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Abstract Despite the relevance of the binomial distribution for probability theory and applied
statistical inference, its higher-order moments are poorly understood. The existing formulas are
either not general enough, or not structured and simplified enough for intended applications.

This paper introduces novel formulas for binomial moments in the form of polynomials in
the variance rather than in the success probability. The obtained formulas are arguably better
structured, simpler and superior in their numerical properties compared to prior works. In addi-
tion, the paper presents algorithms to derive these formulas along with working implementation
in Python’s symbolic algebra package.

The novel approach is a combinatorial argument coupled with clever algebraic simplifica-
tions which rely on symmetrization theory. As an interesting byproduct asymptotically sharp
estimates for central binomial moments are established, improving upon previously known par-
tial results.

Keywords Binomial distribution, high-order moments, moment asymptotics, symbolic
algebra
2010 MSC 60E05

1 Introduction

1.1 Background and related work

The binomial distribution Binom(𝑛, 𝑝), which counts the total number of successes
within 𝑛 independent trials each succeeding with probability 𝑝, is of historical and
fundamental importance for probability theory and applied statistical inference. In
particular, it appears in quantitative variants of the central limit theorem [16, 8, 25,
29], and is broadly used in statistical modelling [17, 1, 9, 7, 26] also as a building
block of more advanced models [27]; this includes performing A/B tests on conver-
sion rates popular in e-commerce [11].
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Despite this large body of work on approximate inference, little is known about
the exact higher moments of the binomial distribution. Besides being of natural inter-
est, such formulas are needed to develop various concentration bounds; for example,
binomial moment bounds were proven useful for analyzing random projections [23].

While the textbooks usually cover only the variance, sometimes also the skew-
ness and kurtosis), there have been only few research papers discussing formulas for
binomial moments of order 𝑑 > 4. The first recursion formula for binomial moments
appeared in [3] for the special case of 𝑝 = 1

2 . The case of general 𝑝 was handled in [13]
by means of recursions utilizing Stirling numbers of the first kind. This was subse-
quently simplified by means of moment generating functions in [15], and resulted in a
more compact formula involving Stirling numbers of the second kind. Very recently,
a recursion-free derivation of raw moments has been presented in [19]. Overall, the
common idea is to see the moments as (more or less explicit) polynomials in 𝑛 and 𝑝
and group terms, in order to simplify the formula or establish other desired properties
such as nonnegativity of terms or boundedness of recursion depth (as in the recent
result on Beta moments [24]).

The discussed approaches still do not offer a satisfactory answer, as the formu-
las are not handy enough to be directly applicable. The author of the most general
formula in [15] didn’t manage to obtain nonnaive bounds on the binomial moments:
the bound 𝑂 (𝑛𝑞)𝑑 with 𝑞 = 1 − 𝑝 on the 𝑑-th central moment [15] valid for 𝑝 < 1

2
is trivial as the centered binomial random variable is bounded between −𝑝𝑛 and 𝑞𝑛
– no extra formulas are needed; this bound is far from the true behaviour 𝑂 (𝑛𝑞)𝑑/2
when 𝑛𝑞 → ∞ (obtained by the Central Limit Theorem). The main formula in [15]
is actually a mixture of positive and negative contributions, which makes its numer-
ical convergence problematic and theoretical analysis very difficult (as seen above).
Moreover, all the prior works do not fully exploit the symmetry and produce rather
complicated formulas in terms of 𝑝; one could expect simpler expressions on the cen-
tral moments with the variance 𝑛𝜎2 = 𝑛𝑝(1 − 𝑝) as a variable. Lastly, the discussed
prior works are rather scarce in their presentation of related works and techniques, in
particular they seem to have overlooked that the formulas with the appearance of Stir-
ling numbers follow easier by the established approach of factorial moments [14, 2].

1.2 Summary of contributions

Addressing the aforementioned issues with approaches in prior works, this paper of-
fers the following novel contributions to computing binomial moments:

• link to factorial moment, which simplifies the approach from prior works,

• variance-formula for equivalent yet simpler expressions in 𝜎2 = 𝑝(1 − 𝑝),

• algorithms with implementation to compute the variance-formula,

• stable formula as an explicit sum with positive terms,

• asymptotically sharp bounds on binomial moments as an application.
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In summary, when compared to prior works, these results bring a broader scope of
the techniques, as well as lead to arguably more handy formula; another added value
is the contributed algorithm and its Python implementation.1

1.3 Organization
The remainder of the paper is organized as follows: the necessary background is given
in Section 2, proofs appear in Section 4, the results are presented in Section 3, the
sharp asymptotics are discussed in Section 5, and Section 6 concludes the work. The
Python implementation is presented in Appendix A.

2 Preliminaries

2.1 Binomial distribution
A random variable 𝑆 follows the binomial distribution with parameters 𝑛 and 𝑝, de-
noted as 𝑆 ∼ Binom(𝑛, 𝑝), when the probability density function is

Pr[𝑆 = 𝑘] =
(
𝑛

𝑘

)
𝑝𝑘𝑞1−𝑘 , 𝑞 � 1 − 𝑝, 𝑘 = 0, . . . , 𝑛. (1)

2.2 Moments
Let 𝑑 be a positive integer. The raw moment of order 𝑑 of a random variable 𝑆 is
defined as E[𝑆𝑑], while the central moment of order 𝑑 of 𝑆 equals E[(𝑆−E[𝑆])𝑑]. We
also use the factorial moment, defined as E[𝑆𝑑] where 𝑥𝑑 = 𝑥(𝑥 − 1) · · · (𝑥 − (𝑑 − 1))
is called the 𝑑-th falling factorial [12].

