
Modern Stochastics: Theory and Applications 11 (4) (2024) 373–394
https://doi.org/10.15559/24-VMSTA255

Properties of the entropic risk measure EVaR in
relation to selected distributions

Yuliya Mishuraa,b, Kostiantyn Ralchenkoa,c,∗, Petro Zelenkod,
Volodymyr Zubchenkoa

aTaras Shevchenko National University of Kyiv, Ukraine

bMälardalen University, Sweden

cUniversity of Vaasa, Finland

dUlm University, Germany

yuliyamishura@knu.ua (Yu. Mishura), kostiantynralchenko@knu.ua (K. Ralchenko),
petro.zelenko@uni-ulm.de (P. Zelenko), volodymyr.zubchenko@knu.ua (V. Zubchenko)

Received: 3 March 2024, Revised: 15 April 2024, Accepted: 15 April 2024,
Published online: 30 April 2024

Abstract Entropic Value-at-Risk (EVaR) measure is a convenient coherent risk measure. Due
to certain difficulties in finding its analytical representation, it was previously calculated ex-
plicitly only for the normal distribution. We succeeded to overcome these difficulties and to
calculate Entropic Value-at-Risk (EVaR) measure for Poisson, compound Poisson, Gamma,
Laplace, exponential, chi-squared, inverse Gaussian distribution and normal inverse Gaussian
distribution with the help of Lambert function that is a special function, generally speaking,
with two branches.

Keywords Entropic Value-at-Risk, Poisson distribution, gamma distribution, Laplace
distribution, inverse Gaussian distribution, normal inverse Gaussian distribution, Lambert
function

2010 MSC 91G70, 60E05, 60E10, 33E99

∗Corresponding author.

© 2024 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/24-VMSTA255
mailto:yuliyamishura@knu.ua
mailto:kostiantynralchenko@knu.ua
mailto:petro.zelenko@uni-ulm.de
mailto:volodymyr.zubchenko@knu.ua
http://www.ams.org/msc/msc2010.html?s=91G70
http://www.ams.org/msc/msc2010.html?s=60E05
http://www.ams.org/msc/msc2010.html?s=60E10
http://www.ams.org/msc/msc2010.html?s=33E99
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


374 Yu. Mishura et al.

1 Introduction

It is well known that financial institutions need to maintain a certain load on assets
to protect against sudden losses associated with debt default risk, operational risks,
market risks, liquidity, etc. To solve this problem, risk measures are used. A risk
measure assigns a real number to a random outcome or risk event that expresses the
degree of risk associated with that random outcome. This concept has found many
applications in various fields such as finance, actuarial science, operations research
and management.

The simplest and best known measure is VaR (Value-at-Risk). Provided that a
stock’s fluctuation over time has no peaks, VaR is useful for predicting the risk asso-
ciated with a portfolio. But when we face financial crises of different types, the chance
of VaR to give a complete overview of possible risks decreases, as it is not sensitive
to anything beyond its loss threshold. In addition, VaR is not coherent. This problem
is partially solved by CVaR (Conditional Value-at-Risk), but not well enough. An
important disadvantage of CVaR is that it cannot be computed efficiently, even for a
sum of arbitrary independent random variables. Furthermore, financial markets may
face high volatility and instability. In such circumstances, traders and managers use
more stringent and conservative measures to manage risk rather than VaR and CVaR.
In this case a more complicated measure can be used, namely a coherent measure of
risk called Entropic Value-at-Risk (EVaR), introduced in [10] (where it is called “co-
herent entropic risk measure”) and further studied in [1]. The basic properties of this
measure are described in the papers [1–3]. A quantitative analysis of various risk mea-
sures, including EVaR is conducted in [17]. Delbaen [9] provides a relation between
EVaR and other commonotone risk measures. The paper [16] extends and generalizes
EVaR by involving Rényi entropies. It provides explicit relations among different en-
tropic risk measures, elaborates their dual representations and presents their relations
explicitly. In [5] authors show that EVaR, which is not a dynamic risk measure in
general, can be a finitely-valued dynamic risk measure for at least one value of con-
fidence parameter. In [7] the concept of EVaR is applied to portfolio selection, and
a new mean-EVaR model with uncertain random returns is established. In [15] au-
thors explore portfolio construction in the context of Gaussian mixture returns, aim-
ing to maximize expected exponential utility. Additionally, the authors demonstrate
that minimizing EVaR can also be addressed through convex optimization.

Important properties of EVaR are coherence and strong monotonicity in its do-
main (see [2]), while monotonic risk measures such as VaR and CVaR lack these
properties. However, EVaR also has some shortcomings. In particular, there are cer-
tain types of distributions with which this measure cannot be applied (for example,
distributions for which the moment-generating function does not exist). In addition,
the calculation of this measure is often reduced to solving optimization problem,
which leads to large consumption of computation time. The goal of the present pa-
per is to obtain analytical representations of EVaR for certain risk distribution, which
will help to reduce this problem. Namely, we derive the explicit formulas for EVaR of
Poisson, compound Poisson, gamma, Laplace, inverse Gaussian and normal inverse
Gaussian distributions, which are widely used in the risk modelling. It turns out that
for first four of these distributions EVaR is expressed trough the so-called Lambert
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function, which can be efficiently computed with the help of the modern mathematical
software. In addition, for each distribution we provide graphical illustrations demon-
strating the behavior of its EVaR depending on the various distributional parameters.

