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1 Introduction

Fluctuation theory for right-continuous random walks has a long history and is very
well handled in a number of texts, see, e.g., [4, 7, 11, 16] and the references therein.
This also includes the actuarial applications of the skip-free random walk, which in
the actuarial literature is known as the compound binomial risk model, see [5, 8, 18],
to mention a few. For the continuous counterpart, i.e. in the theory of Lévy processes,
it is widely known that first passage theory heavily relies on the so-called W(q) and
Z(q) scale functions, which have been known and excellently treated in [13, 12] and
[14], and the references therein. More recently, in [1], the authors have developed
the analogous theory for the Wv and Zv scale functions for the discrete counterpart,
i.e. in the case of one-sided random walks. Although in the first instance, the theory
for the discrete and continuous time/space seems to be analogous (due to the use of
the common tool, namely the scale functions), there are significant differences in the
methodology. Further generalisations of the scale functions have been proposed for
first passage problems in continuous time/space for the so-called ω-killed spectrally
negative Lévy process, where the process is exponentially killed with killing intensity
ω(·) that depends on the level of the process, see [6] and [15]. We point out that
such processes have numerous actuarial applications, for example, where the killing
feature can be interpreted as a bankruptcy rate when the process is negative, which
allows insurance firms to operate for some time below critical levels.

The aim of this paper is two-fold: firstly, to generalise the scale functions of [1]
for first passage problems and resolvent measures in a skip-free ω-type killed random
walk, and secondly, to derive exit and resolvent identities in a discrete ω-type killed
process using a method alternative to that in the continuous case in [6, 15]. That is,
in the discrete setup, one is able to characterise the new generalised scale functions
solely using first-step (one-step) analysis and recursive equations which can then be
employed to solve the exit problems, their reflections and the potential measures for
the aforementioned killed process.

To formulate our problem mathematically, let us assume that q : Z → (0, 1] is
a nonnegative function that represents the killing mechanism and X = {Xn}n∈N0 be
an upwards skip-free random walk defined on the naturally filtered probability space
(�, F, (Fn)n∈N0,P). We denote the first passage times as

τ−
b = inf{n ≥ 0 : Xn ≤ b} and τ+

a = inf{n ≥ 0 : Xn ≥ a}.
Moreover, let the law of X, such that X0 = x, be denoted by Px with corresponding
expectation Ex . We will write P and E when x = 0. Our main interest in this paper is
to derive closed form expressions for the first passage times and resolvent measures,
weighted by the killing function q. In particular, for x = 0, . . . , a, a ∈ Z, we will
determine the two-sided exit quantities

A(x, a) := Ex

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <τ−

−1)

⎤⎦ and B(x, a) := Ex

⎡⎢⎣ τ−
−1∏

n=1

q(Xn)1(τ−
−1<τ+

a )

⎤⎥⎦ ,

with the convention that
∏0

n=1 q(Xn) = 1 and define this setting as a random walk
with “q-killing.” It is worth pointing out that the discrete setup has significant ad-
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vantages over the more popular continuous-time models, which are the tractability in
practice (due to simplicity), whilst from a theoretical point of view one can replace
the Wiener–Hopf factorisation by the conceptually simpler factorisation of Laurent
series (see, e.g., [1, 2]).

The paper is organised as follows. Section 2 recalls some basic definitions and
properties of the upwards skip-free right continuous random walks. In Section 3, we
derive the q-killed scale functions Wq and Zq , in terms of which we obtain expres-
sions for A(x, a) and B(x, a), as well as for their reflections. In the same section, a
new approach based on the use of recursive equations is applied to derive the respec-
tive q-killed resolvents, avoiding the use of Wiener–Hopf arguments. We also pro-
vide, as limiting cases, expressions for the corresponding one-sided exit problems.
Finally, within this section we derive identities for the exit problems and the resol-
vent in the case where the process is reflected at upper and lower barriers. Finally, in
Section 4 we apply the results to determine the so-called probability of bankruptcy in
the discrete omega model of the actuarial literature.

2 Preliminaries

Let X = {Xn}n∈N0 be an upwards skip-free random walk defined by

Xn = x + n −
n∑

i=1

Ci, (1)

where x ∈ Z and {Ci}i∈N are independent, identically distributed random variables
taking values in N0 (N ∪ {0}), with probability mass function pk = P(C1 = k) for
k ∈ N0 and probability generating function

p̃(z) := E

(
zC1
)

=
∞∑

k=0

zkpk, z ∈ (0, 1],

for which it is assumed that p0 > 0. Throughout this paper, the law of X such that
X0 = x, is denoted by Px and the corresponding expectation by Ex . We will write
P and E when x = 0. We note that within the actuarial literature, x can be inter-
preted as the initial capital of an insurance firm that gains capital (premium) 1 per
unit time, whilst Ci are the corresponding claims. As pointed out in [1], for n ∈ N,
E[z