2.3 Special numbers
To state the results, we need Stirling numbers of the second kind. The symbol

{
𝑛
𝑘

}
stands for the number of ways of partitioning an 𝑛 element set into 𝑘 nonempty
subsets. We also need multinomial coefficients defined as

( 𝑑
𝑑1...𝑑𝑘

)
= 𝑑!

𝑑1!· · ·𝑑𝑘 ! when∑𝑘
𝑖=1 𝑑𝑖 = 𝑑 and min𝑖 𝑑𝑖 � 0 and 0 otherwise, which extend the binomial coefficients.

By the multinomial theorem, we have that (𝑥1 + · · · + 𝑥𝑛)𝑑 =∑
𝑑1 ,...,𝑑𝑛

( 𝑑
𝑑1...𝑑𝑛

)
𝑥𝑑1 · · · 𝑥𝑑𝑛𝑛 , extending the binomial formula.

2.4 Polynomials
To work out the desired polynomial formulas, we need some standard algebraic no-
tation. By Z[𝑥1, . . . , 𝑥𝑘] we denote polynomials with integer coefficients in variables
𝑥1, . . . , 𝑥𝑘 . A polynomial is symmetric if it is invariant under interchanging variables,
and antisymmetric when it gets negated under exchange of any two variables. The
fundamental theorem of symmetric polynomials states that any symmetric polyno-
mial from Z[𝑥1, . . . , 𝑥𝑘] can be written as a polynomial in the elementary symmet-
ric functions 𝑠 𝑗 (𝑥1, . . . , 𝑥𝑛) =

∑
1�𝑖1...�𝑖 𝑗 𝑥𝑖1 · · · 𝑥𝑖 𝑗 for 𝑗 = 1, . . . , 𝑘 , with integer

coefficients. Moreover, antisymmetric polynomials can be written as a product of a
symmetric polynomial and Vandermonde’s determinant

∏
1�𝑖< 𝑗�𝑘 (𝑥𝑖 − 𝑥 𝑗 ) (see, for

example, [22, 28]).

1For code and examples visit the OSF repository https://osf.io/hjscb/

https://osf.io/hjscb/
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3 Results

Below we discuss the contributions in more detail, deferring proofs to the end part of
the paper. We denote 𝑆 ∼ Binom(𝑛, 𝑝), and fix a positive integer 𝑑.

3.1 Raw binomial moments and factorial moments

The first result is the derivation of the closed-form formula for raw binomial moments.
While this formula appears in prior works [3, 15, 13], the arguments developed here
are simpler, as they avoid the machinery of generating functions. The two alternative
proof techniques are, respectively: a) linking central and factorial moments b) a direct
counting argument.

Theorem 1 (Raw Binomial Moments). The raw moments are given by

E[𝑆𝑑] =
𝑑∑

𝑘=0

𝑛𝑘
{
𝑑

𝑘

}
𝑝𝑘 . (2)

The two proofs appear respectively in Section 4.1 and Section 4.2. Below, in Ta-
ble 1, we list the explicit expressions for the first 10 moments.

Table 1. Formulas for Raw Binomial Moments

𝑑 E[𝑆 ]𝑑 , 𝑆 ∼ Binom(𝑛, 𝑝)
1 𝑝𝑛
2 𝑝2𝑛2 + 𝑝𝑛
3 𝑝3𝑛3 + 3𝑝2𝑛2 + 𝑝𝑛
4 𝑝4𝑛4 + 6𝑝3𝑛3 + 7𝑝2𝑛2 + 𝑝𝑛
5 𝑝5𝑛5 + 10𝑝4𝑛4 + 25𝑝3𝑛3 + 15𝑝2𝑛2 + 𝑝𝑛
6 𝑝6𝑛6 + 15𝑝5𝑛5 + 65𝑝4𝑛4 + 90𝑝3𝑛3 + 31𝑝2𝑛2 + 𝑝𝑛
7 𝑝7𝑛7 + 21𝑝6𝑛6 + 140𝑝5𝑛5 + 350𝑝4𝑛4 + 301𝑝3𝑛3 + 63𝑝2𝑛2 + 𝑝𝑛
8 𝑝8𝑛8 + 28𝑝7𝑛7 + 266𝑝6𝑛6 + 1050𝑝5𝑛5 + 1701𝑝4𝑛4 + 966𝑝3𝑛3 + 127𝑝2𝑛2 + 𝑝𝑛
9 𝑝9𝑛9 + 36𝑝8𝑛8 + 462𝑝7𝑛7 + 2646𝑝6𝑛6 + 6951𝑝5𝑛5 + 7770𝑝4𝑛4 + 3025𝑝3𝑛3 + 255𝑝2𝑛2 + 𝑝𝑛
10 𝑝10𝑛10 + 45𝑝9𝑛9 + 750𝑝8𝑛8 + 5880𝑝7𝑛7 + 22827𝑝6𝑛6 + 42525𝑝5𝑛5 + 34105𝑝4𝑛4 + 9330𝑝3𝑛3 + 511𝑝2𝑛2 + 𝑝𝑛

3.2 Central binomial moments

Symmetric structure. While in prior works the formulas are derived in terms of 𝑝,
we go beyond that exploiting the symmetry and showing that the formulas can be
written in terms of the variance 𝜎2 = 𝑝(1− 𝑝), which makes them much simpler. The
following theorem proves what can be conjectured by inspection of known formulas
for small-order moments.

Theorem 2 (Existence of Variance-Based Formula). For 𝑆 ∼ Binom(𝑛, 𝑝) the mo-
ment E[(𝑆 − E[𝑆])𝑑] is a symmetric polynomial in 𝑝 and 𝑞 when 𝑑 is even, and
antisymmetric when 𝑑 is odd. In particular, denoting 𝜎2 � 𝑝𝑞 we have

E[(𝑆 − E[𝑆])𝑑] ∈
{
Z[𝑛, 𝜎2], 𝑑 even,
(1 − 2𝑝)Z[𝑛, 𝜎2], 𝑑 odd.

