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Abstract The test for the location of the tangency portfolio on the set of feasible portfolios
is proposed when both the population and the sample covariance matrices of asset returns are
singular. The particular case of investigation is when the number of observations, n, is smaller
than the number of assets, k, in the portfolio, and the asset returns are i.i.d. normally distributed
with singular covariance matrix � such that rank(�) = r < n < k + 1. The exact distribution
of the test statistic is derived under both the null and alternative hypotheses. Furthermore, the
high-dimensional asymptotic distribution of that test statistic is established when both the rank
of the population covariance matrix and the sample size increase to infinity so that r/n →
c ∈ (0, 1). Theoretical findings are completed by comparing the high-dimensional asymptotic
test with an exact finite sample test in the numerical study. A good performance of the obtained
results is documented. To get a better understanding of the developed theory, an empirical study
with data on the returns on the stocks included in the S&P 500 index is provided.
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1 Introduction

Modern portfolio theory, introduced by Harry Max Markowitz in [28], marked an
early milestone in the formalization of the asset allocation decision-making process.
Over the following decades, researchers have continued to advance this theory, en-
hancing methods for portfolio assessment and management. The extensive body of
literature on modern portfolio theory has extensively investigated the ramifications
of estimation uncertainty in a general context. Notable studies include the works
[2, 20, 22, 25, 27, 35], among many others. Research on the topic of the tangency port-
folio (TP) can be traced back to the late 1970s, with contributions from [18, 24, 44]
conducting Bayesian analyses of the TP. Approximations for the mean and variance
of the estimated TP weights were provided in [17], while a statistical test for these
weights was derived in [10]. This line of research was also developed in [35] by deriv-
ing the asymptotic distribution for portfolio weights. Subsequently, [21] characterized
the moments of TP weights assuming normally distributed returns and [5] developed
statistical tests for the composite hypothesis of TP weights. The sampling distribu-
tions from the perspective of the mean squared error loss function were investigated
in [37], while [3] used a Bayesian approach to investigate the properties of the TP
weights. Let us note that, in the Bayesian setting, the posterior distribution of the TP
weights is proportional to the product of a (singular) Wishart matrix and a (singular)
Gaussian vector. The statistical properties of these products in various scenarios have
also been investigated (see, for example, [45] and references therein). A statistical test
of the TP efficiency in small and large dimensions was derived in [31, 32], while [23]
provided the high-dimensional asymptotic distribution of the estimated TP weights
and developed an asymptotic test for linear combinations of the TP elements. More
recently, [16, 19] studied the distributional properties of the estimated TP weights
assuming that the asset returns follow non-Gaussian distributions.

The above-mentioned papers focus on the case when the number of assets, n, is
greater than the portfolio size, k, and the population covariance matrix, �, is positive
definite. In this setting, the sample covariance matrix is nonsingular. However, one
can face cases when the population and/or sample covariance matrices are singular.
The case of a singular population covariance matrix can arise due to multicollinearity
and correlations of asset returns. Another source of singularity can arise in situations
where the sample size is smaller than the portfolio size, i.e. n < k + 1. These sources
of singularity in the portfolio context are of interest in the present paper and have
recently received considerable attention in the academic literature, leading to the de-
velopment of various methods. For example, [14, 26, 38] proposed the mathematical
solutions to the mean-variance portfolio problem with a singular population covari-
ance matrix, while [4, 6, 7] provided statistical analysis of the mean-variance portfolio
weights as well as portfolio compositions under both singular population and sample
covariance matrices. For the TP weights, [8] delivered statistical inference in small
and large dimensions by considering scenarios when both the population and sample
covariance matrices are singular. Lastly, [1] investigated the mean and variance of the
TP weights in the case of positive definite population covariance matrix and singular
sample covariance matrix.