∑n
i=1 Ci ] = [p̃(z)]n = (p0 + (1 − p0)p̃C|C≥1(z))

n from which one can easily
conclude that

∑n
i=1 Ci has compound binomial distribution, which justifies the name

of the model (compound binomial model) in the actuarial literature (see [5, 8, 18]).
For v ∈ (0, 1], it follows from [1] that the fluctuation identities for X rely heavily

on the scale function Wv . In more details, Wv provides a solution for the two-sided
upwards and downwards exit problems for 0 ≤ x ≤ a, given by

Ex

(
vτ+

a 1(τ+
a <τ−

−1)

)
= Wv(x)

Wv(a)
, (2)

and

Ex

(
vτ−

−11(τ−
−1<τ+

a )

)
= Zv(x) − Wv(x)

Wv(a)
Zv(a), (3)
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where 1(·) denotes the indicator function and the scale function Wv satisfies

∞∑
x=0

zxWv(x) = 1

p̃(z) − z/v
, z ∈ (0, ϕv),

with ϕv denoting the largest root of the equation z/p̃(z) = v (see also Eq. (3.3) in [5]
or Eq. (6.8) in [9]). Moreover, within the discrete time/space set up it has been shown
in [1] that the scale function Wv satisfies the harmonic recursion (see also Eq. (3.1)
in [16]),

Wv(x) = v

x∑
y=−1

Wv(x − y)py+1, x ∈ N0. (4)

On the other hand, the scale function Zv can be defined in terms of the scale function
Wv by

Zv(x) = 1 +
(

1

v
− 1

) x−1∑
y=0

Wv(y), x ∈ N0. (5)

Finally, it is known (see Remark 15 in [1] or Proposition 3.2 in [16]) that the scale
function Wv can be used to calculate the resolvent of the process X killed on exiting
Ia := {0, . . . , a − 1}, a ∈ N, which is given by

Uv(x, y) =
∞∑

n=0

vn
Px[Xn = y, n < τ−

−1 ∧ τ+
a ]

= v−1
(

Wv(a − 1 − y)Wv(x)

Wv(a)
− Wv(x − y − 1)

)
, (6)

where {x, y} ⊂ Ia , v ∈ (0, 1].
Remark 1. As pointed out in [1], in the discrete time/space setup the method for
deriving Eqs. (2)–(3) is significantly different from the continuous time and space
setup (where one has to make sure that the process drifts to ∞ and use change of
measure – see proof of Theorem 8.1 in [13]). However, the expressions in the two-
sided exit problems, as well as the resolvent measure are analogous with the spectrally
negative case.

Note that the role of the variable v ∈ (0, 1] in the above transforms can also
be thought of as a survival probability at each time period for the so-called killed
(stopped) random walk. That is, at each time point, the random walk X may be
‘killed’ with some probability 1 − v ∈ [0, 1) and understood to be absorbed into
some ‘cemetery’ type state.

In this paper, we shall consider the case where the ‘killing’ (survival) probability
at each time point is no longer constant but depends on the level of the process; in the
continuous-time literature, this is known as omega-killing (see [15]).

3 Main results

In this section, we derive explicit expressions for one- and two-sided exit problems
of q-killed upwards skip-free random walk, as well as their reflections. In particular,
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as is the case throughout the literature (see, e.g., [1, 13, 15]), we will show that all
these quantities of interest can be expressed in terms of two families of scale func-
tions, namely Wq and Zq , which we call q-scale functions. They satisfy the recursive
equations for x ∈ N0

Wq(x) =
x∑

k=−1

pk+1q(x − k)Wq(x − k), (7)

Zq(x) =
x∑

k=−1

pk+1q(x − k)Zq(x − k) +
∞∑

k=x+1

pk+1q(x − k), (8)

respectively, and Wq(x) = 0 and Zq(x) = 1 for x < 0. The fact that the scale
functions in the discrete setting satisfy recursive type expressions is not surprising.
This is a consequence of the so-called ‘one-step analysis’ and the properties of the
random walk. In fact, recursive expressions similar to those above have already been
identified in the literature, in the case of a constant killing function (see, for example,
[1] and [16]). In these papers, the recursions are only briefly discussed or used to
determine the form of the corresponding z-transforms as a means of determining
the scale functions themselves. In the more general setting of this paper, however,
recursive expressions turn out to be the only way to characterise the scale functions,
since it is not possible to obtain their z-transforms, and thus, recursive expressions
are employed to prove all of the following results. To the best of our knowledge,
the use of one-step analysis and recursive equations for deriving results for potential
measures is new in the literature.

3.1 The Wq scale function

In this subsection we begin by deriving a closed form expression for the two-sided
upwards exit problem, as well as additional results which further characterise the Wq

scale function.

Theorem 1 (Two-sided exit upwards). For x ∈ Z, there exists a discrete function
Wq : Z → R

+ such that for all x ≤ a ∈ N0 we have that

A(x, a) := Ex

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <τ−

−1)

⎤⎦ = Wq(x)

Wq(a)
, (9)

where Wq satisfies the recursion equation (7).

