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Abstract This paper establishes the conditions for the existence of a stationary solution to the
first-order autoregressive equation on a plane as well as properties of the stationary solution.
The first-order autoregressive model on a plane is defined by the equation

Xi,j = aXi−1,j + bXi,j−1 + cXi−1,j−1 + εi,j .

A stationary solution X to the equation exists if and only if (1 − a − b − c)(1 − a + b + c) ×
(1+a−b+c)(1+a+b−c) > 0. The stationary solution X satisfies the causality condition with
respect to the white noise ε if and only if 1−a−b−c > 0, 1−a+b+c > 0, 1+a−b+c > 0
and 1 + a + b − c > 0. A sufficient condition for X to be purely nondeterministic is provided.

An explicit expression for the autocovariance function of X on the axes is provided. With
Yule–Walker equations, this facilitates the computation of the autocovariance function every-
where, at all integer points of the plane. In addition, all situations are described where different
parameters determine the same autocovariance function of X.

Keywords autoregressive models, causality, discrete random fields, purely nondeterministic
random fields, stationary random fields
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1 Introduction

The model. Let εi,j be a uncorrelated zero-mean equal-variance variables, E εi,j = 0
and E ε2

i,j = σ 2
ε > 0. Consider the equation

Xi,j = aXi−1,j + bXi,j−1 + cXi−1,j−1 + εi,j (1)
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with a, b and c fixed coefficients, and X an unknown array defined on an integer
lattice, for all integer indices.

Equation (1) can be used for modelling and simulating random images.

Subject of the study. We consider the following questions about equation (1).

• For what coefficients a, b and c does a stationary solution of (1) exist?

• How to compute the autocovariance function of the stationary solution?

• For what coefficients a, b and c does the stationary solution satisfy the causality
condition with respect to ε, that is, can be represented in the form

Xi,j =
∞∑

k=0

∞∑
l=0

ψk,lεi−k,j−l

with summable coefficients ψk,l? Actually, this question is solved in [5].

• How the causality condition is related to the stability of equation (1) taken
nondeterministically?

• Is the stationary solution purely nondeterministic? This property is related to
the causality condition with respect to some uncorrelated random field, called
innovations: does the field of innovations exist?

• Which different parameters (a, b, c, σ 2
ε ) determine the same autocovariance

function of the field X?

Previous study. The review of statistical models for representing a discretely ob-
served field on a plane, including regression models and trend-stationary models, is
given in [20]. The study of planar models, their estimation and applications is pre-
sented in the monograph [7].

A theory of stationary random field on n-dimensional integer lattice was con-
structed by Tjøstheim [16]. For the stationary fields, he considers the property of
being “purely nondeterministic,” which is related to the existence of appropriate field
of innovations. He considers ARMA models, for which he provides conditions for
stability of the equation and existence of a stationary solution. For AR models, he
establishes Yule–Walker equations, and also consistency and asymptotic normality of
the Yule–Walker estimator.

ARMA(1,1) model is studied by Basu and Reinsel in [5]. Their results on com-
putation of the autocorrelation function can be directly applied to AR(1) model, yet
in the causal case only.

Autoregressive models in a n-dimensional space had been studied before Tjøs-
theim. Whittle [21] studied various aspects of autoregressive model in the plane such
as the spectral density of the stationary solution, nonidentifiability, and estimation of
the regression coefficients. In the theoretical part of [21], the order of the model was
not limited, whereas in the example a second-order model of the form

ξs,t = αξs+1,t + βξs−1,t + γ ξs,t+1 + δξs,t−1 + εs,t
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was studied in detail.
The model equivalent to (1) is considered in [14, 19]. Two simpler models are

considered in the literature. One of the models, a triangular model, is considered in
the [4]. It is defined by equation ξs,t = αξs+1,t +βξs,t+1 +εs,t , which, up to different
notation, is also a spectral case of (1). The unit root test for this particular model is
constructed in [13].

The autocovariance function of a stationary field is even-symmetric, that is
γX(h1, h2) = γX(−h1,−h2); however, γX(h1, h2) need not be an even function in
each of its arguments. The autocovariance function of the stationary solution to (1) is
even in each argument if the coefficients satisfy c = −ab. This special case is called a
doubly geometric model. Its estimation and applications are considered in [8, 10–12].
The unit root test and estimation for parameters close to unit roots are constructed
in [1, 4]. In the symmetric case, the autocovariance function is separated into two
factors, one depends on h1 and the other depends on h2:

γX(h1, h2) = γX(h1, 0)γX(0, h2)/γX(0, 0). (2)

Random fields whose autocovariance functions satisfy separation property (2) are
called linear-by-linear processes.

The property of random field of being purely nondeterministic is introduced in
[16]. Further discussion of this property is found in [9] and [17].

Planar autoregressive models of order p × q (possibly of different orders along
different dimensions) are considered in [6].

Methods. We have obtained most results by manipulation with the spectral density.

