one can induce that eventually 𝜆(𝐵u�u�) > 𝑎, and
thus, eventually there is no need in finding maximum in (3.3). Therefore, instead of
(𝜆u�, 𝛽u�) we propose to consider a couple (�̂�u�, 𝛽u�) with 𝛽u� ∈ 𝛩u� that maximizes 𝑄u�
under restrictions:

(1) �̂�u�(0) ≤ 𝐴.
(2) �̂�u�(𝑌u�u�) ≥ 𝑎, 𝑘 = 1, … , 𝑛.
(3) �̂�u�(𝑌u�u�)+𝐿(𝑌u�u� −𝑌u�u�+1

) ≤ �̂�u�(𝑌u�u�+1
) ≤ �̂�u�(𝑌u�u�)−𝐿(𝑌u�u� −𝑌u�u�+1

), 𝑘 = 1, … , 𝑛−1.

(4) �̂�u�(𝑡) ∶=
⎧{
⎨{⎩

𝐿1
u�u�

(𝑡) if 𝑡 ∈ [𝑌u�u� , 𝐵u�u�],
𝐿2

u�u�
(𝑡) if 𝑡 ∈ [𝐵u�u� , 𝑌u�u�+1

],
𝑘 = 1, … , 𝑛 − 1.

(5) �̂�u�(𝑡) ∶=
⎧{
⎨{⎩

𝐿2
u�0

(𝑡) if 𝑡 ∈ [0, 𝑌u�1],
𝐿1

u�u�
(𝑡) if 𝑡 ∈ [𝑌u�u�, 𝜏].

Evaluating (�̂�u�, 𝛽u�) is a parametric problem. We mention that eventually
(�̂�u�, 𝛽u�) = (𝜆u�, 𝛽u�). We summarise with the next statement.

Theorem 4. Assume conditions (i) to (ix). Then estimator (�̂�u�, 𝛽u�) is strongly con-
sistent and statements of Theorem 1 and Corollary 2 hold true for that estimator.

4 Stochastic boundedness of transformed and normalized estimators

Theorem 5. Assume (i) to (vi). Then
4√𝑛‖𝛽u� − 𝛽0‖ = 𝑂u�(1),

√𝑛 ∫
u�

0
(𝜆u�(𝑢) − 𝜆0(𝑢))2𝐺u�(𝑢) d𝑢 = 𝑂u�(1).

The proof is based on the three lemmas. Using integration by parts one can easily
prove the following.

Lemma 6. For all 𝑢 ∈ [0, 𝜏]

∫
u�

u�
(𝑓u�(𝑦)𝐺u�(𝑦|𝑋) + 𝑓u�(𝑦|𝑋)𝐺u�(𝑦)) d𝑦 = 𝐺u�(𝑢|𝑋)𝐺u�(𝑢) =∶ 𝐺(𝑢|𝑋).

Crucial step of the proof of Theorem 5 is the following.

Lemma 7. There exists a closed bounded set 𝐴 such that 𝜇u�(𝐴) ∶= 𝑃(𝑋 ∈ 𝐴) > 0
and that the identity (𝑣𝖳𝑥 − 𝑐)𝐼u�(𝑥) ≡ 0, for some 𝑣 ∈ ℝu�, 𝑐 ∈ ℝ, implies 𝑣 = 0 and
𝑐 = 0.

Proof of Lemma 7. Denote by 𝑀 the support of 𝜇u� , so that 𝑀 is minimal closed
set with 𝜇u�(𝑀) = 𝜇u�(ℝu�). Since 𝜇u� is not concentrated on a hyperplane due to
the condition (vi), there are at least 𝑘 + 1 distinct points 𝑚1, … , 𝑚u�+1 that belong to
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𝑀 and do not lie on a hyperplane. Consider a closed ball 𝐵(0, 𝑟) with radius 𝑟 >
max{‖𝑚1‖, … , ‖𝑚u�+1‖}. Now one can take 𝐴 = 𝑀 ∩ 𝐵(0, 𝑟) and make sure that 𝐴 has
all desired properties.

Let 𝐴u�(𝜔) be a collection of assertions (here 𝜔 stands for elementary event). We
say that {𝐴u�} hold eventually if for almost all 𝜔 there exists 𝑁u� such that for all 𝑛 > 𝑁u�,
𝐴u�(𝜔) holds.

Lemma 8. Let u�, 𝜉u� be two sequences of random variables, u� be stochastically
bounded, and eventually |𝜉u�| ≤ | u�|. Then 𝜉u� is stochastically bounded as well.

Proof of Theorem 5.
Step 1. Denote 𝑞∞(𝜆, 𝛽) = 𝐄[ ̃𝑞(𝑌, 𝛥, 𝑊, 𝜆, 𝛽)] = 𝐄[ ̃𝑞(𝑌, 𝛥, 𝑋, 𝜆, 𝛽)]. Let us

show that (𝑞∞)′ exists for (𝜆, 𝛽) ∈ 𝐵 and equals zero at the true point (𝜆0, 𝛽0),
where 𝐵 is some open set in ℝu� × 𝐶[0, 𝜏] that contains 𝛩u� × 𝛩u�.

Using (iv) one can easily obtain that

𝜕𝑞∞
𝜕𝛽

(𝜆, 𝛽) = 𝐄[𝛥𝑋 − 𝑋 exp(𝛽𝖳𝑋) ∫
u�

0
𝜆(𝑢) d𝑢],

⟨
𝜕𝑞∞
𝜕𝜆

(𝜆, 𝛽), ℎ⟩ = 𝐄[𝛥ℎ(𝑌)
𝜆(𝑌)

− exp(𝛽𝖳𝑋) ∫
u�

0
ℎ(𝑢) d𝑢],

where ℎ ∈ 𝐶[0, 𝜏]. Hence, (𝑞∞)′ exists. According to [7], Section 3 𝑞∞(𝜆, 𝛽) <
𝑞∞(𝜆0, 𝛽0) for all (𝜆, 𝛽) ≠ (𝜆0, 𝛽0), (𝜆, 𝛽) ∈ 𝐵. Hence,

(𝑞∞)′(𝜆0, 𝛽0) = 0.

