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Abstract Consistent estimators of the baseline hazard rate and the regression parameter are
constructed in the Cox proportional hazards model with heteroscedastic measurement errors,
assuming that the baseline hazard function belongs to a certain class of functions with bounded
Lipschitz constants.
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1 Introduction

Survival analysis is a set of statistical methods for analysis of data representing times
to the occurrence of some specified event. It is an important part of mathematical
statistics due to a wide range of applications: medicine, reliability theory, etc.

The Cox proportional hazards (CPH) model is a semi-parametric regression model
that is used to study the association between the survival time of subjects (the so-
called lifetime) and one or more predictor variables (the so-called covariates). One of
the main features of survival analysis is the presence of incomplete observations or
censoring. In such cases only partial information about the true lifetime is available,

∗Corresponding author.

© 2024 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/24-VMSTA258
mailto:oksanachernova@knu.ua
http://www.ams.org/msc/msc2010.html?s=62H12
http://www.ams.org/msc/msc2010.html?s=62N02
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


480 O. Chernova

e.g., that it exceeds some value in case of right censoring. The primary quantities of
interest to estimate are the hazard function and the regression parameter. The haz-
ard function represents the instantaneous rate at which events occur at a particular
time, given that the individual has survived up to that time. The vector of regression
parameters represents effects of covariates on the hazard.

D. R. Cox [4] estimates the regression parameter using partial likelihood without
additional assumptions on the baseline hazard rate. Estimates of cumulative hazard
are proposed by [9] and [3]. In these papers, it is assumed that the baseline hazard
rate belongs to some parametric family (piece-wise constant on certain intervals).
Additionally, models without errors in variables are considered.

Nonparametric inference under shape constraints has been an actively researched
field in recent decades. It is a framework where the estimated parameters or functions
are constrained to satisfy certain shape properties such as monotonicity, convexity or
log-concavity. The development of nonparametric methods for estimation of mono-
tone density started with pioneering paper of Grenander [7]. The 2018 special issue of
Statistical Science was devoted to inference under shape constraints. A review of re-
cent progress in log-concave density estimation is given in [16]. A review of methods
for shape constrainted baseline hazard function in case of censored data is presented
in [8]. A monotone baseline hazard rate in Cox model is considered in [14] and [5].
A different variation of shape constrained Cox model with application to breast can-
cer patients’ survival is considered in [15].

One should be cautious to make inference using regression when covariates could
be measured with errors. It is known that applying of naive methodology may lead
to inconsistent estimation, see Wallace [17]. CPH model with measurement errors is
studied, among others, by Kong and Gu [10] and Augustin [1]. Typically one esti-
mates at first the vector of regression parameters, and then an estimator of the cumu-
lative baseline hazard rate is constructed.

In Kukush et al. [11] the baseline hazard rate belongs to a bounded set of nonneg-
ative Lipschitz functions, and is estimated simultaneously with the vector of regres-
sion parameters. This approach is further developed in Kukush and Chernova [12],
where the baseline hazard rate belongs to an unbounded set of nonnegative Lipschitz
functions.

In all aforementioned papers, measurement errors are assumed to be independent
and identically distributed. In practice, measurement errors can be expected to vary
considerably among different subjects. E.g., Augustin et al. [2] propose the regression
calibration estimation method in CPH model under heteroscedastic measurement er-
rors for nutritional data.

In the present paper we consider a CPH model similar to [11] and [12], but with
heteroscedastic measurement errors. The paper is organized as follows. Section 2
describes the observation model and gives main assumptions. In Section 3 we con-
struct a simultaneous consistent estimator (λ̂n, β̂n) of the baseline hazard rate and the
regression parameter in CPH model with heteroscedastic errors in covariates under
bounded parameter set. In Section 4 we do the same for unbounded parameter set,
and Section 5 concludes.
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2 Model description

The Cox proportional hazards model introduced in [4] assumes that the lifetime T

has a hazard rate at moment t for a subject with random vector of covariates X as
follows:

λ(t |X; λ0, β0) = λ0(t) exp(β�
0 X), t ≥ 0.

Here, β0 is a regression parameter belonging to �β ⊂ R
k , and λ0(·) ∈ �λ ⊂ C[0, τ ]

is a baseline hazard function. The unbounded parameter set �λ consists of all non-
negative functions with bounded Lipschitz constant. Instead of the lifetime T , right-
censored data Y := min{T ,C} and � := I{T ≤C} are available. The censor C has
unknown distribution concentrated on a given interval [0, τ ]. A pair (X, T ) and ran-
dom variable C are independent.