Structure of the paper. In Section 2, we provide necessary and sufficient conditions
for existence of the stationary solution to equation (1). We also prove that the sta-
tionary solution must be centered and must have a spectral density. In Section 3 we
study the properties of the autocovariance function γX(h1, h2) of the stationary so-
lution. We find γX(h1, h2) for h1 = 0 and for h2 = 0, and we prove Yule–Walker
equations. This allows us to evaluate γX(h1, h2) everywhere. Section 4 is dedicated
to the case where equation (1) is stable. In Section 5 we show nonidentifiability, there
the same autocovariance function (and, in Gaussian case, the same distribution) of
the random field X corresponds to two different values of the vector of parameters. In
Section 6 we study Tjøstheim’s pure nondeterminism. Section 7 concludes the paper.
Some auxiliary statements are presented in the appendix.

2 Existence of a stationary solution

2.1 Spectral density

Denote the shift operators

LxXi,j = Xi−1,j and LyXi,j = Xi,j−1.

Equation (1) rewrites as

X − aLxX − bLyX − cLxLyX = ε. (3)
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We use the following definition of a spectral density. An integrable function fX(ν1, ν2)

is a spectral density for the wide-sense stationary field X if

γX(h1, h2) = cov(Xi,j , Xi−h1,j−h2) =

=
∫ 1/2

−1/2

∫ 1/2

−1/2
exp(2π i (h1ν1 + h2ν2))fX(ν1, ν2) dν1 dν2, (4)

where the upright i is the imaginary unit. This can be rewritten without complex
numbers as

γX(h1, h2) =
∫ 1/2

−1/2

∫ 1/2

−1/2
cos(2π (h1ν1 + h2ν2))fX(ν1, ν2) dν1 dν2 (5)

with further restraint that the spectral density should be an even function, fX(ν1, ν2) =
fX(−ν1,−ν2).

Due to (3), the spectral densities of the random fields ε and X, if they exist, are
related as follows

fε(ν1, ν2) = |1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2 fX(ν1, ν2).

The random field ε is a white noise with constant spectral density fε(ν1, ν2) = σ 2
ε .

Thus, the spectral density of the stationary field X, if it exists, is equal to

fX(ν1, ν2) = σ 2
ε

|1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2 . (6)

Lemma 1. Denote

D = (1 − a − b − c)(1 − a + b + c)(1 + a − b + c)(1 + a + b − c).

Consider the denominator in (6)

g(ν1, ν2) = |1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2, ν1, ν2 ∈ (− 1
2 , 1

2

]
.

It attains zero if and only if D ≤ 0. It can attain zero not more than at 2 points on the

half-open box
(− 1

2 , 1
2

]2
.

Proof. The following lines are equivalent:

∃ν1 ∈ (− 1
2 , 1

2

] ∃ν2 ∈ (− 1
2 , 1

2

] : |1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2 = 0,

∃ν1 ∈ (− 1
2 , 1

2

] ∃ν2 ∈ (− 1
2 , 1

2

] : 1 − ae2π iν1 = e2π iν2(b − ce2π iν1), (7)

∃ν1 ∈ (− 1
2 , 1

2

] : |1 − ae2π iν1 | = |(b − ce2π iν1)|,
∃ν1 ∈ (− 1

2 , 1
2

] : |1 − ae2π iν1 |2 = |(b − ce2π iν1)|2;
∃ν1 ∈ (− 1

2 , 1
2

] : 1 − 2a cos(2πν1) + a2 = b2 − 2bc cos(2πν1) + c2,

∃ν1 ∈ (− 1
2 , 1

2

] : 1 + a2 − b2 − c2 = 2(a − bc) cos(2πν1), (8)

|1 + a2 − b2 − c2| ≤ 2 |a − bc|,
(1 + a2 − b2 − c2)2 − 4(a − bc)2 ≤ 0,

D ≤ 0.
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The sufficient and necessary condition for the denominator g(ν1, ν2) to attain 0 is
proved.

Now treat a, b and c as fixed, and assume that D ≤ 0. Equality in (8) can be
attained for not more than two ν1 ∈ (− 1

2 , 1
2

]
. For each ν1, equality in (7) can be at-

tained for no more than one ν2 ∈ (− 1
2 , 1

2

]
. Thus, the function 1−ae2π iν1 −be2π iν2 −

ce2π i(ν1+ν2) has not more than 2 zeros in the half-open box
(− 1

2 , 1
2

]2
. The denomina-

tor g(ν1, ν2) cannot attain zero at more than two points either.

It should be acknowledged that in [19] conditions for the denominator g(ν1, ν2)

to attain 0 were provided, under constrains |a| < 1, |b| < 1 and |c| < 1.

2.2 Necessary and sufficient conditions for the existence of a stationary solution

Proposition 1. Let σ 2 > 0, a, b and c be fixed real numbers. A collection of ε =
{εi,j , i, j ∈ Z} of uncorrelated random variables with zero mean and equal variance
σ 2 and a wide-sense stationary random field X = {Xi,j , i, j ∈ Z} that satisfy
equation (1) exist if and only if D > 0, where D comes from Lemma 1.