Let’s now discuss closely the setting with two sources of singularity. Let xt ,



A test on the location of tangency portfolio 45

t = 1, . . . , n, be k-dimensional vectors of asset returns which are independently and
identically distributed (i.i.d.) with mean vector μ and covariance matrix �. Assuming
that � is singular with rank(�) = r < n < k + 1 means that k − r variables can
be obtained by a linear combination of the remaining r variables, leading to obser-
vations x̃t ∈ R

r of reduced dimension. Since the coefficients of this linear combina-
tion are nonrandom, this reduces to the problem of observing the r-dimensional vec-
tor. Hence, both sources of singularity disappear. In particular, the singularity source
from the population covariance matrix � disappears since x̃t ∈ R

r have a nonsingular
population covariance matrix. Moreover, the singularity source from the assumption
that n < k + 1 is not valid either, since after the transformation the dimension of
the observed vector of asset returns is r < n. Therefore, based on the mathematical
framework, it seems that the results of the present paper lack practical implications.
However, this reasoning can be misleading since in any practical context, data is
inevitably subject to distortion caused by random noise arising from measurement
error, computational inaccuracies, negligible and uninteresting dependencies in the
data, and so on. In other words, a pure case of singularity resulting from data depen-
dencies is unlikely to be observed. Let’s note that the case when the rank exceeds the
sample size, i.e. n ≤ r < k +1, remains open and needs to be treated separately. This
is mainly due to the lack of properties of singular Wishart distribution [7, 11, 41] in
this setting that can help us understand the distributional properties of the estimated
portfolio weights.

Thus, the present paper assumes that the asset returns x1, . . . , xn are i.i.d. and
follow a multivariate normal distribution with mean vector μ and covariance matrix
� such that rank(�) = r < n < k + 1. In this setting, we contribute to the exist-
ing literature in the following way. First, we deliver the extension of the test on the
existence of the TP on the set of feasible portfolios and provide its distribution under
both null and alternative hypotheses. Second, we give a simple and accurate approx-
imation of the obtained results in the high-dimensional setting. To show the use of
the developed theory, we provide an empirical study with data on the returns on the
stocks included in the S&P 500 index. Let’s note that in this study we estimate the
actual rank of the population covariance matrix � following the approach proposed
by [33] which is also used in the portfolio context by [8].

The rest of the paper is organized as follows. In Section 2, we establish the test
statistic and its exact distribution under both null and alternative hypotheses. Section
3 focuses on the asymptotic distribution of the test statistic in the high-dimensional
asymptotic regime. Section 4 provides the results of the numerical study, while Sec-
tion 5 presents the empirical study. Finally, Section 6 gives concluding remarks.

2 Exact test

Let xt = (x1t , . . . , xkt )
′ be a k-dimensional vector of returns of the risky assets at

time point t = 1, . . . , n. Throughout the paper, it is assumed that x1, . . . , xn are
independent and identically normally distributed with mean vector μ and covariance
matrix �. Additionally, it is assumed that � is singular with rank(�) = r < n <

k + 1. Let’s note that the assumption of normality is a common assumption in the
financial literature and is found to be reasonable in the portfolio context (see, for
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example, [12, 42]). Furthermore, let w = (w1, . . . , wk)
′ be a k-dimensional vector

of portfolio weights, where wi is the portion of the wealth allocated to the i-th asset.
The expected return and variance of the portfolio are denoted by R = w′μ and V =
w′�w, respectively.

The optimal portfolios as proposed by Markowitz’s theory lie on the upper part
of the parabola in the mean-variance space. This parabola is known as the efficient
frontier (EF) and, if � is positive definite, is given by

(R − RGMV )2 = s(V − VGMV ) (1)

where

RGMV = 1′
k�

−1μ

1′
k�

−11k

and VGMV = 1

1′
k�

−11k

(2)

are the expected return and variance of the portfolio with the smallest variance among
the efficient portfolios, which is called the global minimum variance portfolio (GMVP).
Here, the symbol 1k stands for the k-dimensional vector of ones. The parameter

s = μ′Rμ with R = �−1 − �−11k1′
k�

−1

1′
k�

−11k

(3)

stands for the slope coefficient of the parabola.
On the other hand, if � is singular, the EF is constructed by replacing the inverse

