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Abstract A stochastic heat equation on [0, 7] x B, where B is a bounded domain, is con-
sidered. The equation is driven by a general stochastic measure, for which only o-additivity
in probability is assumed. The existence, uniqueness and Holder regularity of the solution are
proved.
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1 Introduction
In this paper we consider the following boundary value problem:

du(t,x) = a>Acu(t, x)dt + f(t, x,u(t,x))dx +o(t, x)du(r), (t,x) € D,
u(t,x)=0, (t,x) €S, u(0,x)=upx), x €B.

ey

Here B is a bounded domain in RY, D = 0, T) x B, D is a closure of D, S =
(0, T] x 9B, Ay is the Laplace operator
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Stochastic measure u is defined on sets of time variable. The conditions on f, ug, o
and w, as well as the definition of the solution of (1), are formulated in the following
sections.

Various properties of the solutions of different stochastic partial differential equa-
tions, where stochastic noise is generated by a general stochastic measure, were previ-
ously investigated in many articles. For example, averaging principle for a fractional
heat equation driven by a general stochastic measure was established in [21], the
behavior of the solution of parabolic equation as time variable goes to infinity was
studied in [14], the existence and uniqueness of the solution of the parabolic equation
driven by a o -finite stochastic measure were proved in [22]. In the mentioned articles
the spatial variable took values in R, while in [2] the stochastic cable equation on
[0, T'] x [0, 1] was considered. On the other hand, stochastic parabolic equation with
random coefficients, where stochastic noise is generated by a two-parameter Wiener
process, was studied in [1], stochastic parabolic equation driven by a Lévy process
was considered in [10], various properties of the solution of stochastic heat equation
on bounded polygonal domains in R2 were established in [13] and [4], the regularity
of solutions of nonhomogeneous Dirichlet boundary value problems for stochastic
parabolic equations on bounded domains in R? was investigated in [5]. Note that the
results and methods of [3] are widely used in this article; the difference between them
is mentioned in the conclusion.

The rest of the paper is organized in the following way. In Section 2 some proper-
ties of stochastic measures and particular functional spaces are mentioned. The main
result of the paper is formulated in Section 3 and proved in Section 4, along with
related auxiliary statements.

2 Preliminaries

Let (2, F, P) be a complete probability space and B be an arbitrary o -algebra on the
sets of X. Denote by Ly = Lo(2, F, P) the set of all real-valued random variables
defined on (€2, F, P). Convergence in Ly means the convergence in probability.

Definition 1. A o-additive mapping u : B — Ly is called stochastic measure (SM).

In other words, u is a vector measure with values in Lg. In this paper we assume
everywhere that X = [0, T'], B is a Borel o-algebra on [0, T].

Consider some examples of SMs. If M, is a square integrable martingal then
w(A) = fOT 14(t) dM; is an SM. x-stable random measure on BB for ¢ € (0, 1) U
(1, 2], as it is defined in [20, Sections 3.2-3.3], is an SM by means of Definition 1. Let
WH be a fractional Brownian motion with the Hurst index H > 1/2 and
f : [0, T] - R be a bounded measurable function, then function of sets u(A) =
fOT f1a()d W,H is an SM, as follows from [15, Theorem 1.1]. More stochastic
measures can be found in [19].

The definition of the integral | 1 8du, where g : R — R is a deterministic
measurable function, A € B and p is an SM, and its basic properties are given
in [11, Chapter 7]. Note that every bounded measurable g is integrable with respect
to (w. . t.) any u.
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In the sequel, ;« denotes an SM, C and C(w) denote positive constant and pos-
itive random constant, respectively, whose exact values are not important (C < oo,
C(w) < o0 a.s.).

Recall the following important lemma.

Lemma 1.~ (Lemma 3.1 in [16]) Let ¢; : R — R, [ > 1, be measurable functions
such that ¢(x) = Zfil |1 (x)| is integrable w.r.t. u on R. Then

i(v/ﬂg ¢ du>2< 00 a.s.

We consider the Besov spaces Bz"‘z([c, d]), 0 < a < 1, with the standard norm

= 2 201, \!/?
gl B2, 1c.an = I&lILaqe.an + ( A (@2,[c,a)(8, )T dr) @

where

d—h 172
orpeaten) = sup ([ 1gs+m - gl as)

0<h<r

Forany T > O and all n > 0, put

dy) =k2™"T, 0<k=<2". AQ =@y ,.dy']. 1<k=<2".

For the estimates of stochastic integral we use the following result.

Lemma 2. (Lemma 3 in [17] or Lemma 3.3 in [18]) Let Z be an arbitrary set, and
Sfunction q(z,s) : Z x [0, T] — R be such that all paths q(z, ) are continuous on
[0, T]. Denote

)
)= ) q (2. "1y 150 -
1<k<2n

Then the random function

n(z) =/ q(z,s)du(s), z€ Z, AC[0,T],
A

has a version

77(1)=/Aqo(Z,S)dM(s)

+ 2(z,5)d — w_1(z,5)d 3
§(qu G du) = [ a5 dut) 3

such that forall B >0, w € Q,z€ Z

@) < lg@ 0@+ Y Y lg@.di’ ) —q@.di) |, DInAg) 0 a))

n>11<k<2"

172
<19 OrWI+{Y2% Y laGdy) —aGd,)1)

n>1 1<k<2n
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X{Zr"ﬁ > m(A,ﬁ?mA)F}l/z, )

n>1 1<k=<2n

(T) (T)
where Ay, C Ak,(n_l).