Proof. Following the same line of logic as in [1], let us define Wq(x) :=(
p0E

[∏τ+
x

n=1 q(Xn)1(τ+
x <τ−

−1)

])−1
for x ∈ N0 and set Wq(x) = 0 for x < 0. Then,

for x ∈ N0, applying the strong Markov property of X at τ+
x and using the fact that

X is upwards skip-free, for 0 ≤ x ≤ a, we have

E

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <τ−

−1)

⎤⎦ = E

⎡⎣ τ+
x∏

n=1

q(Xn)1(τ+
x <τ−

−1)

⎤⎦Ex

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <τ−

−1)

⎤⎦ ,
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or equivalently, after some rearranging

A(x, a) = A(0, a)

A(0, x)
= Wq(x)

Wq(a)
, (10)

where the last equality follows from the definition of Wq given above. Further, by
conditioning on the first period of time, we note that for 0 ≤ x < a, A(x, a) satisfies

A(x, a) =
x+1∑
k=0

pkq(x + 1 − k)A(x + 1 − k, a) =
x∑

k=−1

pk+1q(x − k)A(x − k, a),

from which, after substitution of Eq. (10), we obtain the recursive equation (7), i.e.

Wq(x) =
x∑

k=−1

pk+1q(x − k)Wq(x − k).

Remark 2. (i) The result in Eq. (9) holds for any Wq that satisfies Eq. (7) with ar-
bitrary Wq(0) and thus, is unique only up to a multiplicative constant. However,
it is discussed in [1] how the choice of normalisation, such that the initial value

Wq(0) =
(
p0P(0 < τ−

−1)
)−1 = 1/p0, results in a simpler expression for the

z-transform of Wq . Although the z-transform is not obtainable in closed form
in this paper, due to the generality of the ‘q-killing’ function, we also adopt this
normalisation for consistency and comparison of results.

(ii) Letting q(x) = v, for all x ∈ Z, in Eq. (9) of Theorem 1 we recover the results
of [1], given by Eqs. (2) and (4), respectively.

(iii) Under the discrete-time/space setup, the numerical calculation of Wq can be
obtained recursively by Eq. (7) (with initial value Wq(0) = 1/p0), which dif-
fers significantly from the numerical calculation of the corresponding ω-killed
scale function in the continuous Lévy setup, where solutions to renewal equa-
tions are required (see Eq. (1.2) in [15]).

Mostly due to the practical applications within risk theory and insurance, it is
common to consider the lower exit barrier at the level 0 (as in Theorem 1). However,
the result can be generalised to consider exit from a general strip [z, y] with z ≤ y,
which is given in the following corollary.

Corollary 1. For z ≤ x ≤ y, it follows that

Ex

⎡⎣ τ+
y∏

n=1

q (Xn) 1(τ+
y <τ−

z−1

)
⎤⎦ = Wq(x, z)

Wq(y, z)
, (11)

where the scale function Wq(·, z) satisfies the recursive equation

Wq(u, z) =
u−z∑

k=−1

pk+1q(u − k)Wq(u − k, z), u ≥ z, (12)

with Wq(u, z) = 0 for u < z.
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Remark 3. As in Theorem 1, we note that the above result holds for any Wq sat-
isfying Eq. (12). However, in a way similar to that discussed in Remark 2, for the
remainder of this paper we will consider the specific normalisation Wq(z, z) = 1/p0.
Finally, we note that Wq(u, 0) = Wq(u).

Remark 4. In fact, the recursion in Eq. (12) can be extended to include the case
u = z − 1, such that for all u ≥ z − 1

Wq(u, z) =
u−z∑

k=−1

pk+1q(u − k)Wq(u − k, z) − q(z)1(u−z=−1), (13)

which proves to be useful for the derivation of the potential measure in the next sec-
tions.

At first sight, the introduction of the Wq scale function may seem somewhat ar-
bitrary in the above results and appear only as a redefined version of the one-sided
exit quantities. However, it turns out, due to the fact that the two-sided upwards exit
plays a fundamental role in other exit problems, that many other exit identities can be
expressed solely in terms of Wq and another appropriately defined scale function Zq ,
see Section 3.2 below. For a comprehensive discussion of this in the Lévy setting, see
[13]. To help derive some of these additional exit quantities, we prove the following
martingale result for Wq .

Proposition 1. For every q : Z → (0, 1] and x, z ∈ Z,

{n∧τ−
z−1∏

i=1

q(Xi)Wq

(
Xn∧τ−

z−1
, z
)}

n∈N0

is a martingale under Px , with respect to (Fn)n∈N0 .

Proof. Let us first note that by conditioning on the size of the first jump and using
Eq. (12), it follows that for x ≥ z, we have

Ex

[
q(X1)Wq

(
X1, z

)] =
x−z∑

k=−1

pk+1q(x − k)Wq(x − k, z) = Wq(x, z). (14)

On the other hand, by conditioning with respect to the natural filtration Fn, and notic-
ing that Wq(Xτ−

z−1
, z) = 0, we find that

Ex

⎡⎢⎣(n+1)∧τ−
z−1∏

i=1

q(Xi)Wq(X(n+1)∧τ−
z−1

, z)1{τ−
z−1>n}

∣∣∣ Fn

⎤⎥⎦
=

n∏
i=1

q (Xi) 1{τ−
z−1>n}Ex

[
q
(
X(n+1)∧τ−

z−1

)
Wq

(
X(n+1)∧τ−

z−1
, z
) ∣∣ Fn

]
=

n∏
i=1

q(Xi)1{τ−
z−1>n}EXn

[
q(X1)Wq(X1, z)

∣∣ Fn

]
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=
n∏

i=1

q(Xi)1{τ−
z−1>n}Wq(Xn, z)

=
n∧τ−

z−1∏
i=1

q (Xi)Wq(Xn∧τ−
z−1

, z).

