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Abstract Despite the relevance of the binomial distribution for probability theory and applied
statistical inference, its higher-order moments are poorly understood. The existing formulas are
either not general enough, or not structured and simplified enough for intended applications.

This paper introduces novel formulas for binomial moments in the form of polynomials in
the variance rather than in the success probability. The obtained formulas are arguably better
structured, simpler and superior in their numerical properties compared to prior works. In addi-
tion, the paper presents algorithms to derive these formulas along with working implementation
in Python’s symbolic algebra package.

The novel approach is a combinatorial argument coupled with clever algebraic simplifica-
tions which rely on symmetrization theory. As an interesting byproduct asymptotically sharp
estimates for central binomial moments are established, improving upon previously known
partial results.

Keywords Binomial distribution, high-order moments, moment asymptotics, symbolic
algebra
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1 Introduction

1.1 Background and related work

The binomial distribution Binom(n, p), which counts the total number of successes
within n independent trials each succeeding with probability p, is of historical and
fundamental importance for probability theory and applied statistical inference. In
particular, it appears in quantitative variants of the central limit theorem [16, 8, 25,
29], and is broadly used in statistical modelling [17, 1, 9, 7, 26] also as a building
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block of more advanced models [27]; this includes performing A/B tests on conver-
sion rates popular in e-commerce [11].

Despite this large body of work on approximate inference, little is known about
the exact higher moments of the binomial distribution. Besides being of natural inter-
est, such formulas are needed to develop various concentration bounds; for example,
binomial moment bounds were proven useful for analyzing random projections [23].

While the textbooks usually cover only the variance, sometimes also the skew-
ness and kurtosis), there have been only few research papers discussing formulas for
binomial moments of order d > 4. The first recursion formula for binomial moments
appeared in [3] for the special case of p = 1

2 . The case of general p was handled
in [13] by means of recursions utilizing Stirling numbers of the first kind. This was
subsequently simplified by means of moment generating functions in [15], and re-
sulted in a more compact formula involving Stirling numbers of the second kind.
Very recently, a recursion-free derivation of raw moments has been presented in [19].
Overall, the common idea is to see the moments as (more or less explicit) polyno-
mials in n and p and group terms, in order to simplify the formula or establish other
desired properties such as nonnegativity of terms or boundedness of recursion depth
(as in the recent result on Beta moments [24]).

The discussed approaches still do not offer a satisfactory answer, as the formulas
are not handy enough to be directly applicable. The author of the most general for-
mula in [15] didn’t manage to obtain nonnaive bounds on the binomial moments: the
bound O(nq)d with q = 1 − p on the d-th central moment [15] valid for p < 1

2
is trivial as the centered binomial random variable is bounded between −pn and qn

– no extra formulas are needed; this bound is far from the true behaviour O(nq)d/2

when nq → ∞ (obtained by the Central Limit Theorem). The main formula in [15]
is actually a mixture of positive and negative contributions, which makes its numer-
ical convergence problematic and theoretical analysis very difficult (as seen above).
Moreover, all the prior works do not fully exploit the symmetry and produce rather
complicated formulas in terms of p; one could expect simpler expressions on the cen-
tral moments with the variance nσ 2 = np(1 − p) as a variable. Lastly, the discussed
prior works are rather scarce in their presentation of related works and techniques, in
particular they seem to have overlooked that the formulas with the appearance of Stir-
ling numbers follow easier by the established approach of factorial moments [14, 2].

1.2 Summary of contributions

Addressing the aforementioned issues with approaches in prior works, this paper of-
fers the following novel contributions to computing binomial moments:

• link to factorial moment, which simplifies the approach from prior works,

• variance-formula for equivalent yet simpler expressions in σ 2 = p(1 − p),

• algorithms with implementation to compute the variance-formula,

• stable formula as an explicit sum with positive terms,

• asymptotically sharp bounds on binomial moments as an application.
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In summary, when compared to prior works, these results bring a broader scope of
the techniques, as well as lead to arguably more handy formula; another added value
is the contributed algorithm and its Python implementation.1

1.3 Organization
The remainder of the paper is organized as follows: the necessary background is given
in Section 2, proofs appear in Section 4, the results are presented in Section 3, the
sharp asymptotics are discussed in Section 5, and Section 6 concludes the work. The
Python implementation is presented in Appendix A.