Assume that instead of true covariates, one can only observe surrogate vector
variables

Wi = Xi + Ui,

where (not necessarily identically distributed) measurement errors Ui, i = 1, 2, . . . , n,
are mutually independent centered random vectors that are also independent of the
random sequence (Xi, Ti, Ci, Yi,�i), i = 1, 2, . . . , n. The moment generating func-
tions MUi(z) := E ez�Ui of the random measurement errors Ui are assumed known.
The goal is to estimate β and λ based on observations (Yi,�i, Wi) , i = 1, . . . , n.

Introduce the following assumptions.

(i) �λ := { f : [0, τ ] → R | f (t) ≥ a, ∀t ∈ [0, τ ], f (0) ≤ A, and |f (t) −
f (s)| ≤ L|t−s|,∀t, s ∈ [0, τ ] }, where a, A and L are fixed positive constants,
with a < A.

(i’) �λ := { f : [0, τ ] → R | f (t) ≥ 0, ∀t ∈ [0, τ ], and |f (t) − f (s)| ≤
L|t − s|,∀t, s ∈ [0, τ ] }, where L is a fixed positive constant.

(ii) �β is a compact set in R
k .

(iii) There exist positive K and ε such that for all n ≥ 1,

1

n

n∑
i=1

E e2D‖Ui‖ ≤ K, with D := max
β∈�β

‖β‖ + ε.

(iv) E e2D‖X‖ < ∞, with D defined in (iii).

(v) τ > 0 is the right endpoint of censor’s distribution, i.e. P(C > τ) = 0 and for
all ε > 0, P(C > τ − ε) > 0.

(vi) The matrix E XX� of second moments is positive definite.
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Likelihood construction in presence of censored data is described in [13]. In case
where covariates are observed without errors, the log-likelihood function is given by

Qn(λ,β) := 1

n

n∑
i=1

q(Yi,�i, Xi; λ,β), with

q(Yi,�i, Xi; λ,β) := �i · (log λ(Yi) + β�Xi) − exp(β�Xi)

∫ Yi

0
λ(u)du.

T. Augustin [1] proposed the following objective function to adjust for homoscedastic
measurement errors

Qcor
n (λ,β) := 1

n

n∑
i=1

qcor (Yi,�i, Wi; λ,β),

with

qcor (Yi,�i, Wi; λ,β) := �i · (log λ(Yi) + β�Wi) − exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du.

We have

E[qcor (Yi,�i, Wi) | Yi,�i, Xi] = q(Yi,�i, Xi).

Therefore,

E qcor (Yi,�i, Wi) = E q(Yi,�i, Xi) = E q(Y1,�1, X1).

The latter equality means that E[qcor (Yi,�i, Wi)] does not depend on i.
Denote

q∞(λ, β) = 1

n

n∑
i=1

Eqcor (Yi,�i, Wi; λ,β) = Eqcor (Y1,�1, W1).

We will make use of both forms of q∞.
We define a simultaneous estimator of the baseline hazard rate and regression

parameter under bounded and unbounded parameter sets as follows.

Definition 1 (under bounded parameter set). A Borel function
(
λ̂, β̂

)
=

(
λ̂n, β̂n

)
of observations (Yi,�i, Wi ), i = 1, . . . , n, with values in � = �β × �λ, where �λ

is bounded, and such that (
λ̂, β̂

)
= arg max

(λ,β)∈�
Qcor

n (λ,β), (1)

is called a simultaneous estimator of the baseline hazard rate and the regression para-
meter under the bounded parameter set �.
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Definition 2 (under unbounded parameter set). Let {εn} be a fixed sequence of posi-

tive numbers such that εn ↓ 0 as n → ∞. A Borel function
(
λ̂, β̂

)
=

(
λ̂n, β̂n

)
of

observations (Yi,�i, Wi ), i = 1, . . . , n, with values in � = �β × �λ, where �λ is
unbounded, and such that

Qcor
n

(
λ̂, β̂

)
≥ sup

(λ,β)∈�

Qcor
n (λ,β) − εn, (2)

is called a simultaneous estimator of the baseline hazard rate and the regression pa-
rameter over the unbounded parameter set �.