with the Moore–Penrose inverse. Then the EF parameters become

RGMV = 1′
k�

+μ

1′
k�

+1k

, VGMV = 1

1′
k�

+1k

, s = μ′Rμ (4)

with R = �+ − �+1k1′
k�

+
1′
k�

+1k
. Let us note that a number of papers have applied the

Moore–Penrose inverse in the portfolio theory, see, for example, [6–8, 38]. We notice
that the relations in (4) can only be used under the condition that 1′

k�
+1k �= 0,

which is assumed throughout the paper. This condition is only trivially encountered
in applications and doesn’t have any specific economic interpretation. However, it is
important to know whether this condition holds before proceeding with the analysis.
For discussion about this point, we refer to Remark 3 in [4].

If there is a possibility to invest in a risk-free asset, one may choose to put a
portion of his/her investment into a risk-free asset, henceforth, the efficient frontier
becomes a straight line in the mean-variance space passing through the return of the
risk-free asset and tangent to the parabola in (1). This tangent point is also known as
the tangency portfolio (TP), see, for example, [15, 30]. Here, we note that the structure
of the TP weights is similar to the structure of the linear discriminant function [5, 13,
40]. The optimality/efficiency of the TP depends crucially on the relation between the
return of the GMVP, RGMV , and the return of the risk-free asset, rf , as can be seen
in Figure 1. The mean-variance efficiency of TP is then observed when the GMVP
return is greater than the return of the risk-free asset, i.e. RGMV > rf . This can be
formulated as a statistical test with the hypotheses expressed as
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Fig. 1. Location of the tangency portfolio on the set of feasible portfolios in the two cases:
(a) RGMV ≥ rf and (b) RGMV < rf

H0 : RGMV ≤ rf against H1 : RGMV > rf . (5)

The rejection of the null hypothesis suggests that the TP lies on the upper part of
the efficient frontier as shown in Figure 1(a). On the other hand, if the null hypothesis
in (5) cannot be rejected as in Figure 1(b), then the investor cannot be certain of the
optimality of the TP, and allocation into the risk-free asset could be considered as a
suitable alternative.

Assuming positive definiteness of the population covariance matrix, �, [31, 32]
constructed the test statistic for testing the hypotheses in (5) and derived its distribu-
tion for both finite and high-dimensional settings (i.e. n > k + 1).We extend those
results for testing (5) in case of n < k + 1 and singular � with rank(�) = r < n by
considering the test statistic

T =
√

n − r

n − 1

R̂GMV − rf√
1 + n

n−1 ŝ

√
V̂GMV

n

, (6)

where

R̂GMV = 1′
kS+x

1′
kS+1k

, V̂GMV = 1

1′
kS+1k

, ŝ = x′R̂x (7)

are the sample estimators of RGMV , VGMV and s, with R̂ = S+ − S+1k1′
kS+

1′
kS+1k

, while

x = 1

n

n∑
i=1

xi and S = 1

n − 1

n∑
i=1

(xi − x)(xi − x)′

are the sample estimators of μ and �, respectively.
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The following theorem provides distribution of T under both the null and alter-
native hypotheses. Note that f subindexed by a distribution stands for the density of
that distribution.

Theorem 1. Let x1, . . . , xn be i.i.d random vectors with x1 ∼ Nk(μ,�), k > n − 1
and rank(�) = r < n. Then the density of T is given by

fT (x) = n(n − r + 1)

(r − 1)(n − 1)

∫ ∞

0
ftn−r,δ(y)

(x)fFr−1,n−r+1,ns

(
n(n − r + 1)

(r − 1)(n − 1)
y

)
dy (8)

where δ(y) =
√

n
1+n/(n−1)y

SGMV with SGMV = RGMV −rf√
VGMV

which is the Sharpe ratio

of the GMVP.

Proof. The density function of the test statistic T in (6) is obtained by utilizing the
distributional properties of essential quantities R̂GMV , V̂GMV and ŝ as presented in
[6]. In particular, we make use of the following properties:

(P1) R̂GMV |̂s ∼ N
(
RGMV , (1 + n

n−1 ŝ)
VGMV

n

)
;

(P2) n(n−r+1)
(n−1)(r−1)

ŝ ∼ Fr−1,n−r+1,ns ;

(P3) (n − 1)V̂GMV /VGMV ∼ χ2
n−r ;

(P4) V̂GMV is independent of (R̂GMV , ŝ).