2 Preliminaries

2.1 Binomial distribution
A random variable S follows the binomial distribution with parameters n and p, de-
noted as S ∼ Binom(n, p), when the probability density function is

Pr[S = k] =
(

n

k

)
pkq1−k, q � 1 − p, k = 0, . . . , n. (1)

2.2 Moments
Let d be a positive integer. The raw moment of order d of a random variable S is
defined as E[Sd ], while the central moment of order d of S equals E[(S−E[S])d ]. We
also use the factorial moment, defined as E[Sd ] where xd = x(x−1) · · · (x−(d −1))

is called the d-th falling factorial [12].

2.3 Special numbers
To state the results, we need Stirling numbers of the second kind. The symbol

{
n
k

}
stands for the number of ways of partitioning an n element set into k nonempty
subsets. We also need multinomial coefficients defined as

(
d

d1...dk

) = d!
d1!···dk ! when∑k

i=1 di = d and mini di � 0 and 0 otherwise, which extend the binomial coeffi-
cients. By the multinomial theorem, we have that (x1 + · · · + xn)

d =∑
d1,...,dn

(
d

d1...dn

)
xd1 · · · xdn

n , extending the binomial formula.

2.4 Polynomials
To work out the desired polynomial formulas, we need some standard algebraic no-
tation. By Z[x1, . . . , xk] we denote polynomials with integer coefficients in variables
x1, . . . , xk . A polynomial is symmetric if it is invariant under interchanging vari-
ables, and antisymmetric when it gets negated under exchange of any two variables.
The fundamental theorem of symmetric polynomials states that any symmetric poly-
nomial from Z[x1, . . . , xk] can be written as a polynomial in the elementary symmet-
ric functions sj (x1, . . . , xn) = ∑

1�i1...�ij
xi1 · · · xij for j = 1, . . . , k, with integer

coefficients. Moreover, antisymmetric polynomials can be written as a product of a
symmetric polynomial and Vandermonde’s determinant

∏
1�i<j�k(xi −xj ) (see, for

example, [22, 28]).

1For code and examples visit the OSF repository https://osf.io/hjscb/

https://osf.io/hjscb/
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3 Results

Below we discuss the contributions in more detail, deferring proofs to the end part of
the paper. We denote S ∼ Binom(n, p), and fix a positive integer d .

3.1 Raw binomial moments and factorial moments

The first result is the derivation of the closed-form formula for raw binomial mo-
ments. While this formula appears in prior works [3, 15, 13], the arguments developed
here are simpler, as they avoid the machinery of generating functions. The two alter-
native proof techniques are, respectively: a) linking central and factorial moments b)
a direct counting argument.

Theorem 1 (Raw Binomial Moments). The raw moments are given by

E[Sd ] =
d∑

k=0

nk

{
d

k

}
pk. (2)

The two proofs appear respectively in Section 4.1 and Section 4.2. Below, in
Table 1, we list the explicit expressions for the first 10 moments.

Table 1. Formulas for Raw Binomial Moments

d E[S]d , S ∼ Binom(n, p)

1 pn

2 p2n2 + pn

3 p3n3 + 3p2n2 + pn

4 p4n4 + 6p3n3 + 7p2n2 + pn

5 p5n5 + 10p4n4 + 25p3n3 + 15p2n2 + pn

6 p6n6 + 15p5n5 + 65p4n4 + 90p3n3 + 31p2n2 + pn

7 p7n7 + 21p6n6 + 140p5n5 + 350p4n4 + 301p3n3 + 63p2n2 + pn

8 p8n8 + 28p7n7 + 266p6n6 + 1050p5n5 + 1701p4n4 + 966p3n3 + 127p2n2 + pn

9 p9n9 + 36p8n8 + 462p7n7 + 2646p6n6 + 6951p5n5 + 7770p4n4 + 3025p3n3 + 255p2n2 + pn

10 p10n10 + 45p9n9 + 750p8n8 + 5880p7n7 + 22827p6n6 + 42525p5n5 + 34105p4n4 + 9330p3n3 + 511p2n2 + pn

3.2 Central binomial moments

Symmetric structure. While in prior works the formulas are derived in terms of p, we
go beyond that exploiting the symmetry and showing that the formulas can be written
in terms of the variance σ 2 = p(1 − p), which makes them much simpler. The
following theorem proves what can be conjectured by inspection of known formulas
for small-order moments.