The paper is organized as follows. In Section 2 we recall the definition of EVaR
together with its basic properties. Section 3 contains the calculation of EVaR for
selected distributions. In Subsection 3.1 we recall the notion of the Lambert func-
tion, which is needed for further calculations. Subsections 3.2–3.7 are devoted to the
derivation of EVaR for Poisson, compound Poisson, gamma, Laplace, inverse Gaus-
sian and normal inverse Gaussian distributions, respectively. Two appendices supple-
ment the paper: Appendix A contains the formula for EVaR of the normal distribution
and Appendix B collects the probability density functions of selected distributions,
considered in Section 3.

2 General properties of EVaR

Let (�,F , P) be a probability space and let L0 = L0(�,F , P) be space of random
variables X : � → R.

Definition 2.1. A risk measure ρ is the mapping L0 → R for which the following
conditions are satisfied:

1) ρ(0) = 0,

2) for all a ∈ R, X ∈ L0 it holds that ρ(X + a) = ρ(X) + a (“translation
invariance”),

3) for all X, Y ∈ L0 such that X ≤ Y a.s. it holds that ρ(X) ≤ ρ(Y ) (“mono-
tonicity”).

Remark 2.2. We would like to emphasize that we consider risk measures from the
point of view of insurance, where a positive X means “loss” (claim amount) and
negative X means “profit.” Alternatively, one may take the point of view of finance,
where a random variable X represents “profit” if it is positive and “loss” if negative (in
this case translation invariance and monotonicity conditions should be reformulated
accordingly).

Definition 2.3. Risk measure ρ : L0 → R is called a coherent risk measure if the
following additional conditions are satisfied:

1) ρ(tX + (1 − t)Y ) ≤ tρ(X) + (1 − t)ρ(Y ) for all X, Y ∈ L0, t ∈ [0, 1]
(“convexity”),

2) ρ(tX) = tρ(X) for all t > 0 and all X ∈ L0 (“positive homogeneity”).

Remark 2.4. It is worth mentioning that, traditionally [4], coherent risk measures are
defined as satisfying four axioms, namely (i) translation invariance, (ii) monotonic-
ity, (iii) positive homogeneity, and

(iv) ρ(X + Y) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ L0 (“subadditivity”).
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Note that the conditions (i)–(iv) together yield the same requirements for a coherent
risk measure; item 1) of Definition 2.1 becomes redundant if positive homogeneity
property holds.

We mention also that the convexity axiom is a weaker assumption than subad-
ditivity and positive homogeneity. This axiom was introduced by Föllmer and Shied
[11], who proposed to consider a broader class of convex risk measures, satisfying
only three axioms, namely convexity, monotonicity and translation invariance.

Definition 2.5. A risk measure ρ is called law-invariant if ρ(X) = ρ(Y ) whenever
X, Y ∈ L0 have the same law.

Among various risk measures, the following risk measure is often used in modern
risk management practice ([12, 13]).

Definition 2.6. The Value-at-Risk (VaR) with confidence level α ∈ (0, 1) of a random
variable X is the smallest number y such that X does not exceed it with a minimum
probability of 1 − α, i.e.

VaRα(X) := inf{x ∈ R : FX(x) > 1 − α}.
However, in this paper we focus on another risk measure, namely, EVaR, intro-

duced in [1] according to the following definition (the same measure was introduced
in [10] in an equivalent form).

Definition 2.7. Let X ∈ L0. Assume that its moment-generating function mX(t) =
EetX is well defined for all t ≥ 0. An entropic risk measure EVaR with a confidence
level α ∈ [0, 1) (or a risk level 1 − α) is defined as

EVaRα(X) := inf
t>0

t−1 log

(
1

1 − α
mX(t)

)
, α ∈ [0, 1). (2.1)

Remark 2.8. It is sufficient to assume that the moment-generating function mX(t) is
well defined for all t ∈ [0, A] for some A > 0.

According to [1] and [3], EVaR is a coherent risk measure. In addition, the risk
measure EVaR is law-invariant, more precisely, it possesses the following property
[2]: For X, Y ∈ L0 with the distribution functions FX and FY respectively, whose
moment-generating functions exist for all t ∈ R, the following one-to-one correspon-
dence holds: EVaRα(X) = EVaRα(Y ) for all α ∈ [0, 1) if and only if FX(t) = FY (t)

for all t ∈ R.
Remark 2.9. Entropic risk measures were first studied by Föllmer and Knispel [10],
who introduced the so-called coherent entropic risk measure ρc(X) having the fol-
lowing representation (see [10, Prop. 3.1]):

ρc(X) = inf
γ>0

(
c

γ
+ eγ (X)

)
,

where eγ (X) is the convex entropic risk measure defined by

eγ (X) = 1

γ
mX(γ ).