Now, adding and subtracting RGMV on the numerator and dividing both the numer-
ator and denominator by

√
VGMV of the test statistic in (6), and rearranging it, we

get

T =
⎛⎜⎝ R̂GMV − RGMV√

1 + n
n−1 ŝ

√
VGMV

n

+ RGMV − rf√
1 + n

n−1 ŝ

√
VGMV

n

⎞⎟⎠ 1√
n−1
n−r

V̂GMV

VGMV

.

Applying properties (P1), (P3) and (P4) and using the definition of noncentral t-distri-
bution, we obtain that

T |̂s = y ∼ tn−r,δ(y) with δ(y) = RGMV − rf√
1 + n

n−1y

√
VGMV

n

.

Applying property (P2) and computing the unconditional distribution of T , we arrive
at the statement of Theorem 1.

In Theorem 1, we can observe that the density function of the test statistic T is
expressed as a one-dimensional integral of the product of two well-known univariate
density functions. This formula can be easily computed in many statistical/mathemat-
ical software such as, for example, R and Mathematica. From the proof of Theorem
1, it can be also seen that the test statistic T may be represented as a mixture of a
noncentral t-distribution with n − r degrees of freedom and a noncentrality parame-
ter δ(y). Now, having the density function of T , we can derive the critical value for
the test (5) at significance level α. This result is provided in the next theorem.
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Theorem 2. Under the conditions of Theorem 1, it holds that

sup
VGMV >0,s≥0,RGMV ≤rf

GT,α,tn−r;1−α
(SGMV , s) ≤ PH0:RGMV =rf

(
T > tn−r;1−α

) = α,

where

GT,α,c (SGMV , s) = P (T > c) =
∫ ∞

c

fT (x)dx

and the symbol tn−r;1−α stands for the (1−α) quantile of the t-distribution with n−r

degrees of freedom.

Proof. Using Theorem 1, for a given constant c, we have that

GT,α,c (SGMV , s) =
= n(n − r + 1)

(r − 1)(n − 1)

∫ ∞

c

∫ ∞

0
ftn−r,δ(y)

(x)fFr−1,n−r+1,ns

(
n(n − r + 1)

(r − 1)(n − 1)
y

)
dydx

= n(n − r + 1)

(r − 1)(n − 1)

∫ ∞

0

(
1 − Ftn−r,δ(y)

(c)
)
fFr−1,n−r+1,ns

(
n(n − r + 1)

(r − 1)(n − 1)
y

)
dy,

(9)

where Ftn−r,δ(y)
(·) stands for the cumulative distribution function of the noncentral

t-distribution with n − r degrees of freedom and a noncentrality parameter δ(y).
Since 1 − Ftn−r,δ(y)

(c) ≤ 1 − Ftn−r,0(c) for all y ≥ 0 and RGMV < rf , we obtain that

GT,α,c (SGMV , s)

≤ n(n − r + 1)

(r − 1)(n − 1)

∫ ∞

0

(
1 − Ftn−r,0(c)

)
fFr−1,n−r+1,ns

(
n(n − r + 1)

(r − 1)(n − 1)
y

)
dy

= 1 − Ftn−r ,0(c) = α (10)

with c = tn−r;1−α . The proof of the theorem is completed.

Theorem 2 delivers us the message that the test of (5) rejects H0 in favor of H1 as
T ≥ tn−r;1−α . We can also see that the power of the test based on the test statistic T

is given by

GT,α,tn−r;1−α
(SGMV , s) = P

(
T > tn−r;1−α

) = n(n − r + 1)

(r − 1)(n − 1)

×
∫ ∞

0

(
1 − Ftn−r,δ(y)

(tn−r;1−α)
)
fFr−1,n−r+1,ns

(
n(n − r + 1)

(r − 1)(n − 1)
y

)
dy.

