
Modern Stochastics: Theory and Applications 12 (1) (2025) 61–82
https://doi.org/10.15559/24-VMSTA262

Heat equation with a general stochastic measure in a
bounded domain

Boris Manikin

Taras Shevchenko National University of Kyiv,
Kyiv, Ukraine

bmanikin@knu.ua (B. Manikin)

Received: 21 February 2024, Revised: 2 July 2024, Accepted: 3 July 2024,
Published online: 12 July 2024

Abstract A stochastic heat equation on [0, T ] × B, where B is a bounded domain, is con-
sidered. The equation is driven by a general stochastic measure, for which only σ -additivity
in probability is assumed. The existence, uniqueness and Hölder regularity of the solution are
proved.
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1 Introduction

In this paper we consider the following boundary value problem:{
du(t, x) = a2�xu(t, x)dt + f (t, x, u(t, x))dx + σ(t, x)dμ(t) , (t, x) ∈ D̄,

u(t, x) = 0, (t, x) ∈ S, u(0, x) = u0(x), x ∈ B .

(1)

Here B is a bounded domain in R
d , D = (0, T ) × B, D̄ is a closure of D, S =

(0, T ] × ∂B, �x is the Laplace operator

�xg(x) =
d∑

i=1

∂2g(x)

∂x2
i

.
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Stochastic measure μ is defined on sets of time variable. The conditions on f , u0, σ

and μ, as well as the definition of the solution of (1), are formulated in the following
sections.

Various properties of the solutions of different stochastic partial differential equa-
tions, where stochastic noise is generated by a general stochastic measure, were previ-
ously investigated in many articles. For example, averaging principle for a fractional
heat equation driven by a general stochastic measure was established in [21], the
behavior of the solution of parabolic equation as time variable goes to infinity was
studied in [14], the existence and uniqueness of the solution of the parabolic equation
driven by a σ -finite stochastic measure were proved in [22]. In the mentioned articles
the spatial variable took values in R, while in [2] the stochastic cable equation on
[0, T ] × [0, 1] was considered. On the other hand, stochastic parabolic equation with
random coefficients, where stochastic noise is generated by a two-parameter Wiener
process, was studied in [1], stochastic parabolic equation driven by a Lévy process
was considered in [10], various properties of the solution of stochastic heat equation
on bounded polygonal domains in R

2 were established in [13] and [4], the regularity
of solutions of nonhomogeneous Dirichlet boundary value problems for stochastic
parabolic equations on bounded domains in R

2 was investigated in [5]. Note that the
results and methods of [3] are widely used in this article; the difference between them
is mentioned in the conclusion.

The rest of the paper is organized in the following way. In Section 2 some proper-
ties of stochastic measures and particular functional spaces are mentioned. The main
result of the paper is formulated in Section 3 and proved in Section 4, along with
related auxiliary statements.

2 Preliminaries

Let (�,F , P) be a complete probability space and B be an arbitrary σ -algebra on the
sets of X. Denote by L0 = L0(�,F , P) the set of all real-valued random variables
defined on (�,F , P). Convergence in L0 means the convergence in probability.

Definition 1. A σ -additive mapping μ : B → L0 is called stochastic measure (SM).

In other words, μ is a vector measure with values in L0. In this paper we assume
everywhere that X = [0, T ], B is a Borel σ -algebra on [0, T ].

Consider some examples of SMs. If Mt is a square integrable martingal then
μ(A) = ∫ T

0 1A(t) dMt is an SM. α-stable random measure on B for α ∈ (0, 1) ∪
(1, 2], as it is defined in [20, Sections 3.2-3.3], is an SM by means of Definition 1. Let
WH

t be a fractional Brownian motion with the Hurst index H > 1/2 and
f : [0, T ] → R be a bounded measurable function, then function of sets μ(A) =∫ T

0 f (t)1A(t) dWH
t is an SM, as follows from [15, Theorem 1.1]. More stochastic

measures can be found in [19].
The definition of the integral

∫
A

g dμ, where g : R → R is a deterministic
measurable function, A ∈ B and μ is an SM, and its basic properties are given
in [11, Chapter 7]. Note that every bounded measurable g is integrable with respect
to (w. r. t.) any μ.
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In the sequel, μ denotes an SM, C and C(ω) denote positive constant and pos-
itive random constant, respectively, whose exact values are not important (C < ∞,
C(ω) < ∞ a. s.).

Recall the following important lemma.

Lemma 1. (Lemma 3.1 in [16]) Let φl : R → R, l ≥ 1, be measurable functions
such that φ̃(x) = ∑∞

l=1 |φl(x)| is integrable w.r.t. μ on R. Then

∞∑
l=1

(∫
R

φl dμ
)2

< ∞ a. s.

We consider the Besov spaces Bα
22([c, d]), 0 < α < 1, with the standard norm

‖g‖Bα
22([c,d]) = ‖g‖L2([c,d]) +

(∫ d−c

0
(ω2,[c,d](g, r))2r−2α−1 dr

)1/2
, (2)

where

ω2,[c,d](g, r) = sup
0≤h≤r

(∫ d−h

c

|g(s + h) − g(s)|2 ds
)1/2

.

For any T > 0 and all n ≥ 0, put

d
(T )
kn = k2−nT , 0 ≤ k ≤ 2n, �

(T )
kn = (d

(T )
(k−1)n, d

(T )
kn ], 1 ≤ k ≤ 2n .

For the estimates of stochastic integral we use the following result.

Lemma 2. (Lemma 3 in [17] or Lemma 3.3 in [18]) Let Z be an arbitrary set, and
function q(z, s) : Z × [0, T ] → R be such that all paths q(z, ·) are continuous on
[0, T ]. Denote

qn(z, s) =
∑

1≤k≤2n

q
(
z, d

(T )
(k−1)n

)
1
�

(T )
kn

(s).

Then the random function

η(z) =
∫

A

q(z, s) dμ(s), z ∈ Z, A ⊂ [0, T ],

has a version

η̃(z) =
∫

A

q0(z, s) dμ(s)

+
∑
n≥1

(∫
A

qn(z, s) dμ(s) −
∫

A

qn−1(z, s) dμ(s)
)

(3)

such that for all β > 0, ω ∈ �, z ∈ Z

|̃η(z)| ≤ |q(z, 0)μ(A)| +
∑
n≥1

∑
1≤k≤2n

|q(z, d
(T )
(k−1)n) − q(z, d

(T )

(k′−1)(n−1)
)||μ(�

(T )
kn ∩ A)|

≤ |q(z, 0)μ(A)| +
{∑

n≥1

2nβ
∑

1≤k≤2n

|q(z, d
(T )
kn ) − q(z, d

(T )
(k−1)n)|2

}1/2
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×
{∑

n≥1

2−nβ
∑

1≤k≤2n

|μ(�
(T )
kn ∩ A)|2

}1/2
, (4)

where �
(T )
kn ⊂ �

(T )

k′(n−1)
.