This completes the proof.

Using the above result, we can now derive identities for further exit problems, as
they are given in the corollary below.

Corollary 2. For any integer x ≤ a and z ≤ b ≤ a, we have

Ex

⎡⎢⎣τ−
b−1∏
i=1

q(Xi)Wq(Xτ−
b−1

, z)1(τ−
b−1<τ+

a )

⎤⎥⎦ = Wq(x, z) − Wq(x, b)

Wq(a, b)
Wq(a, z).

Proof. For any x ∈ Z, by the optional sampling theorem, we obtain

Wq(x, z) = Ex

⎡⎢⎣τ−
b−1∧τ+

a∏
i=1

q(Xi)Wq(Xτ−
b−1∧τ+

a
, z)

⎤⎥⎦
= Ex

⎡⎢⎣τ−
b−1∏
i=1

q(Xi)Wq(Xτ−
b−1

, z)1(τ−
b−1<τ+

a )

⎤⎥⎦
+ Ex

⎡⎣ τ+
a∏

i=1

q(Xi)Wq(Xτ+
a
, z)1(τ−

b−1≥τ+
a )

⎤⎦ .

Now, recalling that X possesses the upwards skip-free property and using Eq. (11),
yields

Wq(x, z) = Ex

⎡⎢⎣τ−
b−1∏
i=1

q(Xi)Wq(Xτ−
b−1

, z)1(τ−
b−1<τ+

a )

⎤⎥⎦
+ Wq(a, z)Ex

⎡⎣ τ+
a∏

i=1

q(Xi)1(τ−
b−1≥τ+

a )

⎤⎦
= Ex

⎡⎢⎣τ−
b−1∏
i=1

q(Xi)Wq(Xτ−
b−1

, z)1(τ−
b−1<τ+

a )

⎤⎥⎦+ Wq(a, z)
Wq(x, b)

Wq(a, b)
,

which, after some rearranging, gives the result.



Fluctuations of an omega-type killed process in discrete time 467

3.2 The Zq scale function

In this subsection, we introduce the second of the fundamental scale functions, namely,
the Zq scale function, and prove this also satisfies a recursive type equation given by
Eq. (8). The Zq scale function is initially employed, along with the Wq scale function
defined in the previous section, to solve the two-sided downward exit, i.e. B(x, a), but
are also shown to be sufficient for solving a variety of other exit type quantities.

Theorem 2 (Two-sided exit downwards). For x ∈ Z such that x ≤ a, we have

B(x, a) := Ex

⎡⎢⎣ τ−
−1∏

n=1

q(Xn)1(τ−
−1<τ+

a )

⎤⎥⎦ = Zq(x) − Wq(x)

Wq(a)
Zq(a), (15)

where Wq(x) and Zq(x) satisfy Eqs. (7) and (8), respectively.

Proof. For 0 ≤ x ≤ a, we can apply similar arguments as in [1], i.e. using the
upwards skip-free and strong Markov properties, to find

B(x, a) = Ex

⎡⎢⎣ τ−
−1∏

n=1

q(Xn)1(τ−
−1<∞)

⎤⎥⎦
− Ex

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <τ−

−1)

⎤⎦× Ea

⎡⎢⎣ τ−
−1∏

n=1

q(Xn)1(τ−
−1<∞)

⎤⎥⎦ .

Let us now define

B(x) := Ex

⎡⎢⎣ τ−
−1∏

n=1

q(Xn)1(τ−
−1<∞)

⎤⎥⎦ ,

with B(x) = 1 for x < 0. Then, the above equation becomes

B(x, a) = B(x) − A(x, a)B(a), (16)

and we note that since B(x, a) is monotonically increasing in a and bounded by
0 ≤ B(x, a) ≤ Px

(
τ−
−1 < τ+

a

) ≤ 1, it follows that lima→∞ B(x, a) = B(x) exists
and is finite. To compute B(·), we can apply a similar one-step analysis as in the
previous section, i.e.conditioning on the first jump, such that for x ∈ N0 we have

B(x) =
∞∑

k=0

pkq(x + 1 − k)B(x + 1 − k)

=
x∑

k=−1

pk+1q(x − k)B(x − k) +
∞∑

k=x+1

pk+1q(x − k), (17)

since B(x) = 1 for x < 0.



468 M. Şimşek et al.

Now, let us further define, for some arbitrary constant aB ∈ [0,∞), the Zq func-
tion

Zq(x) := B(x) + aBWq(x). (18)

Then, by Eq. (16) it is clear that we also have

B(x, a) = Zq(x) − Wq(x)

Wq(a)
Zq(a),

and moreover, by solving Eq. (18) with respect to B(x), substituting the resulting
equation into Eq. (17) and using Eq. (7), we see that Zq also satisfies a recursive
expression given by Eq. (8). Finally, it is easy to see that the result holds for the case
x < 0 after noting that Zq(x) = 1 for x < 0, which follows from the definitions of
B(x) and Wq .