Proof. Denote

g1(ν1, ν2) = 1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2);
then g(ν1, ν2) defined in Lemma 1 equals g(ν1, ν2) = |g1(ν1, ν2)|2. Necessity. Let
random fields ε and X satisfy equation (1) and the other conditions of Proposition 1.
Both ε and X are wide-sense stationary. Hence, they have spectral measures – de-

note them λε and λX – and λε is a constant-weight Lebesgue measure in
(− 1

2 , 1
2

]2
.

Because of (3), λε has a Radon–Nikodym density g(ν1, ν2) with respect to (w.r.t.)
λX:

dλε

dλX

(ν1, ν2) = |1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2.

Now assume that D ≤ 0. Then, according to Lemma 1, g(ν1, ν2) attains 0 at one

or two points on a half-open box
(− 1

2 , 1
2

]2
. Denote

A1 =
{
(ν1, ν2) ∈ (− 1

2 , 1
2

]2 : g1(ν1, ν2) �= 0
}

=
{
(ν1, ν2) ∈ (− 1

2 , 1
2

]2 : g(ν1, ν2) > 0
}

,

A2 =
{
(ν1, ν2) ∈ (− 1

2 , 1
2

]2 : g1(ν1, ν2) = 0
}

=
{
(ν1, ν2) ∈ (− 1

2 , 1
2

]2 : g(ν1, ν2) = 0
}

;
λ1(A) = λX(A ∩ A1), λ2(A) = λX(A ∩ A2)

for all measurable sets A ⊂ (− 1
2 , 1

2

]2
.

The set A2 contains one or two points. As λε is absolutely continuous, λε(A) =
λε(A\A2) = λε(A∩A1). Measures λ1 and λε are absolutely continuous with respect
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of each other: dλ1/dλε (ν1, ν2) = g(μ1, ν2)
−1. Thus, λ1 is absolutely continuous

with respect to the Lebesgue measure:

λ1(A) =
∫∫

A∩(−1/2,1/2]2

σ 2
ε

g(ν1, ν2)
dν1 dν2.

The measure λ2 is concentrated at not more than 2 points. Thus, λ1 and λ2 are abso-
lutely continuous and discrete components of the measure λX, respectively, and the
nondiscrete singular component is zero.

Let (ν
(0)
1 , ν

(0)
2 ) be one of the points of A2. As g1(ν1, ν2) is differentiable and

g(ν1, ν2) ≥ 0, at the neighborhood of (ν
(0)
1 , ν

(0)
2 ):

g1(ν1, ν2) = o(|ν1 − ν
(0)
1 | + |ν2 − ν

(0)
2 |),

g(ν1, ν2) = |g1(ν1, ν2)|2 = o((ν1 − ν
(0)
1 )2 + (ν2 − ν

(0)
2 )2),

1

g(ν1, ν2)
>

const

(ν1 − ν
(0)
1 )2 + (ν2 − ν

(0)
2 )2

for some const > 0; ∫ 1/2

−1/2

∫ 1/2

−1/2

1

g(ν1, ν2)
dν1 dν2 = +∞.

Hence

λX

((− 1
2 , 1

2

]2
)

≥ λ1

((− 1
2 , 1

2

]2
)

=
∫∫

(−1/2,1/2]2

σ 2

g(ν1, ν2)
dν1 dν2 = ∞.

Thus, the spectral measure of the random field X is infinite, which is impossible. The
assumption D ≤ 0 brings the contradiction. Thus, D > 0.

Sufficiency. Let D > 0. Then σ 2
ε /g(ν1, ν2) is an even integrable function on

[− 1
2 , 1

2

]2

that attains only positive values. Then there exists a zero-mean Gaussian stationary
random field X with spectral density σ 2

ε /g(ν1, ν2), see Lemma 6. Define ε by for-
mula (1). Then ε is zero-mean and stationary; ε has a constant spectral density σ 2

ε .
Thus, ε is a collection of uncorrelated random variables with zero mean and variance
σ 2

ε . Thus, the random fields ε and X satisfy the desired conditions.

Remark 1. In the sufficiency part of Proposition 1, the probability space is specially
constructed. The random fields X and ε constructed are jointly Gaussian and jointly
stationary, which means that {(Xi,j , εi,j ) i, j ∈ Z} is a two-dimensional Gaussian
stationary random field on a two-dimensional lattice.

Corollary 1. Let X be a wide-sense stationary field that satisfies (1). Then X is
centered and has a spectral density (6).

Proof. Due to Proposition 1, D > 0 (where D comes from Lemma 1). Hence, 1 −
a − b − c �= 0. Taking the expectation in (1) immediately implies that the mean of
the stationary random field X is zero.
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Demonstration that X has a spectral density partially repeats the Necessity part of
the proof of Proposition 1. In what follows, we use notations g(ν1, ν2), λX, A2, λ1 and
λ2 from that proof. According to Lemma 1, D > 0 implies that A2 = ∅. The discrete
component λ2 of the spectral measure λX of the random filed X is concentrated on
the set A2, thus, λ2 = 0. The nondiscrete singular component of λX is also zero. The
spectral measure λX = λ1 + λ2 is absolutely continuous, that is, the random field X

has a spectral density.