In fact, condition (iv) implies that (𝑞∞)″ and (𝑞∞)‴ exist. Hence, third order Tay-
lor’s formula holds,

𝑞∞(𝜆u�, 𝛽u�) − 𝑞∞(𝜆0, 𝛽0) = 1
2

⟨(𝑞∞)″(𝜆0, 𝛽0), (𝜆u� − 𝜆0, 𝛽u� − 𝛽0)2⟩

+ 1
6

⟨(𝑞∞)‴(�̃�u�, ̃𝛽u�), (𝜆u� − 𝜆0, 𝛽u� − 𝛽0)3⟩, (4.1)

where (�̃�u�, ̃𝛽u�) belongs to interval [(𝜆u�, 𝛽u�), (𝜆0, 𝛽0)].
Step 2. We transform (𝑞∞)″ and show that −(𝑞∞)″(𝜆0, 𝛽0) is a positive definite

operator. We have

⟨
𝜕2𝑞∞(𝜆0, 𝛽0)

𝜕𝜆2 , (ℎ1, ℎ2)⟩ = −𝐄[ 𝛥
𝜆2

0(𝑌)
ℎ1(𝑌)ℎ2(𝑌)],

𝜕2𝑞∞

𝜕𝛽2 (𝜆0, 𝛽0) = −𝐄[𝑋𝑋𝖳 exp(𝛽𝖳
0𝑋) ∫

u�

0
𝜆0(𝑢) d𝑢],

⟨
𝜕2𝑞∞(𝜆0, 𝛽0)

𝜕𝜆𝜕𝛽
, (ℎu�, ℎu�)⟩ = −𝐄[(ℎ𝖳

u�𝑋) exp(𝛽𝖳
0𝑋) ∫

u�

0
ℎu�(𝑢) d𝑢],

where ℎ1, ℎ2, ℎu� ∈ 𝐶[0, 𝜏], ℎu� ∈ ℝu�.
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We use (1.4) and Lemma 6 for further transformations:

⟨
𝜕2𝑞∞(𝜆0, 𝛽0)

𝜕𝜆2 , (ℎu�, ℎu�)⟩

= −𝐄[ 𝛥
𝜆2

0(𝑌)
ℎ2

u�(𝑌)] = 𝐄(∫
u�

0

ℎ2
u�(𝑢)

𝜆2
0(𝑢)

𝑓u�(𝑢|𝑋)𝐺u�(𝑢) d𝑢)

= 𝐄(∫
u�

0

ℎ2
u�(𝑢)

𝜆2
0(𝑢)

𝜆0(𝑢) exp(𝛽𝖳
0𝑋) exp(− ∫

u�

0
𝛬(𝑠|𝑋; 𝜆0, 𝛽0) d𝑠)𝐺u�(𝑢) d𝑢)

= 𝐄(∫
u�

0

ℎ2
u�(𝑢)

𝜆0(𝑢)
exp(𝛽𝖳

0𝑋)𝐺u�(𝑢|𝑋)𝐺u�(𝑢) d𝑢). (4.2)

Next,

⟨
𝜕2𝑞∞(𝜆0, 𝛽0)

𝜕𝛽2 , (ℎu�, ℎu�)⟩

= −𝐄[(ℎ𝖳
u�𝑋)2 exp(𝛽𝖳

0𝑋) ∫
u�

0
𝜆0(𝑢) d𝑢]

= −𝐄[(ℎ𝖳
u�𝑋)2 exp(𝛽𝖳

0𝑋)(∫
u�

0
(∫

u�

0
𝜆0(𝑢) d𝑢 𝑓u�(𝑦|𝑋)𝐺u�(𝑦)

+ ∫
u�

0
𝜆0(𝑢) d𝑢 𝑓u�(𝑦)𝐺u�(𝑦|𝑋)) d𝑦)]

= −𝐄[(ℎ𝖳
u�𝑋)2 exp(𝛽𝖳

0𝑋) ∫
u�

0
𝜆0(𝑢) ∫

u�

u�
(𝑓u�(𝑦)𝐺u�(𝑦|𝑋) + 𝑓u�(𝑦|𝑋)𝐺u�(𝑦)) d𝑦 d𝑢]

= −𝐄[(ℎ𝖳
u�𝑋)2 exp(𝛽𝖳

0𝑋) ∫
u�

0
𝜆0(𝑢)𝐺u�(𝑢|𝑋)𝐺u�(𝑢) d𝑢]. (4.3)

At last,

⟨
𝜕2𝑞∞(𝜆0, 𝛽0)

𝜕𝜆𝜕𝛽
, (ℎu�, ℎu�)⟩

= −𝐄[(ℎ𝖳
u�𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
ℎu�(𝑢) d𝑢]

= −𝐄[(ℎ𝖳
u�𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
ℎu�(𝑢) ∫

u�

u�
(𝑓u�(𝑦)𝐺u�(𝑦|𝑋) + 𝑓u�(𝑦|𝑋)𝐺u�(𝑦)) d𝑦 d𝑢]

= −𝐄[(ℎ𝖳
u�𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
ℎu�(𝑢)𝐺u�(𝑢|𝑋)𝐺u�(𝑢) d𝑢]. (4.4)

Hence, from (4.2) to (4.4) it follows that

⟨(𝑞∞)″(𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

= −𝐄[exp(𝛽𝖳
0𝑋) ∫

u�

0
((ℎ𝖳

u�𝑋)√𝜆0(𝑢)𝐺(𝑢|𝑋) + ℎu�(𝑢)
√𝐺(𝑢|𝑥)
√𝜆0(𝑢)

)
2

d𝑢]. (4.5)

Now, condition (vi) implies that −(𝑞∞)″ is positive definite at (𝜆0, 𝛽0), i.e.,

⟨(𝑞∞)″(𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩ = 0 ⟺ (ℎu�, ℎu�) = (0, 0).
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Indeed, if to assume that ⟨(𝑞∞)″(𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩ = 0 and (ℎu�, ℎu�) ≠ (0, 0)
then (4.5) implies that ℎu� ≠ 0 and (ℎ𝖳

u�𝑋) = 𝑐𝑜𝑛𝑠𝑡 𝑎.𝑠. We get a contradiction with (vi).
Step 3. We show that there exist such 𝐶 > 0 and 𝛿 > 0 that, whenever max{‖ℎu�‖2,

∫u�
0

ℎ2
u�(u�)u�0(u�)

u�u�0
d𝑢} > 0, it holds

𝐄[
−⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

max{‖ℎu�‖2, ∫u�
0

ℎ2
u�(u�)u�0(u�)

u�u�0
d𝑢}

] ≥ 𝛿. (4.6)

Note that 𝐺(𝑢|𝑋) is continuous in 𝑋. Denote 𝐺0(𝑢) = minu�∈u� 𝐺(𝑢|𝑋), where 𝐴 is
a set from Lemma 7. Note that 𝐺0(𝑢) = 𝐺(𝑢|𝑋0) > 0, for all 𝑢 ∈ [0, 𝜏) and some 𝑋0.