Note that for α = (β + 1)/2{∑
n≥1

2nβ
∑

1≤k≤2n

|q(
z, d

(T )
kn

) − q
(
z, d

(T )
(k−1)n

)|2}1/2 ≤ C‖q(z, ·)‖Bα
22([0,T ]), (5)

as follows from Theorem 1.1 [9]. Moreover, Lemma 1 implies that for each β > 0,
T > 0, A ∈ B([0, T ])∑

n≥1

2−nβ
∑

1≤k≤2n

|μ(�
(T )
kn ∩ A)|2 < +∞ a. s.

We also use the following notations, that were introduced, for example, in [7].

d(P,Q) = (|x1 − x2|2 + |t1 − t2|
)1/2

, P = (t1, x1), Q = (t2, x2);
‖u‖D

α = sup
D

|u| + sup
P,Q∈D

|u(P ) − u(Q)|
d(P,Q)α

;

‖u‖D
1+α = ‖u‖D

α +
∥∥∥∂u

∂x

∥∥∥D

α
.

Let R ⊂ S ∪ {0} × B̄, Sτ = (0, τ ] × ∂B. Denote

d̄P = d((Sτ ∪ {0} × B̄) \ R,P );
d̄PQ = min(d̄P , d̄Q);

M
R,D
p,j [g] = sup

P∈D

d̄
p+j
P |Dj

xg(P )|;

M
R,D
p,j+α[g] = sup

P,Q∈D

d̄
p+j+α
PQ

|Dj
xg(P ) − D

j
xg(Q)|

d(P,Q)α
;

‖g‖R,D
p,m =

m∑
j=0

(M
R,D
p,j+α[g] + M

R,D
p,j [g]).

It can be easily seen that functions ‖ · ‖D
1+α and ‖ · ‖R,D

p,m are norms. The spaces of

functions with finite norms ‖ · ‖D
1+α , ‖ · ‖R,D

p,m are Banach spaces.

3 Formulation of the problem and the main result

Denote Lu = a2�xu − ∂u
∂t

. We consider the solution of (1) in the mild sense, i.e. the
measurable random function u(t, x) = u(t, x, ω) : [0, T ]×B ×� → R that satisfies

u(t, x) =
∫

B

G(t, x; 0, y)u0(y)dy +
∫ t

0
ds

∫
B

G(t, x; s, y)f (s, y, u(s, y))dy
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+
∫

(0,t]
dμ(s)

∫
B

G(t, x; s, y)σ (s, y)dy, (6)

where G(t, x; s, y) is a Green’s function of the equation Lu = 0 in D. According
to [12, Chapter IV, §16, Theorem 16.3], the following inequalities hold for some
constants λ, M > 0:

|G(t, x; s, y)| ≤ M(t − s)−d/2e− η|x−y|2
t−s , (7)∣∣∣∣∂G(t, x; s, y)

∂xi

∣∣∣∣ ≤ M(t − s)−(d+1)/2e− η|x−y|2
t−s , (8)∣∣∣∣∂G(t, x; s, y)

∂t

∣∣∣∣ ≤ M(t − s)−d/2−1e− η|x−y|2
t−s . (9)

In our assertions we often refer to the following definition, which can be found in [8,
p. 437].

Definition 2. The domain S belongs to a class Am+β (Am) in R
d (Rd+1) if for every

point P of S̄ there exists a sphere with center P and a function χ , which belongs to a
class Am+β (Am), such that for certain i ≤ d

xi = χ(x1, . . . , xi−1, xi+1, . . . , xd) (xi = χ(x1, . . . , xi−1, xi+1, . . . , xd, t))

inside the sphere.

We consider domain B, functions u0, f , σ that satisfy the following assumptions.

Assumption 1. There exists β ∈ (0, 1) such that S̄ belongs to a class A1+β in R
d+1.

Assumption 2. Function u0 : B̄ ×� → R is measurable and bounded for each fixed
ω ∈ �.

Assumption 3. Function f (s, y, z) : [0, T ] × B̄ × R → R is measurable, bounded
and

|f (s, y1, z1) − f (s, y2, z2)| ≤ Lf

(|y1 − y2|β(f ) + |z1 − z2|
)

for some constants Lf > 0, β(f ) > 0 and all s ∈ [0, T ], y1 , y2 ∈ B̄, z1 , z2 ∈ R.

Assumption 4. Function σ(s, y) : [0, T ] × B̄ → R is measurable, bounded and

|σ(s1, y1) − σ(s2, y2)| ≤ Lσ (|y1 − y2|β(σ ) + |s1 − s2|β(σ ))

for some constants Lσ > 0, 1 > β(σ) > 1/2 and all s1, s2 ∈ [0, T ], y1 , y2 ∈ B̄.

In some statements we refer to the following assumptions on μ.

Assumption 5. Stochastic measure μ has bounded paths:

|μ((0, t])| ≤ Cμ(ω), (10)

for random constant Cμ(ω) and all t ∈ [0, T ].
Assumption 6. Stochastic measure μ has Hölder continuous paths:

|μ((s1, s2])| ≤ C(ω)|s1 − s2|β(μ),

for random constant C(ω), deterministic constant β(μ) and all s1, s2 ∈ [0, T ].
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For example, stochastic measure μ(A) = ∫ T

0 1A(t) dWH
t satisfies Assumption 6

with β(μ) = H . Also, note that Assumption 6 implies Assumption 5.
We can formulate the main result of the paper.

Theorem 1. Let Assumptions 1–4 hold.

1. Then solution of (6) exists and is unique in the following sense: if u1(t, x) and
u2(t, x) are two solutions of (6), then, for each (t, x) ∈ [0, T ] × B̄, u1(t, x) =
u2(t, x) a. s.

2. In addition, assume that Assumption 5 holds. Then, for each fixed δ > 0,
γ1 < β(σ) and set B ′, d(∂B, B̄ ′) > 0, a random function u(t, x), which is
the solution of (6), has a version ũ(x)(t, x), which satisfies

|ũ(x)(t, x1)−ũ(x)(t, x2)| ≤ Lũ(x) |x1−x2|γ1 , ∀t ∈ [δ, T ], x1, x2 ∈ B̄ ′, (11)

for a random constant Lũ(x) = Lũ(x) (ω) > 0.

3. In addition, assume that Assumption 6 holds. Then, for each fixed δ > 0, B ′,
d(∂B, B̄ ′) > 0, γ1 < β(σ), γ2 < β(μ)∧ (

β(σ)/(4 − 2β(σ))
)
, a random func-

tion u(t, x), which is the solution of (6), has a version ũ(t, x), which satisfies

|ũ(t1, x1) − ũ(t2, x2)| ≤ Lũ

(|x1 − x2|γ1 + |t1 − t2|γ2
)
,

∀t1, t2 ∈ [0, T ], x1, x2 ∈ B̄ ′,

for a random constant Lũ = Lũ(ω) > 0.