Theorem 2 (Existence of Variance-Based Formula). For S ∼ Binom(n, p) the mo-
ment E[(S − E[S])d ] is a symmetric polynomial in p and q when d is even, and
antisymmetric when d is odd. In particular, denoting σ 2 � pq we have

E[(S − E[S])d ] ∈
{
Z[n, σ 2], d even,

(1 − 2p)Z[n, σ 2], d odd.
(3)
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Fig. 1. The d-th central moment of S(n, p), where d = 6

Table 2 illustrates this result, providing explicit moments of order d = 2, . . . , 10.
The usefulness of the formula in Theorem 2 is its simplicity when compared to the
representation in terms of p alone. The result is intuitive, but not straightforward
to prove; two arguments are given, based on a) the theory of symmetric functions,
see Section 4.3 and b) the novel combinatorial formula, see Section 4.4. The algo-
rithm deriving the exact formulas is discussed later.

Table 2. Central Moments of Binomial Distribution. As above we denote σ 2 = p(1 − p)

d E[(S − E[S])d ], S ∼ Binom(n, p)

2 nσ 2

3 nσ 2 (−2p + 1)

4 3n2σ 4 + n
(
−6σ 4 + σ 2

)
5 (−2p + 1)

(
10n2σ 4 + n

(
−12σ 4 + σ 2

))
6 15n3σ 6 + n2

(
−130σ 6 + 25σ 4

)
+ n

(
120σ 6 − 30σ 4 + σ 2

)
7 (−2p + 1)

(
105n3σ 6 + n2

(
−462σ 6 + 56σ 4

)
+ n

(
360σ 6 − 60σ 4 + σ 2

))
8 105n4σ 8 + n3

(
−2380σ 8 + 490σ 6

)
+ n2

(
7308σ 8 − 2156σ 6 + 119σ 4

)
+ n

(
−5040σ 8 + 1680σ 6 − 126σ 4 + σ 2

)
9 (−2p + 1)

(
1260n4σ 8 + n3

(
−13216σ 8 + 1918σ 6

)
+ n2

(
32112σ 8 − 6948σ 6 + 246σ 4

)
+ n

(
−20160σ 8 + 5040σ 6 − 252σ 4 + σ 2

))
10 945n5σ 10 + n4

(
−44100σ 10 + 9450σ 8

)
+ n3

(
303660σ 10 − 99120σ 8 + 6825σ 6

)
+ n2

(
−623376σ 10 + 240840σ 8 − 24438σ 6 + 501σ 4

)
+ n

(
362880σ 10 − 151200σ 8 + 17640σ 6 − 510σ 4 + σ 2

)

Corollary 1 (Skewness and Kurtosis of Binomial Distribution). The skewness and
excess kurtosis equal, respectively, q−p√

npq
and 1−6pq

npq
.

Positive polynomial representation. As mentioned in the introduction, the only closed-
form formula due to [15] is an alternating sum with no readable leading term, which
makes it hard to use; in particular the discussion in [15] fails to give nontrivial bounds
on binomial moments. The novelty of this work is a formula consisting of positive
terms. This makes it more stable for numerical computations and more handy in the-
oretical analysis.

Theorem 3 (Explicit Stable Formulas). For S ∼ Binom(n, p), q � 1 − p and any
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positive integer d the following holds:

E[(S − E[S])d ] =
� d

2 �∑
k=1

(
n

k

)
(pq)k

∑
d1...dk�2

(
d

d1 . . . dk

) k∏
i=1

(qdi−1 − (−p)di−1).

Remark 1 (Nonnegativity). The terms under the sum are all nonnegative when p �
1
2 . Since n−S ∼ Binom(n, q), it follows that we have S −E[S] ∼ −(Binom(n, q)−
qn); with the help of this identity, working with central binomial moments can be
always reduced to the case p < 1

2 .

Remark 2 (Closed-form Symmetric Formula). The above result gives an explicit
formula for Theorem 2, and provides an alternative proof of that result.

3.3 Asymptotically sharp moment bounds

To illustrate how useful is our positive representation established in Theorem 3, we
derive the sharp bounds on (normalized) central binomial moments. This problem
has remained open so far; some recent works used ad hoc upper bounds to estimate
the binomial moments and tails (works on random projections, particularly [23]).