2.3 Restatement of the existence theorem
Proposition 2. Let σ 2 > 0, a, b and c be fixed real numbers, and εi,j be a collection
of uncorrelated random variables with zero mean and equal variance σ 2. A wide-
sense stationary random field X that satisfies equation (1) exists if and only if D > 0,
where D comes from Lemma 1.

Proof. Necessity is logically equivalent to one in Proposition 1.
Sufficiency. Denote

ψk,l =
∫ 1/2

−1/2

∫ 1/2

−1/2

exp(−2π i(kν1 + lν2))

1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)
dν1 dν2 . (9)

The integrand is well defined due to Lemma 1. It is infinitely times differentiable
periodic function. Due to Lemma 7,

∞∑
k=−∞

∞∑
l=−∞

|ψk,l | < ∞. (10)

Now prove that

Xi,j =
∞∑

k=−∞

∞∑
l=−∞

ψk,lεi−k,j−l (11)

is a solution. The series in (11) is convergent in mean squares as well as almost surely
due to Proposition 15. The resulting field X is stationary as a linear transformation of
a stationary field ε.

By changing the indices,

Xi,j − aXi−1,j − bXi,j−1 − cXi−1,j−1

=
∞∑

k=−∞

∞∑
l=−∞

ψk,l(εi−k,j−l − aεi−1−k,j−l − bεi−k,j−1−l − cεi−1−k,j−1−l )

=
∞∑

k=−∞

∞∑
l=−∞

(ψk,l − aψk−1,l − bψk,l−1 − cψk−1,l−1)εi−l,j−1.

This transformation of the Fourier coefficients corresponds to multiplication of the
integrand by a certain function. Thus,

ψk,l − aψk−1,l − bψk,l−1 − cψk−1,l−1

=
∫ 1/2

−1/2

∫ 1/2

−1/2
exp(−2π i(kν1 + lν2)) dν1 dν2 =

{
1 if k = l = 0,

0 otherwise;
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Xi,j − aXi−1,j − bXi,j−1 − cXi−1,j−1 = εi,j ,

and the random field X is indeed a solution to (1). Thus, X is a desired random
field.

3 The autocovariance function

In this section the autocovariance function of the stationary process that satisfies (1)
is studied. Its properties and and its values on the coordinate axes are obtained. For
the causal case, which is studied in Section 4, these results follow from [5] and [2].

Assume that {Xi,j , i, j ∈ Z} is a wide-sense stationary field that satisfies (1).
According to Corollary 1, X has a spectral density, which is defined by (6). The
autocovariance function can be evaluated with (4) or (5). The explicit formula is

γX(h1, h2) =
∫ 1/2

−1/2

∫ 1/2

−1/2

σ 2
ε exp(2π i(h1ν1 + h2ν2))

|1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2 dν1 dν2

=
∫ 1/2

−1/2

∫ 1/2

−1/2

σ 2
ε exp(2π i(h1ν1 + h2ν2))

g(ν1, ν2)
dν1 dν2, (12)

with g(ν1, ν2) defined in Lemma 1.
For fixed h1 and h2, it is possible to compute the integral in (12) as a function of

a, b and c.

3.1 The autocovariance function for h1 = 0

The denominator g(ν1, ν2) in (6) is equal to

g(ν1, ν2) = 1 + a2 + b2 + c2 + 2(ac − b) cos(2πν2)

+ 2((bc − a) + (ab − c) cos(2πν2)) cos(2πν1)

+ 2(ab + c) sin(2πν1) sin(2πν2)

= A + B cos(2πν1) + C sin(2πν1),

with

A = 1 + a2 + b2 + c2 + 2(ac − b) cos(2πν2),

B = 2((bc − a) + (ab − c) cos(2πν2)), C = 2(ab + c) sin(2πν2).
(13)

We are going to use Lemma 8 to calculate the integral
∫ 1/2
−1/2 g(ν1, ν2)

−1 dν1. We

have to verify the conditions A > 0 and A2 − B2 − C2 > 0:

(1+a2+b2+c2)2−4(ac−b)2 = ((a−c)2+(b+1)2)((a+c)2+(b−1)2) ≥ 0. (14)

The zero is attained if either a = c and b = −1, or a + c = 0 and b = 1. In both
cases D = 0, while D > 0 according to Proposition 1 (D is defined in Lemma 1).
Thus the inequality in (14) is strict,

(1 + a2 + b2 + c2)2 > 4(ac − b)2,
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1 + a2 + b2 + c2 > |2(ac − b)| ≥ −2(ac − b) cos(2πν2),

A = 1 + a2 + b2 + c2 + 2(ac − b) cos(2πν2) > 0.

With some trigonometric transformations,

A2 − B2 − C2 = (1 − a2 + b2 − c2 − 2(ac + b) cos(2πν2))
2.