As one can see, actually the definitions of ρc(X) and EVaRα(X) coincide, and their
parameters c and α are related as c = − log(1 − α).
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One of the shortcomings of EVaR is the difficulty of real-world computations for
the models. It was computed mostly for the Gaussian distribution. In the next sections
we obtain analytical representations which help to overcome indicated shortcoming.

3 Calculation of EVaR for selected distributions

In this section we calculate EVaR for Poisson, compound Poisson, Gamma, inverse
Gaussian and normal inverse Gaussian distributions. Note that EVaR for normal dis-
tribution is calculated in [1], the corresponding formula is given in Appendix. We
shall intensively calculate EVaR via the so-called Lambert function, therefore as the
first step, we present its main properties.

3.1 Lambert W function

The Lambert W function [8] is a multi-valued inverse of the function x �→ xex . In
other words, W is defined as a function satisfying

W(x)eW(x) = x, x ∈ R. (3.1)

For positive x this function is single-valued, for x < − 1
e

there is no inverse function.
For − 1

e
≤ x ≤ 0 there are two possible real values of W(x) (see Fig. 1). We denote

the branch satisfying W(x) ≥ −1 by W0(x) and the branch satisfying W(x) ≤ −1
by W−1(x) [8]. Note that

• W0(− 1
e
) = W−1(− 1

e
) = −1;

• W0(x) is defined for all x ≥ − 1
e

and is strictly increasing;

• W−1(x) is defined for − 1
e

≤ x < 0 and is strictly decreasing.

W0(x) is referred to as the principal branch of the W function. It is obvious that
W0(x) preserves the sign of x.

The derivative of W equals (see [8, Eq. (3.2)])

W ′(x) = 1

(1 + W(x)) exp(W(x))
= W(x)

x(1 + W(x))
, if x 	= 0. (3.2)

Taking logarithms of both sides of (3.1) and rearranging terms we get the follow-
ing transformations:

log(W0(z)) = log(z) − W0(z), z > 0,

log(−Wk(z)) = log(−z) − Wk(z), k ∈ {−1, 0}, z ∈ [− 1
e
, 0). (3.3)

A more general formula, involving branches of complex logarithm, can be found in
[14].
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Fig. 1. The two real branches of the Lambert W function: W0(x) (solid line) and W−1(x)

(dashed line)

3.2 Poisson distribution

Let us calculate EVaR for a Poisson distribution. Denote β = − log(1 − α) − λ.

Theorem 3.1. Let X ∼ Pois(λ), λ > 0, then for all α ∈ [0, 1)

EVaRα(X) =
{

β

W0(
β
eλ

)
, β 	= 0,

eλ, β = 0,
(3.4)

= eλeW0(
β
eλ

), (3.5)

where W0 stands for the principal branch of the Lambert function. The expression for
EVaRα(X) is jointly continuous in (α, λ) ∈ [0, 1) × (0,∞).

Proof. Recall that the moment-generating function of the Poisson distribution equals

mX(t) = exp{λ(et − 1)}, t ∈ R.

Therefore, by Definition 2.7,

EVaRα(X) = inf
t>0

1

t

(− log(1 − α) + λ(et − 1)
) = inf

t>0

β + λet

t
.

Let us find the infimum of the function f (t) = β+λet

t
over t > 0. Note that f is

continuous on (0,+∞) and tends to +∞ at 0 and +∞. It is obvious at +∞ but at 0
it follows from the fact that

β + λ = − log(1 − α) > 0.

Therefore the infimum is in fact the minimal value and achieved inside (0,+∞).
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Let β 	= 0. Then the derivative of the function f equals

f ′(t) = λet (t − 1) − β

t2 .

The condition f ′(t) = 0 for some t > 0 leads to the equation

et−1(t − 1) = β

eλ
. (3.6)

Since for all α ∈ [0, 1)

β

eλ
= 1

eλ
log

1

1 − α
− 1

e
≥ −1

e
,

we see that the solution of (3.6) can be expressed through the principal branch W0 of
Lambert function as

t∗ = 1 + W0

(
β

eλ

)
.

The choice of the principal branch W0 of Lambert function corresponds to the fact
that we consider t > 0.

Let us check that the sufficient condition for the local minimum at point t∗ is
fulfilled. Using the equality eW(x) = x/W(x) (see (3.1)), we get

f ′′(t∗) = 2β + λet (t2 − 2t + 2)

t3

∣∣∣∣
t=t∗

=
2β + λe1+W0(

β
eλ

)

(
1 +

(
W0

(
β
eλ

))2
)

(
1 + W0

(
β
eλ

))3

=
β
(
W0

(
β
eλ

)
+ 1

)2

(
1 + W0

(
β
eλ

))3
W0

(
β
eλ

) = β(
1 + W0

(
β
eλ

))
W0

(
β
eλ

) > 0,

because W0 preserves the sign of argument and therefore β

W0

(
β
eλ

) > 0 and
(

1 +

W0

(
β
eλ

) )
= t∗ > 0 also. So, the point t = t∗ minimizes f (t) over t > 0 and the

minimum equals f (t∗) = β

W0(
β
eλ

)
.