(3)
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Fig. 1. The 𝑑-th central moment of 𝑆(𝑛, 𝑝), where 𝑑 = 6

Table 2 illustrates this result, providing explicit moments of order 𝑑 = 2, . . . , 10.
The usefulness of the formula in Theorem 2 is its simplicity when compared to the
representation in terms of 𝑝 alone. The result is intuitive, but not straightforward
to prove; two arguments are given, based on a) the theory of symmetric functions,
see Section 4.3 and b) the novel combinatorial formula, see Section 4.4. The algo-
rithm deriving the exact formulas is discussed later.

Table 2. Central Moments of Binomial Distribution. As above we denote 𝜎2 = 𝑝(1 − 𝑝)

𝑑 E[ (𝑆 − E[𝑆 ] )𝑑 ], 𝑆 ∼ Binom(𝑛, 𝑝)

2 𝑛𝜎2

3 𝑛𝜎2 (−2𝑝 + 1)
4 3𝑛2𝜎4 + 𝑛

(
−6𝜎4 + 𝜎2

)
5 (−2𝑝 + 1)

(
10𝑛2𝜎4 + 𝑛

(
−12𝜎4 + 𝜎2

))
6 15𝑛3𝜎6 + 𝑛2

(
−130𝜎6 + 25𝜎4

)
+ 𝑛

(
120𝜎6 − 30𝜎4 + 𝜎2

)
7 (−2𝑝 + 1)

(
105𝑛3𝜎6 + 𝑛2

(
−462𝜎6 + 56𝜎4

)
+ 𝑛

(
360𝜎6 − 60𝜎4 + 𝜎2

))
8 105𝑛4𝜎8 + 𝑛3

(
−2380𝜎8 + 490𝜎6

)
+ 𝑛2

(
7308𝜎8 − 2156𝜎6 + 119𝜎4

)
+ 𝑛

(
−5040𝜎8 + 1680𝜎6 − 126𝜎4 + 𝜎2

)
9 (−2𝑝 + 1)

(
1260𝑛4𝜎8 + 𝑛3

(
−13216𝜎8 + 1918𝜎6

)
+ 𝑛2

(
32112𝜎8 − 6948𝜎6 + 246𝜎4

)
+ 𝑛

(
−20160𝜎8 + 5040𝜎6 − 252𝜎4 + 𝜎2

))
10 945𝑛5𝜎10 + 𝑛4

(
−44100𝜎10 + 9450𝜎8

)
+ 𝑛3

(
303660𝜎10 − 99120𝜎8 + 6825𝜎6

)
+ 𝑛2

(
−623376𝜎10 + 240840𝜎8 − 24438𝜎6 + 501𝜎4

)
+ 𝑛

(
362880𝜎10 − 151200𝜎8 + 17640𝜎6 − 510𝜎4 + 𝜎2

)

Corollary 1 (Skewness and Kurtosis of Binomial Distribution). The skewness and
excess kurtosis equal, respectively, 𝑞−𝑝√

𝑛𝑝𝑞 and 1−6𝑝𝑞
𝑛𝑝𝑞 .

Positive polynomial representation. As mentioned in the introduction, the only closed-
form formula due to [15] is an alternating sum with no readable leading term, which
makes it hard to use; in particular the discussion in [15] fails to give nontrivial bounds
on binomial moments. The novelty of this work is a formula consisting of positive
terms. This makes it more stable for numerical computations and more handy in the-
oretical analysis.

Theorem 3 (Explicit Stable Formulas). For 𝑆 ∼ Binom(𝑛, 𝑝), 𝑞 � 1 − 𝑝 and any
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positive integer 𝑑 the following holds:

E[(𝑆 − E[𝑆])𝑑] =
� 𝑑2 �∑
𝑘=1

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

∑
𝑑1...𝑑𝑘�2

(
𝑑

𝑑1 . . . 𝑑𝑘

) 𝑘∏
𝑖=1

(𝑞𝑑𝑖−1 − (−𝑝)𝑑𝑖−1).

Remark 1 (Nonnegativity). The terms under the sum are all nonnegative when 𝑝 �
1
2 . Since 𝑛−𝑆 ∼ Binom(𝑛, 𝑞), it follows that we have 𝑆−E[𝑆] ∼ −(Binom(𝑛, 𝑞)−𝑞𝑛);
with the help of this identity, working with central binomial moments can be always
reduced to the case 𝑝 < 1

2 .

Remark 2 (Closed-form Symmetric Formula). The above result gives an explicit
formula for Theorem 2, and provides an alternative proof of that result.

3.3 Asymptotically sharp moment bounds

To illustrate how useful is our positive representation established in Theorem 3, we
derive the sharp bounds on (normalized) central binomial moments. This problem
has remained open so far; some recent works used ad hoc upper bounds to estimate
the binomial moments and tails (works on random projections, particularly [23]).

Theorem 4. Let 𝑆 ∼ Binom(𝑛, 𝑝) and 𝜎2 = 𝑝(1− 𝑝). Then for any integer 𝑑 > 1 we
have��E[(𝑆 − E[𝑆])𝑑]��1/𝑑 = 𝐶 (𝑛, 𝑝, 𝑑) ·max

{
𝑘1− 𝑘

𝑑 · (𝑛𝜎2)
𝑘
𝑑 : 𝑘 = 1, . . . , �𝑑/2�

}
,

where 𝐶 (𝑛, 𝑝, 𝑑) is uniformly bounded by (3e)−1 � 𝐶 (𝑛, 𝑝, 𝑑) � (5/2)1/5e1/2.