Again, with some transformations and having in mind that D > 0,

(1 − a2 + b2 − c2)2 − 4(ac + b)2 = D > 0,

|1 − a2 + b2 − c2| > |2(ac + b)| ≥ |2(ac + b) cos(2πν2)|,
1 − a2 + b2 − c2 �= 2(ac + b) cos(2πν2),

A2 − B2 − C2 = (1 − a2 + b2 − c2 − 2(ac + b) cos(2πν2))
2 > 0.

According to Lemma 8, equation (42),

∫ 1/2

−1/2

dν1

g(ν1, ν2)
= 1√

A2 − B2 − C2
= 1

|1 − a2 + b2 − c2 − 2(ac + b) cos(2πν2)| .

Denote
g2(ν2) = 1 − a2 + b2 − c2 − 2(ac + b) cos(2πν2)

and compute
∫ 1/2
−1/2 e2π iν2h2 |g2(ν2)|−1 dν2 using formula (42). The expression g2(ν2)

does not attain 0; hence, either g2(ν2) > 0 for all ν2, or g2(ν2) < 0 for all ν2. Then

|g2(ν2)| = A2 + B2 cos(2πν2),

where A2 = 1−a2+b2−c2 and B2 = −2(ac+b) if g2(ν2) > 0 for all ν2; otherwise,
A2 = −(1−a2 +b2 − c2) and B2 = 2(ac+b) if g2(ν2) < 0 for all ν2. In both cases,
A2 = |g2(π/2)| > 0 and

A2
2 − B2

2 = (1 − a2 + b2 − c2)2 − 4(ac + b)2 = D > 0.

According to Lemma 8, equation (43),∫ 1/2

−1/2

exp(2π ih2ν2)

|g2(ν2)| dν2 = β |h2|√
A2

2 − B2
2

= 1√
D

where

β = B2

A2 +
√

A2
2 − B2

2

= B2

A2 + √
D

.

The value of β is

β = 0 if ac + b = 0,

β = 1 − a2 + b2 − c2 − √
D

2(ac + b)
if ac + b �= 0 and g2(ν2) > 0 for all ν2,
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β = 1 − a2 + b2 − c2 + √
D

2(ac + b)
if ac + b �= 0 and g2(ν2) < 0 for all ν2;

the formula that if valid in all cases is

β = 2(ac + b)

1 − a2 + b2 − c2 + sign(1 − a2 + b2 − c2)
√

D
. (15)

Finally,

γX(0, h2) =
∫ 1/2

−1/2

∫ 1/2

−1/2

σ 2
ε exp(2π ih2ν2)

g(ν1, ν2)
dν1 dν2

=
∫ 1/2

−1/2

σ 2
ε exp(2π ih2ν2)

|g2(ν2)| dν2 = β |h2|σ 2
ε√

D
. (16)

In particular,

var Xi,j = γX(0, 0) = σ 2
ε√
D

. (17)

Due to symmetry,

γX(h1, 0) = α|h1|σ 2
ε√

D
, (18)

where

α = 2(a + bc)

1 + a2 − b2 − c2 + sign(1 + a2 − b2 − c2)
√

D
. (19)

Notice that |α| < 1 and |β| < 1, whence

|γX(1, 0)| < γX(0, 0) and |γX(0, 1)| < γX(0, 0). (20)

3.2 Yule–Walker equations

We formally write down Yule–Walker equations for the autocovariance function of
X. These equations are particular cases of ones given in [16, Section 6]:

γX(0, 0) = aγX(1, 0) + bγX(0, 1) + cγX(1, 1) + σ 2
ε , (21)

γX(h1, h2) = aγX(h1 − 1, h2) + bγX(h1, h2 − 1) + cγX(h1 − 1, h2 − 1). (22)

In Lemma 2 we obtain conditions for (22) to hold true. As (21) requires specific con-
ditions on coefficients a, b and c, we postpone the consideration of (21) to Section 4.

Lemma 2. Let X be a stationary field satisfying equation (1), and let γX(h1, h2) be
the covariance function of the process X. Then equality (22) holds true if any of the
following conditions hold true:

(1) h1 ≥ 1, (1−a−b−c)(1+a−b+c) > 0 and (1−a+b+c)(1+a+b−c) > 0,

(2) h1 ≤ 0, (1−a−b−c)(1+a−b+c) < 0 and (1−a+b+c)(1+a+b−c) < 0,

(3) h2 ≥ 1, (1−a−b−c)(1−a+b+c) > 0 and (1+a−b+c)(1+a+b−c) > 0,
or
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(4) h2 ≤ 0, (1−a−b−c)(1−a+b+c) < 0 and (1+a−b+c)(1+a+b−c) < 0.