Note that fora = (8 4+ 1)/2

1/2
(32 3 e d)) —a(z )P} = Cla sgqory. O

n>1 1<k<2n

as follows from Theorem 1.1 [9]. Moreover, Lemma 1 implies that for each 8 > 0,
T>0,AeB(0,T)

S N g n AP < 4o as.

n>1 I1<k=<2"

We also use the following notations, that were introduced, for example, in [7].

d(P, Q) = (Ixi —x2l* + 1 —0l)?, P =(t1,x1), Q=2 x2);:
lu(P) — u(Q)|

’

lull? = sup |ul + sup
* D p,oep d(P, Q)

ou
ax

D D
0l P = el + | 5|

Let R C SU{0} x B, S; = (0, ] x 3 B. Denote
dp =d((S; U{0} x B) \ R, P);
dpo = min(dp,dp);
M Plgl = sup df Dig(P);
PeD

Gpti+al Dig(P) — DIg(Q)
PO

)

MEP [g1= sup
p.Jte P,0eD d(p, 0)*

m
R,D R,D
&2 = 7 el + My Lg)).
j=0

It can be easily seen that functions || - ||f)+a and || - || [13”,5 are norms. The spaces of
. . . D R,D
functions with finite norms || - I, [l - Il p;» are Banach spaces.

3 Formulation of the problem and the main result

Denote Lu = azAxu — %—’;. We consider the solution of (1) in the mild sense, i.e. the
measurable random function u (¢, x) = u(t, x, w) : [0, T] x B x 2 — R that satisfies

t
u(t,x)=/BG(t,x;0, y)uo(y)dy+/0 ds/BG(t,x;s,y)f(s,y,u(s,y))dy
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N / dus) / G(t, x: 5. y)o (s, y)dy. (6)
©.1] B

where G(z, x; s, y) is a Green’s function of the equation Lu = 0 in D. According
to [12, Chapter IV, §16, Theorem 16.3], the following inequalities hold for some
constants A, M > O:

nlx—y|?

IG(t, x; 5, )| < M(t —s)" 2=, )

’8G(t, XS, y) < M(Z —S)i(d+l)/267”|'\t‘:5‘2’ (8)
Bx,-

‘8G(t,axt, S, y) < M(l—s)id/zile_mt—s)l . (9)

In our assertions we often refer to the following definition, which can be found in [8,
p. 437].

Definition 2. The domain S belongs to a class A" (A™) in R? (R**1) if for every
point P of § there exists a sphere with center P and a function x, which belongs to a
class At (A™), such that for certain i < d

Xi = X('x17 "'5'xi717~xi+15 "'7xd) (xl = X('x15 "'7xi7]5xi+17 ""xd’t))
inside the sphere.
We consider domain B, functions ug, f, o that satisfy the following assumptions.

Assumption 1. There exists 8 € (0, 1) such that S belongs to a class A!™# in RZ+1,

Assumption 2. Function ug : B x  — R is measurable and bounded for each fixed
w € Q.

Assumption 3. Function f (s, y, z) : [0, T] x B x R — R is measurable, bounded
and

1f(s. v 20) = f(s. 32,21 < LIyt — 320 + |21 — z2])
for some constants Ly > 0, 8(f) > Oand alls € [0,T], y1,y2 € B,z1,722 € R.
Assumption 4. Function o (s, y) : [0, T] x B — R is measurable, bounded and
o (s1. y1) — 0 (52, y2)| < Lo (Iy1 = »2F @ + [s1 — 52/P@)

for some constants L, > 0,1 > (o) > 1/2and all 51,50 € [0, T], y1, y2 € B.
In some statements we refer to the following assumptions on p.

Assumption 5. Stochastic measure p has bounded paths:

(0, 1D = Cu(w), (10)

for random constant C; (w) and all ¢ € [0, T'].

Assumption 6. Stochastic measure p has Holder continuous paths:

1 ((s1, $2D)| < C@)ls1 — 52|,

for random constant C(w), deterministic constant 8(u) and all s1, sp € [0, T'].
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For example, stochastic measure u(A) = fOT 14()d WtH satisfies Assumption 6
with B(u) = H. Also, note that Assumption 6 implies Assumption 5.
We can formulate the main result of the paper.

Theorem 1. Let Assumptions 1-4 hold.

1. Then solution of (6) exists and is unique in the following sense: lf_ ui(t, x) and
us(t, x) are two solutions of (6), then, for each (t,x) € [0, T] x B, ui(t,x) =
us(t,x) a.s.

2. In addition, assume that Assum_ption 5 holds. Then, for each fixed § > 0,
yi < B(o) and set B', d(0B, B") > 0, a random function u(t, x), which is
the solution of (6), has a version ™ (t, x), which satisfies

159 (1, x1)—i (1, x2)| < Lywlx1—x2"t, Vit € [8,T1, x1, x2 € B/, (11)
for a random constant L) = L (@) > 0.