The estimate is uniformly sharp in all parameters; for the special case when
𝑛𝜎2 →∞ and 𝑑 is fixed, the 𝑑-th central moment grows, up to a constant, as (𝑛𝜎2)𝑑/2
which matches the central limit theorem combined with the explicit formulas for mo-
ments of the normal distribution [20]. In contrast to Theorem 4, the formula in [15]
gives in this setup only much worse 𝑂 (𝑛𝑞)𝑑 , which anyway follows trivially since 𝑆
is bounded by 𝑛. The proof uses Theorem 3.

3.4 Algorithms and implementation

We have seen that the variance-based representation in Theorem 2 is useful, yet it is
not immediate how to efficiently compute this polynomial. To this end, we develop
two different algorithms, both implemented in the popular Python symbolic algebra
package Sympy [18].

Algorithm 1 takes advantage of the fundamental theorem on symmetric polynomi-
als (see, for example, [10]). Specifically, there is an explicit procedure for converting
any symmetric polynomial in 𝑝, 𝑞 into a polynomial in variables 𝑝 + 𝑞, 𝑝𝑞 (the basic
symmetric polynomials in two variables); substituting 𝑝 + 𝑞 = 1 we are left with a
polynomial in 𝜎2 = 𝑝𝑞. For even 𝑑 we start with a symmetric polynomial and obtain
a polynomial in 𝜎2. In turn, for odd 𝑑 we start with an antisymmetric polynomial and
apply this procedure to its symmetric part, which results in a polynomial in 𝜎2 plus
the factor 𝑞 − 𝑝 = 1 − 2𝑝.

In turn, Algorithm 2 uses the power of elimination theory, to recover the represen-
tation in 𝜎2 from any formula written in terms of 𝑝. Essentially, it simplifies the input
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Algorithm 1: Variance Formula for Central Binomial Moments
Result: The 𝑑-th central binomial moment in terms of 𝑛 and 𝜎2 = 𝑝 (1 − 𝑝) .
The outcome is a polynomial with integer coefficients.
𝑈 ← E(𝑆 − E[𝑆 ] )𝑑 , with 𝑈 ∈ Z[𝑛] [𝑝, 𝑞] // write as polynomial in 𝑝, 𝑞, e.g. by

Theorem 3
if 𝑑 even then

𝑉 ← symmetrize(𝑈) , 𝑉 ∈ Z[𝑛] [𝑝𝑞, 𝑝 + 𝑞] // represent by elementary
symmetric polynomials

𝑉 ← 𝑉 |𝑝+𝑞←1 // substitute the relation 𝑝 + 𝑞 = 1
end
else

𝑉 ← 𝑉/(𝑞 − 𝑝) // subtract ’unsymmetric’ part
𝑉 ← symmetrize(𝑈) , 𝑉 ∈ Z[𝑛] [𝑝𝑞, 𝑝 + 𝑞] // represent by elementary

symmetric polynomials
𝑉 ← 𝑉 |𝑝+𝑞←1 // substitute the relation 𝑝 + 𝑞 = 1
𝑉 ← (1 − 2𝑝) · 𝑉 // add unsymmetric part back

end
return V

polynomial in 𝑝 with respect to the polynomial 𝜎2 − 𝑝(1− 𝑝) leveraging the elimina-
tion properties of Groebner bases (see, for example, [5]). The output is a polynomial
in 𝜎2 (plus the factor 1 − 2𝑝 for odd 𝑑).

Algorithm 2: Variance Formula for Central Binomial Moments
Result: The 𝑑-th central binomial moment in terms of 𝑛 and 𝜎2 = 𝑝 (1 − 𝑝) .
The output is a polynomial with integer coefficients.
𝑈 ← E(𝑆 − E[𝑆 ] )𝑑 , 𝑈 ∈ Z[𝑛, 𝑝] // represent as polynomial in 𝑛, 𝑝, for example

Theorem 3 and substitution 𝑞 ← 1 − 𝑝
if 𝑑 even then

𝐹1 , 𝐹2 ←𝑈, 𝜎2 − 𝑝 (1 − 𝑝) // moment and variance formulas

𝐺 ← GroebnerB(poly = {𝐹1 , 𝐹2 }, vars = (𝑝, 𝑛, 𝜎2 ) , order = lex) // Groebner basis,
lex order

𝑉 ← 𝐺 ∩ Z[𝑛, 𝜎2 ] // extract variance-dependent formula
end
else

𝐹1 , 𝐹2 ←𝑈/(1 − 2𝑝) , 𝜎2 − 𝑝 (1 − 𝑝) // subtract ’odd’ part

𝐺 ← GroebnerB(poly = {𝐹1 , 𝐹2 }, vars = (𝑝, 𝑛, 𝜎2 ) , order = lex) // Groebner basis,
lex order

𝑉 ← 𝐺 ∩ Z[𝑛, 𝜎2 ] // extract variance-dependent part
𝑉 ← (1 − 2𝑝) · 𝑉 // add ’odd’ part back

end
return V

4 Proofs

4.1 First proof of Theorem 1

The proof is based on the fact that the factorial moments of the binomial distribution
are easy to compute. Namely (see [21]), we have the following proposition.

Proposition 1 (Factorial Binomial Moments). Let 𝑆 ∼ Binom(𝑛, 𝑝). Then

E[𝑆𝑑] =
(
𝑛

𝑑

)
𝑝𝑑 . (4)
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Then it remains to connect factorial moments to standard moments, or in other
terms: factorial powers to powers. It is well known (see, for example, the discussion
in [4]) that this base change is given in terms of the Stirling numbers of the second
kind. We state this fact formally below.