Proof. According to Corollary 1, the stationary field X has a spectral density, that is
(4) with fX(h1, h2) defined in (6). Hence, according to rules how the Fourier trans-
form changes when the function is linearly transformed,

γX(h1, h2) − aγX(h1 − 1, h2) − bγ (h1, h2 − 1) − cγ (h1 − 1, h2 − 1)

=
∫ 1/2

−1/2

∫ 1/2

−1/2
e2π i(h1ν1+h2ν2)(1 − ae−2π iν1 − be−2π iν2 − ce−2π i(ν1+ν2))

× fX(h1, h2) dν1 dν2

=
∫ 1/2

−1/2

∫ 1/2

−1/2

exp(2π i(h1ν1 + h2ν2))σ
2
ε

1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)
dν1 dν2. (23)

Case (1): h1 ≥ 1, (1−a−b−c)(1+a−b+c) > 0 and (1−a+b+c)(1+a+b−c) > 0.
In this case,

(1 − b)2 > (a + c)2 and (1 + b)2 > (a − c)2,

1 − a2 + b2 − c2 > 2b + 2ac and 1 − a2 + b2 − c2 > −2b − 2ac,

1 − a2 + b2 − c2 > 2 |b + ac|.
Then, for every ν2 ∈ [−1/2, 1/2], since | cos(2πν2)| ≤ 1,

1 − a2 + b2 − c2 > 2(b + ac) cos(2πν2),

1 − 2b cos(2πν2) + b2 > a2 + 2ac cos(2πν2) + c2,

|1 − be2π iν2 |2 > |a + ce2π iν2 |2,
|1 − be2π iν2 | > |a + ce2π iν2 |. (24)

According to Lemma 9,∫ 1/2

−1/2

exp(2π ih1ν1)

1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)
dν1 = 0, (25)

which, with (23), implies (22).
Case (2): h1 ≤ 0, (1−a−b−c)(1+a−b+c) < 0 and (1−a+b+c)(1+a+b−c) < 0.
In this case,

(1 − b)2 < (a + c)2 and (1 + b)2 < (a − c)2,

−2b − 2ac < a2 − b2 + c2 − 1 and 2b + 2ac < a2 − b2 + c2 − 1,

2 |b + ac| < a2 − b2 + c2 − 1.

Then, for every ν2 ∈ [−1/2, 1/2], since | cos(2πν2)| ≤ 1,

−2(b + ac) cos(2πν2) ≤ 2 |b + ac| < a2 − b2 + c2 − 1,

1 − 2b cos(2πν2) + b2 < a2 + 2ac cos(2πν2) + c2,
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|1 − be2π iν2 |2 < |a + ce2π iν2 |2,
|1 − be2π iν2 | < |a + ce2π iν2 |.

Again, according to another case of Lemma 9, (25) still holds true. With (23), it
implies (22).
Cases (3) and (4) are symmetric to cases (1) and (2), respectively.

3.3 Uniqueness of the solution
We prove that under Sufficient conditions of Proposition 2, the stationary solution to
(1) is unique.

Proposition 3. Let σ 2 > 0, a, b and c be fixed real numbers, and εi,j be a collection
of uncorrelated random variables with zero mean and equal variance σ 2. If D >

0, then equation (1) has only one stationary solution X, namely the one defined by
(11) with coefficients ψk,l defined in (9). The coefficients ψk,l satisfy (10); hence, the
double series in (11) converges in least squares and almost surely.

Proof. It remains to prove the uniqueness of the solution, as other assertions follow
from the proof of Proposition 2.

Let X be a solution to (1), which can be rewritten as (3). Let H be the Hilbert
space spanned by Lk

xL
l
yX, k, l = . . . ,−1, 0, 1, . . ., with scalar product

〈Y (1), Y (2)〉 = E Y
(1)
0,0Y

(2)
0,0 .

Formally, H can be defined as the closure of the set of random fields of form
{∑n

k=−n

∑n
l=−n φk,lXi−k,j−l , i, j = . . . ,−1, 0, 1, . . .} in a Banach space of bound-

ed-second-moment random fields with norm

‖Y‖ = sup
i,j

(E Y 2
i,j )

1/2. (26)

All random fields within H are jointly stationary, which imply that the scalar product
indeed corresponds to the norm of the Banach space:

〈Y, Y 〉 = ‖Y‖2 for all Y ∈ H.

Since (3), ε ∈ H. Let us construct a similar space for ε. Let

H1 =
{ ∞∑

k=−∞

∞∑
l=−∞

θk,lL
k
xL

k
yε :

∞∑
k=−∞

∞∑
l=−∞

θ2
k,l < ∞

}

=
{{ ∞∑

k=−∞

∞∑
l=−∞

θk,lεi−k,j−l , i, j = . . . ,−1, 0, 1, . . .

}
:

∞∑
k=−∞

∞∑
l=−∞

θ2
k,l < ∞

}
.

The series is convergent, see Proposition 16.
The random fields σ−1

ε Lk
xL

k
yε make an orthonormal basis of the subspace H1.

The orthogonal projector onto H1 can be defined as follows:

P1Y = 1

σ 2
ε

∞∑
k=−∞

∞∑
l=−∞

(E Yk,lε0,0)L
k
xL

l
yε,
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(P1Y)i,j = 1

σ 2
ε

∞∑
k=−∞

∞∑
l=−∞

E(Yk,lε0,0)εi−k,j−l

for all Y ∈ H.
It is possible to verify that

P1Lx = LxP1, P1Ly = LyP1, P1ε = ε.