Assume that ‖ℎu�‖2 ≥ ∫u�
0

ℎ2
u�(u�)u�0(u�)

u�u�0
d𝑢. Jensen’s inequality and (4.5) yield

− ⟨(𝑞∞)″(𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

≥ 1
𝜏

𝐄[𝐼u�∈u� exp(𝛽𝖳
0𝑋)(∫

u�

0
(ℎ𝖳

u�𝑋)√𝜆0(𝑢)𝐺0(𝑢) + ℎu�(𝑢)
√𝐺0(𝑢)
√𝜆0(𝑢)

d𝑢)
2
]

= 1
𝜏

𝐄[𝐼u�∈u� exp(𝛽𝖳
0𝑋)((ℎ𝖳

u�𝑋) ∫
u�

0
√𝜆0(𝑢)𝐺0(𝑢)d𝑢 + ∫

u�

0
ℎu�(𝑢)

√𝐺0(𝑢)
√𝜆0(𝑢)

d𝑢)
2
].

(4.7)

Denote

𝑎0 = min
u�∈u�

1
𝜏

exp(𝛽𝖳
0𝑋), 𝑎1 = ∫

u�

0
√𝜆0(𝑢)𝐺0(𝑢) d𝑢,

𝐾u�(ℎu�) =
∫u�

0 ℎu�(𝑢)√u�0(u�)
√u�0(u�)

d𝑢

‖ℎu�‖
.

Inequality (4.7) implies that

𝐄[
−⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

max{‖ℎu�‖2, ∫u�
0

ℎ2
u�(u�)u�0(u�)

u�u�0
d𝑢}

] ≥ 𝑎0𝐄[𝐼u�∈u�((ℎ̂𝖳
u�𝑋)𝑎1 + 𝐾u�)2],

where ℎ̂u� = ℎu�

‖ℎu�‖ . Fix 𝑇 ∈ ℝ. Equality

𝐄[𝐼u�∈u�((ℎ̂𝖳
u�𝑋)𝑎1 + 𝑇)2] = 0

implies that 𝐼u�∈u�((ℎ̂𝖳
u�𝑋) + u�

u�1
) = 𝑐𝑜𝑛𝑠𝑡 𝑎.𝑠., which contradicts to the choice of 𝐴.

It is easy to see that for a fixed ℎ̂u�, minimum of

𝐄[𝐼u�∈u�((ℎ̂𝖳
u�𝑋)𝑎1 + 𝑇)2]



22 C. Chimisov, A. Kukush

is attained at a unique point 𝑇 = 𝑇(ℎ̂u�, 𝐴). Moreover, 𝑇(ℎ̂u�, 𝐴) is a continuous func-
tion of ℎ̂u�. Hence, we have

𝐄[
−⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

max{‖ℎu�‖2, ∫u�
0

ℎ2
u�(u�)u�0(u�)

u�u�0
d𝑢}

]

≥ 𝑎0𝐄[𝐼u�∈u�((ℎ̂𝖳
u�𝑋)𝑎1 + 𝑇(ℎ̂u�, 𝐴))2] > 0. (4.8)

Due to ‖ℎ̂u�‖ = 1, the right hand side of (4.8) attains its minimum at some point
ℎ̂u�0

. Now one can take

𝛿1 = 𝑎0𝐄[𝐼u�∈u�((ℎ̂𝖳
u�0

𝑋)𝑎1 + 𝑇(ℎ̂u�0
, 𝐴))2] > 0.

Consider the second case, where inequality ‖ℎu�‖2 < ∫u�
0

ℎ2
u�(u�)u�0(u�)
u�u�0(u�) d𝑢 holds. Trans-

form right hand side of (4.5):

𝐄[exp(𝛽𝖳
0𝑋) ∫

u�

0
((ℎ𝖳

u�𝑋)√𝜆0(𝑢)𝐺(𝑢|𝑋) + ℎu�(𝑢)
√𝐺(𝑢|𝑥)
√𝜆0(𝑢)

)
2

d𝑢]

≥ 𝐄[𝐼u�∈u� exp(𝛽𝖳
0𝑋)((ℎ𝖳

u�𝑋)2 ∫
u�

0
𝜆0(𝑢)𝐺0(𝑢) d𝑢 + 2 ∫

u�

0
(ℎ𝖳

u�𝑋)ℎu�(𝑢)𝐺0(𝑢) d𝑢

+ ∫
u�

0
ℎ2

u�(𝑢)
𝐺0(𝑢)
𝜆0(𝑢)

d𝑢)].

Denote 𝛷 = ∫u�
0 ℎ2

u�(𝑢) u�0(u�)
u�u�0(u�) d𝑢. Hence, the left hand side of (4.6) is transformed

to

𝐄[
−⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

𝛷
]

≥ 𝐄[𝐼u�∈u� exp(𝛽𝖳
0𝑋)((ℎ̃𝖳

u�𝑋)2𝑎2 + 2
𝛷

∫
u�

0
(ℎu�

𝖳𝑋)ℎu�(𝑢)𝐺0(𝑢) d𝑢 + 𝐶)],

where

𝑎2 = ∫
u�

0
𝜆0(𝑢)𝐺(𝑢|𝑋) d𝑢, ℎ̃u� =

ℎu�

√∫u�
0

ℎ2
u�(u�)u�0(u�)
u�u�0(u�) d𝑢

.

Jensen’s inequality implies

𝛷1/2 ≥ √ 1
𝜏𝐶

(∫
u�

0
|ℎu�(𝑢)|√

𝐺0(𝑢)
𝜆0(𝑢)

d𝑢).

Since √𝛷 > ‖ℎu�‖, 𝐺0(𝑢) ∈ [0, 1] and 𝜆0 is bounded away from 0, we have

∣
∫u�

0 (ℎu�
𝖳𝑋)ℎu�(𝑢)𝐺0(𝑢) d𝑢

𝛷
∣ ≤

‖ℎu�‖

√𝛷
‖𝑋‖∣

𝜏1/2 ∫u�
0 ℎu�(𝑢)√𝐺0(𝑢) d𝑢

∫u�
0 |ℎu�(𝑢)|√u�0(u�)

u�0(u�) d𝑢
∣√𝐶

≤ √𝐶‖𝑋‖𝐷,
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for some constant 𝐷 > 0 which depends only on 𝜏 and 𝜆0. Since ‖ℎ̃u�‖ < 1, there exist
constants 𝐾1 > 0, 𝐾2 > 0 that satisfy

𝐄[
−⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�, ℎu�)2⟩

𝛷
] ≥ 𝜏𝑎0(−𝐾1 − √𝐶𝐾2 + 𝐶).