Proposition 2 (Base Change from Falling Factorials to Powers). For positive integers
𝑥 and 𝑑 the following holds:

𝑥𝑑 =
𝑑∑

𝑘=0

{
𝑑

𝑘

}
𝑥𝑘 . (5)

Now Theorem 1 follows by applying Proposition 2 to 𝑥 := 𝑆, and then using
Proposition 1 to compute the expectation of 𝑆𝑘 for 𝑘 = 0, . . . , 𝑑.

4.2 Second proof of Theorem 1
Here we take a direct approach, writing 𝑆 =

∑𝑛
𝑖=1 𝑋𝑖 where 𝑋𝑖 ∼𝑖𝑖𝑑 Bern(𝑝). Using

the multinomial expansion and the independence of 𝑋𝑖 we obtain

E[𝑆𝑑] =
∑

𝑑1 ,...,𝑑𝑛

(
𝑑

𝑑1 . . . 𝑑𝑛

)∏
𝑖

E[𝑋𝑑𝑖
𝑖 ] .

We now group the expressions in the above sum, depending on the number of nonzero
elements in (𝑑𝑖)𝑖 . Denoting ‖(𝑑𝑖)‖0 = #{𝑖 : 𝑑𝑖 > 0} and using the fact that E𝑋𝑑𝑖

𝑖 = 𝑝
when 𝑑𝑖 > 0, we obtain

E[𝑆𝑑] =
𝑑∑

𝑘=0

∑
(𝑑𝑖 )𝑖 :‖ (𝑑𝑖 )𝑖 ‖0=𝑘

(
𝑑

𝑑1 . . . 𝑑𝑛

)
𝑝𝑘 .

By the symmetry of multinomial coefficients this equals

E[𝑆𝑑] =
𝑑∑

𝑘=0

∑
𝑑1...𝑑𝑘>0

(
𝑑

𝑑1 . . . 𝑑𝑘

) (
𝑛

𝑘

)
𝑝𝑘 .

Finally, we observe that the expression
∑

𝑑1...𝑑𝑘>0
( 𝑑
𝑑1...𝑑𝑘

)
counts the number of ways

of partitioning {1, . . . , 𝑑} into 𝑘 nonempty labeled subsets; thus, this numbers equals
𝑘! ·

{
𝑑
𝑘

}
which finishes the proof.

4.3 First proof of Theorem 2
From Equation (1) we obtain

E[(𝑆 − E[𝑆])𝑑] =
∑
𝑘

(
𝑛

𝑘

)
𝑝𝑘𝑞𝑛−𝑘 (𝑘 − 𝑛𝑝)𝑑 .

Replacing 𝑘 by 𝑛 − 𝑘 and using the symmetry of binomial coefficients we obtain

E[(𝑆 − E[𝑆])𝑑] =
∑
𝑘

(
𝑛

𝑘

)
𝑝𝑛−𝑘𝑞𝑘 (𝑛𝑞 − 𝑘)𝑑 .
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When 𝑑 is even, comparing these two equivalent expressions we see that they are
symmetric as polynomials in 𝑝 and 𝑞. By the fundamental theorem of symmetric
polynomials, this can be written as a polynomial in 𝑝𝑞 and 𝑝 + 𝑞; in our case 𝑝 +
𝑞 = 1 and the claim follows. If 𝑑 is odd then (𝑛𝑞 − 𝑘)𝑑 = −(𝑘 − 𝑛𝑞)𝑑 and we get
antisymmetric polynomials in 𝑝, 𝑞 which can be written as a product of 𝑝 − 𝑞 and
a symmetric polynomial. The latter, by the fundamental theorem, is a polynomial in
𝑝 + 𝑞 and 𝑝𝑞; since 𝑝 + 𝑞 = 1 the result follows.

4.4 Second proof of Theorem 2

By inspecting the products
∏𝑘

𝑖=1 (𝑞𝑑𝑖−1 − (−𝑝)𝑑𝑖−1) that appear in Theorem 3, it
can be seen that each of them is symmetric in 𝑝, 𝑞 when

∑
𝑖 𝑑𝑖 = 𝑑 is even, and

antisymmetric when
∑

𝑖 𝑑𝑖 = 𝑑 is odd. This is because 𝑝, 𝑞 → 𝑞𝑑𝑖−1 − (−𝑝)𝑑𝑖−1 is
symmetric when 𝑑𝑖 is even, and antisymmetric otherwise. The claim now follows.

4.5 Proof of Theorem 3

As in the proof of Theorem 1 we arrive at

E[(𝑆 − E[𝑆])𝑑] =
𝑑∑

𝑘=0

∑
𝑑1...𝑑𝑘>0

(
𝑛

𝑘

) (
𝑑

𝑑1 . . . 𝑑𝑘

) 𝑘∏
𝑖=1

E[(𝑋𝑖 − E[𝑋𝑖])𝑑𝑖 ] .

Denote 𝑥 = 1 − 1
1−𝑝 , then E[(𝑋𝑖 − E[𝑋𝑖])]𝑑𝑖 = 𝑝(1 − 𝑝)𝑑𝑖 (1 − 𝑥𝑑𝑖−1) and thus

E[(𝑆 − E[𝑆])𝑑] = (1 − 𝑝)𝑑
𝑑∑

𝑘=0

(
𝑛

𝑘

)
𝑝𝑘

∑
𝑑1...𝑑𝑘>0

(
𝑑

𝑑1 . . . 𝑑𝑘

) 𝑘∏
𝑖=1

(1 − 𝑥𝑑𝑖−1).