Applying the operator P1 to both sides of (3), we get that the random field P1X is
also a stationary solution to (1). Both random fields must be centered, and variances
of both the fields satisfy (17):

‖X‖2 = ‖P1X‖ = σ 2
ε√
D

.

This implies that ‖X − P1X‖ = 0, which means X = P1X almost surely.
Combining (10) and (23), we get

γX(−k,−l) − aγX(−k−1,−l) − bγX(−k,−l−1) − cγX(−k−1,−l−1) = σ 2
ε ψk,l,

E X0,0Xk,l − a E X−1,0Xk,l − b E X0,−1Xk,l − c E X−1,−1Xk,l = σ 2
ε ψk,l,

E(X0,0 − aX−1,0 − bX0,−1 − cX−1,−1)Xk,l = σ 2
ε ψk,l,

E ε0,0Xk,l = σ 2
ε ψk,l, (27)

Xi,j = PXi,j = 1

σ 2
ε

∞∑
k=−∞

∞∑
l=−∞

(E Xk,lε0,0)εi−k,j−l =
∞∑

k=−∞

∞∑
l=−∞

ψk,lεi−k,j−l .

Thus, the solution to (1) must satisfy (11) almost surely, whence the uniqueness fol-
lows.

4 Stability and causality

4.1 Causality

We generalize the causality condition for random fields on a two-dimensional lattice.

Definition 1. Let εi,j (i and j integers) be random variables of zero mean and con-
stant, finite, nonzero variance. A random field {Xi,j , i, j = . . . ,−1, 0, 1, . . .} is
said to be causal with respect to (w.r.t.) the white noise ε if there exists an array of
coefficients {ψk,l, k, l = 0, 1, 2, . . .} such that

∞∑
k=0

∞∑
l=0

|ψk,l | < ∞ (28)

and the process X allows the representation

Xi,j =
∞∑

k=0

∞∑
l=0

ψk,lεi−k,j−l . (29)
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A causal random field must be wide-sense stationary.

Proposition 4. Let εi,j be a uncorrelated zero-mean equal-variance variables,
E εi,j = 0 and E ε2

i,j = σ 2
ε , 0 < σ 2

ε < ∞. Let X be a stationary field that sat-
isfies (1). The random field X is causal w.r.t. the white noise ε if and only if these four
inequalities hold true:

1 − a − b − c > 0, 1 − a + b + c > 0,

1 + a − b + c > 0, 1 + a + b − c > 0.

If the field X is causal, then the coefficients in representation (29) equal

ψk,l =
min(k,l)∑

m=0

(
k

m

)(
l

m

)
ak−mbl−m(ab + c)m. (30)

Proof. Sufficiency. Method 1. Denote

f1=1−a−b−c, f2=1−a+b+c, f3=1+a−b+c, f4=1+a+b−c. (31)

Obviously, f1 + f2 + f3 + f4 = 4 > 0.
The conditions are f1 > 0, f2 > 0, f3 > 0 and f4 > 0; assume they hold true.

Verify the conditions in [5, Proposition 1]:

1 − |α| = min

(
f1 + f2

2
,

f3 + f4

2

)
> 0,

whence |a| < 1. Similarly, |b| < 1 and |c| < 1. Also,

(1 + a2 − b2 − c2)2 − 4(a + bc)2 = f1f2f3f4 > 0,

1 − b2 − |a + bc| = f1f4 + f2f3 + 2 min(f1f2, f3f4)

4
> 0.

Thus, conditions of [5, Proposition 1] are satisfied. Hence, the polynomial function
�(z1, z2) = 1 − az1 − bz2 − cz1z2 does not attain zero on the set {(z1, z2) ∈ C

2 :
|z1| ≤ 1 and |z2| ≤ 1}. According to [16, Theorem 5.1], the function �(z1, z2)

−1

allows the Taylor expansion

�(z1, z2) =
∞∑

k=0

∞∑
l=0

ψk,lz
k
1z

l
2

with summable coefficients. The process X defined in (29) satisfies (1). With unique-
ness stated in Proposition 3, this completes the proof.

Method 2. The stationary solution X to equation (1) admits a representation (11),
with the coefficients ψk,l defined in (9); the coefficients satisfy (10). With application
of Lemma 9 as it has been done in the proof of Lemma 2, it is possible to demonstrate
that ψk,l = 0 if either k < 0 or l < 0. Thus, (28) and (29) hold true.

Necessity. Method 1. Let the process X admit representation (29) with condi-
tion (28) being satisfied. Now use formalism, which originates in [5, Section 5].