Choosing 𝐶 large enough, we get (4.6).
Step 4. Now transform Taylor’s decomposition (4.1):

𝑞∞(𝜆u�, 𝛽u�) − 𝑞∞(𝜆0, 𝛽0)

= 𝐄(max{‖ℎu�u�
‖2, ∫

u�

0

ℎ2
u�u�

(𝑢)𝐺0(𝑢)

𝐶𝜆0
d𝑢}[1

2
⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�u�

, ℎu�u�
)2⟩

max{‖ℎu�u�
‖2, ∫u�

0
ℎ2

u�u�
(u�)u�0(u�)

u�u�0
d𝑢}

+ 1
6

⟨( ̃𝑞)‴(𝑌, 𝛥, 𝑋, �̃�u�, ̃𝛽u�), (ℎu�u�
, ℎu�u�

)3⟩

max{‖ℎu�u�
‖2, ∫u�

0
ℎ2

u�u�
(u�)u�0(u�)

u�u�0
d𝑢}

]), (4.9)

where we denote ℎu�u�
= 𝜆u�−𝜆0 and ℎu�u�

= 𝛽u�−𝛽0. Remember that 𝐺u�(𝑢|𝑋) ∈ (0, 1]

for all 𝑋, so that 𝐺0(𝑢) ≥ 𝐾3𝐺u�(𝑢) for some 𝐾3 > 0. One can see that u�3u�∞
u�u�2u�u� = 0.

Using the same technique as in (4.2)–(4.4) and the assumptions, we get

⟨
𝜕3𝑞∞(�̃�u�, ̃𝛽u�)

𝜕𝜆3 , (ℎ1, ℎ2, ℎ3)⟩

= 1
2

𝐄[ 𝛥
�̃�3

u�(𝑌)
ℎ1(𝑌)ℎ2(𝑌)ℎ3(𝑌)]

= 1
2

𝐄(∫
u�

0

ℎ1(𝑢)ℎ2(𝑢)ℎ3(𝑢)
�̃�2

u�(𝑢)
exp( ̃𝛽𝖳

u�𝑋)𝐺u�(𝑢|𝑋)𝐺u�(𝑢) d𝑢)

≤ 𝐾4‖ℎ1‖ ∫
u�

0
ℎ2(𝑢)ℎ3(𝑢)𝐺0(𝑢) d𝑢, (4.10)

⟨
𝜕3𝑞∞(�̃�u�, ̃𝛽u�)

𝜕𝛽3 , ℎu�⟩ = −𝐄[(ℎ𝖳
u�𝑋)3 exp( ̃𝛽𝖳

u�𝑋) ∫
u�

0
�̃�u� d𝑢] ≤ 𝐾5‖ℎu�‖3, (4.11)

⟨
𝜕3𝑞∞(�̃�u�, ̃𝛽u�)

𝜕𝜆𝜕𝛽2 , (ℎu�, ℎu�, ℎu�)⟩

= −𝐄[(ℎ𝖳
u�𝑋)2 exp( ̃𝛽𝖳

u�𝑋) ∫
u�

0
ℎu�(𝑢) d𝑢] ≤ 𝐾6‖ℎu�‖2‖ℎu�‖ (4.12)

where 𝐾4 to 𝐾6 are positive constants. We note that all constants 𝐾3 to 𝐾6 depend
only on 𝛩 = 𝛩u� × 𝛩u�. Kukush et al. [7] prove strong consistency of the estimator
(𝜆u�, 𝛽u�), that is maxu�∈[0,u�] |𝜆u�(𝑡) − 𝜆0(𝑡)| → 0 and 𝛽u� → 𝛽0 a.s., as 𝑛 → ∞. One
can conclude that

lim
u�→∞

𝐄[
⟨( ̃𝑞)‴(𝑌, 𝛥, 𝑋, �̃�u�, ̃𝛽u�), (ℎu�u�

, ℎu�u�
)3⟩

max{‖ℎu�u�
‖2, ∫u�

0
ℎ2

u�u�
(u�)u�0(u�)

u�u�0
d𝑢}

] = 0 𝑎.𝑠. (4.13)
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Step 5. Set 𝑆u�(𝜆, 𝛽) = 𝑛(𝑄u�(𝜆, 𝛽) − 𝑞∞(𝜆, 𝛽)). Kukush et al. [7] prove that
under assumptions (i) to (vi) u�u�(u�,u�)

√u� converges in distribution in 𝐶(𝛩) to a Gaussian
measure. Hence,

0 ≤ √𝑛(𝑞∞(𝜆0, 𝛽0) − 𝑞∞(𝜆u�, 𝛽u�)
≤ √𝑛(𝑄u�(𝜆u�, 𝛽u�) − 𝑞∞(𝜆u�, 𝛽u�) − 𝑄u�(𝜆0, 𝛽0) + 𝑞∞(𝜆0, 𝛽0))
≤ 2√𝑛 sup

(u�,u�)∈u�u�×u�u�

∣𝑄u�(𝜆, 𝛽) − 𝑞∞(𝜆, 𝛽)∣ = 𝑂u�(1),

because 𝑞∞(𝜆, 𝛽) and 𝑄u�(𝜆, 𝛽) attain their maximums at (𝜆0, 𝛽0) and (𝜆u�, 𝛽u�),
respectively.

Now, (4.9) yields

√𝑛 max{‖ℎu�u�
‖2, ∫

u�

0

ℎ2
u�(𝑢)𝐺0(𝑢)

𝐶𝜆0
d𝑢}𝐄([1

2
⟨( ̃𝑞)″(𝑌, 𝛥, 𝑋, 𝜆0, 𝛽0), (ℎu�u�

, ℎu�u�
)2⟩

max{‖ℎu�u�
‖2, ∫u�

0
ℎ2

u�(u�)u�0(u�)
u�u�0

d𝑢}

+ 1
6

⟨( ̃𝑞)‴(𝑌, 𝛥, 𝑋, �̃�u�, ̃𝛽u�), (ℎu�u�
, ℎu�u�

)3⟩

max{‖ℎu�u�
‖2, ∫u�

0
ℎ2

u�(u�)u�0(u�)
u�u�0

d𝑢}
])

= √𝑛(𝑞∞(𝜆0, 𝛽0) − 𝑞∞(𝜆u�, 𝛽u�)) = 𝑂u�(1).

Step 6. Equations (4.6), (4.9) and (4.13) imply that eventually

√𝑛 max{‖ℎu�u�
‖2, ∫

u�

0

ℎ2
u�(𝑢)𝐺0(𝑢)

𝐶𝜆0
d𝑢} <

√𝑛(𝑞∞(𝜆0, 𝛽0) − 𝑞∞(𝜆u�, 𝛽u�))
𝛿/3

.