In the case β = 0 we get that the minimum is achieved at point t = 1 and equals

EVaRα(X) = inf
t>0

λet

t
= λe.

Thus the formula (3.4) is proved. Combining it with (3.1), we derive the representa-
tion (3.5), which implies the joint continuity in (α, λ) ∈ [0, 1) × (0,∞).
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Fig. 2. EVaR for the Poisson distribution with constant intensity λ

3.3 Compound Poisson distribution

Risk measures are often used for models with a large number of identical losses. This
could be, for example, losses on an insurance portfolio. In such models, the losses are
usually modelled as independent and identically distributed random variables, and the
loss intensity will have a discrete distribution, such as binomial, Poisson, or negative
binomial. Suppose that a collective risk model X := ∑η

i=1 ξi (here
∑0

i=1 = 0 by
convention) is given, where the intensity of insurance cases is modelled by the Pois-
son distribution η ∼ Pois(λ), and the losses {ξi, i ≥ 1} are independent, identically
distributed random variables with the moment-generating function mξ(t) = Eetξ . It
is well known that the moment-generating function of the compound Poisson distri-
bution is given by

mX(t) = exp{λ(mξ (t) − 1)}. (3.7)

Then for all α ∈ [0, 1),

EVaRα(X) = inf
t>0

− log(1 − α) + λ(mξ (t) − 1)

t
. (3.8)

Now let us consider the Bernoulli distribution for the values of losses.

Theorem 3.2. Let η ∼ Pois(λ), ξi ∼ Bern(p), i ≥ 1, be independent, identically
distributed random variables, and X := ∑η

i=1 ξi . Then for any α ∈ [0, 1)

EVaRα(X) =
⎧⎨
⎩

β

W0(
β

eλp
)
, β 	= 0,

eλp, β = 0,

where β = − log(1−α)−λp, and W0 stands for the principal branch of the Lambert
function. The expression for EVaRα(X) is jointly continuous in (α, λ, p) ∈ [0, 1) ×
(0,∞) × (0, 1).
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Proof. By inserting the moment-generating function mξ(t) = 1 − p + pet of the
Bernoulli distribution into (3.7) it is not hard to see that X ∼ Pois(λp). Hence, the
result follows from Theorem 3.1.

Now let us consider the case where losses have a centered normal distribution.

Theorem 3.3. Let X := ∑η
i=1 ξi , where η ∼ Pois(λ), and ∀ i ≥ 1 : ξi ∼ N (0, σ 2)

are independent, identically distributed random variables. Then for all α ∈ [0, 1),

EVaRα(X) =
{

βσ
(2W0(γ )+1)1/2

2W0(γ )
, β 	= 0,

λσ
√

e, β = 0,
(3.9)

where β = − log(1−α)−λ, γ = β

2
√

eλ
. In addition, EVaRα(X) is jointly continuous

in (α, λ, σ ) ∈ [0, 1) × (0,∞)2.

Proof. Substituting the moment-generating function of the normal distribution
mξ(t) = exp{ 1

2 t2σ 2} into (3.8), we see that

EVaRα = inf
t>0

− log(1 − α) + λ(mξ (t) − 1)

t
= inf

t>0

λ exp
{

σ 2t2

2

}
+ β

t
,

So we need to minimize the function

f (t) =
λ exp

{
σ 2t2

2

}
+ β

t
.

First, let us consider the case β 	= 0. The derivative of f equals

f ′(t) =
λ exp

{
σ 2t2

2

}
(σ 2t2 − 1) − β

t2 .

Then the condition f ′(t) = 0 implies the equation

exp

{
σ 2t2 − 1

2

}
· σ 2t2 − 1

2
= β

2
√

eλ
=: γ, (3.10)

which can be solved with the help of the Lambert function (see Subsection 3.1). To
this end, we need to check that the right-hand side of equation (3.10) exceeds − 1

e
.

This condition holds, because

γ = β

2
√

eλ
= − log(1 − α) − λ

2
√

eλ
≥ − 1

2
√

e
> −1

e
. (3.11)

Therefore, by the definition (3.1) of the Lambert function, the solution of (3.10) is
given by

t∗ := 1

σ
(1 + 2W0(γ ))

1
2 .
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Note that we choose the principal branch W0 of the Lambert function, because for
W−1 the expression under square root is negative. For W0 it is always positive. Indeed,
by (3.11), γ ≥ − 1

2
√

e
. Due to monotonicity of W0, we have

W0(γ ) ≥ W0

(
− 1

2
√

e

)
= −1

2
,

where the last equality follows from the definition of the Lambert function (it easy to
see from (3.1) that W0(x) = − 1

2 for x = − 1
2
√

e
). Thus the value t∗ is well defined for

any α ∈ (0, 1). Let us check the sufficient condition for a local minimum. The second
derivative of f at t = t∗ equals

f ′′(t∗) =
2β + λ exp

{
σ 2t2∗

2

} (
2 + σ 4t4∗ − σ 2t2∗

)
t3∗

.