3. In addition, assume that Assumption 6 holds. Then, for each fixed § > 0, B’,
d®B, B') > 0,y1 < B(0), y2 < B() A (B(0)/(4—2p(0))), a random func-
tion u(t, x), which is the solution of (6), has a version u(t, x), which satisfies

li(ty, x1) — ii(tz, x2)| < L(Ix1 — x2"" + |11 — 12]™?),

Vi1, 1 € [0, T1, x1, x2 € B/,

for a random constant L; = L;(w) > 0.

4 Auxiliary lemmas and proof of the main result

To prove Theorem 1, we need the following results about stochastic integral.

Lemma 3. Let Assumptions 1, 2, 4, 5 hold. Then, for arbitrary set B, d(dB, B') > 0,
the random process

{(x) = / du(s) / G(t,x;s,y)o(s, y)dy 12)
(0,1] B
has a version of a kind (3), which is Hélder continuous with the exponent y| on B’

forallt €[0,T], y1 < B(o).
Proof. Let

fB(G(t, x1;8,y) — G(t, x2; 8, y))o(s, y)dy, if 0 <s < t,

. (13)
o(t,x1)—o(t,x), ift <s <T.

q(z,s) = {

Here z = (¢, x1, x2). The function (13) is continuous in [0, T'] as a function of s, as
follows from

/ G(t,x;s,y)o(s,y)dy = o(t,x), s—t—. (14)
B
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We give the brief proof of (14). Fix ¢ > 0. Thenforall0 <r < ¢
\/B G, x: 5, 1)0 (s, )y — o (8, )| = VB G(t,x;5, (0 (s, 3) = o (1, »)dy|
+‘/;3 G(t,x;s,y)0(r, y)dy — o(r,x)’ +lo(r,x) —o(t,x)|
<=+ |[ G.xis oty = o).
We can choose r such that C|t — r|ﬁ(") < &/2. On the other hand,
/BG(t,x; s, yyo(r,y)dy — o(r,x), s—1—,

as follows from [7, Chapter 3, Sec. 7, Definition]. Therefore, there exists § > 0 which
may depend on ¢ and x such that for all s > ¢ —§,

‘/ G(t,x;s,y)o(r, y)dy — a(r,x)‘ <¢g/2,
B

, and the convergence (14) holds. Therefore, we can apply Lemma 2 for ¢, which is
defined by (13). At first, we estimate w [0,+1(¢, 7). Consider the difference

g(z.s +h) —q(zs) =/B(G<r, X155, ¥) = G(t, 255, 0)) (0(s + h, y) — 0 (s, ) dy

+ [ (Gxiis 4 hy) = Glroxis +hy)
B
—G(t,x1:5,y) + G(t, x2;5,y))o (s + h, y)dy =11 + Ip.

I7 is estimated in the same way as A> (s, k) in [3], where we estimate the derivatives
using (8). More precisely, we get

|| < Ch'f“")/ IG(t, x135,y) — G(t, x2; 5, y)|dy
B
1
< ChP@ |y, —x2|/ddy/ |grad, G(t, 0x1 + (1 — 0)x2, 5, ¥)|dO
R 0

1 !
d (0x1+(1—0)x7—y)
< ChP@|x, —x2|/ dy/ (t —s)_%leg7 BTl
dy hP@)|x) — x|

- hP@ |x) — xp| d@f _ 10 +1-0n—y) B
T -9l Rd (t—s)2 7 (-9

Therefore, we obtain that

t—h
/ 13ds < Ch*PD|x; — x]*(C + |Inh)) < Ch¥ |x; — x2)*, ¥ > 1/2. (15)
0

Denote
v(t,x,s) = [ G+, x;1,y)0(s, y)dy.
B
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Now we apply the definition in [7, Chapter 3, Sec. 7] to obtain the properties of v:

Lv = / LG +71,x;7,y)0(s,y)dy =0,
B

v(t, x, )| x)es = (/ Git+r1,x;17,¥)0(s, y)dy)
B (t,x)es

(16)
71,(1.4)

= (/ G({t+r,x;1,y)0(s, y)dy>|(t+,,x)65 [ ]= 0,t<T-—r,
B

[71.(1.3)
= o

v(0, x,s) = tlir%/ G(it+1,x;7,y)0(s, y)dy (s, x).
—-0Jp

Now consider (16) as a boundary value problem for each fixed s. Theorem 11 in [8,
Sec. 1] implies that it has unique solution; consequently, v does not depend on t.
Therefore,

L =v({t—s—h,x1,s+h)—v({t—s—h, x3, s+h)—v(t—s, x1, s+h)+v(t—s, x3, s+h).