4 Auxiliary lemmas and proof of the main result

To prove Theorem 1, we need the following results about stochastic integral.

Lemma 3. Let Assumptions 1, 2, 4, 5 hold. Then, for arbitrary set B ′, d(∂B, B̄ ′) > 0,
the random process

ζ(x) =
∫

(0,t]
dμ(s)

∫
B

G(t, x; s, y)σ (s, y)dy (12)

has a version of a kind (3), which is Hölder continuous with the exponent γ1 on B ′
for all t ∈ [0, T ], γ1 < β(σ).

Proof. Let

q(z, s) =
{ ∫

B
(G(t, x1; s, y) − G(t, x2; s, y))σ (s, y)dy, if 0 ≤ s < t,

σ (t, x1) − σ(t, x2), if t ≤ s ≤ T .
(13)

Here z = (t, x1, x2). The function (13) is continuous in [0, T ] as a function of s, as
follows from ∫

B

G(t, x; s, y)σ (s, y)dy → σ(t, x), s → t−. (14)
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We give the brief proof of (14). Fix ε > 0. Then for all 0 ≤ r < t∣∣∣∫
B

G(t, x; s, y)σ (s, y)dy − σ(t, x)

∣∣∣ ≤
∣∣∣∫

B

G(t, x; s, y)
(
σ(s, y) − σ(r, y)

)
dy

∣∣∣
+

∣∣∣∫
B

G(t, x; s, y)σ (r, y)dy − σ(r, x)

∣∣∣ + |σ(r, x) − σ(t, x)|

≤ C|t − r|β(σ ) +
∣∣∣∫

B

G(t, x; s, y)σ (r, y)dy − σ(r, x)

∣∣∣.
We can choose r such that C|t − r|β(σ ) ≤ ε/2. On the other hand,∫

B

G(t, x; s, y)σ (r, y)dy → σ(r, x), s → t−,

as follows from [7, Chapter 3, Sec. 7, Definition]. Therefore, there exists δ > 0 which
may depend on t and x such that for all s > t − δ,∣∣∣∫

B

G(t, x; s, y)σ (r, y)dy − σ(r, x)

∣∣∣ < ε/2,

, and the convergence (14) holds. Therefore, we can apply Lemma 2 for q, which is
defined by (13). At first, we estimate ω2,[0,t](q, r). Consider the difference

q(z, s + h) − q(z, s) =
∫

B

(
G(t, x1; s, y) − G(t, x2; s, y)

)(
σ(s + h, y) − σ(s, y)

)
dy

+
∫

B

(
G(t, x1; s + h, y) − G(t, x2; s + h, y)

−G(t, x1; s, y) + G(t, x2; s, y)
)
σ(s + h, y)dy = I1 + I2.

I1 is estimated in the same way as A2(s, h) in [3], where we estimate the derivatives
using (8). More precisely, we get

|I1| ≤ Chβ(σ)

∫
B

|G(t, x1; s, y) − G(t, x2; s, y)|dy

≤ Chβ(σ)|x1 − x2|
∫
Rd

dy

∫ 1

0

∣∣gradxG(t, θx1 + (1 − θ)x2, s, y)
∣∣dθ

≤ Chβ(σ)|x1 − x2|
∫
Rd

dy

∫ 1

0
(t − s)−

d+1
2 e− η(θx1+(1−θ)x2−y)

t−s dθ

≤ C
hβ(σ)|x1 − x2|

(t − s)1/2

∫ 1

0
dθ

∫
Rd

e− η(θx1+(1−θ)x2−y)

t−s
dy

(t − s)d/2 = C
hβ(σ)|x1 − x2|

(t − s)1/2 .

Therefore, we obtain that∫ t−h

0
I 2

1 ds ≤ Ch2β(σ )|x1 − x2|2(C + | ln h|) ≤ Ch2γ |x1 − x2|2, γ > 1/2. (15)

Denote

v(t, x, s) =
∫

B

G(t + τ, x; τ, y)σ (s, y)dy.
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Now we apply the definition in [7, Chapter 3, Sec. 7] to obtain the properties of v:

Lv =
∫

B

LG(t + τ, x; τ, y)σ (s, y)dy = 0,

v(t, x, s)|(t,x)∈S =
(∫

B

G(t + τ, x; τ, y)σ (s, y)dy
)∣∣∣

(t,x)∈S

=
(∫

B

G(t + τ, x; τ, y)σ (s, y)dy
)
|(t+τ,x)∈S

[7],(7.4)= 0, t ≤ T − τ,

v(0, x, s) = lim
t→0

∫
B

G(t + τ, x; τ, y)σ (s, y)dy
[7],(7.3)= σ(s, x).

(16)

Now consider (16) as a boundary value problem for each fixed s. Theorem 11 in [8,
Sec. 1] implies that it has unique solution; consequently, v does not depend on τ .
Therefore,

I2 = v(t−s−h, x1, s+h)−v(t−s−h, x2, s+h)−v(t−s, x1, s+h)+v(t−s, x2, s+h).

We can construct the extension of a function σ(s, y), which is bounded and Hölder
continuous in [0, T ] × R

d with the same exponent. This follows, for example, from
[7, Chapter 3, Theorem 2, p. 60]. Now we note that v(t, x, s) = v(1)(t, x, s) −
v(2)(t, x, s), where v(1) is a solution of the Cauchy problem{

Lv(1)(t, x, s) = 0,

v(1)(t, x, s)|t=0 = σ(s, x),

in [0, T ] × R
d , and v(2) is a solution of a boundary value problem{

Lv(2) = 0,

v(2)|t=0 = 0, v(2)|S = v(1),

in [0, T ] × B. We represent I2 in a form I21 − I22, where

I2i = v(i)(t − s − h, x1, s + h) − v(i)(t − s − h, x2, s + h)

− v(i)(t − s, x1, s + h) + v(i)(t − s, x2, s + h), i = 1, 2.

According to [8, Sec. 4, Theorem 2], v(1) can be represented in the form

v(1)(t, x, s) =
∫
Rd

p(t, x − y)σ (s, y)dy,

where

p(t, x) = 1

(4a2πt)d/2 e
− |x|2

4a2 t .

Therefore,

I21 =
∫
Rd

(
p(t−s−h, x1−y)−p(t−s−h, x2−y)−p(t−s, x1−y)+p(t−s, x2−y)

)
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× σ(s + h, y)dy = A1(s, h)

in the notations of [3]. Recall the estimates for A1(s, h) from the mentioned article:

|I21| ≤
∫
Rd

|p(t − s, x1 − y) − p(t − s, x2 − y)||σ(s + h, y) − σ(s, y)|dy

≤ C|x1 − x2|β(σ )

∫
Rd

dy

∫ t−s

t−s−h

τ− d
2 −1e− C|y|2

τ dτ

= C|x1 − x2|β(σ )

∫ t−s

t−s−h

τ−1dτ

∫
Rd

τ− d
2 e− C|y|2

τ dy

= C|x1 − x2|β(σ ) ln
t − s

t − s − h
.