It is noted that the power function depends on μ and � through the quantities SGMV

and s. This fact simplifies considerably the study of the power of the test. In Figure
2, we present the power of the test as a function of SGMV with fixed s ∈ {1, 5, 10}.
We also set n ∈ {50, 250}, r = 0.5n and α = 5%. We can observe that the power of
the test increases as s decreases and that the suggested test rejects the null hypothesis
for small values of SGMV .
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Fig. 2. Power of the test statistic T as a function of SGMV for s ∈ {1, 5, 10}, n ∈ {50, 250}, r =
0.5n and α = 5%

Since a statistical test and interval estimation are related, we can construct a one-
sided (1−α) confidence interval for the risk-free rate rf . Namely, if rf belongs to this
interval, a conclusion about the investment into the TP can be made. For the upper
one-sided test, this interval is expressed as

I1−α =
⎡⎣R̂GMV − tn−r;1−α

√
n − 1

n − r

√
1 + n

n − 1
ŝ

√
V̂GMV

n
,+∞

⎞⎠
while for the lower one-sided test, we have that

Ĭ1−α =
⎛⎝−∞, R̂GMV − tn−r;α

√
n − 1

n − r

√
1 + n

n − 1
ŝ

√
V̂GMV

n

⎤⎦ .

Therefore, it leads us to the conclusion that for all rf /∈ I1−α the TP lies on the EF,
while for rf /∈ Ĭ1−α the TP lies on the lower part of the set of feasible portfolios.

3 High-dimensional asymptotics

In this section, we derive the high-dimensional asymptotic distribution of test statistic
given in (6) under both the null and alternative hypothesis. We treat the rank rn of
the population covariance matrix � as the actual dimension of the data-generating
process. Furthermore, we assume that rn/n → c ∈ (0, 1) as n → ∞. Let us note
that we don’t assume a relationship between the portfolio dimension k and the sample
size n except for k > n. It means that k can grow to infinity much faster than n, then
one can consider, for example, exponential growth which is of great importance in
economics.

In the following theorem, we derive the high-dimensional asymptotic distribution
of the test statistic T given in (6).
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Theorem 3. Let x1, . . . , xn be i.i.d random vectors with x1 ∼ Nk (μ,�) , k > n − 1
and rank(�) = rn < n. Let also cn := rn/n → c ∈ (0, 1) as n → ∞. Then

(a) the asymptotic distribution of T is given by

σ−1
T

⎛⎜⎜⎝T − √
n

SGMV√
1 + rn−1

n−rn+1

(
1 + n

rn−1 s
)

⎞⎟⎟⎠ D→ N (0, 1)

where

σ 2
T = 1 + S2

GMV

2(1 + s)

(
1 + s2 + 2s + c

(1 + s)2

)
.

(b) under the null hypothesis it holds that T ∼ N (0, 1).

Proof. From the proof of Theorem 1, we have that

T |̂s = y ∼ tn−rn,δ(y)

with δ(y) =
√

n
1+n/(n−1)y

SGMV . Additionally, it holds that u = n(n−rn+1)
(n−1)(rn−1)

ŝ ∼
Frn−1,n−rn+1,ns . Consequently, the stochastic representation of T is given by

T
d=

√
n − rn

ξ

⎛⎜⎝z0 +
√

nSGMV√
1 + rn−1

n−rn+1u

⎞⎟⎠
where z0 ∼ N (0, 1), ξ ∼ χ2

n−rn
and u ∼ Frn−1,n−rn+1,ns ; moreover, z0, ξ and u are

mutually independent.
Now, it holds that

T − √
n

SGMV√
1 + rn−1

n−rn+1

(
1 + n

rn−1 s
)

=
√

n − rn

ξ

⎛⎜⎝z0 +
√

nSGMV√
1 + rn−1

n−rn+1u

⎞⎟⎠ − √
n

SGMV√
1 + rn−1

n−rn+1

(
1 + n

rn−1 s
)