We can construct the extension of a function o (s, y), which is bounded and Holder
continuous in [0, T] x R? with the same exponent. This follows, for example, from
[7, Chapter 3, Theorem 2, p. 60]. Now we note that v(¢, x,s) = v(l)(t,x, s) —
v (z, x, 5), where v is a solution of the Cauchy problem

LoD, x,5) =0,
v(l)(ta X, S)|l=0 == U(S, -x)7

in [0, T'] x RY, and v@ is a solution of a boundary value problem

{ Lv? =0,
VP29 =0, v@|g =D,

in [0, T] x B. We represent I in a form I — I, where

bLi = vt —s —h,x;,s +h) — v —s —h,x2,5 +h)
— v —s, x5 +h) + 0O —s,x0, s+ k), i=12

According to [8, Sec. 4, Theorem 2], v can be represented in the form

v, x,5) = / [P x =)o (s, y)dy,
R

where
1 _ k2

p(t,x) = We 4

Therefore,

Ly = /Rd(p(t—s—h,X1—y)—p(t—s—h,Xz—y)—p(t—s,m—y)+p(t—s,Xz—y))
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X o(s+h,y)dy =A(s, h)

in the notations of [3]. Recall the estimates for A (s, #) from the mentioned article:

al = [ 19 =500 =) = ple =552 = )lr s+ 3) = 75, )ldy

t—s e ‘2
< Clx; —xz|’3(")/ dy/ e I

d
= C|x —x2|’3(")/ ldt/ T 2¢” "t dy
t—s— h Rd

= Clxi —xz|’3(") ln

—5— h'
Therefore,
t—h t—h f—s
/ I}ds < Clxy — lezﬁ(a)/ In> ——ds
0 0 t—s—h
—+00
< Ch|x; — x2|2‘8(")/ In2(1 + 1/u)du = Ch|x; — x2|F). 17)
0

On the other hand, estimating A (s, &) in a similar way to estimation [3.54] in [18],
we get

[I21] < ‘fw(p(t —s—h,x1 —y)— p(t—s,x1 —y))a(s —i—h,y)dy‘
+‘/Rd(p(t —5—h,x2—y) = p(t —s,x2 = y))o(s +h, y)dy‘
= C’/Rd g—lv\z(o(s +h,x1 +2avVt—s —h) —o(s +h, x; +Zavm»dv‘
+C‘/H;d e—lvlz(cf(s +h,xy+2avt —s —h) —o(s +h, x2 +2avm))dv‘

< c/ P (Vi =5 —h = T =P Ddv < ChPO (1 — 5)P@/2 (18)
]Rd

where for the i-th summand we used the substitutions
_ y—X v = Yy =X '
2at —s —h’ 2a./t —s
From (4) and (18) it follows that

t—h
/ [}ds < CR2POHHA=2B@O) |y 0P80 g <n < 1. (19)
0

Now we estir_nate I». Fix a € (0, 1). As the functions v(¢, x, s) and v(l)(t, X, s) are
bounded in Q uniformly on ¢, x, s, the same holds for @ (t, x, s). Let us prove it,
for example, for v:

nG—y)?

@ —d/2,,—
lv(r, x, ) = | 1G@E x;0,y)llo(s, y)ldy = C e dy =< C.
B R
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It is possible to take the domains B” and B” such that B’ ¢ B, B” ¢ B”, B’ C B"”
and 9B”, 3B"" € A3 (see Definition 2).

Remark 1. The sets B” and B"' can be easily constructed; let us do it, for example,
for B”. Introduce the notations

i
N (x) = CenP-1 1<), x € RY, / nx)dx =1,
R4

ne(x) = e I (xe™ ),
B, =B'U{x eR’:d(x,0B) <e},

and take k.(x) = fB, ne(x — y)dy. For a sufficiently small ¢ > 0, k.(x) = 1,
x € B, ke(x) =0, x ¢ B. Let B = K_l((1/2 11) and consider arbitrary x* €

81@ (x

dB". Obviously, there exists an index j such that ) # 0, and, consequently, a

function h € C®(RY~Y) such that 3B" can be locally represented in a form x; =
h(xl, e X1, X1, - xd)

Denote S” = [0, T] x dB”, B} = {0} x B".Itis obvious that v® € C([0, T] x
B”). As [0, T]x B” is a compact, there exist polynomials W,, such that ¥,, — v® in

C(0,T] x B_”). Therefore, there exists a sequence ¥, (t, x) = Wy, (¢, x) — ¥, (0, x)
such that ¥, € C3(S” U BY)), ¥ = 0 on B} and ¥, — v® on C(S” U BY). Let

vm) be a solution of the boundary value problem

{ Ev,(,lz) =0,

2)
vl lsruBy = Vm>

on [0, T] x B”. Theorem 7 in [7, Chap. III, Sec. 3] implies that v,(,lz) € Crya([0, T x
B()). Therefore, we can apply Theorem 4 in [7, Chap. IV, Sec. 7] for the functions
v(z) v,(lz), where B”, B and (0, T') x B” are the sets R, Ry and D in the formulation
of the theorem, respectively. Using, in addition, the maximum principle, we obtain

S//UB//
WD = v@1% 0 < Ko = vPlo < Kl = vly 0 = 0,m,n = oo,

and sequence {v(z) : m > 1} converges in | - ||0 3 +a to a limit function #?; for

Ro,D. (2
0 [U;gn)

example, M, — @] = 0, m — 0. On the other hand, according to [7,

Chap. 1III, Sec. 6, Corollary of Theorem 15], sequence {v,(nz) : m > 1} converges
uniformly to v® on [0, T'] x B”. Therefore, ® = v® and

@150, < Klv@jo = K1,

where constants K and K| depend only on a, «, B"” and B”. This implies the in-

equality
= @ w, xi,s+h)  wD(w, x2, 5+ h)
|I22| = - d
t—s—h

Jw Jw
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t—s |x _ o t—s _ o
1 — x| lx1 — x2]
S/ Klwdﬂ)fcf _—Zdw:Ch|X1—X2|a. (20)
t—s—h X1X2 t—s—h d(B/, 83///) +a

We can choose y in (15), A in (19), « in (20) such that
@.10.4(q, 1) < Crixy —x”, 6, >1)2.