Therefore, ∫ t−h

0
I 2

21ds ≤ C|x1 − x2|2β(σ )

∫ t−h

0
ln2 t − s

t − s − h
ds

≤ Ch|x1 − x2|2β(σ )

∫ +∞

0
ln2(1 + 1/u)du = Ch|x1 − x2|β(σ ). (17)

On the other hand, estimating A1(s, h) in a similar way to estimation [3.54] in [18],
we get

|I21| ≤
∣∣∣∫

Rd

(
p(t − s − h, x1 − y) − p(t − s, x1 − y)

)
σ(s + h, y)dy

∣∣∣
+

∣∣∣∫
Rd

(
p(t − s − h, x2 − y) − p(t − s, x2 − y)

)
σ(s + h, y)dy

∣∣∣
= C

∣∣∣∫
Rd

e−|v|2(σ(s + h, x1 + 2av
√

t − s − h) − σ(s + h, x1 + 2av
√

t − s)
)
dv

∣∣∣
+C

∣∣∣∫
Rd

e−|v|2(σ(s + h, x2 + 2av
√

t − s − h) − σ(s + h, x2 + 2av
√

t − s)
)
dv

∣∣∣
≤ C

∫
Rd

e−|v|2 |v(
√

t − s − h − √
t − s)|β(σ )dv ≤ Chβ(σ)(t − s)−β(σ )/2, (18)

where for the i-th summand we used the substitutions

v = y − xi

2a
√

t − s − h
, v = y − xi

2a
√

t − s
.

From (4) and (18) it follows that∫ t−h

0
I 2

21ds ≤ Ch2β(σ )+λ(1−2β(σ ))|x1 − x2|2λβ(σ ), 0 < λ < 1. (19)

Now we estimate I22. Fix α ∈ (0, 1). As the functions v(t, x, s) and v(1)(t, x, s) are
bounded in Q̄ uniformly on t, x, s, the same holds for v(2)(t, x, s). Let us prove it,
for example, for v:

|v(t, x, s)| ≤
∫

B

|G(t, x; 0, y)||σ(s, y)|dy
(7)≤ C

∫
Rd

t−d/2e− η(x−y)2

t dy ≤ C.
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It is possible to take the domains B ′′ and B ′′′ such that B̄ ′′ ⊂ B, B̄ ′′′ ⊂ B ′′, B̄ ′ ⊂ B ′′′
and ∂B ′′, ∂B ′′′ ∈ A3 (see Definition 2).

Remark 1. The sets B ′′ and B ′′′ can be easily constructed; let us do it, for example,
for B ′′. Introduce the notations

η1(x) = Ce
1

|x|2−1 1{|x|<1}, x ∈ R
d,

∫
Rd

η1(x) dx = 1,

ηε(x) = ε−dη1(xε−1),

B ′
ε = B ′ ∪ {x ∈ R

d : d(x, ∂B ′) < ε},
and take κε(x) = ∫

B ′
ε
ηε(x − y)dy. For a sufficiently small ε > 0, κε(x) = 1,

x ∈ B ′, κε(x) = 0, x /∈ B. Let B ′′ = κ−1
ε ((1/2, 1]) and consider arbitrary x∗ ∈

∂B ′′. Obviously, there exists an index j such that ∂κε(x
∗)

∂xj
�= 0, and, consequently, a

function h ∈ C∞(Rd−1) such that ∂B ′′ can be locally represented in a form xj =
h(x1, . . . , xj−1, xj+1, . . . , xd).

Denote S′′ = [0, T ] × ∂B ′′, B ′′
0 = {0} × B ′′. It is obvious that v(2) ∈ C([0, T ] ×

B̄ ′′). As [0, T ]×B̄ ′′ is a compact, there exist polynomials �m such that �m → v(2) in
C([0, T ] × B̄ ′′). Therefore, there exists a sequence ψm(t, x) = �m(t, x) − �m(0, x)

such that ψm ∈ C3(S′′ ∪ B ′′
0 ), ψm = 0 on B̄ ′′

0 and ψm → v(2) on C(S′′ ∪ B ′′
0 ). Let

v
(2)
m be a solution of the boundary value problem{

Lv
(2)
m = 0,

v
(2)
m |S′′∪B ′′

0
= ψm,

on [0, T ]×B ′′. Theorem 7 in [7, Chap. III, Sec. 3] implies that v
(2)
m ∈ C2+α([0, T ]×

B̄ ′′
0 ). Therefore, we can apply Theorem 4 in [7, Chap. IV, Sec. 7] for the functions

v
(2)
m −v

(2)
n , where B ′′, B ′′′ and (0, T )×B ′′ are the sets R, R0 and D in the formulation

of the theorem, respectively. Using, in addition, the maximum principle, we obtain

|v(2)
m − v(2)

n |R0,D
0,2+α ≤ K|v(2)

m − v(2)
n |0 ≤ K|ψm − ψn|S

′′∪B ′′
0

0 → 0,m, n → ∞,

and sequence {v(2)
m : m ≥ 1} converges in ‖ · ‖R0,D

0,2+α to a limit function ṽ(2); for

example, M
R0,D
0,0 [v(2)

m − ṽ(2)] → 0, m → 0. On the other hand, according to [7,

Chap. III, Sec. 6, Corollary of Theorem 15], sequence {v(2)
m : m ≥ 1} converges

uniformly to v(2) on [0, T ] × B̄ ′′. Therefore, ṽ(2) = v(2) and

|v(2)|R0,D
0,2+α ≤ K|v(2)|0 =: K1,

where constants K and K1 depend only on a, α, B ′′′ and B ′′. This implies the in-
equality

|I22| =
∫ t−s

t−s−h

∣∣∣∂v(2)(w, x1, s + h)

∂w
− ∂v(2)(w, x2, s + h)

∂w

∣∣∣dw
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≤
∫ t−s

t−s−h

K1
|x1 − x2|α

d̄ 2+α
x1x2

dw ≤ C

∫ t−s

t−s−h

|x1 − x2|α
d(B̄ ′, ∂B ′′′)2+α

dw = Ch|x1 − x2|α. (20)

We can choose γ in (15), λ in (19), α in (20) such that

ω2,[0,t](q, r) ≤ Crθ1 |x1 − x2|γ1 , θ1 > 1/2.