Lemma 8 proves that √𝑛 max{‖ℎu�u�
‖2, ∫u�

0
ℎ2

u�u�
(u�)u�0(u�)

u�u�0
d𝑢} = 𝑂u�(1). Hence the first

equation of Theorem 5 is proved:

√𝑛‖𝛽u� − 𝛽0‖2 = √𝑛‖ℎu�u�
‖2 = 𝑂u�(1).

Finally, 𝐺0(𝑢) ≥ 𝐾3𝐺u�(𝑢). Note that 𝜆0 is bounded away from 0 on [0, 𝜏]. Hence

√𝑛 ∫
u�

0
ℎ2

u�u�
(𝑢)𝐺u�(𝑢) d𝑢 = 𝑂u�(1).

Thus, Theorem 5 is proved.

5 Auxiliary results

We use the ideas of [3].
Let u� = (𝜆u�, 𝛽u�), 0 = (𝜆0, 𝛽0), 𝛩 = 𝛩u� × 𝛩u�. Denote 𝜑 = (𝜑u�, 𝜑u�) an

admissible shift such that there exists 𝛿 > 0 with 0 ± 𝛿𝜑 ∈ 𝛩. We demand that
(vii)–(viii) hold. Note that 𝜑 can be a random element and depend on 𝑛. However,
‖𝜑‖ should be bounded from above a.s.
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Consider the function 𝑓 (𝑡) = 𝑄u�( u� + 𝑡( 0 − u� ± 𝛿𝜑)), 0 ≤ 𝑡 ≤ 1. It is well-
defined (due to the convexity of 𝛩) and attains its maximum at point 𝑡 = 0. Therefore,
⟨𝑄′

u�( u�), 0 − u� ± 𝛿𝜑⟩ ≤ 0 and

∣⟨𝑄′
u�( u�), 𝜑⟩∣ ≤ 1

𝛿
⟨𝑄′

u�( u�), 𝛥 u�⟩,

where 𝛥 u� ∶= u� − 0.
Taylor’s expansion at point (𝜆0, 𝛽0) implies

∣⟨𝑄′
u�( 0), 𝜑⟩ + 1

2
⟨𝑄″

u�( 0), (𝛥 u�, 𝜑)⟩ + 1
6

⟨𝑄‴
u� ( ũ�), (𝛥 2

u�, 𝜑)⟩∣

≤ 1
𝛿

(⟨𝑄′
u�( 0), 𝛥 u�⟩ + 1

2
⟨𝑄″

u�( 0), 𝛥 2
u�⟩ + 1

6
⟨𝑄‴

u� (̂u�), 𝛥 3
u�⟩), (5.1)

for some ̂u� and ũ� from interval [ 0, u�].

Proposition 9. Under conditions (i) to (viii) for every admissible shift 𝜑, one has that
√𝑛⟨𝑄″

u�( 0), (𝛥 u�, 𝜑)⟩ and √𝑛⟨𝑞″
∞( 0), (𝛥 u�, 𝜑)⟩ are stochastically bounded.

Relying on this proposition we will be able to show that √𝑛‖𝛽u� − 𝛽0‖ and
√𝑛 ∫u�

0 (𝜆u� − 𝜆0)(𝑢)𝐺u�(𝑢) d𝑢 are stochastically bounded and then prove the asymp-
totic normality of √𝑛⟨𝑄″

u�( 0), (𝛥 u�, 𝜑)⟩.
Denote 𝛩− = 𝛩 − 𝛩. It is clear that it is compact and convex. Before proving the

proposition, we show the following.

Lemma 10. Under conditions (i) to (viii), √𝑛𝑄′
u�( 0) and √𝑛(𝑄″

u�( 0) − 𝑞″
∞( 0))

converge in distribution in 𝐶(𝛩−) and 𝐶(𝛩2
−), respectively. Moreover, for all =

(𝜆, 𝛽) ∈ 𝛩, √𝑛(u�3u�u�
u�u�3 ( ) − u�3u�∞

u�u�3 ( )) converges in distribution in 𝐶(𝛩3
−).

Proof of Lemma 10. Here only convergence for √𝑛𝑄′
u�( 0) will be shown, because

for √𝑛(𝑄″
u�( 0) − 𝑞″

∞( 0)) and √𝑛(u�3u�u�
u�u�3 ( ) − u�3u�∞

u�u�3 ( )) the proof is similar. We note

that 𝑞′
∞( 0) = 0 and due to conditions (iii)–(iv) we have 𝐄[supu�∈u�u�

𝑒2u�𝖳u�‖𝑋‖u�] < ∞

and 𝐄[supu�∈u�u�
𝑒2u�𝖳u�‖𝑈‖u�] < ∞, for any 𝑘 ∈ ℕ.

For (𝜆, 𝛽) ∈ 𝛩− let

𝑔(𝜆, 𝛽, 𝑌, 𝛥, 𝑊) = ⟨𝑞′(𝑌, 𝛥, 𝑊, 𝜆0, 𝛽0), (𝜆, 𝛽)⟩

and
𝜌((𝜆1, 𝛽1), (𝜆2, 𝛽2)) = sup

u�∈[0,u�]
|𝜆1(𝑢) − 𝜆2(𝑢)| + ‖𝛽1 − 𝛽2‖.

(𝛩−, 𝜌) is a compact metric space. We denote by 𝐿𝑖𝑝(𝜌) a subspace of Lipschitz
continuous functions on 𝛩− with respect to the metric 𝜌 and by ‖⋅‖u� the norm induced
by 𝜌, that is for some fixed point (𝜆∗, 𝛽∗) ∈ 𝛩− and for all 𝑙 ∈ 𝐿𝑖𝑝(𝜌) we define:

‖𝑙‖u� ∶= sup
(u�1,u�1)≠(u�2,u�2)

|𝑙(𝜆1, 𝛽1) − 𝑙(𝜆2, 𝛽2)|
𝜌((𝜆1, 𝛽1), (𝜆2, 𝛽2))

+ 𝑙(𝜆∗, 𝛽∗).

We apply Theorem 2 from [12]. It states that √𝑛𝑄′
u�( 0) converges in distribution

in 𝐶(𝛩−) under the following conditions:
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(1) 𝐏(𝑔 ∈ 𝐿𝑖𝑝(𝜌)) = 1.
(2) 𝐄‖𝑔‖2

u� < ∞.