Estimating g (z, s) in the same way as I, for s < ¢ and using Holder continuity of o
fort <s < T, we obtain that for each y; < (o),

l9(z.9)] < Clx; — xa| . 1)
Now we proceed to the estimating of w» [0,7](g, r). We obtain that

w2,10,71(q, ) = sup llg(-+h) —q)llL,q0,7-h)

0<h<r

< sup (g +h) — qgOllLyqo—np + IgC+h) = O Loqr—ne

0<h<r
+lgC+h) = gOllLoqr.r—np) < @2,00.0(q, 1) + 1),

where

- t 1/2
ir) = (/ 90 — gz 9)Pds) .
t

—r
Triangle inequality for the norm || - ||, together with (21) implies that

t

i< ([ ta@oras) "+ ([

—r

t

1/2 3
g 9)Pds) " = Cr'P —xl”, @2

where we take y; € (y1, (0)). On the other hand, the difference ¢(z,t) — ¢q(z, 5)
can be rewritten in the following way:

q(z,t) —q(z,s) =0o(t,x1) —o(t,x2) — /B G, x1;8,y)o(s, y)dy

+/ G(t,x2; 8, y)o (s, y)dy
B

= U(Ov X1, t) - U(Os X2, t) - U(t -, X],S) + U([ -8, X2, S)
2
=D v00.x1,0 =000, 22, 1) =00 = 5,201, + 00 =5, 22,8). (23)
i=1

Remark that

D, 21,0 = v = 5,31, 9)] = |0t x1) —/ Pt =551 = Vo (s, Ny
R4

‘ 1 _ <x57>~>2
= |o(t,x1) — —f e 4= g(s,y)dy
(4a’m (1 — s))gl/2 Rd

1
= —)/ e*‘vlza(t, x1)dv — / eilvlza(s, 2avA/t — s —l—xl)dv‘
7d/2| Jpa Rd
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< c/ e ((t = )P 4 |t — POV dv < C(t — )P,
R4
The same estimates can be applied for |v(])(0, X2,1) — v(])(t — 8, x2, 5)|. That leads
to the inequality
D, x1, ) =00, x2, 1) = vVt =5, x1, ) + vV (t =5, 52, 9) < Ct —5)P /2,
(24)
For the second summand in (23) we can use the same estimates as in (20) and obtain

that

W20, x1, 1) — vP(0, x2, 1) — V@ (t — 5, x1,8) + VPt — 5,2, 9)]

=120, x1, 5) — vP(0, x2,5) — v@(t — 5, x1,5) + Pt —5,x2,5) < C(t —5).
(25)

Here we also applied the fact v® (0, x;, 1) = v@ (0, x;, s) = 0. Egs. (24) and (25)
imply that

I’ <c t (t —5)P@ds = crPO+l, (26)
t—r
Together with (22), (26) leads to the estimate
I(r) = Cr¥|x; —xa|™,
where 6, > 1/2. In conclusion,

w2.10.71(q,7) < Crl|xi — x|”", 6 = min{6;, 62} > 1/2.

As aresult,
! —2e—1+26 12
9. Mgy < Clvt =22l +Clxr =2l / r dr) " = Cla—xl"
0

for a sufficiently small e. The only fact left to prove is that

Y27 3wl N 0. < C@) as.,

n>1 1<k<2n

where C(w) does not depend on ¢. Assume that for each n, t € A,(c:r)l; then by As-
sumption 5

Y2 N u(ag N .02

n>1 1<k=<2"
<2 3T AP+ D02 g, N 0. < Clw).
n>1 1<k=<2n n>1
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Lemma 4. Let Assumptions 1, 2, 4, 6 hold. Then the random process
ty = / du(s) / G(t. x5, y)o (5. y)dy @7)
(0,1] B

has a version of a kind (3), which is Holder continuous on [5, T] with the exponent
J{zforallx €BT >8>0y < B,y <B(0)/(4—2B(c)). If x € B, where
B’ C B, we can choose Holder constant that depends only on o, |, v», § and B'.