Estimating q(z, s) in the same way as I2 for s < t and using Hölder continuity of σ

for t ≤ s ≤ T , we obtain that for each γ̃1 < β(σ),

|q(z, s)| ≤ C|x1 − x2|γ̃1 . (21)

Now we proceed to the estimating of ω2,[0,T ](q, r). We obtain that

ω2,[0,T ](q, r) = sup
0≤h≤r

‖q(· + h) − q(·)‖L2([0,T −h])

≤ sup
0≤h≤r

(‖q(· + h) − q(·)‖L2([0,t−h]) + ‖q(· + h) − q(·)‖L2([t−h,t])

+‖q(· + h) − q(·)‖L2([t,T −h])
) ≤ ω2,[0,t](q, r) + Ĩ (r),

where

Ĩ (r) =
(∫ t

t−r

|q(z, t) − q(z, s)|2 ds
)1/2

.

Triangle inequality for the norm ‖ · ‖L2 together with (21) implies that

Ĩ (r) ≤
(∫ t

t−r

|q(z, t)|2 ds
)1/2 +

(∫ t

t−r

|q(z, s)|2 ds
)1/2 ≤ Cr1/2|x1 − x2|γ̃1 , (22)

where we take γ̃1 ∈ (γ1, β(σ )). On the other hand, the difference q(z, t) − q(z, s)

can be rewritten in the following way:

q(z, t) − q(z, s) = σ(t, x1) − σ(t, x2) −
∫

B

G(t, x1; s, y)σ (s, y)dy

+
∫

B

G(t, x2; s, y)σ (s, y)dy

= v(0, x1, t) − v(0, x2, t) − v(t − s, x1, s) + v(t − s, x2, s)

=
2∑

i=1

v(i)(0, x1, t) − v(i)(0, x2, t) − v(i)(t − s, x1, s) + v(i)(t − s, x2, s). (23)

Remark that

|v(1)(0, x1, t) − v(1)(t − s, x1, s)| =
∣∣∣σ(t, x1) −

∫
Rd

p(t − s, x1 − y)σ (s, y)dy

∣∣∣
=

∣∣∣σ(t, x1) − 1(
4a2π(t − s)

)d/2

∫
Rd

e
− (x1−y)2

4a2(t−s) σ (s, y)dy

∣∣∣
= 1

πd/2

∣∣∣∫
Rd

e−|v|2σ(t, x1)dv −
∫
Rd

e−|v|2σ(s, 2av
√

t − s + x1)dv

∣∣∣
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≤ C

∫
Rd

e−|v|2((t − s)β(σ ) + |v|(t − s)β(σ )/2)dv ≤ C(t − s)β(σ )/2.

The same estimates can be applied for |v(1)(0, x2, t) − v(1)(t − s, x2, s)|. That leads
to the inequality

|v(1)(0, x1, t)−v(1)(0, x2, t)−v(1)(t −s, x1, s)+v(1)(t −s, x2, s)| ≤ C(t −s)β(σ )/2.

(24)
For the second summand in (23) we can use the same estimates as in (20) and obtain
that

|v(2)(0, x1, t) − v(2)(0, x2, t) − v(2)(t − s, x1, s) + v(2)(t − s, x2, s)|
= |v(2)(0, x1, s) − v(2)(0, x2, s) − v(2)(t − s, x1, s) + v(2)(t − s, x2, s)| ≤ C(t − s).

(25)

Here we also applied the fact v(2)(0, xi, t) = v(2)(0, xi, s) = 0. Eqs. (24) and (25)
imply that

Ĩ 2(r) ≤ C

∫ t

t−r

(t − s)β(σ )ds = Crβ(σ)+1. (26)

Together with (22), (26) leads to the estimate

Ĩ (r) ≤ Crθ2 |x1 − x2|γ1 ,

where θ2 > 1/2. In conclusion,

ω2,[0,T ](q, r) ≤ Crθ |x1 − x2|γ1 , θ = min{θ1, θ2} > 1/2.

As a result,

‖q(z, ·)‖Bε
22([0,t]) ≤ C|x1−x2|γ1 +C|x1−x2|γ1

(∫ t

0
r−2ε−1+2θ dr

)1/2 ≤ C|x1−x2|γ1

for a sufficiently small ε. The only fact left to prove is that∑
n≥1

2−nβ
∑

1≤k≤2n

|μ(�
(T )
kn ∩ (0, t])|2 < C(ω) a. s.,

where C(ω) does not depend on t . Assume that for each n, t ∈ �
(T )
knn; then by As-

sumption 5∑
n≥1

2−nβ
∑

1≤k≤2n

|μ(�
(T )
kn ∩ (0, t])|2

≤
∑
n≥1

2−nβ
∑

1≤k≤2n

|μ(�
(T )
kn )|2 +

∑
n≥1

2−nβ |μ(�
(T )
knn ∩ (0, t])|2 ≤ C(ω).
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Lemma 4. Let Assumptions 1, 2, 4, 6 hold. Then the random process

ζ̂ (t) =
∫

(0,t]
dμ(s)

∫
B

G(t, x; s, y)σ (s, y)dy (27)

has a version of a kind (3), which is Hölder continuous on [δ, T ] with the exponent
γ2 for all x ∈ B, T > δ > 0, γ2 < β(μ), γ2 < β(σ)/(4 − 2β(σ)). If x ∈ B ′, where
B̄ ′ ⊂ B, we can choose Hölder constant that depends only on σ , μ, γ2, δ and B ′.

Proof. Let t1 ≤ t2. We represent the difference of the integrals (27) in the form

ζ̂ (t2) − ζ̂ (t1) =
∫

(0,t2]
dμ(s)

∫
B

G(t2, x; s, y)σ (s, y)dy

−
∫

(0,t1]
dμ(s)

∫
B

G(t1, x; s, y)σ (s, y)dy

=
∫

(t1,t2]
q̄(z, s)dμ(s) +

∫
(0,t1]

Q̄(z, s)dμ(s) = J1 + J2, (28)

where

q̄(z, s) =
∫

B

G(t2, x; s, y)σ (s, y)dy, z = (t2, x), s ∈ [t1, t2],

Q̄(z, s) =
∫

B

(G(t2, x; s, y) − G(t1, x; s, y))σ (s, y)dy, z = (t1, t2, x), s ∈ [0, t1].

We fix a domain B ′ such that x ∈ B ′, B̄ ′ ⊂ B and, in the notations of Lemma 3,
obtain that

|q̄(z, s)| ≤ C,

|q̄(z, s + h) − q̄(z, s)| ≤
∫

B

|G(t2, x; s + h, y)||σ(s + h, y) − σ(s, y)|dy

+
∣∣∣∫

B

(G(t2, x; s + h, y) − G(t2, x; s, y))σ (s + h, y)dy

∣∣∣ ≤ Chβ(σ)

+|v(1)(t2 − s − h, x, s + h) − v(1)(t2 − s, x, s + h)|
+|v(2)(t2 − s − h, x, s + h) − v(2)(t2 − s, x, s + h)|

≤ C(hβ(σ) + hβ(σ)(t2 − s)−β(σ )/2 + h) ≤ Chβ(σ)(t2 − s)−β(σ )/2, (29)

where the constant C in the last inequality depends on B ′. We take kn1 and kn2 such
that t1 ∈ �

(T )
kn1n

and t2 ∈ �
(T )
kn2n

and choose n0 that satisfies the inequality

2−n0T < t2 − t1 ≤ 2−n0+1T .