Theorem 4. Let S ∼ Binom(n, p) and σ 2 = p(1 − p). Then for any integer d > 1
we have∣∣∣E[(S − E[S])d ]

∣∣∣1/d = C(n, p, d) · max
{
k1− k

d · (nσ 2)
k
d : k = 1, . . . , �d/2�

}
,

where C(n, p, d) is uniformly bounded by (3e)−1 � C(n, p, d) � (5/2)1/5e1/2.

The estimate is uniformly sharp in all parameters; for the special case when
nσ 2 → ∞ and d is fixed, the d-th central moment grows, up to a constant, as
(nσ 2)d/2 which matches the central limit theorem combined with the explicit for-
mulas for moments of the normal distribution [20]. In contrast to Theorem 4, the
formula in [15] gives in this setup only much worse O(nq)d , which anyway follows
trivially since S is bounded by n. The proof uses Theorem 3.

3.4 Algorithms and implementation

We have seen that the variance-based representation in Theorem 2 is useful, yet it is
not immediate how to efficiently compute this polynomial. To this end, we develop
two different algorithms, both implemented in the popular Python symbolic algebra
package Sympy [18].

Algorithm 1 takes advantage of the fundamental theorem on symmetric polynomi-
als (see, for example, [10]). Specifically, there is an explicit procedure for converting
any symmetric polynomial in p, q into a polynomial in variables p+q, pq (the basic
symmetric polynomials in two variables); substituting p + q = 1 we are left with a
polynomial in σ 2 = pq. For even d we start with a symmetric polynomial and obtain
a polynomial in σ 2. In turn, for odd d we start with an antisymmetric polynomial and
apply this procedure to its symmetric part, which results in a polynomial in σ 2 plus
the factor q − p = 1 − 2p.
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Algorithm 1: Variance Formula for Central Binomial Moments
Result: The d-th central binomial moment in terms of n and σ2 = p(1 − p).
The outcome is a polynomial with integer coefficients.
U ← E(S − E[S])d , with U ∈ Z[n][p, q] // write as polynomial in p, q, e.g. by

Theorem 3
if d even then

V ← symmetrize(U), V ∈ Z[n][pq, p + q] // represent by elementary symmetric
polynomials

V ← V |p+q←1 // substitute the relation p + q = 1
end
else

V ← V/(q − p) // subtract ’unsymmetric’ part
V ← symmetrize(U), V ∈ Z[n][pq, p + q] // represent by elementary symmetric

polynomials
V ← V |p+q←1 // substitute the relation p + q = 1
V ← (1 − 2p) · V // add unsymmetric part back

end
return V

In turn, Algorithm 2 uses the power of elimination theory, to recover the rep-
resentation in σ 2 from any formula written in terms of p. Essentially, it simplifies
the input polynomial in p with respect to the polynomial σ 2 − p(1 − p) leveraging
the elimination properties of Groebner bases (see, for example, [5]). The output is a
polynomial in σ 2 (plus the factor 1 − 2p for odd d).

Algorithm 2: Variance Formula for Central Binomial Moments
Result: The d-th central binomial moment in terms of n and σ2 = p(1 − p).
The output is a polynomial with integer coefficients.
U ← E(S − E[S])d , U ∈ Z[n, p] // represent as polynomial in n, p, for example

Theorem 3 and substitution q ← 1 − p

if d even then
F1, F2 ← U, σ2 − p(1 − p) // moment and variance formulas

G ← GroebnerB(poly = {F1, F2}, vars = (p, n, σ2), order = lex) // Groebner basis, lex
order

V ← G ∩ Z[n, σ2] // extract variance-dependent formula
end
else

F1, F2 ← U/(1 − 2p), σ2 − p(1 − p) // subtract ’odd’ part

G ← GroebnerB(poly = {F1, F2}, vars = (p, n, σ2), order = lex) // Groebner basis, lex
order

V ← G ∩ Z[n, σ2] // extract variance-dependent part
V ← (1 − 2p) · V // add ’odd’ part back

end
return V

4 Proofs

4.1 First proof of Theorem 1

The proof is based on the fact that the factorial moments of the binomial distribution
are easy to compute. Namely (see [21]), we have the following proposition.
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Proposition 1 (Factorial Binomial Moments). Let S ∼ Binom(n, p). Then

E[Sd ] =
(

n

d

)
pd. (4)

Then it remains to connect factorial moments to standard moments, or in other
terms: factorial powers to powers. It is well known (see, for example, the discussion
in [4]) that this base change is given in terms of the Stirling numbers of the second
kind. We state this fact formally below.