Remark 5. In a way similar to Theorem 1, we point out that due to the form of the
expressions defined in the above result, the initial condition Zq(0) does not need to be
specified in order to compute B(x, a). However, for the sake of results presented later
in this paper and for reasons given in [1] and references therein (see also Remark 6
below), we will choose aB := p0(1 − B(0)) in the above, so that Zq(0) = 1.

Remark 6. It is worth pointing out here that in the above theorem the function B(·)
along with its recursive relationship given in Eq. (17) is sufficient to compute B(x, a)

since Eq. (16) holds for any B(·) that satisfies the recursion equation (17). However,
it is usually preferable to work with Zq as it leads to more concise expressions –
this is especially the case when dealing with transforms of these functions – and, as
discussed in Remark 5, allows us to identify the value of Zq(0).

In a way similar to Corollary 1, it is not difficult to see that the above result can
be generalised to obtain the downwards exit identity from a general interval [z, y] as
shown in the following corollary.

Corollary 3. For z ≤ x ≤ y, it follows that

Ex

⎡⎢⎣τ−
z−1∏

n=1

q(Xn)1(τ−
z−1<τ+

y )

⎤⎥⎦ = Zq(x, z) − Wq(x, z)

Wq(y, z)
Zq(y, z), (19)

where

Zq(u, z) =
u−z∑

k=−1

pk+1q(u−k)Zq(u − k, z)+
∞∑

k=u−z+1

pk+1q(u−k), u ≥ z, (20)

with Zq(x, 0) = Zq(x).

Remark 7. For the same arguments as in Remark 5, in this paper we choose to define
Zq(·, ·) so that Zq(x, z) = 1 for x ≤ z.

Although the two-sided upwards or downwards exit problems are of interest in
their own right and do have applications in many areas, e.g., dividend problems in
risk theory (see [9]), the corresponding one-sided exit problems have received a great
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deal of interest in the literature and have many applications in ruin theory (see [5, 9]
and [18] among others). One such quantity, which is used in the final section to derive
the so-called bankruptcy probability, can be obtained by taking the limit as a → ∞
in Theorem 1 from which we obtain the following corollary.

Corollary 4. For all x ≥ 0,

Ex

[ ∞∏
n=1

q(Xn)1(τ−
−1=∞)

]
= aW−1(∞)Wq(x), (21)

where aW−1(∞) = lima→∞ Wq(a)−1.

Proof. To prove the result, it is sufficient to show the existence and finiteness of
the limits. First note that Wq(a) (hence also Wq(a)−1) is monotone in a. Moreover,
Wq(a)−1 is bounded, since, by definition,

Wq(a)−1 = p0E

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <τ−

−1)

⎤⎦ ≤ p0P(τ+
a < τ−

−1).

It is worth pointing out that each of the results presented so far are more general
than they may first appear and contain, by a suitable choice of the ‘q-killing’ function,
other well-known transforms from the literature. One such example is the generalised
version for the transform of the undershoot (deficit) below the lower level and is given
in the following proposition.

Proposition 2. For ξ ∈ (0, 1], let

q(x) =
{

q̃(x), x ≥ 0,

ξ−x, x < 0,

where q̃ : N → (0, 1]. Then, it follows that for x ≤ a,

B(x, a) := Ex

⎡⎢⎣τ−
−1−1∏
i=1

q̃(Xi)ξ
−X

τ
−
−1 1(τ−

−1<τ+
a )

⎤⎥⎦ = Z̃q(x, ξ) − Wq(x)

Wq(a)
Z̃q(a, ξ),

where Z̃q satisfies the recursion

Z̃q(x, ξ) =
x∑

k=−1

pk+1q(x − k)Z̃q(x − k, ξ) +
∞∑

k=x+1

pk+1ξ
−(x−k).

In particular, if we further let q̃(x) = v for all x ≥ 0, then we note that vB(x, a)

reduces to the joint transform of the time, and deficit, below 0 as seen in [1]. It is
worth highlighting that this method is not possible in the classical setting of [1],
where the authors must first determine the more complicated joint transform and can
then recover the simpler two-sided exit identity as a special case.
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3.3 Resolvents

In this subsection, we establish identities for resolvents of the q-killed upwards skip-
free random walk, which can be used to determine the distribution of the level of a
q-killed random walk prior to exiting a given interval. We point out that in [1], the
resolvent measure is obtained based on Proposition 3.2 in [16], where a combina-
torial approach is used whilst in [12] the law of running infima (known by Wiener–
Hopf factorisation) is considered. In this paper, we employ first-step analysis to derive
semi-explicit expressions for the q-killed resolvent measure, given in the following
theorem.

Theorem 3 (Resolvent). For x, y ∈ [0, a], the resolvent of the q-killed process which
is further killed on exiting {0, . . . a − 1} is given by

Uq(x, y) :=
∞∑

n=0

Ex

[
n∏

i=1

q(Xi)1(Xn=y, n<τ−
−1∧τ+

a )

]

= q(y + 1)−1
(Wq(a, y + 1)Wq(x)

Wq(a)
− Wq(x, y + 1)

)
, (22)

where Wq(·, ·) is given in Eq. (12).