For such n0, kn01 + 1 = kn02 or kn01 + 2 = kn02, while for smaller n, kn1 + 1 = kn2
or kn1 = kn2. We can easily obtain by induction that for each n ≥ n0

kn2 − kn1 ≤ 2n−n0+1 − 1 + T −1(t2 − t1)2
n ≤ T −1(t2 − t1)2

n+1.
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The function q̄(z, s) was already defined on [t1, t2], let q̄(z, s) = q̄(z, t1) for s < t1
and q̄(z, s) = q̄(z, t2) for s > t2. Now we can use Lemma 2 to estimate integral J1:

|J1| ≤ |q̄(z, 0)μ((t1, t2])|
+

∑
n≥1

∑
1≤k≤2n

|q̄(z, d
(T )
(k−1)n) − q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn ∩ (t1, t2])|.

For each n we can omit summands for k ≤ kn1, as for such k, q̄(z, d
(T )
(k−1)n) =

q̄(z, t1) = q̄(z, d
(T )
(k−2)n

), and summands for k > kn2, as for such k, �(T )
kn ∩(t1, t2] = ∅:

|J1| ≤ C(t2 − t1)
γ2

+
∑
n≥1

kn2∑
k=kn1+1

|q̄(z, d
(T )
(k−1)n) − q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn ∩ (t1, t2])| ≤ C(ω)(t2 − t1)

γ2

+
∑
n≥1

|q̄(z, d
(T )
(kn2−1)n) − q̄(z, d

(T )
(kn2−2)n)||μ(d

(T )
(kn2−1)n, t2])

+
∑
n≥n0

kn2−1∑
k=kn1+1

|q̄(z, d
(T )
(k−1)n) − q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn )|

= C(ω)(t2 − t1)
γ2 + S1 + S2.

Now we estimate the sums S1 and S2, using (29).

S1 ≤ C(ω)
∑
n≥1

2−nβ(σ )(t2 − d
(T )
(kn2−2)n)

−β(σ )/2(t2 − d
(T )
(kn2−1)n)

β(μ)

≤ C(ω)(t2 − t1)
γ2

∑
n≥1

2−n(β(μ)−γ2) = C(t2 − t1)
γ2 ,

S2 ≤ C
( ∑

n≥n0

2−nβ
2n∑

k=1

|μ(�
(T )
kn )|2

)1/2

×
( ∑

n≥n0

2nβ2−2nβ(σ )

kn2−1∑
k=kn1+1

(t2 − (k − 2)2−nT )−β(σ )
)1/2

≤ C(ω)
( ∑

n≥n0

2−n(2β(σ )−β)

kn2−kn1∑
i=1

(i2−nT )−β(σ )
)1/2

≤ C(ω)
( ∑

n≥n0

2−n(β(σ )−β)(kn2 − kn1)
1−β(σ )

)1/2

≤ C(ω)(t2 − t1)
(1−β(σ ))/2 2−n0(2β(σ )−β−1)/2

≤ C(ω)(t2 − t1)
(β(σ )−β)/2 ≤ C(ω)(t2 − t1)

γ2 ,

where we choose β > 0 such that

(β(σ ) − β)/2 > β(σ)/(4 − 2β(σ)) > γ2;
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such β exists as 1 > β(σ). Therefore,

J1 ≤ C(ω)(t2 − t1)
γ2 . (30)

In order to estimate J2, we need to prove some properties of the function Q̄. Firstly,
notice that in the notations of Lemma 3 Q̄(z, s) = v(t2 − s, x, s)−v(t1 − s, x, s) and

|Q̄(z, s)| ≤ |v(1)(t2 − s, x, s) − v(1)(t1 − s, x, s)|
+|v(2)(t2 − s, x, s) − v(2)(t1 − s, x, s)|

≤ |v(1)(t2 − s, x, s) − v(1)(t1 − s, x, s)| + C(t2 − t1).

The difference |v(1)(t2 − s, x, s)− v(1)(t1 − s, x, s)| was already estimated in [3], see
formulas (13)–(15):

|v(1)(t2 − s, x, s) − v(1)(t1 − s, x, s)| ≤ C(t2 − t1)(t1 − s)−1,

|v(1)(t2 − s, x, s) − v(1)(t1 − s, x, s)| ≤ C(t2 − t1)
β(σ )(t1 − s)−β(σ )/2,

|v(1)(t2 − s, x, s) − v(1)(t1 − s, x, s)| ≤ C(t2 − t1)
β(σ )/2.

This leads to the following estimates for |Q̄(z, s)|:
|Q̄(z, s)| ≤ C(t2 − t1)(t1 − s)−1, (31)

|Q̄(z, s)| ≤ C(t2 − t1)
β(σ )(t1 − s)−β(σ )/2, (32)

|Q̄(z, s)| ≤ C(t2 − t1)
β(σ )/2. (33)

Eqs. (31) and (32) directly imply that

|Q̄(z, s + h) − Q̄(z, s)| ≤ C(t2 − t1)(t1 − s − h)−1, (34)

|Q̄(z, s + h) − Q̄(z, s)| ≤ C(t2 − t1)
β(σ )(t1 − s − h)−β(σ )/2. (35)

Rewrite the difference Q̄(z, s + h) − Q̄(z, s) in a form

Q̄(z, s + h) − Q̄(z, s)

=
∫

B

(
G(t2, x; s, y) − G(t1, x; s, y)

)(
σ(s + h, y) − σ(s, y)

)
dy

+
∫

B

(
G(t2, x; s + h, y) − G(t2, x; s, y)

)
σ(s + h, y)dy

−
∫

B

(
G(t1, x; s + h, y) − G(t1, x; s, y)

)
σ(s + h, y)dy = F1 + F2 − F3.

Using (9), we obtain that

|F1| ≤ Chβ(σ)

∫
B

dy

∫ t2

t1

1

(τ − s)d/2+1 e− λ(x−y)2

τ−s dτ

≤ Chβ(σ)

∫ t2

t1

ds

(τ − s)d/2+1

∫
Rd

e− λ(x−y)2

τ−s dy
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≤ Chβ(σ)

∫ t2

t1

ds

(τ − s)d/2+1

∫ +∞

0
e− λv2

τ−s vd−1dv

= Chβ(σ)

∫ t2

t1

(τ − s)−1dτ ≤ Chβ(σ)(t2 − t1)(t1 − s − h)−1.