(3) ∫0+ 𝐻
1
2 (𝛩−, 𝑢) d𝑢 < ∞, where 𝐻 is -entropy on (𝛩−, 𝜌), i.e. 𝐻(𝛩−, 𝑢) =

log2 𝑁(𝛩−, 𝑢), where 𝑁 is a minimal number of balls with diameter not ex-
ceeding 2 that cover 𝛩−.

Let 𝛩u�− = 𝛩u� − 𝛩u� and 𝛩u�− = 𝛩u� − 𝛩u�, so that 𝛩− = 𝛩u�− × 𝛩u�−. Consider
𝛩u�− and 𝛩u�− as compact metric spaces with uniform and Euclidean norm, respec-
tively. Then for 𝑁(𝛩−, 2𝑢) ≤ 𝑁(𝛩u�−, 𝑢)𝑁(𝛩u�−, 𝑢), (3) is equivalent to

(3.1) ∫0+ 𝐻
1
2 (𝛩u�−, 𝑢) d𝑢 < ∞, and

(3.2) ∫0+ 𝐻
1
2 (𝛩u�−, 𝑢) d𝑢 < ∞.

Since 𝛩u�− ⊂ ℝu�, we have 𝑁(𝛩u�−, 𝑢) < 𝐶𝑢u� for some constant 𝐶 > 0, and (3.2) is
fulfilled. Note that 𝛩u�− can be considered as a set of Lipschitz continuous functions
that map compact connected space [0, 𝜏] into some interval in ℝ. Lemma 1 from [8]
implies

𝐻(𝛩u�−, 𝑢) ≥ 1 + 𝐻(𝛩u�−, 4𝑢),

so that 𝛩u�− is of “uniform type” (see [8]). According to Theorem 1 from [8] there
exists such constant C that

𝐻(𝛩u�−, 4𝐿 ) ≤ 𝐶𝑁([0, 𝜏], ).

For the space ℝ1 we have that 𝑁([0, 𝜏], 𝑢) < ̃𝐶 1
u� for some constant ̃𝐶. Hence (3.1)

holds.
To verify (1) and (2) note that

𝑔(𝜆, 𝛽, 𝑌, 𝛥, 𝑊) = 𝛥𝜆(𝑌)
𝜆0(𝑌)

− 𝑒u�𝖳
0u�

𝑀u�(𝛽0)
∫

u�

0
𝜆 d𝑢 + 𝛥𝛽𝖳𝑊

+ 𝛽𝖳 (𝑀u�(𝛽0)𝑊 − 𝐄(𝑈𝑒u�𝖳
0u�))𝑒u�𝖳

0u�

𝑀2
u�(𝛽0)

∫
u�

0
𝜆0 d𝑢,

and conditions (i)–(ii) imply

sup
(u�,u�)∈u�−

∥𝑔′(𝜆, 𝛽, 𝑌, 𝛥, 𝑊)∥ < ∞,

where 𝑔′ is considered as a bilinear operator on 𝐶[0, 𝜏] × ℝu�. Hence, condition (1) is
fulfilled. Moreover, there exists such a constant 𝐾 > 0 that

‖𝑔(𝜆, 𝛽, 𝑌, 𝛥, 𝑊)‖u� < 𝐾(1 + ‖𝑊‖ + 𝑒u�‖u�‖ + ‖𝑊‖𝑒u�‖u�‖)

and due to conditions (iii) and (iv), condition (2) is also satisfied. Thus, lemma is
proved.

Returning to inequality (5.1), because 𝛥 u� converges to zero a.s., one can conclude
the following.
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(a) √𝑛⟨𝑄′
u�( 0), 𝜑⟩ = 𝑂u�(1) and ⟨√𝑛𝑄′

u�( 0), 𝛥 u�⟩ = 𝑜u�(1), where 𝑜u�(1) means
convergence to zero in probability.

(b) √𝑛(u�3u�u�
u�u�3 ( ) − u�3u�∞

u�u�3 ( )) converges in probability in 𝐶(𝛩3
−). Inequality (4.10)

implies that √𝑛⟨u�3u�∞
u�u�3 ( ), (𝛥 2

u�, 𝜑)⟩ is stochastically bounded, so is √𝑛⟨u�3u�u�
u�u�3 ( ),

(𝛥 2
u�, 𝜑)⟩.

(c) √𝑛⟨(𝑄″
u�( 0) − 𝑞″

∞( 0)), 𝛥 2
u�⟩ and √𝑛⟨(𝑄″

u�( 0) − 𝑞″
∞( 0)), (𝛥 u�, 𝜑)⟩ converge

to zero in probability. Note that ⟨√𝑛𝑄″
u�( 0), 𝛥 2

u�⟩ = 𝑂u�(1) if and only if
√𝑛⟨𝑞″

∞( 0), 𝛥 2
u�⟩ = 𝑂u�(1). The latter equality can be easily derived from The-

orem 5, formula (4.1) and convergence (4.13).

Proof of Proposition 9. To prove the first part of the proposition one has to show that

⟨𝑄‴
u� (̂u�), 𝛥 3

u�⟩ =
𝑂u�(1)

√𝑛
(5.2)

and

⟨𝑄‴
u� ( ũ�), (𝛥 2

u�, 𝜑)⟩ =
𝑂u�(1)

√𝑛
. (5.3)

It is clear that (5.3) yields (5.2). After a series of computations one can induce that
for some constants 𝐶1 > 0, 𝐶2 > 0

∣⟨
𝜕3𝑞(𝑌, 𝛥, 𝑊, 𝜆, 𝛽)

𝜕𝛽3 , (ℎu�)3⟩∣ ≤ 𝐶1𝑒u�‖u�‖‖ℎu�‖3

∣⟨
𝜕3𝑞(𝑌, 𝛥, 𝑊, 𝜆, 𝛽)

𝜕𝜆𝜕𝛽2 , (ℎu�, ℎu�, ℎu�)⟩∣ ≤ 𝐶2𝑒u�‖u�‖‖ℎu�‖2‖ℎu�‖. (5.4)

Expectations of right hand sides of inequalities in (5.4) are finite. Together with
√𝑛‖𝛽u�−𝛽0‖2 = 𝑂u�(1) and SLLN, this implies that ⟨u�u�3

u�(ũ�u�)
u�u�3 , (𝛥 2

u�, 𝜑)⟩ and ⟨u�u�3
u�(ũ�u�)

u�u�2u�u� ,

(𝛥 2
u�, 𝜑)⟩ are u�u�(1)

√u� . Noting that u�u�3
u�(ũ�u�)

u�u�u�u�2 = 0, one can conclude that the first part of
the proposition will be proven if one shows that