Proposition 2 (Base Change from Falling Factorials to Powers). For positive integers
x and d the following holds:

xd =
d∑

k=0

{
d

k

}
xk. (5)

Now Theorem 1 follows by applying Proposition 2 to x := S, and then using
Proposition 1 to compute the expectation of Sk for k = 0, . . . , d .

4.2 Second proof of Theorem 1

Here we take a direct approach, writing S = ∑n
i=1 Xi where Xi ∼iid Bern(p). Using

the multinomial expansion and the independence of Xi we obtain

E[Sd ] =
∑

d1,...,dn

(
d

d1 . . . dn

)∏
i

E[Xdi

i ].

We now group the expressions in the above sum, depending on the number of nonzero
elements in (di)i . Denoting ‖(di)‖0 = #{i : di > 0} and using the fact that EX

di

i = p

when di > 0, we obtain

E[Sd ] =
d∑

k=0

∑
(di )i :‖(di )i‖0=k

(
d

d1 . . . dn

)
pk.

By the symmetry of multinomial coefficients this equals

E[Sd ] =
d∑

k=0

∑
d1...dk>0

(
d

d1 . . . dk

)(
n

k

)
pk.

Finally, we observe that the expression
∑

d1...dk>0

(
d

d1...dk

)
counts the number of ways

of partitioning {1, . . . , d} into k nonempty labeled subsets; thus, this numbers equals
k! · {

d
k

}
which finishes the proof.

4.3 First proof of Theorem 2

From Equation (1) we obtain

E[(S − E[S])d ] =
∑

k

(
n

k

)
pkqn−k(k − np)d .
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Replacing k by n − k and using the symmetry of binomial coefficients we obtain

E[(S − E[S])d ] =
∑

k

(
n

k

)
pn−kqk(nq − k)d .

When d is even, comparing these two equivalent expressions we see that they are
symmetric as polynomials in p and q. By the fundamental theorem of symmetric
polynomials, this can be written as a polynomial in pq and p+q; in our case p+q =
1 and the claim follows. If d is odd then (nq − k)d = −(k − nq)d and we get
antisymmetric polynomials in p, q which can be written as a product of p − q and
a symmetric polynomial. The latter, by the fundamental theorem, is a polynomial in
p + q and pq; since p + q = 1 the result follows.

4.4 Second proof of Theorem 2
By inspecting the products

∏k
i=1(q

di−1 − (−p)di−1) that appear in Theorem 3, it
can be seen that each of them is symmetric in p, q when

∑
i di = d is even, and

antisymmetric when
∑

i di = d is odd. This is because p, q → qdi−1 − (−p)di−1 is
symmetric when di is even, and antisymmetric otherwise. The claim now follows.

4.5 Proof of Theorem 3
As in the proof of Theorem 1 we arrive at

E[(S − E[S])d ] =
d∑

k=0

∑
d1...dk>0

(
n

k

)(
d

d1 . . . dk

) k∏
i=1

E[(Xi − E[Xi])di ].

Denote x = 1 − 1
1−p

, then E[(Xi − E[Xi])]di = p(1 − p)di (1 − xdi−1) and thus

E[(S − E[S])d ] = (1 − p)d
d∑

k=0

(
n

k

)
pk

∑
d1...dk>0

(
d

d1 . . . dk

) k∏
i=1

(1 − xdi−1).

With some further simplifications and grouping we can write

E[(S − E[S])d ] = (1 − p)d
� d

2 �∑
k=1

(
n

k

)
pk

∑
d1...dk�2

(
d

d1 . . . dk

) k∏
i=1

(1 − xdi−1)

︸ ︷︷ ︸
Uk

,

or equivalently

E[(S − E[S])d ] =
� d

2 �∑
k=1

(
n

k

)
(pq)k

∑
d1...dk>1

(
d

d1 . . . dk

) k∏
i=1

(qdi−1 − (−p)di−1).