F2 can be estimated similarly to (29):

|F2| = |v(t2 − s − h, x, s + h) − v(t2 − s, x, s + h)|
≤ |v(1)(t2 − s − h, x, s + h) − v(1)(t2 − s, x, s + h)|
+|v(2)(t2 − s − h, x, s + h) − v(2)(t2 − s, x, s + h)|

≤ C(h(t1 − s − h)−1 + h) ≤ Ch(t1 − s − h)−1.

The estimates hold for F3, too. That leads to the following analogue of formula (19)
in [3]:

|Q̄(z, s + h) − Q̄(z, s)| ≤ C
(
hβ(σ)(t2 − t1) + h

)
(t1 − s − h)−1. (36)

The next inequality is proved with the help of (29):

|Q̄(z, s + h) − Q̄(z, s)|
≤

∣∣∣∣∫
B

(
G(t2, x; s + h, y)σ (s + h, y) − G(t2, s; s, y)σ (s, y)

)
dy

∣∣∣∣
+

∣∣∣∣∫
B

(
G(t1, x; s + h, y)σ (s + h, y) − G(t1, s; s, y)σ (s, y)

)
dy

∣∣∣∣
≤ Chβ(σ)(t1 − s)−β(σ )/2. (37)

Raising (35) to the power λ and (34) to the power 1−λ, where λ ∈ (1/(2−β(σ)), 1),
we get that

|Q̄(z, s + h) − Q̄(z, s)| ≤ C(t2 − t1)
ρ1(t1 − s − h)ρ2 , (38)

where

ρ1 = 1 − λ + λβ(σ ) > β(σ), ρ2 = −1 + λ − λβ(σ )/2 > −1/2.

Raising (37) to the power λ and (36) to the power 1 − λ, we obtain that

|Q̄(z, s + h) − Q̄(z, s)| ≤ C(hβ(σ)(t2 − t1)
1−λ + hρ1)(t1 − s − h)ρ2 . (39)

We choose m0 which satisfies a condition

2−m0T < t1 ≤ 2−m0+1T .

The function Q̄(z, s) was already defined on [0, t1], let Q̄(z, s) = Q̄(z, t1) for s > t1.
Now function Q̄ is continuous on [0, t2] and we can use Lemma 2:

|J2| ≤ |Q̄(z, 0)μ((0, t1])|
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+
∑
n≥1

2n∑
k=1

|Q̄(z, d
(T )
(k−1)n) − Q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn ∩ (0, t1])|

≤ |Q̄(z, 0)μ((0, t1])| +
∑

n≥m0

kn1∑
k=2

|Q̄(z, d
(T )
(k−1)n) − Q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn ∩ (0, t1])|

≤ |Q̄(z, 0)μ((0, t1])| +
∑

n≥m0

|Q̄(z, d
(T )
(kn1−1)n) − Q̄(z, d

(T )
(kn2−2)n)||μ(d

(T )
(kn1−1)n, t1])|

+
n0−1∑
n=m0

kn1−1∑
k=2

|Q̄(z, d
(T )
(k−1)n) − Q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn )|

+
∞∑

n=n0

kn1−1∑
k=2

|Q̄(z, d
(T )
(k−1)n) − Q̄(z, d

(T )
(k−2)n)||μ(�

(T )
kn )| = U1 + U2 + U3 + U4.

Using (33), we easily obtain that

U1 ≤ C(ω)(t2 − t1)
β(σ )/2, (40)

U2 ≤ C(ω)(t2 − t1)
β(σ )/2

∑
n≥m0

2−nβ(μ) = C(ω)(t2 − t1)
β(σ )/2. (41)

In order to estimate U3, we use (38):

U3 ≤ C
(∑

n≥1

2−nβ
2n∑

k=1

|μ(�
(T )
kn )|2

)1/2

×
(n0−1∑

n=m0

2nβ

kn1−1∑
k=2

|Q̄(z, d
(T )
(k−1)n) − Q̄(z, d

(T )
(k−2)n)|2

)1/2

≤ C(ω)(t2 − t1)
ρ1

(n0−1∑
n=m0

2nβ

kn1−1∑
k=2

(t1 − d
(T )
(k−1)n)

2ρ2
)1/2

≤ C(ω)(t2 − t1)
ρ1

(n0−1∑
n=m0

2nβ

kn1−1∑
i=1

(i2−nT )2ρ2
)1/2

≤ C(ω)(t2 − t1)
ρ1

(n0−1∑
n=m0

2n(β−2ρ2)(kn1 − 1)2ρ2+1
)1/2

≤ C(ω)(t2 − t1)
ρ1

(n0−1∑
n=m0

2n(β−2ρ2)2n(2ρ2+1)
)1/2

≤ C(ω)(t2 − t1)
ρ1 2n0(β+1)/2 ≤ C(t2 − t1)

ρ1−(1+β)/2. (42)

Now we estimate U4, applying (39):

U4 ≤ C
(∑

n≥1

2−nβ
2n∑

k=1

|μ(�
(T )
kn )|2

)1/2
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×
( ∞∑

n=n0

2nβ

kn1−1∑
k=2

|Q̄(z, d
(T )
(k−1)n) − Q̄(z, d

(T )
(k−2)n)|2

)1/2

≤ C(ω)
( ∞∑

n=n0

2nβ

kn1−1∑
k=2

((t2 − t1)
2−2λ(2−nT )2β(σ ) + (2−nT )2ρ1)(t1 − d

(T )
(k−1)n)

2ρ2
)1/2

≤ C(ω)
( ∞∑

n=n0

2nβ((t2 − t1)
2−2λ2−2nβ(σ ) + 2−2nρ1)

kn1−1∑
j=1

|j2−nT |2ρ2
)1/2

≤ C(ω)
( ∞∑

n=n0

2n(β−2ρ2)((t2 − t1)
2−2λ2−2nβ(σ ) + 2−2nρ1)(kn1 − 1)2ρ2+1

)1/2

≤ C(ω)
( ∞∑

n=n0

2n(β−2ρ2)((t2 − t1)
2−2λ2−2nβ(σ ) + 2−2nρ1)2n(2ρ2+1)

)1/2

= C(ω)
( ∞∑

n=n0

2n(β−2β(σ )+1)(t2 − t1)
2−2λ +

∞∑
n=n0

2n(β−2ρ1+1)
)1/2

≤ C(ω)
(

2n0(β−2β(σ )+1)(t2 − t1)
2−2λ + 2n0(β−2ρ1+1)

)1/2

≤ C(ω)
(
(t2 − t1)

−β+2β(σ )−1(t2 − t1)
2−2λ + (t2 − t1)

−β+2ρ1−1
)1/2

≤ C(t2 − t1)
ρ1−(1+β)/2. (43)

The estimates (42) and (43) hold for each β > 0. For each fixed γ2 < β(σ)/(2(2 −
β(σ))) we take

λ = 1 − β − 2γ2

2(1 − β(σ))
⇒ ρ1 − (1 + β)/2 = γ2.