With some further simplifications and grouping we can write

E[(𝑆 − E[𝑆])𝑑] = (1 − 𝑝)𝑑
� 𝑑2 �∑
𝑘=1

(
𝑛

𝑘

)
𝑝𝑘

∑
𝑑1...𝑑𝑘�2

(
𝑑

𝑑1 . . . 𝑑𝑘

) 𝑘∏
𝑖=1

(1 − 𝑥𝑑𝑖−1)

︸����������������������������������������︷︷����������������������������������������︸
𝑈𝑘

,

or equivalently

E[(𝑆 − E[𝑆])𝑑] =
� 𝑑2 �∑
𝑘=1

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

∑
𝑑1...𝑑𝑘>1

(
𝑑

𝑑1 . . . 𝑑𝑘

) 𝑘∏
𝑖=1

(𝑞𝑑𝑖−1 − (−𝑝)𝑑𝑖−1).

This finishes the proof. In addition to that, in what follows, we discuss how to further
group terms and speed up computations. We can write

𝑈𝑘 =
𝑘∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑑1...𝑑 𝑗>1

∑
𝑑 𝑗+1...𝑑𝑘>1

(
𝑑

𝑑1 . . . 𝑑𝑘

)
(−1) 𝑗𝑥𝑑1+···+𝑑 𝑗− 𝑗 ,
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and since
( 𝑑
𝑑1...𝑑𝑘

)
=
(𝑑1+···+𝑑 𝑗

𝑑1...𝑑 𝑗

)
·
(𝑑−(𝑑1+···+𝑑 𝑗 )

𝑑 𝑗+1...𝑑𝑘

)
·
( 𝑑
𝑑1+···+𝑑 𝑗

)
we obtain

𝑈𝑘 =
𝑘∑
𝑗=0

(
𝑘

𝑗

)∑
ℓ

(
𝑑

ℓ

) ∑
𝑑1...𝑑𝑘>1

(
ℓ

𝑑1 . . . 𝑑 𝑗

) (
𝑑 − ℓ

𝑑 𝑗+1 . . . 𝑑𝑘

)
(−1) 𝑗𝑥ℓ− 𝑗 ,

and thus

𝑈𝑘 =
𝑘∑
𝑗=0

𝑑∑
ℓ=0

(
𝑘

𝑗

) (
𝑑

ℓ

)
𝑗!(𝑘 − 𝑗)!𝑆2 (ℓ, 𝑗)𝑆2(𝑑 − ℓ, 𝑘 − 𝑗)(−1) 𝑗𝑥ℓ− 𝑗

= 𝑘!
𝑑∑

ℓ=0

(
𝑑

ℓ

) 𝑘∑
𝑗=0

𝑆2(ℓ, 𝑗)𝑆2(𝑑 − ℓ, 𝑘 − 𝑗)(−1) 𝑗𝑥ℓ− 𝑗 ,

where 𝑆2(𝑛, 𝑘) denotes the number of ways of partitioning an 𝑛-element set into 𝑘
subsets of cardinality at least 2 (a variation on Stirling numbers of the second kind).
This can be used to develop an equivalent, but faster to compute, formula.

5 Applications

5.1 Proof of Theorem 4
Throughout the proof, we will use the elementary estimates (𝑚/e)𝑚 � 𝑚! � 𝑚𝑚 (the
second inequality is obvious, the first one follows by rearranging to e𝑚 �

𝑚𝑚

𝑚! and
Taylor’s expansion) and (𝑛/𝑘)𝑘 �

(𝑛
𝑘

)
� (𝑛e/𝑘)𝑘 (see, for example, [6]).

By applying Remark 1 we can assume 𝑝 �
1
2 . Then 𝑞 � 𝑝, and thus 0 � 𝑞𝑑𝑖−1 −

(−𝑝)𝑑𝑖−1 � 𝑝 + 𝑞 = 1 for any 𝑑𝑖 � 2. In view of Theorem 3, we obtain the bound

E[(𝑆 − E[𝑆])𝑑] �
� 𝑑2 �∑
𝑘=1

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

∑
𝑑1...𝑑𝑘�2

(
𝑑

𝑑1 . . . 𝑑𝑘

)
.

Since we have ∑
𝑑1...𝑑𝑘�2

(
𝑑

𝑑1 . . . 𝑑𝑘

)
�

∑
𝑑1...𝑑𝑘�0

(
𝑑

𝑑1 . . . 𝑑𝑘

)
= 𝑘𝑑 ,

we further obtain

E[(𝑆 − E[𝑆])𝑑] �
� 𝑑2 �∑
𝑘=1

(
𝑛

𝑘

)
(𝑝𝑞)𝑘𝑘𝑑 .

Denoting 𝜎2 = 𝑝𝑞 and using the bound
(𝑛
𝑘

)
� (𝑛e/𝑘)𝑘 , we finally obtain

E[(𝑆 − E[𝑆])𝑑] � �𝑑/2� ·max{e𝑘𝑘𝑑−𝑘 · (𝑛𝜎2)𝑘 : 1 � 𝑘 � �𝑑/2�},

so that (noticing that (𝑑/2)1/𝑑 � (5/2)1/5 for 𝑑 � 2)

(
E[(𝑆 − E[𝑆])𝑑]

) 1
𝑑
� (5/2)1/5e1/2 ·max{𝑘1− 𝑘

𝑑 · (𝑛𝜎2)
𝑘
𝑑 : 1 � 𝑘 � �𝑑/2�}. (6)
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We now move on to the lower bound. The idea is to fix 𝑘 and look at terms such
that 𝑑1, . . . , 𝑑𝑘 are nearly equal, to make

( 𝑑
𝑑1...𝑑𝑘

)
possibly large.