3 Simultaneous estimation under bounded parameter set

We extend the result about consistency of a simultaneous estimator of regression
parameter and baseline hazard under bounded parameter set from Kukush et al. [11]
to the case of heterogeneous measurement errors. In the next section we proceed with
a similar result for unbounded parameter set. The main result of this section is the
following theorem.

Theorem 1. Under (i)–(vi),
(
λ̂, β̂

)
defined in (1) is a strongly consistent estimator

of true parameters (λ0,β).

In what follows we rely on the following version of the Strong Law of Large
Numbers for not necessary identically distributed random variables and the next easy
to prove Statement 1.

Theorem (Kolmogorov’s Strong Law of Large Numbers, section 10.7 [6]). Let
{ξn}n≥1 be a sequence of independent random variables (not necessary identically
distributed) and such that

∞∑
n=1

Var(ξn)

n2 < ∞ .

Then
1

n

n∑
i=1

ξi − 1

n

n∑
i=1

Eξi → 0 a.s. as n → ∞ .

Statement 1. Let {sn}n≥1 be a real valued sequence such that 1
n

∑n
i=1 si is bounded.

Then
∑∞

n=1 sn/n2 converges.

Remark 1. By K we will denote any positive deterministic constant the exact value
of which is not important. Note that K may change from line to line (or even within
one line).

Remark 2. Condition (iii) implies that there exists positive K , such that for all n ≥ 1,

1

n

n∑
i=1

E ‖Ui‖2 ≤ K. (3)

Proof of Theorem 1. Similarly to the proof of Theorem 1 from [11], one can show
the strong consistency of the estimators if
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(a) sup
(λ,β)∈�

|Qcor
n (λ,β) − q∞(λ, β)| → 0 a.s. as n → ∞;

(b) q∞(λ, β) ≤ q∞(λ0, β0), and equality holds if and only if λ = λ0, β = β0.

Denote by ∂qcor

∂β the derivative of qcor with respect to vector β. For a fixed value of

β, consider qcor as a function of λ, i.e. qcor (·,β) : C[0, τ ] → R. Denote by ∂qcor

∂λ

the Fréchet derivative of qcor with respect to the function λ. Then ∂qcor

∂λ
: C[0, τ ] →

L(C[0, τ ],R) is a linear continuous functional. For h ∈ C[0, τ ], let
〈
∂qcor

∂λ
, h

〉
denote

the action of the functional ∂qcor

∂λ
on h. We have

〈
∂qcor

∂λ
(Y,�,W ; λ,β), h

〉
= �h(Y )

λ(Y )
− eβ�W

MU(β)

∫ Y

0
h(u)du,

∣∣∣∣
∣∣∣∣∂qcor

∂λ
(Y,�,W ; λ,β)

∣∣∣∣
∣∣∣∣ = sup

||h||=1

〈
∂qcor

∂λ
(Y,�,W ; λ,β), h

〉
,

∂qcor

∂β
(Yi,�i, Wi; λ,β) = �i · Wi − MUi(β)Wi − E(Uieβ�Ui)

M2
Ui

(β)
eβ�Ui

∫ Y

0
λ(u)du.

According to [11] in order to verify (a) it suffices to show:

(a1) Qcor
n (λ,β) − q∞(λ, β) → 0 a.s. as n → ∞ for all (λ, β) ∈ �;

(a2) there exists a positive constant K such that

1

n

n∑
i=1

E sup
(λ,β)∈�

∣∣∣∣
∣∣∣∣∂qcor

∂β
(Yi,�i,Wi; λ,β)

∣∣∣∣
∣∣∣∣ ≤ K, (4)

1

n

n∑
i=1

E sup
(λ,β)∈�

∣∣∣∣
∣∣∣∣∂qcor

∂λ
(Yi,�i,Wi; λ,β)

∣∣∣∣
∣∣∣∣ ≤ K, (5)

for all n ≥ 1, where supremum is taken over �λ × conv(�β).

(a3) q∞(λ, β) is continuous in (λ, β).

To investigate when the condition (a1) holds, rewrite

Qcor
n (λ,β) :=1

n

n∑
i=1

�i · log λ(Yi) + 1

n

n∑
i=1

�iβ
�Xi + 1

n

n∑
i=1

�iβ
�Ui−

− 1

n

n∑
i=1

exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du.
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First and second summand converge to their expectations due to SLLN. Consider
third summand. It holds Var(�iβ

�Ui) ≤ E(β�Ui)
2 ≤ K · E||Ui||2. Then

1

n

n∑
i=1

Var(�iβ
�Ui) ≤ K · 1

n

n∑
i=1

E||Ui||2

is bounded due to Remark 2. Therefore by Statement 1

∞∑
i=1

Var(�iβ
�Ui)

i2 < ∞ .