=
√

n − rn

ξ
z0 + SGMV√

1 + rn−1
n−rn+1u

×

⎡⎢⎢⎣√
n

(√
n − rn

ξ
− 1

)
+ √

n

⎛⎜⎜⎝1 −
√

1 + rn−1
n−rn+1u√

1 + rn−1
n−rn+1

(
1 + n

rn−1 s
)

⎞⎟⎟⎠
⎤⎥⎥⎦ ,
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where the last expression is obtained by adding and subtracting
√

n
SGMV√

1+ rn−1
n−rn+1 u

, fac-

toring out SGMV√
1+ rn−1

n−rn+1 u
, and rearranging. Let us note that

1 −
√

1 + rn−1
n−rn+1u√

1 + rn−1
n−rn+1

(
1 + n

rn−1 s
)

= 1√
1 + rn−1

n−rn+1

(
1 + n

rn−1 s
) rn−1

n−rn+1

(
1 + n

rn−1 s − u
)

√
1 + rn−1

n−rn+1u +
√

1 + rn−1
n−rn+1

(
1 + n

rn−1 s
) .

From the proof of Theorem 5 in [8] and the proof of Theorem 4 in [6], we have
that

ξ

n − rn
− 1

a.s.→ 0,

√
n

(
ξ

n − rn
− 1

)
D→ N

(
0,

2

1 − c

)
,

and

u − 1 − n

rn − 1
s

a.s.→ 0,

√
n

(
u − 1 − n

rn − 1
s

)
D→ N

(
0, σ 2

u

)
with σ 2

u = 2
c

(
1 + 2 s

c

) + 2
1−c

(
1 + s

c

)2, for rn/n → c ∈ (0, 1) as n → ∞. It is also
well known that

√
n

(
z0√
n

)
D→ N (0, 1) .

Finally, putting all the above together and applying Slutsky’s lemma (see, e.g., The-
orem 2.8 in [43]), we arrive at the first part of the theorem. By setting SGMV = 0,
we get the second part of the theorem under the null hypothesis. The theorem is
proved.

Having the high-dimensional asymptotic distribution of test statistic in Theorem
3, the power function of that test can be obtained as

GT,α,z1−α
(SGMV , s) = 1 − �

⎛⎜⎜⎜⎝
z1−α − √

n
SGMV√

1+ rn−1
n−rn+1

(
1+ n

rn−1 s
)

σT

⎞⎟⎟⎟⎠ ,

where z1−α denotes the (1 − α) quantile of the standard normal distribution and �(·)
stands for the distribution function of the standard normal distribution.
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4 Simulation study

In this section, we compare the power functions of the exact test and the high-dimen-
sional asymptotic test which are delivered in Theorems 1 and 3, respectively. Let us
recall that both expressions depend on the slope parameter of the efficient frontier, s,
and the Sharpe ratio of the GMVP, SGMV . In what follows, we set s to be equal to 1,
i.e. s = 1. The significance level is taken to be α = 5%. We consider several values
for the sample size such as n ∈ {50, 120} which approximately corresponds to the
length of one and two years of weekly financial data.

In Figure 3, we present the results of the simulation study for c ∈ {0.7, 0.9}. The
dashed black line represents the power function of the exact test, while the power
function of the high-dimensional test is indicated by a solid black line. The power of
the asymptotic test is almost indistinguishable from the exact one. It is remarkable
that the high-dimensional asymptotic test is properly sized for all values of n and the
differences between the two tests are observable only for the case of n = 50 and
c = 0.9.

5 Empirical study

To better understand the results obtained in the previous sections, we apply the de-
rived theoretical results to real data. The empirical study highlights the effect of the
singularity of the covariance matrix and provides insight into the challenges posed
by the high-dimensionality of financial data combined with distributional and depen-
dence structure assumptions. This study also shows how the results can be used and
how the presence of the singularity affects the inference of the TP efficiency.