Proof. Let t; < r,. We represent the difference of the integrals (27) in the form

E(rz>—2<n>=/

du(s) / G(t2, x;8,y)o(s, y)dy
0.,22] B

—/ du(s)/ G(t1, x;8,y)o(s, y)dy
O,4] B

= / q(z,s)du(s) + O(z,)du(s) = J1 + Ja, (28)
(11,12] 0,11]

where
q(z,s) =/ G, x;5,y)o(s, y)dy, z=(2,x), s €[t1, 1],
B
0. s) =f(G(z2,x;s,y> G x5 o (s, )y, 2= (11,12, x), 5 € [0.1]
B

We fix a domain B’ such that x € B’, B’ C B and, in the notations of Lemma 3,
obtain that

lg(z.5)| = C,

1g(z, s +h) —q(z,9)] 5/B|G(t2,x;s+h,y)||a(s+h,y)—a(s,y)|dy

+\f (G2, x35+h, y) = Gloa, 35, y)o (s + b, y)dy| < ChP)
B

_Hv(l)(t2 —s—h,x,s+h) — v(l)(tz — s, x,5+ h)|
+o P —s—h,x,s+h) —vPt —s,x, 5+ h)|
< C(P@ £ hPO) 1y — 5) PO Ly < ChPO (1 — 5)~F@2 (29)

where the constant C in the last inequality depends on B’. We take k,1 and k,» such

that 11 € A,gl)n and 1, € Al(chz)n and choose n that satisfies the inequality

27T <y — 1y < 27T

For such ng, k;q1 + 1 = kpy2 or kg1 + 2 = ky2, while for smaller n, k1 + 1 = kp»
or k,1 = kn2. We can easily obtain by induction that for each n > ny

kny — kny < 2"700F 1 L T — )27 < Tt — 1y)2"
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The function g (z, s) was already defined on [71, 2], let g(z, s) = g(z, 1) fors < #;
and g(z,s) = q(z, ) for s > tp. Now we can use Lemma 2 to estimate integral J;:

AR EROMGRAN
+3 03 GG Ay ) — dGdy A N @, D).

n>11<k<2"

For each n we can omit summands for k < k1, as for such k, g(z, d((kT_)l)n) =

q(z,t1) = q(z, d((kT_)z)n), and summands for k > k5, as for such k, A,({Z;)ﬁ(tl, nh]l=0:

[Ji] < C(r — 1)

kn2
+3 03 1 dy ), — G dg (A 0 (@, 6D) < C)n —n)??
n>1 k=ky14+1
- (1)
+ Y 1GGdg) ) = dGdg) @y, 0D

n>1

kpo—1

+ 30> laGdy’y),) = 3G dy ) gD

nzno k=kpi41

=C(w)(tr — 1) + 51 + Ss.

Now we estimate the sums S| and Sy, using (29).

— — T
S < C(a))ZZ '1/3(0)(t2 _ d((an)z—Z)n) /3(0)/202 4’ n)2 l)n)ﬁ(u)
n>1
< C) (1t —n)? Yy 27" = Ct — 1),
n>1
n=ng
knpp—1 12
x(0 227 N (1 — (k=227 7))
n=n K=k 41
kn2—kn1 1/2
< C(w)(z 2—12B©)—p) Z (27" T)~ ﬂ(a))
n=nq
1/2
= C@)( Y 27O P iy — k) )

nzngq

< C(w)(tr — tl)(l—ﬁ(c))/Z2—"0(2/5(0)—/‘3—1)/2
< C@)(ta — )PP < Cw)(ta — 1),
where we choose 8 > 0 such that

(B(o) = B)/2 > B(0)/(4 =2B(0)) > y2;
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such B exists as 1 > B(o). Therefore,
J1 = C(w)( —1)". (30)

In order to estimate J», we need to prove some properties of the function Q. Firstly,
notice that in the notations of Lemma 3 Q(z, s) = v(t, — s, x, s) —v(t; — 5, x, s) and
10 )| < WPt —s,x,5) — v (11 —5,x,9)]
+oP (1 — s, x,5) —v@ (11 =5, x,5)]
<P —s,x,5) = vV —5,x, 9+ Clta — ).

The difference [vV(r, — s, x, 5) — vV () — s, x, 5)| was already estimated in [3], see

formulas (13)—(15):
Pty =5, x,5) vV (01 — s, x,9) < Cla — 1) (11 — )™,
P2 =5, x,5) =0V (01 =5, x, )] < Cly — 1)ty — 5)7POP2,
Wt —s,x,8) — v (1) = 5,x,9) < C(tp — 1)PO/2,

This leads to the following estimates for 10(z, $)|:

10z, 5)| < C(ta — 1) (11 — )7, 31)
10(z,5)| < C(ta — 11)P (1) — 5)7F@/2, (32)
10(z, 5)| < Clt2 — 11)P /2, (33)

Egs. (31) and (32) directly imply that

10(z, s +h) — Q(z,8)| < Clta—11) (11 —s —h) ™", (34)
10(z, s +h) — Q(z,9)| < Clta — )P @ (1) — 5 — ) =F@/2, 35)

Rewrite the difference Q(z, s + h) — Q(z, s) in a form
O(z.s+h) — 0(z,5)
_ / (G2 x:5.y) — Glt1. x15. 1) (0 (s + h. y) — 0 (5. y))dy
B

+/ (G2, x;5 +h,y) — G(12,x:5,y))o (s + h, y)dy

B

— / (G(tl, x;s+h,y)— G, x; s, y))a(s + h,y)dy = F) + F, — F3.
B

Using (9), we obtain that

& 1 _ Max—p?