SLLN yields

1

n

n∑
i=1

�iβ
�Ui − 1

n

n∑
i=1

E[�iβ
�Ui] → 0 a.s. as n → ∞.

Consider forth summand. We have

exp(β�Wi)

∫ Yi

0
λ(u)du ≤ K · e(D−ε)||Wi||.

Due to Jensen’s inequality MUi(β) ≥ eEβ�Ui = 1. For all i ≥ 1 using (iii)–(iv) we
obtain

Var

(
exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du

)
≤ E

(
exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du

)2

≤

≤ K

minβ M2
Ui

(β)
E

[
e2(D−ε)||Xi||

]
· E

[
e2(D−ε)||Ui||

]
≤ K · E

[
e2(D−ε)||Ui||

]
.

Then

1

n

n∑
i=1

Var

(
exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du

)
≤ K · 1

n
E

[
e2(D−ε)||Ui||

]
.

Using Statement 1

∞∑
i=1

1

i2 Var

(
exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du

)
< ∞ , (6)

and therefore

1

n

n∑
i=1

exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du − 1

n

n∑
i=1

E

[
exp(β�Wi)

MUi(β)

∫ Yi

0
λ(u)du

]
→ 0

a.s. as n → ∞. Thus, under conditions (i)–(iv) (a1) holds.
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Next, we will verify (a2). We have

sup
(λ,β)∈�

∣∣∣∣
∣∣∣∣∂qcor

∂β
(Yi,�i, Wi; λ,β)

∣∣∣∣
∣∣∣∣ ≤ ||Wi|| + K

minβ MUi(β)
sup
β

||Wi|| eβ�||Wi||+

+ K

minβ M2
Ui

(β)
sup
β

E
[
||Ui||eβ�||Ui||

]
eβ�||Wi||.

Then

1

n

n∑
i=1

E sup
(λ,β)∈�

∣∣∣∣
∣∣∣∣∂qcor

∂β
(Yi,�i,Wi; λ,β)

∣∣∣∣
∣∣∣∣ ≤ E ||X1|| + 1

n

n∑
i=1

E ||Ui || +

+ E sup
β

(
||X|| eβ�X

)
· 1

n

n∑
i=1

EeD||Ui || + eD||X|| · 1

n

n∑
i=1

E sup
β

(
||Ui || eβ�Ui

)
.

Conditions (iii)–(iv) imply that E ||Xi || e(D−ε)||Xi || and E ||Ui || e(D−ε)||Ui || are
bounded for all i ≥ 1. So there exists a positive constant, such that (4) holds.

One can show that

sup
(λ,β)∈�

∣∣∣∣
∣∣∣∣∂qcor

∂λ
(Yi,�i, Wi; λ,β)

∣∣∣∣
∣∣∣∣ ≤ sup

λ

1

||λ|| + τ · eD(||Xi ||+||Ui ||)

minβ MUi(β)
.

Therefore

1

n

n∑
i=1

E sup
(λ,β)∈�

∣∣∣∣
∣∣∣∣∂qcor

∂λ
(Yi,�i, Wi; λ,β)

∣∣∣∣
∣∣∣∣ ≤ K

(
1 + EeD||X|| 1

n

n∑
i=1

EeD||Ui ||
)

.

Conditions (i)–(iv) imply that (5) holds.
(a3) It is clear that qcor (Yi,�i, Wi; λ,β) is continuous in (λ, β) ∈ �, and under

conditions (i)–(iv) E|qcor (Yi,�i, Wi; λ,β)| is bounded for all 1 ≤ i ≤ n. Thus, the
dominated convergence theorem implies that q∞(λ,β) is continuous in (λ, β) ∈ �.

Proof that (b) holds is essentially the same as in [11].

To sum up, under (i)–(iv), the pair
(
λ̂, β̂

)
is a strongly consistent estimator of true

parameter (λ0,β).

4 Simultaneous estimator under unbounded parameter set

Let us now consider baseline hazards function form unbounded parameter set defined
in (i’). The goal of this section is to extend Theorem 3 from [12] in the case of
heteroscadastic measurement errors. The main result of this section follows.