Since t∗ satisfies the equation (3.10), we see that

λ exp

{
σ 2t2∗

2

}
= β

σ 2t2∗ − 1
= β

2W0(γ )
. (3.12)

Therefore

f ′′(t∗) = 2β + β
2W0(γ )

(
2 + (1 + 2W0(γ ))2 − (1 + 2W0(γ ))

)
σ−3 (2W0(γ ) + 1)3/2

= σ 3β
(
2 (W0(γ ))2 + 3W0(γ ) + 1

)
(1 + 2W0(γ ))3/2 W0(γ )

= σ 3β (1 + W0(γ )) (1 + 2W0(γ ))

(1 + 2W0(γ ))3/2 W0(γ )
= σ 2β (1 + W0(γ ))

t∗W0(γ )
.

Note that for any β 	= 0

β

W0(γ )
= β

W0

(
β

2
√

eλ

) > 0.

As a result, f ′′(t∗) > 0. The sufficient condition for a local minimum is satisfied.
Therefore, the minimal value of f (t) is attained at t = t∗ and equals

f (t∗) =
λ exp

{
σ 2t2∗

2

}
+ β

t∗
=

β
2W0(γ )

+ β

σ−1(1 + 2W0(γ ))1/2 = βσ
(2W0(γ ) + 1)1/2

2W0(γ )
,

where we have used (3.12).
Let us consider the case β = 0. The problem reduces to the finding the value of

inf
t>0

λ exp
{

σ 2t2

2

}
t

.



Properties of the entropic risk measure EVaR in relation to selected distributions 383

The minimum is achieved at the point t = 1
σ

. So EVaRα(X) = λσ
√

e.
Thus the formula (3.9) is proved. It remains to verify the continuity of EVaRα(X)

at the point β = 0. Let us check the convergence of the previous expression by apply-
ing L’Hôpital’s rule since the numerator and denominator tend to 0. Their derivatives
can be computed using (3.2) as follows:

d

dβ
W0

(
β

2
√

eλ

)
= 1

2
√

eλ exp{W0(γ )}(1 + W0(γ ))
,

d

dβ

(
βσ

(
2W0

(
β

2
√

eλ

)
+ 1

) 1
2
)

= σ(2W0(γ ) + 1)
1
2 + βσ

2
√

eλ exp{W0(γ )}(1 + W0(γ ))(2W0(γ ) + 1)1/2
.

Therefore, the limit equals

lim
β→0

EVaRα(X)

= lim
β→0

[√
eλ exp{W0(γ )}(1 + W0(γ ))

×
(

σ(2W0(γ ) + 1)
1
2

+ βσ

2
√

eλ exp{W0(γ )}(1 + W0(γ ))(2W0(γ ) + 1)1/2

)]
= √

eλσ.

Thus, the continuity is proved.

3.4 Gamma distribution

Theorem 3.4. Let X ∼ G(k, θ) have a gamma distribution. Then for any α ∈ [0, 1),

EVaRα(X) = −kθW−1

(
−e−1(1 − α)

1
k

)
. (3.13)

Here W−1 denotes the branch of Lambert function that does not exceed −1. The
expression for EVaRα(X) is jointly continuous in (α, k, θ) ∈ [0, 1) × (0,∞)2.

Proof. The moment-generating function of the gamma distribution is given by

mX(t) = (1 − θt)−k, t <
1

θ
.

Then

EVaRα(X) = inf
t∈(0,θ−1)

1

t

(
− log(1 − α) − k log(1 − θt)

)
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Fig. 3. EVaR for a compound Poisson distribution with a normal distribution of jumps (σ = 1)

= inf
t∈(0,θ−1)

b − k log( 1
θ

− t)

t
,

where b := − log(1 − α) − k log θ .
Let us denote f (t) := 1

t
(b − k log( 1

θ
− t)). We are looking for the point of local

minimum of the function f on (0, 1
θ
). Its derivative equals

f ′(t) =
θkt

1−θt
+ k log( 1

θ
− t) − b

t2 .

The condition f ′(t) = 0 leads to the equation

k log

(
1

θ
− t

)
= b − θkt

1 − θt
,

which is equivalent to

1 − θt

θ
= exp

{
b

k
+ 1

}
exp

{
− 1

1 − θt

}
,

or

− 1

1 − θt
exp

{
− 1

1 − θt

}
= −1

θ
exp

{
−b

k
− 1

}
. (3.14)

The equation (3.14) can be solved using the Lambert function, since its right-hand
side is not less than − 1

e
:

−1

θ
exp

{
−b

k
− 1

}
= −e−1(1 − α)

1
k ≥ −e−1.

We see from the condition t < 1
θ

that − 1
1−θt

≤ −1, hence, the branch W−1 of the
Lambert function should be chosen. We arrive at the equation

− 1

1 − θt
= W−1

(
−e−1(1 − α)

1
k

)
,
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its solution is

t∗ := θ−1 + 1

θW−1(−e−1(1 − α)
1
k )

.