⟨
𝜕𝑄3

u�( ũ�)
𝜕𝜆3 , (𝛥 2

u�, 𝜑)⟩ = ⟨
𝜕𝑄3

u�(�̃�u�)
𝜕𝜆3 , ((𝜆u� − 𝜆0), (𝜆u� − 𝜆0), 𝜑u�)⟩

= 1
𝑛

u�

∑
u�=1

𝛥u�
(𝜆u� − 𝜆0)2(𝑌u�)𝜑u�(𝑌u�)

�̃�3
u�(𝑌u�)

=
𝑂u�(1)

√𝑛
. (5.5)

From the definition of admissible shifts, 𝜑u� belongs to 𝛩. Since �̃�u� is bounded
away from zero, there is a constant 𝐶 such that for the second summand we have

∣⟨
𝜕𝑄3

u�( ũ�)
𝜕𝜆3 , (𝛥 2

u�, 𝜑)⟩∣ ≤ 𝐶∣1
𝑛

u�

∑
u�=1

𝛥u�(𝜆u� − 𝜆0)2(𝑌u�)∣ =
𝑂u�(1)

√𝑛
,

where the last equality holds due to the conclusion (b). Thus, (5.5) holds. This com-
pletes the proof of the first part of the proposition. The second part is easily derived
from conclusion (c).
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Corollary 11.

√𝑛‖𝛽u� − 𝛽0‖ = 𝑂u�(1),

√𝑛 ∫
u�

0
(𝜆u� − 𝜆0)(𝑢)𝐺u�(𝑢) d𝑢 = 𝑂u�(1).

Proof. Let ℎu� = 𝛽u� −𝛽0, ℎu� = 𝜆u� −𝜆0. Take some admissible shift 𝜑 ∶= (𝜑u�, 𝜑u�).
For this shift one has

−⟨𝑞″
∞( 0), (𝛥 u�, 𝜑)⟩ = 𝐄[(ℎu�

𝖳𝑋)(𝜑𝖳
u�𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
𝜆0(𝑢) d𝑢]

+ 𝐄[(𝜑u�
𝖳𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
ℎu�(𝑢) d𝑢]

+ 𝐄[ 𝛥
𝜆2

0(𝑌)
ℎu�(𝑌)𝜑u�(𝑌)]

+ 𝐄[(ℎu�
𝖳𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
𝜑u�(𝑢) d𝑢]

= 𝑂u�( 1
√𝑛

). (5.6)

The idea is to find such 𝜑u� that

𝐸[(𝜑u�
𝖳𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
ℎu�(𝑢) d𝑢] + 𝐄[ 𝛥

𝜆2
0(𝑌)

ℎu�(𝑌)𝜑u�(𝑌)] = 0. (5.7)

Then after some calculations (using Lemma 6) one can see that (5.7) is equivalent
to

∫
u�

0
ℎu�𝜑T

u�𝑎(𝑢)𝐺u�(𝑢) d𝑢 + ∫
u�

0

ℎu�
𝜆0

𝜑u�𝑏(𝑢)𝐺u�(𝑢) d𝑢 = 0. (5.8)

One can take

𝜑u�(𝑢) ∶= −
𝜑𝖳

u�𝑎(𝑢)

𝑏(𝑢)
𝜆0(𝑢)

as a solution to (5.8). Since 𝐺u�(𝑢|𝑋) is differentiable function of 𝑢, one can conclude
that 𝜑u� is an admissible shift for ‖𝜑u�‖ small enough.

Equation (5.6) is now equivalent to

∫
u�

0
ℎ𝖳

u�𝑇(𝑢)𝜑u�
𝜆0(𝑢)𝐺u�(𝑢)

𝑏(𝑢)
d𝑢 = 𝑂u�( 1

√𝑛
). (5.9)

Using Hölder’s inequality and condition (vi), one can easily see that 𝑇(𝑢) is pos-
itive definite. Now let ℎ̃u� = u�u�−u�0

‖u�u�−u�0‖ and take 𝜑u� = ℎ̃u�

u�1
, where 𝐶1 > 0 such that

𝜑 = (𝜑u�, 𝜑u�) is an admissible shift. Then (5.6) can be transformed to

‖ℎu�‖ ∫
u�

0
ℎ̃𝖳

u�𝑇(𝑢)ℎ̃u�
𝜆0(𝑢)𝐺u�(𝑢)

𝑏(𝑢)
d𝑢 = 𝑂u�( 1

√𝑛
). (5.10)



Asymptotic normality of corrected estimator in Cox proportional hazards model 29

Since ‖ℎ̃u�‖ = 1/𝐶1, left hand side of (5.10) is greater than 𝛿‖ℎu�‖ for some 𝛿 > 0.
Using Lemma 8 the first part of the corollary is proved.

If now in (5.6) one takes 𝜑 = ( 1
u�2

, 0) for large enough 𝐶2 > 0, then (5.6) takes
form

𝐄[ 𝛥
𝜆2

0(𝑌)
ℎu�(𝑌) 1

𝐶2
] + 𝐄[(ℎu�

𝖳𝑋) exp(𝛽𝖳
0𝑋) ∫

u�

0

1
𝐶2

d𝑢] = 𝑂u�( 1
√𝑛

).

Due to √𝑛‖𝛽u� − 𝛽0‖ = 𝑂u�(1), the latter equality implies

𝐄[ 𝛥
𝜆2

0(𝑌)
ℎu�(𝑌) 1

𝐶2
] = 𝑂u�( 1

√𝑛
)

and the second part of the corollary holds.

We present the main result of this section.

Theorem 12. Under conditions (i) to (ix), for all admissible shifts the following con-
vergence in probability holds

√𝑛⟨𝑄′
u�( 0), 𝜑⟩ + 1

2
√𝑛⟨𝑞″

∞( 0), (𝛥 u�, 𝜑)⟩
u�
→ 0. (5.11)

Moreover, if 𝜑 is a non-random admissible shift then ⟨𝑄′
u�( 0), 𝜑⟩

u�
→ 𝑁(0, 𝜎2

u�), where
𝜎2

u� = 4Var[⟨𝑞′(𝑌, 𝛥, 𝑊, 𝜆0, 𝛽0), 𝜑⟩], and

√𝑛⟨𝑄″
u�( 0), (𝛥 u�, 𝜑)⟩

u�
→ 𝑁(0, 𝜎2

u�),

√𝑛⟨𝑞″
∞( 0), (𝛥 u�, 𝜑)⟩

u�
→ 𝑁(0, 𝜎2

u�).