Proof. Conditioning on the first period of time, we note that for x ∈ [0, a − 1], the
resolvent measure Uq satisfies the recursive equation

Uq(x, y) = 1(x=y) (23)

+
x+1∑
k=0

pkq(x + 1 − k)

∞∑
n=1

Ex+1−k

[
n−1∏
i=1

q(Xi)1(Xn−1=y, n−1<τ−
−1∧τ+

a )

]

= 1(x=y) +
x∑

k=−1

pk+1q(x − k)Uq(x − k, y). (24)

On the other hand, from Eqs. (7) and (13), we note that for some constant ca , it
follows that

caWq(x) − q(y + 1)−1Wq(x, y + 1)

= 1(x=y) +
x∑

k=−1

pk+1q(x − k)
(
caWq(x − k) − q(y + 1)−1Wq(x − k, y + 1)

)
,

since
∑x

k=x−y q(x − k)pk+1Wq(x − k, y + 1) = 0, and thus, satisfies the same re-
cursive equation as Uq . In particular, we have that

Uq(x, y) = caWq(x) − q(y + 1)−1Wq(x, y + 1),

when

ca = q(y + 1)−1Wq(a, y + 1)

Wq(a)
,

due to the boundary condition Uq(a, y) = 0, which completes the proof.
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Similar to Corollary 1 and Corollary 3, the above result can be generalised to
obtain the resolvent for q-killed upwards skip-free random walk in a general interval
[z, y] with z ≤ y as shown in the following corollary.

Corollary 5. For x, y, z ∈ [0, a], it follows that

Uq(x, y, z) :=
∞∑

n=0

Ex

[
n∏

i=1

q(Xi)1(Xn=y, n<τ−
z−1∧τ+

a )

]

= q(y + 1)−1
(Wq(a, y + 1)Wq(x, z)

Wq(a, z)
− Wq(x, y + 1)

)
, (25)

where Wq(·, ·) is given in Eq. (12).

3.4 Exit times for reflected processes

In this subsection, we derive exit identities for reflected q-killed upwards skip-free
random walks. We should point out, as in the case of spectrally negative Lev́y pro-
cess [see for example [17]], these identities can be derived by means of martingale
properties of scale functions. However, in this paper, we will demonstrate how the
‘q-killing’ function can be used to develop a probabilistic argument in terms of the
exit identities, given in Theorem 1 and Theorem 2. We point out that the random walk
reflected from below has numerous applications in actuarial science, particularly in
risk models with capital injections (see [3]).

Let us define the random walk reflected at zero upwards by

Yn = Xn − In, (26)

where In := inf0≤k≤n(Xk ∧ 0). Thus, (Yn, In) is a solution to a discrete version of
the classical Skorokhod reflection problem. The first passage times for this reflected
process is then denoted by

τ̂ +
a = inf{n ≥ 0 : Yn ≥ a}. (27)

Theorem 4. For 0 ≤ x ≤ a, we have

Ĉ(x, a) := Ex

⎡⎣ τ̂ +
a∏

i=1

q(Yi)1(̂τ +
a <∞)

⎤⎦ = Zq(x)

Zq(a)
, (28)

where Zq satisfies Eq. (8) with q(x) ≡ q(0) for all x ≤ 0.

Proof. For the reflected process, we have the following two scenarios: either the
process exits from above before being reflected (at zero) or the process reflects from
below (which is equivalent to the nonreflected process down-crossing zero) before
reaching level a ∈ N. As such, if we consider a specific q-killing function which
takes general values q(x) for x ≥ 0, but constant and equal to q(0) otherwise, i.e.
q(x) ≡ q(0) for all x < 0, it follows that

Ĉ(x, a) = A(x, a) + B(x, a)Ĉ(0, a), (29)
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where A(·, a) and B(·, a) are understood to have the specific q-killing function de-
fined above, and thus, it only remains to calculate the constant Ĉ(0, a). Substituting
x = 0 in Eq. (29) gives

(1 − B(0, a))Ĉ(0, a) = A(0, a),

and thus, by using Eq. (9) and Eq. (15), we get that

Ĉ(x, a) = A(x, a) + B(x, a)
A(0, a)

1 − B(0, a)

= Wq(x)

Wq(a)
+
(
Zq(x) − Wq(x)

Wq(a)
Zq(a)

)
×
⎛⎝ Wq(0)/Wq(a)

1 −
(

1 − Wq (0)

Wq (a)
Zq(a)

)
⎞⎠

= Wq(x)

Wq(a)
+
(
Zq(x) − Wq(x)

Wq(a)
Zq(a)

)
1

Zq(a)
= Zq(x)

Zq(a)
,

with q(x) ≡ q(0) for x ≤ 0.

Using arguments similar to Theorem 3, we can also derive the corresponding
resolvent for this reflected random walk.