Let us check the sufficient conditions for a local minimum. The second derivative at
t∗ equals

f ′′(t∗) = 1

t3∗

(
2 log

1

1 − α
+ θkt∗(3θt∗ − 2)

(1 − θt∗)2 − 2k log(1 − θt∗)
)

. (3.15)

Let z := −e−1(1 − α)
1
k . Applying (3.3), we get

f ′′(t∗) = θ3(W−1(z))
3

(W−1(z) + 1)3

(
2 log

(
1

1 − α

)

+ k
(
(W−1(z))

2 + 4W−1(z) + 3 + 2 log(−W−1(z))
))

= θ3(W−1(z))
3k(W−1(z) + 1)2

(W−1(z) + 1)3 ≥ 0,

because W−1(z) ≤ −1. Thus we have proved that the minimum of f is achieved at the
point t = t∗. After substituting t∗ into f (t) and simplifying the resulting expression,
we arrive at (3.13). The continuity of EVaRα(X) follows from the continuity of W−1.

Corollary 3.5. Let X ∼ Exp(λ). Since Exp(λ) = G(1, 1
λ
), we see that for all α ∈

[0, 1),

EVaRα(X) = −1

λ
W−1

(
−1

e
(1 − α)

)
.

Corollary 3.6. Suppose X ∼ χ2(k) has a chi-squared distribution. Since X ∼
G(k

2 , 2), we see that for all α ∈ [0, 1),

EVaRα(X) = −kW−1

(
−1

e
(1 − α)

2
k

)
.

3.5 Laplace distribution

Theorem 3.7. Let X ∼ L(μ, b) have a Laplace distribution. Then for all α ∈ [0, 1),

EVaRα(X) = μ − bW−1(γ )

(
1 + 2

W−1(γ )

) 1
2

, (3.16)

where γ = −2e−2(1 − α). The expression for EVaRα(X) is jointly continuous in
(α, μ, b) ∈ [0, 1) × R × (0,∞).

Proof. The moment-generating function equals

mX(t) = eμt

1 − b2t2 , |t | <
1

b
.
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Fig. 4. EVaR for the Gamma distribution with parameter θ = 1

Then

EVaRα(X) = inf
t∈(0,b−1)

1

t

(
a + μt − log

(
1 − b2t2

))
,

where a := − log(1 − α). Let us find the minimum of the function

f (t) = 1

t

(
a + μt − log

(
1 − b2t2

))
. (3.17)

Its first derivative equals

f ′(t) = −a(b2t2 − 1) − b2t2(log(1 − b2t2) − 2) + log(1 − b2t2)

t2(b2t2 − 1)
.

From the condition f ′(t) = 0, we get the equation

a + 2 − 2

1 − b2t2 = log(1 − b2t2)

or

− 2

1 − b2t2 exp

{
− 2

1 − b2t2

}
= −2e−a−2 =: γ. (3.18)

This equation can be solved via the Lambert function, because its right-hand side
γ = −2e−2(1 − α) ≥ −e−1. Since − 2

1−b2t2 < −1, we see that the branch W−1
should be chosen. Thus, we arrive at the following solution to (3.18):

t∗ = 1

b

(
1 + 2

W−1(γ )

) 1
2

.

Note that W−1(t) is a decreasing function on (−e−1, 0), therefore

W−1(γ ) = W−1(−2e−2(1 − α)) < W−1(−2e−2) = −2,
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Fig. 5. EVaR for the Laplace distribution

so the expression under square root is positive and t∗ is well defined.
The second derivative of f equals

f ′′(t∗) = 2

t3∗

(
a + b2t2∗ (3b2t2∗ − 1)

(1 − b2t2∗ )2 − log(1 − b2t2∗ )

)

= 1

t3∗

(
2a + (W−1(γ ))2 + 5W−1(γ ) + 6 − 2 log 2 + 2 log(−W−1(γ ))

)

= 1

t3∗

(
(W−1(z))

2 + 3W−1(z) + 2
)

> 0,

where we have used the relation (3.3). Consequently, t∗ is a minimum point. Sub-
stituting t∗ into the function (3.17) and simplifying the resulting expression, we get
(3.16).

3.6 Inverse Gaussian distribution
Theorem 3.8. Let X ∼ IG(μ, λ) have an inverse Gaussian distribution, or the so-
called Wald distribution. Then for all α ∈ [0, 1)

EVaRα(X) = μ
(
δ +

√
δ2 − 1

)
,

where δ = 1 − μ
λ

log(1 − α). The expression for EVaRα(X) is jointly continuous in
(α, k, θ) ∈ [0, 1) × (0,∞)2.

Proof. The corresponding moment-generating function equals

mX(t) = exp

⎧⎨
⎩ λ

μ

⎛
⎝1 −

(
1 − 2μ2t

λ

) 1
2

⎞
⎠
⎫⎬
⎭ , t <

λ

2μ2 .
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Substituting it into the definition of EVaRα , we get the following optimization prob-
lem:

EVaRα(X) = inf
t>0

1

t

⎛
⎝− log(1 − α) + λ

μ

⎛
⎝1 −

(
1 − 2μ2t

λ

) 1
2

⎞
⎠
⎞
⎠ .