Let us write 𝑑 = 𝑘 · 𝑟 + ℓ with an integer 𝑟 � 2 and nonnegative integer ℓ such
that 0 � ℓ < 𝑘; this is possible as 𝑘 � 𝑑/2, by writing 𝑑 = 𝑘 · 𝑟 + ℓ where 0 � ℓ < 𝑘 .
Define 𝑑𝑖 = 𝑟 + 1 when 1 � 𝑖 � ℓ and 𝑑𝑖 = 𝑟 when ℓ < 𝑖 � 𝑘 , so that

∑
𝑖 𝑑𝑖 = 𝑑. For

this tuple (𝑑𝑖) we have(
𝑑

𝑑1 . . . 𝑑𝑘

)
=

𝑑!∏𝑘
𝑖=1 𝑑𝑖!

�
𝑑!

(𝑟 + 1)!
∑

𝑖 𝑑𝑖
=

𝑑!
(𝑟 + 1)𝑑

.

Since 𝑑! � (𝑑/e)𝑑 , 𝑟 + 1 �
3
2𝑟 , and 𝑑/𝑟 � 𝑘 , it follows that

(
𝑑

𝑑1 . . . 𝑑𝑘

)
�

(
2𝑘
3e

)𝑑
.

When 𝑑𝑖 are even, we have 𝑞𝑑𝑖−1 − (−𝑝)𝑑𝑖−1 = 𝑞𝑑𝑖−1 + 𝑝𝑑𝑖−1 � 2 · 1
2𝑑𝑖−1 by

Jensen’s inequality applied to the function 𝑢 → 𝑢𝑑𝑖−1 and 𝑝 + 𝑞 = 1. Since in the
summation we consider (𝑑𝑖)𝑖 such that

∑
𝑖 𝑑𝑖 = 𝑑 and 𝑑𝑖 � 2, we obtain

𝑘∏
𝑖=1

(𝑞𝑑𝑖−1 − (−𝑝)𝑑𝑖−1) �
∏
𝑘

22−𝑑𝑖 = 22𝑘−𝑑 .

The above two bounds, in view of Theorem 3, imply that

E[(𝑆 − E[𝑆])𝑑] � (3e)−𝑑
� 𝑑2 �∑
𝑘=1

(
𝑛

𝑘

)
(𝑝𝑞)𝑘𝑘𝑑 .

Denoting 𝜎2 = 𝑝𝑞 and using the bound
(𝑛
𝑘

)
� (𝑛/𝑘)𝑘 , we finally obtain

(
E[(𝑆 − E[𝑆])𝑑]

)1/𝑑
� (3e)−1 ·max{𝑘1− 𝑘

𝑑 · (𝑛𝜎2)
𝑘
𝑑 : 1 � 𝑘 � �𝑑/2�}, (7)

which finishes the proof.

6 Conclusion

This paper introduces novel and simpler formulas for binomial moments, derived by a
combinatorial argument coupled with clever algebraic simplification which relies on
symmetrization. An important application leads to sharp asymptotics for the growth
of central binomial moments. Moreover, explicit algorithms and the working imple-
mentation are provided.

A Implementation

The implementation with examples is also available at https://osf.io/hjscb/.

https://osf.io/hjscb/
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i m p o r t i t e r t o o l s
i m p o r t sympy as sm
from sympy i m p o r t Symbol
from sympy i m p o r t p o l y s
from sympy . f u n c t i o n s . c o m b i n a t o r i a l . numbers i m p o r t s t i r l i n g , b i n o m i a l
from sympy . f u n c t i o n s . c o m b i n a t o r i a l . numbers i m p o r t f a c t o r i a l
from sympy . f u n c t i o n s . c o m b i n a t o r i a l . f a c t o r i a l s i m p o r t F a l l i n g F a c t o r i a l

d e f m u l t i n o m i a l _ c o e f ( n , ks ) :
i f n != sum ( ks ) :
r e t u r n 0
e l i f l e n ( ks ) ==1:
r e t u r n 1
e l s e :
r e t u r n b i n o m i a l ( n , ks [ 0 ] ) * m u l t i n o m i a l _ c o e f ( n−ks [ 0 ] , ks [ 1 : ] )

n=Symbol ( ’ n ’ )
p=Symbol ( ’ p ’ )
q=Symbol ( ’ q ’ )
s=Symbol ( ’ s igma ’ )

Listing 1. Preliminaries

d e f cen t ra l_b inom_moment ( d =2) :
’ ’ ’ o u t p u t a s po ly i n t r i a l s number n , s u c c e s s prob . p and q=1−p ’ ’ ’
o u t = 0
f o r k i n r a n g e ( 1 , i n t ( d / 2 ) +1) :
tmp = 0
f o r dks i n i t e r t o o l s . p r o d u c t ( r a n g e ( 2 , d +1) , r e p e a t =k ) :
po lyx = m u l t i n o m i a l _ c o e f ( d , dks )
f o r dk i n dks :
po lyx = po lyx * ( q **( dk−1)−(−p ) **( dk−1) )
tmp = tmp + po lyx
o u t = o u t + b i n o m i a l ( n , k ) * ( p*q ) **k * tmp

r e t u r n o u t . s i m p l i f y ( )

Listing 2. Stable Formula for Central Moments

d e f c e n t r a l _ b i n o m _ m o m e n t _ p r e t t y 1 ( d =2) :
’ ’ ’ o u t p u t a s p o l y n o m i a l i n number o f t r i a l s and s u c c e s s v a r i a n c e ’ ’ ’

o u t = cen t ra l_b inom_moment2 ( d=d ) . combsimp ( )
o u t = o u t . subs ( q,1−p )
i f d % 2 == 0 :
o u t = p o l y s . g r o e b n e r ( [ out , s**2−p*(1−p ) ] , p , n , s , o r d e r = ’ l e x ’ ) [−1]
e l i f d % 2 == 1 :
o u t = p o l y s . d i v ( out ,1−2*p ) [ 0 ]
o u t = p o l y s . g r o e b n e r ( [ out , s**2−p*(1−p ) ] , p , n , s , o r d e r = ’ l e x ’ ) [−1]
o u t = (1−2*p ) * o u t
r e t u r n o u t