This finishes the proof. In addition to that, in what follows, we discuss how to further
group terms and speed up computations. We can write

Uk =
k∑

j=0

(
k

j

) ∑
d1...dj >1

∑
dj+1...dk>1

(
d

d1 . . . dk

)
(−1)j xd1+···+dj −j ,
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and since
(

d
d1...dk

) = (d1+···+dj

d1...dj

) · (d−(d1+···+dj )

dj+1...dk

) · ( d
d1+···+dj

)
we obtain

Uk =
k∑

j=0

(
k

j

) ∑
�

(
d

�

) ∑
d1...dk>1

(
�

d1 . . . dj

)(
d − �

dj+1 . . . dk

)
(−1)j x�−j ,

and thus

Uk =
k∑

j=0

d∑
�=0

(
k

j

)(
d

�

)
j !(k − j)!S2(�, j)S2(d − �, k − j)(−1)j x�−j

= k!
d∑

�=0

(
d

�

) k∑
j=0

S2(�, j)S2(d − �, k − j)(−1)j x�−j ,

where S2(n, k) denotes the number of ways of partitioning an n-element set into k

subsets of cardinality at least 2 (a variation on Stirling numbers of the second kind).
This can be used to develop an equivalent, but faster to compute, formula.

5 Applications

5.1 Proof of Theorem 4

Throughout the proof, we will use the elementary estimates (m/e)m � m! � mm (the
second inequality is obvious, the first one follows by rearranging to em � mm

m! and
Taylor’s expansion) and (n/k)k �

(
n
k

)
� (ne/k)k (see, for example, [6]).

By applying Remark 1 we can assume p � 1
2 . Then q � p, and thus 0 �

qdi−1 − (−p)di−1 � p + q = 1 for any di � 2. In view of Theorem 3, we obtain the
bound

E[(S − E[S])d ] �
� d

2 �∑
k=1

(
n

k

)
(pq)k

∑
d1...dk�2

(
d

d1 . . . dk

)
.

Since we have ∑
d1...dk�2

(
d

d1 . . . dk

)
�

∑
d1...dk�0

(
d

d1 . . . dk

)
= kd,

we further obtain

E[(S − E[S])d ] �
� d

2 �∑
k=1

(
n

k

)
(pq)kkd .

Denoting σ 2 = pq and using the bound
(
n
k

)
� (ne/k)k , we finally obtain

E[(S − E[S])d ] � �d/2� · max{ekkd−k · (nσ 2)k : 1 � k � �d/2�},



Handy formulas for binomial moments 11

so that (noticing that (d/2)1/d � (5/2)1/5 for d � 2)

(
E[(S − E[S])d ]

) 1
d � (5/2)1/5e1/2 · max{k1− k

d · (nσ 2)
k
d : 1 � k � �d/2�}. (6)

We now move on to the lower bound. The idea is to fix k and look at terms such
that d1, . . . , dk are nearly equal, to make

(
d

d1...dk

)
possibly large.

Let us write d = k · r + � with an integer r � 2 and nonnegative integer � such
that 0 � � < k; this is possible as k � d/2, by writing d = k · r +� where 0 � � < k.
Define di = r + 1 when 1 � i � � and di = r when � < i � k, so that

∑
i di = d .

For this tuple (di) we have(
d

d1 . . . dk

)
= d!∏k

i=1 di !
� d!

(r + 1)!∑i di
= d!

(r + 1)d
.

Since d! � (d/e)d , r + 1 � 3
2 r , and d/r � k, it follows that

(
d

d1 . . . dk

)
�

(
2k

3e

)d

.

When di are even, we have qdi−1 − (−p)di−1 = qdi−1 + pdi−1 � 2 · 1
2di−1 by

Jensen’s inequality applied to the function u → udi−1 and p + q = 1. Since in the
summation we consider (di)i such that

∑
i di = d and di � 2, we obtain

k∏
i=1

(qdi−1 − (−p)di−1) �
∏
k

22−di = 22k−d .

The above two bounds, in view of Theorem 3, imply that

E[(S − E[S])d ] � (3e)−d

� d
2 �∑

k=1

(
n

k

)
(pq)kkd .

Denoting σ 2 = pq and using the bound
(
n
k

)
� (n/k)k , we finally obtain

(
E[(S − E[S])d ]

)1/d

� (3e)−1 · max{k1− k
d · (nσ 2)

k
d : 1 � k � �d/2�}, (7)

which finishes the proof.