Choose β such that β +2γ2 < β(σ)/(2−β(σ)); then λ > 1/(2−β(σ)). Taking into
consideration that β(σ)/2 > β(σ)/(2(2 − β(σ))) > γ2 and estimates (40), (41), we
finally obtain

|J2| ≤ C(ω)(t2 − t1)
γ2 . (44)

The substitution of (30) and (44) into (28) leads to inequality

|ζ̂ (t2) − ζ̂ (t1)| ≤ |J1| + |J2| ≤ C(ω)(t2 − t1)
γ2 .

That completes the proof of the lemma.

Now we can return to the proof of the Theorem 1.

Proof. The item (1) is proved in the same way as item (i) in [16], using the following
iteration process: u(0)(t, x) = 0,

u(n)(t, x) =
∫

B

G(t, x; 0, y)u0(y)dy+
∫ t

0
ds

∫
B

G(t, x; s, y)f (s, y, u(n−1)(s, y))dy

+
∫

(0,t]
dμ(s)

∫
B

G(t, x; s, y)σ (s, y)dy; (45)
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consequently, we give only a brief version of the proof. Denote

gn(t) = sup
x∈B̄

|u(n+1)(t, x) − u(n)(t, x)|, n ≥ 1.

Then for each ω ∈ � the following estimates hold:∣∣u(2)(t, x) − u(1)(t, x)
∣∣ ≤ C

∫ t

0
ds

∫
B

|G(t, x; s, y)|dy
(7)≤ C1t ⇒ g1(t) ≤ C1t,∣∣u(n+1)(t, x) − u(n)(t, x)

∣∣ ≤ Lf

∫ t

0
ds

∫
B

|G(t, x; s, y)|∣∣u(n)(s, y) − u(n−1)(s, y)
∣∣dy

≤ C2

∫ t

0
gn−1(s)ds ⇒ gn(t) ≤ C2

∫ t

0
gn−1(s)ds, n ≥ 2; (46)

and we can prove by induction that

gn(t) ≤ C1C
n−1
2

tn

n! ,

and the series
∑∞

n=0 gn(t) converges uniformly in [0, T ]. Hence there exists a limit
function u(t, x) = limn→∞ u(n)(t, x), which is the solution of (6). Prove that it is
unigue. Let w(t, x) be another solution of (6); then, using the same arguments as in
the proof of (46), we obtain that for a function g(t) = supx∈B̄ |u(t, x) − w(t, x)|,

g(t) ≤ C1t, g(t) ≤ C2

∫ t

0
g(s)ds,

and

g(t) ≤ C1C
n−1
2

tn

n!
for each n ≥ 1. Sending n to infinity, we obtain that u = w.

In order to prove item (2), we represent (45) as

u(n)(t, x) = u1(t, x) + u
(n)
2 (t, x) +

∫
(0,t]

dμ(s)

∫
B

G(t, x; s, y)σ (s, y)dy,

where

u1(t, x) =
∫

B

G(t, x; 0, y)u0(y)dy,

u
(n)
2 (t, x) =

∫ t

0
ds

∫
B

G(t, x; s, y)f (s, y, u(n−1)(s, y))dy.

We will prove that function u(n) is Hölder continuous in [δ, T ] × B̄ ′ for each fixed
ω ∈ � with the exponent γ1 by induction on n; if n = 0, the statement is obvious.
The function u1(t, x) satisfies the equation Lu1 = 0 in (0, T ] × B (see, for example,
the proof of Theorem 4.3 in [8]), and, consequently, in [δ, T ]×B̄ ′. On the other hand,
[8, Theorem 4.3] implies that function u

(n)
2 is a solution of the problem{

Lu
(n)
2 (t, x) = −f (t, x, u(n−1)(t, x)) ,

u
(n)
2 |S = 0, u

(n)
2 |t=0 = 0 .
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The Hölder continuity of f (s, y, u(n−1)(s, y)) by y follows from the inequalities

|f (s, y1, u
(n−1)(s, y1)) − f (s, y2, u

(n−1)(s, y2))|
≤ Lf (|y1 − y2|β(f ) + |u(n−1)(s, y1) − u(n−1)(s, y2)|) ≤ L2|y1 − y2|β1 ,

where β1 = min{β(f ), γ1}. Theorem 1 in [6] implies that for each ε ∈ (0, 1)

‖u(n)
2 ‖Q

1+ε ≤ C2 sup
Q

|f (·, ·, u(n−1)(·, ·))| ≤ C2‖f ‖Q̄
0 ,

where constant C2 depends only on ε and the operator L. Applying Lemma 3, we
obtain that there exist the versions ũ

(x)
n of the functions u(n) such that

|ũ(x)
n (t, x1) − ũ(x)

n (t, x2)| ≤ Lũ(x) |x1 − x2|γ1 , ∀t ∈ [δ, T ], x1, x2 ∈ B̄ ′,

where constant Lũ(x) does not depend on n. Sending n to infinity, we obtain the state-
ment of the item.

The beginning of the proof of the item (3) is similar to the proof of the item (2),
we just use Lemma 4 instead of Lemma 3 and get that

|ũ(t)
n (t1, x) − ũ(t)

n (t2, x)| ≤ Lũ(t) |t1 − t2|γ2 , ∀t ∈ [δ, T ], x1, x2 ∈ B̄ ′,

where constant Lũ(t) does not depend on n. Therefore, there exists a version ũ(t) of a
function u such that

|ũ(t)(t1, x) − ũ(t)(t2, x)| ≤ Lũ(t) |t1 − t2|γ2 , ∀t ∈ [δ, T ], x1, x2 ∈ B̄ ′.

On the other hand, we have already built a version ũ(x), which satisfies (11). We
exclude all ω ∈ � such that ũ(x)(t, x) �= ũ(t)(t, x) for at least one pair of rational
(t, x) ∈ [δ, T ] × B̄ ′. For other ω ∈ � we take ũ = ũ(t) = ũ(x) for rational (t, x) and
define ũ for other pairs (t, x) ∈ [δ, T ] × B̄ ′ by continuity. The function ũ which is
built in such way is Hölder continuous on [δ, T ] × B̄ ′.

Now we compare Theorem 1 with the results of the paper [3], where the heat
equation was considered in the unbounded multidimensional domain. We obtained
the existence and uniqueness of the solution in the same sense as in [3], also the
Hölder regularity with the same exponents was obtained. However, considering of
bounded domains allowed us to weaken conditions on the functions u0 and f ; the
Hölder continuity of u0 is not required, and function f is not necessary Lipschitz
continuous on x.
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