Denote a = − log(1 − α). Let us find the minimum point of the objective function

f (t) = 1

t

⎛
⎝a + λ

μ
− λ

μ

(
1 − 2μ2t

λ

) 1
2

⎞
⎠ = 1

t

(
a + λ

μ
− λ

μ
z(t)

)
,

where z(t) := (1 − 2μ2t
λ

)1/2. Then the derivative of f (t) equals

f ′(t) = 1

t2

(
− λ

μ
z′(t)t − a − λ

μ
+ λ

μ
z(t)

)
, (3.19)

where

z′(t) = −μ2

λ

(
1 − 2μ2t

λ

)−1/2

= − μ2

λz(t)
.

Using this formula together with the inverse relation t = λ
2μ2 (1 − z2(t)), we can

transform (3.19) as follows:

f ′(t) = 1

t2

(
λ

2μz(t)

(
1 − z2(t)

)
− a − λ

μ
+ λ

μ
z(t)

)

= λ

2μt2z(t)

(
z2(t) − 2δz(t) + 1

)
,

where δ = aμ
λ

+ 1 ≥ 1. We see that the condition f ′(t) = 0 is satisfied if and only if

z(t) = δ ± √
δ2 − 1. The root with “plus” sign is bigger than 1, which is not possible

for t > 0. Therefore, we need to consider only the value

z∗ = z(t∗) = δ −
√

δ2 − 1,

which corresponds to

t∗ = λ

2μ2

(
1 −

(
δ −

√
δ2 − 1

)2
)

∈
(

0,
λ

2μ2

)
.

Note that z(t) is a decreasing function and

• f ′(t) < 0 for all z > z∗ (i.e. for all 0 < t < t∗),

• f ′(t) > 0 for all z < z∗ (i.e. for all t∗ < t < λ
2μ2 ).

This means that the minimal value of f (t) is achieved at t = t∗. It equals

f (t∗) = 1

t∗

(
a + λ

μ
− λ

μ
z∗
)

= λ

μ
· δ − z∗

t∗
= 2μ

√
δ2 − 1

1 −
(
δ − √

δ2 − 1
)2

= μ

δ − √
δ2 − 1

= μ
(
δ +

√
δ2 − 1

)
.
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Fig. 6. EVaR for the Wald distribution. The first figure is for fixed μ = 1, the second figure is
for fixed λ = 1, the third one for fixed α = 0.05 and the last one for fixed λ = 1

3.7 Normal inverse Gaussian distribution

Consider the class of normal inverse Gaussian distributions NIG(α, β, μ, δ). This is a
flexible system of distributions that includes distributions with heavy tails and skewed
distributions.

Theorem 3.9. Let X ∼ NIG(α, β, μ, δ) be a normal inverse Gaussian distribution,
0 ≤ |β| < α, μ ∈ R, δ > 0. Then for the level α′ ∈ [0, 1),

EVaRα′(X) = μ + δ

t∗

(
ϕ −

√
α2 − (β + t∗)2

)
, (3.20)

where

ϕ = −1

δ
log(1 − α′) +

√
α2 − β2, ψ =

√
ϕ2 − α2 + β2, t∗ = (α2 − β2)ψ

αϕ + βψ
.

Remark 3.10. (i) We have excluded the case α = β = 0, because in this case the
moment-generating function is not defined for any t 	= 0.
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(ii) The parameter ψ is well defined, since

ϕ2 − α2 + β2 = ( 1
δ

log(1 − α′)
)2 − 2

δ
log(1 − α′)

√
α2 − β2 ≥ 0.

(iii) Evidently, ϕ ≥ ψ ≥ 0.

(iv) t∗ ∈ [0, α−β], because t∗ = (α−β)
αψ+βψ
αϕ+βψ

and αψ+βψ
αϕ+βψ

∈ [0, 1] if ϕ ≥ ψ ≥ 0.

(v) It follows from (iv) that (3.20) is well defined.

Proof. The corresponding moment-generating function is equal to

mX(t) = exp

{
μt + δ

√
α2 − β2 − δ

√
α2 − (β + t)2

}
, t ∈ [−α − β, α − β],

(3.21)
see, e.g., [6]. Then we get the following optimization problem:

EVaRα′(X) = inf
t∈(0,α−β] f (t),

where

f (t) := 1

t

(
log

1

1 − α′ + μt + δ

√
α2 − β2 − δ

√
α2 − (β + t)2

)

= μ + δ

t

(
ϕ −

√
α2 − (β + t)2

)
. (3.22)

Then we find the minimum point for positive t

f ′(t) = δ

t2

(
(β + t)t√

α2 − (β + t)2
− ϕ +

√
α2 − (β + t)2

)

=
δ
(
(β + t)t − ϕ

√
α2 − (β + t)2 + α2 − (β + t)2

)
t2
√

α2 − (β + t)2

=
δ
(
α2 − β2 − βt − ϕ

√
α2 − (β + t)2

)
t2
√

α2 − (β + t)2

= δ
(
(α2 − β2 − βt)2 − ϕ2(α2 − (β + t)2)

)
t2
√

α2 − (β + t)2
(
α2 − β2 − βt + ϕ

√
α2 − (β + t)2

) .