(T — 5)d/2+H e T

|Fi| < ChP©) / dy
B

n

< ChP©@ /tz ds / e*k(f:if)z dy
- n (T— $)a/2+1 Jpg
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< ChP©@ /tz —ds /‘Jroo e_%ivd_ldv
N n (T =) ],

[5)
= Ch/3<<’>[ (t—$)"'dr < ChP 0 — 1)@t —s —h)~ L.
1

F> can be estimated similarly to (29):

|Fl = vty —s —h,x,s +h) —v(ty —s,x,5 + h)|

< |v(1)(t2 —s—h,x,s+h)— v(l)(tz —5,x,85+ h)|

+1w Pt —s —h,x,s +h) —v Pty — 5, x, 5 + )|
<Ch(ty—s—h)"'+h) <Ch(ty —s —h)~L.

The estimates hold for F3, too. That leads to the following analogue of formula (19)
in [3]:

10(z,5 +h) — Q(z,9)] < C(WP(ta — 1)) + h)(t1 —s — )" (36)
The next inequality is proved with the help of (29):

10z, s +h) = O(z,5)|

=<

/B(G(tz, x;8+h,y)o(s+h,y)— Gz, s;s,y)o(s, y))dy'

+

/ (G(tl, x;s+h,y)o(s+h,y)—G(t,s; s, y)o(s, y))dy‘
B
< Chﬁ(g)(tl _ S)*ﬁ((f)ﬂ_ 37

Raising (35) to the power A and (34) to the power 1 — A, where A € (1/(2— (o)), 1),
we get that

10@. s +h) — Q. 9)] < Clta — 1) (11 =5 — W)™, (38)
where
pr=1—-r4+ip(0) > Blo), p2=—-1+1-21B(0)/2>—1/2.
Raising (37) to the power A and (36) to the power 1 — A, we obtain that
10G.s +h) = 0@ )| < CHPO (0 =)' ™+ hP)(@ —s =)™ (39)
We choose m( which satisfies a condition
27T <y < 27motlT

The function Q_(z, s) was already defined on [0, #1], let Q(z, s) = Q(z, t1) fors > t;.
Now function Q is continuous on [0, #;] and we can use Lemma 2:

|12] < 10z, 0 ((0, ]|
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+ZZIQ(Z gy, — 0. di ) Dlin(Ay, 00, 1))

n>1k=1

kn1

71

<10G 0. 0D+ Y Y 10G.dg ) — 0. dy ) )lIn(Ag) N ©. 0

nzmo k=2

<0G Ou©. 0D+ Y 10G.dY) ) — 0G.dyl ol ), 0Dl

n>mg
no—1 k,1—1
T
+ 3 310G A, — O di (A
n=mg k=2

oo kp1—1

+ 30 310G Ay, — O dy y M(A) = Uy + Uz + Us + Us.

n=ng k=2
Using (33), we easily obtain that
Ui < C@)(12 = )P @,

Uy < C(@)(ty — t)P@2 3" 2700 = C(w)(1 — )P,

n=mgo

In order to estimate U3, we use (38):

Us < c(Zz n Z (A )

n>1

no—1 kn1—1

<( 227 31064, - 0. d,,0P) "

n=m
no—1 kn1—1

< C(w)(ts — 1)" ( Z onp Z (t) — d((kT)l)n)zpz>1/2

n=mo k=2
no—1 kn1—1

< cwyn-mn (Y 27 Y aarrye)

n=no i=1
no—1 12
< C(w)(tr — 1)) ( Z 21 (B=20) (k| 1)2p2+1)
n=my
no—1 12
< C(w)(ty — )™ ( Z zn(ﬁ—zpz)zn(2p2+l)>
n=mg

< C()(tp — 1)1 20 B+D/2 < C(1y — 1)1~ U+P/2,

Now we estimate Uy, applying (39):

U4<C(22 nﬁzl A(T))|2>

n>1

(40)
(41)

(42)
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kn1—1

- 172
(T) (T) 2
(§ P § j 106 dyy,) = 0. dy,),)P)

n=ny
o0 k,,l—l 1/2
=C@(Y 27 Y (2= DFO 4 7T 0 - d,),))
n=nq k=2
o0 kn] —1 1/2
< C@)( Y 2 (( — 1)> P2 2B @) o2y N7 | jomnT )
n=ng j=1
° 1/2
< C((,())( Z 2n(/3—2p2)((t2 _ t1)2—2k2—2nﬁ(0) + 2—2}101)(kn1 _ 1)202+1)
n=ny

° 172
S C(Cl))( Z 2n(ﬁ—2p2)((t2 _ t] )2—2)»2—2}1/3(0‘) + 2—2)1,01)2"(2,024-1))

n=ng

- 2 1 22\ - 2 1 172
— C(w)<z 2 B2 1y g2 4 3 B2 ))

n=ng n=ngo

< C(w) (zno(ﬂ—2ﬁ(a)+1)(t2 _ t1)2—2)\ + 2n0(ﬁ—2p1+1))1/2

1/2
= C@)((2 = ) PHPO Ny )2 (1 — 1) )
< Clty— )P, 43)
The estimates (42) and (43) hold for each 8 > 0. For each fixed y» < (0)/(2(2 —

B(0))) we take

1—}3—21/2
- _1 2— .
_2(1 8(c)) > pp—0+8)/2=n

Choose B such that 8 +2y> < B(0)/(2—B(0));then A > 1/(2— B(0)). Taking into
consideration that 8(c)/2 > B(0)/(2(2 — B(0))) > y» and estimates (40), (41), we
finally obtain

|2] < Cl@)(t2 — 11)™. (44)

The substitution of (30) and (44) into (28) leads to inequality
£(t2) — S(t)] < 1] + | 2] < Clw)(t2 — 1)
That completes the proof of the lemma. d

Now we can return to the proof of the Theorem 1.