Theorem 2. Under (i’)–(vi),
(
λ̂, β̂

)
defined in (2) is a strongly consistent estimator

of true parameters (λ0,β).

Proof. We follow the line of the proof of Theorem 3 from [12]. A relation holds
eventually if it is valid for all sample sizes n starting from some random number,
almost surely.
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We firstly show that

sup
(λ,β)∈�R

Qcor
n (λ, β) > sup

(λ,β)∈�\�R

Qcor
n (λ, β) (7)

eventually for sufficiently large nonrandom numbers R > ||λ0||, where �R
λ = �λ ∩

B̄(0, R), �R = �R
λ × �β .

Denote D1 = maxβ ‖β‖. We have

sup
(λ,β)∈�\�R

Qcor
n (λ, β) ≤ I1 + sup

λ∈�λ:
λ(0)>R

I2 + I3,

where

I1 = −(R − Lτ)
1

n

n∑
i=1

exp(−D1||Wi ||)Yi · I (� = 0)

max
β∈�β

MU(β)
,

I2 = ln(λ(0) + Lτ)
1

n

∑
i:�i=1

�i − (λ(0) + Lτ)
1

n

n∑
i=1

exp(−D1||Wi ||)Yi · I (� = 1)

max
β∈�β

MU(β)
,

I3 = 1

n

∑
i:�i=1

D1||Wi || + 2Lτ
1

n

n∑
i=1

exp(−D1||Wi ||)Yi · I (� = 1)

max
β∈�β

MU(β)
.

We have

V ar
(
Yie

−D1||Wi ||I (� = 0)
)

≤ E
(
Y 2

i e−2D1||Wi ||
)

≤ K · Ee−2D1||X1||Ee−2D1||Ui ||,

1

n

n∑
i=1

V ar
(
Yie

−D1||Wi ||I (� = 0)
)

≤ K · Ee−2D1||X1|| 1

n

n∑
i=1

Ee−2D1||Ui || ≤ K.

SLLN yields

I1 + (R − Lτ)
1

n

n∑
i=1

E[ C · I (� = 0) exp (−D1||Wi ||) ]
max
β∈�β

MU(β)
→ 0

almost surely as n → ∞. This means that eventually

I1 ≤ −(R − Lτ)D2,

where D2 > 0.
Let

An = 1

n

n∑
i=1

�i, Bn = 1

n

n∑
i=1

exp(−D1||Wi ||)Yi

max
β∈�β

MU(β)
1{�i=1}.

Since An > 0 and Bn > 0 eventually, we obtain

I2 ≤ max
z>0

(An ln z − zBn) = An

(
ln

(
An

Bn

)
− 1

)
.
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Analogously,

V ar
(
Yie

−D1||Wi ||I (� = 1)
)

≤ E
(
Y 2

i e−2D1||Wi ||
)

≤ K · Ee−2D1||X1||Ee−2D1||Ui ||,

1

n

n∑
i=1

V ar
(
Yie

−D1||Wi ||I (� = 1)
)

≤ K.

By SLLN,

An → P(� = 1) > 0, Bn − 1

n

n∑
i=1

E[ T · I (� = 1) exp (−D1||Wi ||) ]
max
β∈�β

MU(β)
→ 0

respectively, almost surely as n → ∞. Hence I2 is eventually bounded from above
by some positive constant D3.

Further, it follows from the strong law of large numbers that I3 is eventually
bounded from above by some positive constant D4. Hence

lim
n→∞ sup

(λ,β)∈�\�R

Qcor
n (λ, β) ≤ −(R − Lτ)D2 + D3 + D4.

Note that the constants D2, D3 and D4 introduced above do not depend on β ∈ �β .
Letting R → +∞, we get

lim
n→∞ sup

(λ,β)∈�\�R

Qcor
n (λ, β) → −∞, R → +∞.

This proves that inequality (7) holds eventually for sufficiently large R.
Further, one can repeat reasoning from [12] to show that

(λ̂n(ω), β̂n(ω)) → (λ0, β), n → ∞,

for all ω ∈ A, P(A) = 1.
The theorem is proved.

5 Conclusions

We have shown consistency of a simultaneous consistent estimator of the baseline
hazard rate and the regression parameter in the Cox proportional hazards model as-
suming baseline hazard function is Lipshitz continuous with fixed constant in the case
of heteroscedastic measurement errors for both bounded and unbounded parameter
set, respectively.
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