Note that the denominator is positive for all t ∈ [0, α − β]. Indeed, α2 − β2 − βt ≥
α2 − β2 − β(α − β) = α(α − β) ≥ 0. Hence, the sign of f ′(t) coincides with that of
the function

g(t) =
(
α2 − β2 − βt

)2 − ϕ2
(
α2 − (β + t)2

)
= t2

(
ϕ2 + β2

)
+ 2β

(
ϕ2 − α2 + β2

)
t −

(
α2 − β2

) (
ϕ2 − α2 + β2

)
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= t2
(
ϕ2 + β2

)
+ 2βψ2t −

(
α2 − β2

)
ψ2.

It is not hard to see that the quadratic equation g(t) = 0 has two solutions

t = ψ(−βψ ± αϕ)

ϕ2 + β2 ,

however, the solution with minus sign is obviously negative. Let us consider the so-
lution

t∗ = ψ(−βψ + αϕ)

ϕ2 + β2 = ψ
(
α2ϕ2 − β2ψ2

)
(
ϕ2 + β2

)
(βψ + αϕ)

=
(
α2 − β2

)
ψ

αϕ + βψ
,

where we have used the relation

α2ϕ2 − β2ψ2 = α2ϕ2 − β2
(
ϕ2 − α2 + β2

)
=

(
α2 − β2

) (
ϕ2 + β2

)
.

According to Remark 3.10 (iv), t∗ ∈ [0, α − β]. Moreover, from the properties of the
quadratic function we get that g(t) < 0 for t ∈ [0, t∗) and g(t) > 0 for t ∈ (t∗, α−β],
and the derivative f ′(t) demonstrates the same behavior. This means that t∗ is the
minimum point of f (t) on [0, α − β]. Substituting this value into (3.22), we obtain
(3.20).

4 Concluding remarks

There are not many models for EVaR described in the current scientific literature.
Most often, only the standard normal distribution model is considered. The lack of
extended results in this area is due to the complexity of calculations of EVaR for the
majority of the main distributions.

In this paper, EVaR for several distributions was calculated via Lambert func-
tion. The distributions that are most commonly used in statistical models and loss
modelling were discussed, namely, Poisson, compound Poisson, gamma, exponential,
chi-squared, Laplace, inverse Gaussian and normal inverse Gaussian distributions.

The result of this work brings the possibility of further studying the behavior of
EVaR for the already defined models, as well as expanding the models for which
EVaR can be analytically calculated.

As the reader may observe, all distributions considered in the paper (except the
normal inverse Gaussian) belong to the exponential family. We anticipate the potential
for explicating EVaR for other members of the exponential family as well as for other
risk distributions. However, this remains a subject for future investigation.

A EVaR for normal distribution

Let us, for the reader’s convenience, provide the formula of EVaR for the normal
distribution from [1]. Let us formulate the corresponding lemma with a brief proof.
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Fig. 7. EVaR for NIG distribution. For the second figure α = 2, β = −1, μ = 0, for the third
figure α′ = 0.05, μ = 0, δ = 0.05, for the last figure β = −1, μ = 0, δ = 1

Lemma A.1. Let X ∼ N (μ, σ 2) be a normal distribution. Then ∀α ∈ (0, 1),

EVaRα(X) = μ + σ
√−2 log(1 − α). (A.1)

Proof. The moment-generating function of the normal distribution is given by
mX(t) = exp{μt + 1

2 t2σ 2}. We substitute it into the EVaR definition (2.1) and obtain

EVaRα(X) = inf
t>0

(
−1

t
log(1 − α) + μ + 1

2
tσ 2

)
. (A.2)

It is not hard to show by differentiation that the infimum is attained at the point

t∗ := 1

σ

√−2 log(1 − α).

After substituting t∗ into (A.2), we get (A.1).
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B List of related probability distributions with density functions

1. Gamma distribution G(k, θ): f (x) = xk−1e−x/θ

�(k)θk , x > 0, k > 0, θ > 0.

2. Exponential distribution Exp(λ): f (x) = λe−λx , x ≥ 0, λ > 0.

3. Chi-squared distribution χ2(k): f (x) = xk/2−1e−x/2

�(k/2)2k/2 , x > 0, k ∈ N.

4. Laplace distribution L(μ, b): f (x) = 1
2b

exp
{
−|x−μ|

b

}
, x, μ ∈ R, b > 0.

5. Inverse Gaussian distribution IG(μ, λ): f (x) =
√

λ
2πx3 exp

{
−λ(x−μ)2

2μ2x

}
,

x > 0, μ > 0, λ > 0.

6. Normal inverse Gaussian distribution NIG(α, β, μ, δ):

f (x) = αδK1(α
√

δ2 + (x − μ)2)

π
√

δ2 + (x − μ)2
exp

{
δ

√
α2 − β2 + β(x − μ)

}
,

K1(x) = 1
2

∫ +∞
0 exp

{− 1
2x(t + t−1)

}
dt is a modified Bessel function of the

third kind with index 1, x, β, μ,∈ R, α ≥ |β|, δ ≥ 0.
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