Theorem 5. For x, y ∈ [0, a], the resolvent of the q-killed upwards skip-free random
walk reflected at zero upwards and killed on exiting {0, . . . , a − 1} is given by

Lq(x, y) :=
∞∑

n=0

Ex

[
n∏

i=1

q(Yi)1(Yn=y, n<τ̂ +
a )

]

= q(y + 1)−1
(Zq(x)

Zq(a)
Wq(a, y + 1) − Wq(x, y + 1)

)
,

where Zq and Wq(·, ·) are defined in Eq. (8) and Eq. (12), respectively, with q(x) ≡
q(0) for all x ≤ 0.

Proof. Similarly to Theorem 3, conditioning on the first period of time and taking
into account that the process is reflected at zero, we obtain the recursive equation

Lq(x, y) = 1(x=y) +
x∑

k=−1

pk+1q(x − k)Lq(x − k, y) + q(0)Lq(0, y)

∞∑
k=x+1

pk+1.

(30)

Moreover, since q(x) ≡ q(0) for x ≤ 0, Eq. (8) becomes

Zq(x) =
x∑

k=−1

pk+1q(x − k)Zq(x − k) + q(0)

∞∑
k=x+1

pk+1,

which, along with Eq. (13), yields that for some constant cL, we have

cLZq(x) − q(y + 1)−1Wq(x, y + 1)
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= 1(x=y) +
x∑

k=−1

pk+1q(x − k)
[
cLZq(x − k) − q(y + 1)−1Wq(x − k, y + 1)

]
+ cLq(0)

∞∑
k=x+1

pk+1,

since
∑x

k=x−y q(x−k)pk+1Wq(x − k, y+1)= 0. Hence, after noting that cLZq(0)−
q(y + 1)−1Wq(0, y + 1) = cL, since Zq(0) = 1 and Wq(0, y + 1) = 0, for y ∈
[0, a), the expression on the right-hand side of the above equation satisfies the same
recursion as Lq . Finally, using the fact Lq(a, y) = 0, we have that

Lq(x, y) = cLZq(x) − q(y + 1)−1Wq(x, y + 1),

when

cL = q(y + 1)−1Wq(a, y + 1)

Zq(a)
,

which completes the proof.

Finally, to complete this section, let us define the q-killed process reflected at
a ∈ Z downwards, for a > 0, by

Ỹn = Xn − Sn,

with Sn = sup0≤k≤n (Xk ∨ a) − a, and the corresponding first passage time as

τ̃−
−1 = inf{n ≥ 0 : Ỹn ≤ −1}.

Theorem 6. For x ≥ 0, we have

Ex

⎡⎢⎣ τ̃−
−1∏

i=1

q(Ỹi)1(̃τ−
−1<∞)

⎤⎥⎦ = Zq(x) − Wq(x)�q(a),

with

�q(a) = Zq(a + 1)

Wq(a + 1)
+ 1

Wq(a + 1) − Wq(a)

[Wq(a)Zq(a + 1)

Wq(a + 1)
− Zq(a)

]
,

where Wq and Zq are given in Eqs. (7) and (8), respectively, with q(x) ≡ q(a) for
all x ≥ a + 1.

Proof. Using similar arguments as in Theorem 4, we consider a specific q-killing
function of the form q(x) for all x ≤ a and q(x) ≡ q(a) for all x ≥ a + 1. More-
over, we have the following two scenarios: either the process exits from below before
reaching level a + 1 or it exits from above (hits level a + 1) and is reflected at the
level a. Therefore, we have

C̃(x, a) = B(x, a + 1) + A(x, a + 1)C̃(a, a),

from which by calculating the value of C̃(a, a) in the same manner as in Theorem 4,
we get the required result.



474 M. Şimşek et al.

It is worth pointing out once again that, in a way similar to Proposition 2, the
above results are more general than they appear. For example, if within the proof of
Theorem 4 we redefine the specific q-killing function such that for some ξ ∈ (0, 1],
we have q(x) ≡ q(0)ξ−x for all x < 0, we immediately obtain the generalised
version of the transform of the so-called downwards regulator In = inf0≤k≤n(Xk ∧0)

at the time of exit, i.e.

Ex

⎡⎣ τ̂ +
a∏

i=1

q(Yi)ξ
I
τ̂

+
a 1(̂τ +

a <∞)

⎤⎦ .

A similar idea can also be used to determine the corresponding generalised version
of the transform for the upwards regulator, namely Sn, in Theorem 6. In fact, this
quantity also contains the generalised joint transform

Ex

⎡⎢⎣ τ̃ −
−1∏

i=1

q(Yi)ξ
S

τ̃
−
−1 θ

Y
τ̃
−
−1 1(̃τ −

−1<∞)

⎤⎥⎦
for some ξ, θ ∈ (0, 1].

3.5 The Hq scale function

In this subsection we introduce the third scale function, namely Hq , which satisfies
the recursive equation

Hq(x) =
∞∑

k=−1

pk+1q(x − k)Hq(x − k), (31)

and plays a fundamental role in the one-sided upwards exit problem and the corre-
sponding potential measure, which are given in the following theorem.