6 Conclusion

This paper introduces novel and simpler formulas for binomial moments, derived by a
combinatorial argument coupled with clever algebraic simplification which relies on
symmetrization. An important application leads to sharp asymptotics for the growth
of central binomial moments. Moreover, explicit algorithms and the working imple-
mentation are provided.
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A Implementation

The implementation with examples is also available at https://osf.io/hjscb/.

i m p o r t i t e r t o o l s
i m p o r t sympy as sm
from sympy i m p o r t Symbol
from sympy i m p o r t p o l y s
from sympy . f u n c t i o n s . c o m b i n a t o r i a l . numbers i m p o r t s t i r l i n g , b i n o m i a l
from sympy . f u n c t i o n s . c o m b i n a t o r i a l . numbers i m p o r t f a c t o r i a l
from sympy . f u n c t i o n s . c o m b i n a t o r i a l . f a c t o r i a l s i m p o r t F a l l i n g F a c t o r i a l

d e f m u l t i n o m i a l _ c o e f ( n , ks ) :
i f n != sum ( ks ) :
r e t u r n 0
e l i f l e n ( ks ) ==1:
r e t u r n 1
e l s e :
r e t u r n b i n o m i a l ( n , ks [ 0 ] ) * m u l t i n o m i a l _ c o e f ( n−ks [ 0 ] , ks [ 1 : ] )

n=Symbol ( ’ n ’ )
p=Symbol ( ’ p ’ )
q=Symbol ( ’ q ’ )
s=Symbol ( ’ s igma ’ )

Listing 1. Preliminaries

d e f cen t ra l_b inom_moment ( d =2) :
’ ’ ’ o u t p u t a s po ly i n t r i a l s number n , s u c c e s s prob . p and q=1−p ’ ’ ’
o u t = 0
f o r k i n r a n g e ( 1 , i n t ( d / 2 ) +1) :
tmp = 0
f o r dks i n i t e r t o o l s . p r o d u c t ( r a n g e ( 2 , d +1) , r e p e a t =k ) :
po lyx = m u l t i n o m i a l _ c o e f ( d , dks )
f o r dk i n dks :
po lyx = po lyx * ( q **( dk −1)−(−p ) **( dk −1) )
tmp = tmp + po lyx
o u t = o u t + b i n o m i a l ( n , k ) * ( p*q ) **k * tmp

r e t u r n o u t . s i m p l i f y ( )

Listing 2. Stable Formula for Central Moments

d e f c e n t r a l _ b i n o m _ m o m e n t _ p r e t t y 1 ( d =2) :
’ ’ ’ o u t p u t a s p o l y n o m i a l i n number o f t r i a l s and s u c c e s s v a r i a n c e ’ ’ ’

o u t = cen t ra l_b inom_moment2 ( d=d ) . combsimp ( )
o u t = o u t . subs ( q ,1−p )
i f d % 2 == 0 :
o u t = p o l y s . g r o e b n e r ( [ out , s **2−p*(1−p ) ] , p , n , s , o r d e r = ’ l e x ’ ) [ −1]
e l i f d % 2 == 1 :
o u t = p o l y s . d i v ( out ,1−2*p ) [ 0 ]
o u t = p o l y s . g r o e b n e r ( [ out , s **2−p*(1−p ) ] , p , n , s , o r d e r = ’ l e x ’ ) [ −1]
o u t = (1−2*p ) * o u t
r e t u r n o u t

Listing 3. Variance Formula for Central Moments by Variable Elimination

d e f c e n t r a l _ b i n o m _ m o m e n t _ p r e t t y 2 ( d =2) :
’ ’ ’ o u t p u t a s p o l y n o m i a l i n number o f t r i a l s and s u c c e s s v a r i a n c e ’ ’ ’

o u t = cen t ra l_b inom_moment2 ( d=d )
i f d % 2 == 0 :

https://osf.io/hjscb/
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o u t = p o l y s . symmet r i ze ( out , [ p , q ] ) [ 0 ]
e l i f d % 2 == 1 :
o u t = p o l y s . d i v ( out , q−p ) [ 0 ]
o u t = p o l y s . symmet r i ze ( out , [ p , q ] ) [ 0 ]
o u t = (1−2*p ) * o u t
o u t = o u t . subs ( p+q , 1 )
o u t = o u t . subs ( p*q , s **2)
r e t u r n o u t

Listing 4. Variance Formula by Symmetrization
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