5.1 Assumptions

The derivation of the theoretical results in this paper is based on the assumption
of i.i.d. multivariate normal asset returns. However, in practice, day-to-day depen-
dence cannot be ignored and the assumption of normality assumption is often vio-
lated [9, 29, 34, 36, 39]. One way to deal with this challenge is to construct invest-
ment strategies with a longer time horizon, which may require constructing portfolio
weights using averages of the data over longer periods. For example, [8] argue that
weekly or monthly averaging brings the data closer to normality due to the effect of
the central limit theorem on the dependent data and reduces the temporal dependence
between disjoint time windows. Furthermore, the time invariance of the distribution
and the stability of the financial data are ensured by restricting the time horizon.
Therefore, by employing these averages, the sample size n can often decrease to a
point where it may be smaller than the number of stocks k in a high-dimensional
portfolio. Since the dependence between stock prices is caused by the correlation
within larger groups of stocks linked by structural, financial and economic factors,
for a high-dimensional stock portfolio it is natural to assume that the mutual rela-
tionships between stocks are driven only by a number of linear relationships r that is
effectively smaller, or even much smaller, than the dimension of the portfolio k and
the sample size n.
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Fig. 3. Powers of the exact test and the high-dimensional asymptotic test as a function of SGMV

based on statistic T for n ∈ {50, 120} and c ∈ {0.7, 0.9} with s = 1 and α = 5%

In reality, the clean case of the singularity of the population covariance matrix �

in the data will never be observed. To deal with this challenge, we follow the approach
proposed in [33] which is also used in the portfolio context by [8]. In particular, we
consider the data-generating process

Y = X + E

where X follows a singular model as in our paper, and E represents noise in the data,
which can be due to measurement error, computational inaccuracies, etc.

5.2 Empirical results

We consider weekly averages of the daily log returns data from the S&P 500 of 368
stocks for the period from the 15th of April, 2014 to the 17th of April, 2024. In
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addition, we use the weekly return on the three-month US Treasury bill as the risk-
free rate. The risk aversion coefficient α is taken to be 100.

In Figure 4, we show the behavior of the estimated rank of the covariance matrix
� using a rolling window approach with an estimation window of 300 weeks, i.e.
n = 300. We can see that the estimated rank varies between 130 and 180, with
the lowest estimated rank value in the middle of 2023 and the highest at the end of
2021. We also observe that all the estimated ranks are smaller than the settled sample
size n = 300. We conclude that there is a large amount of noise in the considered
financial data which influences both the estimation of the covariance matrix and the
determination of the structure of optimal portfolios.

Fig. 4. The rolling window estimation for the rank of the covariance matrix with the estimation
window of 300 weeks

In Figure 5, we present the dynamic behavior of the p-values obtained from the
exact and asymptotic tests on the hypotheses (5), precisely testing the hypothesis
that the TP does not lie on the upper part of the efficient frontier, using a rolling
window of 250 and 300 weeks, i.e. n = {250, 300} with a portfolio size k = 368.
First, we observe that the p-values obtained from both tests are indistinguishable
indicating that the high-dimensional asymptotic test performs well. Second, we see
that in most cases, especially for n = 300, the obtained p-values are relatively large
resulting in the conclusion that the null hypothesis (5) cannot be rejected, leading to
the conclusion that the TP is not mean-variance efficient.

6 Conclusions

The role of the TP has become indispensable for both researchers and practitioners in
finance. Hence, having complete comprehension of the TP properties under all pos-
sible scenarios is vital for any financial strategist. In this paper, we deal with the test
on the mean-variance efficiency of the TP when both the population and sample co-
variance matrices are singular. Under these conditions, we deliver the finite sample
test statistic and its distribution under both the null and alternative hypotheses. We
also derive the high-dimensional asymptotic distribution of the considered test statis-
tic under the null hypothesis as well as for the alternative hypothesis. Through the
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Fig. 5. p-values of the exact and the high-dimensional tests on the efficiency of tangency
portfolio for n ∈ {250, 300}

simulation study, we observe a good quality of the asymptotic approximation of the
finite sample statistics, that is, the high-dimensional asymptotic test is properly sized
for all values of n and the differences between the two tests are observable only for
the case of n = 50 and c = 0.9. The empirical study also confirms the good quality
of the asymptotic approximation of the finite sample statistics.
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