Listing 3. Variance Formula for Central Moments by Variable Elimination

d e f c e n t r a l _ b i n o m _ m o m e n t _ p r e t t y 2 ( d =2) :
’ ’ ’ o u t p u t a s p o l y n o m i a l i n number o f t r i a l s and s u c c e s s v a r i a n c e ’ ’ ’

o u t = cen t ra l_b inom_moment2 ( d=d )
i f d % 2 == 0 :
o u t = p o l y s . symmet r i ze ( out , [ p , q ] ) [ 0 ]
e l i f d % 2 == 1 :
o u t = p o l y s . d i v ( out , q−p ) [ 0 ]
o u t = p o l y s . symmet r i ze ( out , [ p , q ] ) [ 0 ]
o u t = (1−2*p ) * o u t
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o u t = o u t . subs ( p+q , 1 )
o u t = o u t . subs ( p*q , s **2)
r e t u r n o u t

Listing 4. Variance Formula by Symmetrization
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M.J., Terrel, A.R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., Sco-
patz, A.: Sympy: symbolic computing in python. PeerJ Computer Science 3, 103 (2017).
https://doi.org/10.7717/peerj-cs.103

[19] Nguyen, D.: A probabilistic approach to the moments of binomial random vari-
ables and application. The American Statistician, 75(1), 101–103 (2019). MR4203486.
https://doi.org/10.1080/00031305.2019.1679257

[20] Patel, J.K., Read, C.B.: Handbook of the Normal Distribution, Second Edition.
Statistics: A Series of Textbooks and Monographs. Taylor & Francis (1996).
https://books.google.fr/books?id=zoVLF0VF9UYC MR0664762

[21] Potts, R.: Note on the factorial moments of standard distributions. Australian Journal of
Physics 6(4), 498–499 (1953)

[22] Prasolov, V.V.: Polynomials, volume 11 of Algorithms and Computation in Mathematics.
Springer (2004) MR2082772. https://doi.org/10.1007/978-3-642-03980-5

[23] Skorski, M.: Johnson-Lindenstrauss transforms with best confidence. In: Belkin, M.,
Kpotufe, S. (eds.) Proceedings of Thirty Fourth Conference on Learning Theory. Pro-
ceedings of Machine Learning Research, vol. 134, pp. 3989–4007. PMLR (2021)

[24] Skorski, M.: Bernstein-type bounds for Beta distribution. Modern Stochastics: Theory
and Applications 10(2), 211–228 (2023) MR4573679

[25] Uspensky, J.V.: Introduction to Mathematical Probability. McGraw-Hill Book Company
(1937). https://books.google.at/books?id=aeRQAAAAMAAJ

[26] Yang, J., Liu, Y., Liu, Z., Zhu, X., Zhang, X.: A new feature selection algorithm based on
binomial hypothesis testing for spam filtering. Knowledge-Based Systems 24(6), 904–914
(2011)

[27] Young-Xu, Y., Chan, K.A.: Pooling overdispersed binomial data to estimate event rate.
BMC medical research methodology 8(1), 58 (2008)

[28] Zhou, J.: Introduction to symmetric polynomials and symmetric func-
tions. Lecture Notes for Course at Tsinghua University, available at
http://cms.zju.edu.cn/course/cn/Symmetric.pdf (2003)

[29] Zolotukhin, A., Nagaev, S., Chebotarev, V.: On a bound of the absolute constant in the
Berry–Esseen inequality for i.i.d. Bernoulli random variables. Modern Stochastics: The-

https://mathscinet.ams.org/mathscinet-getitem?mr=3172571
https://doi.org/10.1080/0020739X.2012.678899
https://mathscinet.ams.org/mathscinet-getitem?mr=1609730
https://doi.org/10.1155/S1173912697000138
https://mathscinet.ams.org/mathscinet-getitem?mr=2447945
https://doi.org/10.1137/070700024
https://doi.org/10.7717/peerj-cs.103
https://mathscinet.ams.org/mathscinet-getitem?mr=4203486
https://doi.org/10.1080/00031305.2019.1679257
https://books.google.fr/books?id=zoVLF0VF9UYC
https://mathscinet.ams.org/mathscinet-getitem?mr=0664762
https://mathscinet.ams.org/mathscinet-getitem?mr=2082772
https://doi.org/10.1007/978-3-642-03980-5
https://mathscinet.ams.org/mathscinet-getitem?mr=4573679
https://books.google.at/books?id=aeRQAAAAMAAJ
http://cms.zju.edu.cn/course/cn/Symmetric.pdf


Handy formulas for binomial moments 41

ory and Applications 5(3), 385–410 (2018). doi:https://doi.org/10.15559/18-VMSTA113
MR3868547. https://doi.org/10.15559/18-vmsta113

https://doi.org/10.15559/18-VMSTA113
https://mathscinet.ams.org/mathscinet-getitem?mr=3868547
https://doi.org/10.15559/18-vmsta113

	Introduction
	Background and related work
	Summary of contributions
	Organization

	Preliminaries
	Binomial distribution
	Moments
	Special numbers
	Polynomials

	Results
	Raw binomial moments and factorial moments
	Central binomial moments
	Asymptotically sharp moment bounds
	Algorithms and implementation

	Proofs
	First proof of Theorem 1
	Second proof of Theorem 1
	First proof of Theorem 2
	Second proof of Theorem 2
	Proof of Theorem 3

	Applications
	Proof of Theorem 4

	Conclusion
	Implementation