Proof. The item (1) is proved in the same way as item (i) in [16], using the following
iteration process: u? (z, x) = 0,

t
u(”)(t,x)=/ G(t,x;0, y)uo(y)der/O dS/ G(t,x;5,y) (s, y,u® (s, y)dy
B B

+ / du(s) / G(t,x; 5, Vo (s, dy: (45
.11 B
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consequently, we give only a brief version of the proof. Denote

gn() = sup [ V@, x) —u™ (@, %), n=>1.
xeB

Then for each w € 2 the following estimates hold:
@ ) ' D
@@, x)—uV@,x)|<C | ds | |Gt,x;s,9)|dy < Cit = g1(t) < Cit,
0 B

t
|u("+1)(t, x) — u(")(t,x)’ < Lf./(; ds/ |G(t, x; s, y)||u(”)(s, y) —u Vs, y)|dy
B

t

t
<G /0 1 (5)ds = gn(t) < Ca /0 gn1($)ds, n = 2; (46)

and we can prove by induction that

n—1 "

gn(t) < G103 =,

n'
and the series ZZOZO gn(t) converges uniformly in [0, T']. Hence there exists a limit
function u(f, x) = lim,_ o u™ (¢, x), which is the solution of (6). Prove that it is
unigue. Let w(z, x) be another solution of (6); then, using the same arguments as in
the proof of (46), we obtain that for a function g(¢) = sup, .5 lu(t, x) — w(t, x)|,

t
O =Cit, g Scz/o ¢(s)ds,

and
tn
g(t) < CiCy ! —
n!
for each n > 1. Sending n to infinity, we obtain that u = w.

In order to prove item (2), we represent (45) as

W™, x) = ui (1, x) + us? (1, x) +f

dM(S)/ G(t,x;s,y)0(s, y)dy,
0,1] B

where

u(t, x) =/ G, x; 0, y)uo(y)dy,
B

t
S (t, x) = fo ds fB G(t,x; 5, y) f(s, v, u™ (s, y)dy.

We will prove that function «™ is Holder continuous in [8, T'] x B’ for each fixed
w € 2 with the exponent y; by induction on r; if n = 0, the statement is obvious.
The function u{ (¢, x) satisfies the equation Lu; = 0in (0, T'] x B (see, for example,
the proof of Theorem 4.3 in [8]), and, consequently, in [§, 7] X B’. On the other hand,
[8, Theorem 4.3] implies that function ué") is a solution of the problem

Eugl)(t, x) = —f(t, x,u VD, x)),
u(zn)|s =0, ”én)|t=0 =0.
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The Hélder continuity of f(s, y, "~ (s, y)) by y follows from the inequalities

LFGsy v, u™ Vs, y1) = £, y2,u” Vs, y2)
< Ls(y1 — PP 4+ 1wV, y1) —u""V(s, y)I) < Lalyr — »nlP1,

where 81 = min{8(f), y1}. Theorem 1 in [6] implies that for each € € (0, 1)
S 12, < Cosup £, u®™ V(N < CIFIE,
0

where constant C, depends only on € and the operator £. Applying Lemma 3, we

obtain that there exist the versions ﬁ,(f) of the functions ™ such that

1359(t, x1) — @$0(t, x2)| < Lgwlx1 — x|, Ve € [8, T, x1, x2 € B,

where constant L ;) does not depend on . Sending » to infinity, we obtain the state-
ment of the item.

The beginning of the proof of the item (3) is similar to the proof of the item (2),
we just use Lemma 4 instead of Lemma 3 and get that

13" (1, x) — (12, x)| < Lyt — 0”2, Ve €[8,T1, x1, x2 € B/,

where constant L« does not depend on n. Therefore, there exists a version i@ of a
function u such that

3D (11, x) — @ (12, x)| < Lyolti — 0|?, ¥t €[8,T1, x1, x2 € B.

On the other hand, we have already built a version ™ which satisfies (11). We
exclude all € Q such that 7™ (¢, x) # a®(z, x) for at least one pair of rational
(t,x) € [8, T] x B'. For other w € Q we take it = & = ™ for rational (¢, x) and
define u for other pairs (¢, x) € [§, T] X B’ by continuity. The function & which is
built in such way is Holder continuous on [§, T'] x B O

Now we compare Theorem | with the results of the paper [3], where the heat
equation was considered in the unbounded multidimensional domain. We obtained
the existence and uniqueness of the solution in the same sense as in [3], also the
Holder regularity with the same exponents was obtained. However, considering of
bounded domains allowed us to weaken conditions on the functions ug and f; the
Holder continuity of uq is not required, and function f is not necessary Lipschitz
continuous on x.
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