Proof. Using Corollary 11 and inequality (5.1), one can repeat the proof of Proposi-
tion 9 with a remark that stochastic boundedness should be changed for a convergence
to zero in probability. We use (4.2) to (4.4) to show √𝑛⟨𝑞″

∞( 0), 𝛥 2
u�⟩ = 𝑜u�(1). Thus,

the convergence (5.11) is proved. The rest of the proof is trivial.

6 Proof of Theorem 1

We assume that condition (ix) is satisfied. Thus 𝐴 is positive definite and, conse-
quently, invertible. Since 𝑇(𝑢) is positive definite, 𝑀 is positive definite as well and
therefore, invertible.

Note that due to conditions (vii) and (viii), Theorem 12 is valid for all non-random
shifts 𝜑 ∈ ℝu� × 𝐿𝑖𝑝1([0, 𝜏]), where 𝐿𝑖𝑝1([0, 𝜏]) is a class of Lipschitz continuous
functions. Take the shift as follows: 𝜑 = (𝜑𝖳

u�𝑎(𝑢)𝐾(𝑢), 𝜑u�), where 𝜑u� is a fixed
vector of ℝu�. For this shift one can rewrite ⟨𝑄′

u�( 0), 𝜑⟩ as

⟨𝑄′
u�( 0), 𝜑⟩ = 𝜑𝖳

u�𝜉u�.
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By the CLT applied to 𝜉u� one can see that the limit distribution of √𝑛𝜉u� is in
fact 𝑁u�(0, 1

4𝛴u�). Note that we have already faced with the shift 𝜑 in Corollary 11. In
particular, (5.9) yields that ⟨𝑞″

∞( 0), (𝛥 u�, 𝜑)⟩ can be rewritten as

∫
u�

0
ℎ𝖳

u�𝑇(𝑢)𝜑u�𝐾(𝑢)𝐺u�(𝑢) d𝑢 = ℎ𝖳
u�𝑀𝜑u�.

Theorem 12 and Cramér-Wold’s theorem yield that

ℎ𝖳
u�𝑀

u�
→ 𝑁u�(0, 𝛴u�).

Since 𝑀 is invertible, the convergence (2.1) is proved.
Now, for a fixed shift 𝜑u� take such 𝜑u� that

𝐄[(ℎu�
𝖳𝑋)(𝜑𝖳

u�𝑋) exp(𝛽𝖳
0𝑋) ∫

u�

0
𝜆0(𝑢) d𝑢] + 𝐄[(ℎu�

𝖳𝑋) exp(𝛽𝖳
0𝑋) ∫

u�

0
𝜑u�(𝑢) d𝑢]

= ℎ𝖳
u�(𝐴𝜑u� + 𝑚(𝜑u�)) = 0.

Hence, 𝜑u� = −𝐴−1𝑚(𝜑u�). From (5.6) it follows that

− ⟨𝑞″
∞( 0), (𝛥 u�, 𝜑)⟩

= 𝐄[(𝜑u�
𝖳𝑋) exp(𝛽𝖳

0𝑋) ∫
u�

0
ℎu�(𝑢) d𝑢] + 𝐄[ 𝛥

𝜆2
0(𝑌)

ℎu�(𝑌)𝜑u�(𝑌)]

= ∫
u�

0
ℎu�(𝑢)𝜑𝖳

u�𝑎(𝑢)𝐺u�(𝑢) d𝑢 + ∫
u�

0
ℎu�(𝑢)

𝜑u�
𝐾(𝑢)

𝐺u�(𝑢) d𝑢

= ∫
u�

0
ℎu�(𝑢)(−𝑎(𝑢)𝖳𝜑u� +

𝜑u�
𝐾(𝑢)

)𝐺u�(𝑢) d𝑢.

In view of Theorem 12 and the remark at the beginning of the proof, in order to
show the convergence (2.4), one should show that the equation (2.3) has a Lipschitz
continuous solution 𝜑u�. But if 𝜑u� is a solution to (2.3) then

𝜑u�(𝑢) = 𝐾(𝑢)𝑓 (𝑢) + 𝐾(𝑢)𝑎𝖳(𝑢)𝐶 (6.1)

for some constant 𝐶 ∈ ℝu� and thus, is Lipschitz continuous. After substitution (6.1)
in (2.3) we obtain

𝑎𝖳(𝑢)[𝐶 − ∫
u�

0
(𝑓 (𝑢) + 𝑎𝖳(𝑢)𝐶)𝐴−1𝑎(𝑢)𝐾(𝑢)𝐺u�(𝑢) d𝑢] = 0.

Let 𝑆 = ∫u�
0 𝑓 (𝑢)𝐴−1𝑎(𝑢)𝐾(𝑢)𝐺u�(𝑢) d𝑢 and 𝑃(𝑢) = 𝐄[𝑋𝑋𝖳 exp(𝛽𝖳

0𝑋)𝐺u�(𝑢|𝑋)].
We show that it is possible to choose 𝐶 so that

𝐶 − ∫
u�

0
𝑎𝖳(𝑢)𝐶𝐴−1𝑎(𝑢)𝐾(𝑢)𝐺u�(𝑢) d𝑢 = 𝑆.

After transposing both sides and multiplying by 𝐴, we have

𝐶𝖳(𝐴 − ∫
u�

0
𝑎(𝑢)𝑎𝖳(𝑢)𝐾(𝑢)𝐺u�(𝑢) d𝑢) = 𝑆𝖳𝐴.
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Transformation of 𝑅 ∶= 𝐴 − ∫u�
0 𝑎(𝑢)𝑎𝖳(𝑢)𝐾(𝑢)𝐺u�(𝑢) d𝑢 leads to

𝑅 = ∫
u�

0
𝜆0(𝑢)(𝑃(𝑢) − 𝑎(𝑢)𝑎𝖳(𝑢)

𝑏(𝑢)
)𝐺u�(𝑢) d𝑢.

In the proof of Corollary 11 it was shown that 𝑃(𝑢)− u�(u�)u�𝖳(u�)
u�(u�) = u�(u�)

u�(u�) is a positive
definite matrix. Therefore, 𝑅 is positive definite and invertible. Hence, (2.3) has a
unique solution and convergence (2.4) holds. This completes the proof.

7 Conclusion

Here we studied properties of the Corrected MLE (𝜆u�, 𝛽u�) proposed by Kukush et al.
[7] in Cox proportional hazards model with measurement error. Asymptotic normality
was obtained for 𝛽u� and integral functionals of 𝜆u�. We also present estimator (�̂�u�, 𝛽u�)
that inherits properties of (𝜆u�, 𝛽u�) and transforms the maximization problem to a
parametric one.

In future we intend to provide simulations in this model.
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