Proposition 3 (One-sided upwards exit). For x ≤ a, it follows that

Ex

⎡⎣ τ+
a∏

n=1

q(Xn)1(τ+
a <∞)

⎤⎦ = Hq(x)

Hq(a)
, (32)

where Hq satisfies Eq. (31). Moreover, for x, y ≤ a, the corresponding resolvent is
given by

	q(x, y) :=
∞∑

n=0

Ex

[
n∏

i=1

q(Xi)1(Xn=y, n<τ+
a )

]

= q(y + 1)−1
(Hq(x)

Hq(a)
Wq(a, y + 1) − Wq(x, y + 1)

)
. (33)

Proof. The results are a direct consequence of Corollary 1 (with y = a) and The-
orem 3, respectively, after taking the limits as z → −∞ and defining Hq(x) :=
limz→−∞ Wq(x, z).
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Unfortunately, due to the infinite summation in Eq. (31), it is not possible to com-
pute Hq recursively in the general case, unlike for Wq and Zq . In the classical case,
where q(x) = v for all x ∈ Z, so that the killing rate becomes independent of the
level, the recursion reduces to

Hq(x) = v

∞∑
k=−1

pk+1Hq(x − k).

Then, assuming Hq takes the form Hq(x) = φ−x
v for some constant value φv ∈ R

+,
it is easy to see that φv is the solution to Lundberg’s equation (see [8])

φv = vp̃(φv),

and we obtain the classical one-sided upwards exit result, i.e. Ex

[
vτ+

a 1(τ+
a <∞)

]
=

φa−x
v (see [1] and references therein).

We have already seen in Proposition 2, and in discussions at the end of the pre-
vious section, how the generality of the ‘q-killing’ allows us to retrieve different
quantities by appropriate choices of the killing function itself. We end this section by
presenting another example of this property.

One solution to dealing with the infinite summation in Eq. (31) is to choose q(·)
such that q(x) = 0 for x < z, with z < a. In this case, each Hq(x) can be writ-
ten as a factor of Hq(z), and thus, it is sufficient to determine Eq. (32). However,
the reader may notice that this is equivalent to the two-sided upwards problem, i.e.
Hq(x) = Wq(x, z). That is, in the q-killing model, it is possible to recover the two-
sided exit problems (since similar arguments hold for the one- and two-sided down-
wards exits as well) from the corresponding one-sided problems. This is not possible
in the classic case. In fact, with the above observation in mind, it is possible to think
of the classical model as a model with a level dependent killing. That is, killing oc-
curs with probability 1 − v ∈ [0, 1) between the barriers and probability one above
or below the barrier depending on the exit problem itself. In the final section, we
will consider an example of a specific q-killing function which corresponds to the
so-called bankruptcy model within the risk theory literature.

4 Bankruptcy probability in ruin theory

It is well known that within actuarial science the surplus of an insurance company in
discrete time can be modelled as an upwards skip-free random walk, often called the
compound binomial risk model. Within the classical theory, the process stops when
the event of ruin (first time the process becomes negative) occurs. As an extension to
this, the so-called bankruptcy (omega) model allows the process to continue whilst
negative (within some specified region) but to cease upon ‘bankruptcy’ (see [10], for
the continuous time setting). Bankruptcy may occur in one of two ways: 1) whilst in
the so-called ‘red zone’, i.e. [−d, 0), there is a level dependent bankruptcy probability
at each period of time, or 2) if the surplus falls even further into deficit below the
bankruptcy level −d < 0. Then, the bankruptcy probability, denoted ψ(x), is defined
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as

ψ(x) = 1 − Ex

[ ∞∏
n=1

q(Xn)1(τ−
−d−1=∞)

]
= 1 − aW−1(∞,−d)Wq(x,−d),

where aW−1(∞,−d) = lima→∞ Wq(a,−d)−1.
To model the bankruptcy probability described above, we will choose a specific

function q(·), for γ0, γ1 ∈ (0, 1], of the form

q(x) = 1 − γ0γ
(x+d)
1 1{x∈[−d,0)},

which is a decreasing function of x and equal to one on the positive half line, so that
bankruptcy cannot occur whilst the surplus is nonnegative. In this case, the recursive
equation (12) becomes

Wq(x,−d) =
x+d∑
k=−1

pk+1Wq(x − k,−d)

− γ0

x+d∑
k=−1

pk+1γ
x+d−k
1 1{x−k∈[−d,0)}Wq(x − k,−d).

In order to demonstrate the behaviour of the scale function Wq(·,−d) and associ-
ated bankruptcy probability, let us consider a specific example with d = 10, γ0 = 0.5,
γ1 = 0.7. We will also assume that the jump size distribution, pk , is geometrically
distributed with varying success parameter. In order to keep in line with the risk the-
ory literature, we will only consider success probabilities greater than 0.5 to ensure
a positive asymptotic drift of the random walk (net profit condition), see, for exam-
ple, [8] among others. For the bankruptcy probability, the limit aW−1(∞,−10) has been
approximated using a ‘sufficiently large’ value of a = 150. The justification for this
value of a can be seen in Figure 1 as the point at which the scale function stabilises,
i.e. approaches its limiting values for all values of p > 0.5.
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Fig. 1. Wq(x,−10) scale function

Fig. 2. Probability of bankruptcy
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