First-order planar autoregressive model 15

Denote a bivariate power series �(z1, z2) = ∑∞
k=0

∑∞
l=0 ψk,lz

k
1z

l
2. The function

�(z1, z2) is bounded on the set {(z1, z2) ∈ C
2 : |z1| ≤ 1 and |z2| ≤ 1}. Then

X = �(Lx,Ly)ε, and equation �(Lx,Ly)�(Lx, Ly)ε = ε holds true, with polyno-
mial �(z1, z2) = 1−az1−bz2−cz1z2 defined in the Sufficiency part. This is possible
only if �(Lx,Ly)�(Lx, Ly) is the identity operator, and �(z1, z2)�(z1, z2) = 1.
(The operators Lx and Ly commute and, as they are considered linear operators act-
ing on the Banach space of bounded-second-moment random fields with norm (26),
their norm equals 1. Hence, the substitution of the operators Lx and Ly into a formal
power series with summable coefficients makes sense.) Hence, �(z1, z2) is nonzero
for any complex numbers z1 and z2 such that |z1| ≤ 1 and |z1| ≤ 1. Necessary
and sufficient conditions stated in [5, Proposition 1] must be satisfied, in particular,
|a| < 1, |b| < 1, |c| < 1 and f1f2f3f4 = (1 + a2 − b2 − c2)2 − 4(a + bc)2 > 0.
It could be verified that if any two of the factors f1, f2, f3 or f4 are negative, then
max(|a|, |b|, |c|) > 1, which is false. Thus, conditions in [5] imply that f1 > 0,
f2 > 0, f3 > 0 and f4 > 0.

Method 2. According to Lemma 1, D = f1f2f3f4 > 0. Thus, the sum and the
product of the factors f1, f2, f3 and f4 are positive. This is possible in two cases:
(1) all f1, f2, f3 and f4 are positive; or (2) two of the factors f1, f2, f3 and f4 are
positive, and the other two are negative. Case (1) is what is to be proved. In case (2)
coefficients defined in (9) are zero, ψk,l = 0 for all k ≥ 0 and l = 0, as follows from
the proof of Lemma 2. Thus, all coefficients ψk,l in the representation (11) are zero,
which is absurd.

The expression for ψk,l . Again, if f1 > 0, f2 > 0, f3 > 0 and f4 > 0, in the proof
of Lemma 2, case (1), inequality (24) was demonstrated. Let k and l be nonnegative
integers. By (9) and Lemmas 9 and 10,

ψk,l =
∫ 1/2

−1/2
e−2π ilν2

(∫ 1/2

−1/2

exp(−2π ikν1)

1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)
dν1

)
dν2

=
∫ 1/2

−1/2

e−2π ilν2(a + ce2π iν2)k

(1 − be2π iν2)k+1
dν2

=
min(k,l)∑

n=0

(
k

n

)(
l

n

)
ak−nbl−n(ab + c)n.

Remark 2. The equivalent simplification of causality or stability conditions stated in
[5] was done in [19, 2, 3]. The set of points whose coordinates (a, b, c) satisfy the
causality condition is found in all these papers.

Notice that occasionally the set of necessary and sufficient conditions contains a
redundant condition, which follows from other conditions. For example, in [5, Propo-
sition] the inequality 1 − b2 > |a + bc| follows from |a| < 1, |b| < 1, |c| < 1 and
(1 + a2 − b2 − c2)2 − 4(a + bc)2 > 0. In [2] inequalities |a| < 1, |b| < 1 and |c| < 1
follow from a − b − c < 1, −a + b − c < 1, −a − b + c < 1 and a + b + c < 1.

The conditions for causality can be restated as follows. Let X be a stationary
random field that satisfies (1). Then X is causal with respect to the white noise ε if
and only if |a| < 1, |b| < 1 and |c| < 1. The trick is that D > 0 (the necessary and
sufficient condition for existence of such a field X, see Proposition 1) is assumed.
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Remark 3. Refs. [5, eq. (2.1)] and [2, eq. (1.4)–(1.5)] provide simpler and explicit
expressions for the coefficients ψk,l :

ψk,l =
min(k,l)∑

m=0

(k + l − m)!
(k − m)! (k − m)!m!a

k−mbl−mcm,

ψk,l =
(

k + l

l

)
akbl

2F1

(
−k,−l; −k − l; − c

ab

)
if ab �= 0,

where 2F1 is the Gauss hypergeometric function.

4.2 Autocovariance function and Yule–Walker equations under the causality condi-
tion

The following Proposition can be proved in the same way as a similar proposition for
time series in one dimension, so the proof is skipped.

Proposition 5. Let coefficients a, b and c be such that f1 > 0, f2 > 0, f3 > 0 and
f4 > 0 for f1, . . . , f4 defined in (31). Let X be a stationary field and ε be a collection
of zero-mean equal-variance random variables, var εi,j = σ 2

ε , that satisfy (1). Then
cov(Xi,j , εk,l) = 0 if k > i or l > j , and the following Yule–Walker equations hold
true:

γX(0, 0) = aγX(1, 0) + bγX(0, 1) + cγX(1, 1) + σ 2
ε ,

γX(h1, h2) = aγX(h1−1, h2) + bγX(h1, h2−1) + cγX(h1−1, h2−1)

if max(h1, h2) > 0.

Here cov(Xi,j , εk,l) = 0 (for k > i or l > j ) immediately follows from causal-
ity, and (22) (for max(h1, h2) ≥ 0) immediately follows from Lemma 2. The latter
equation was also proved in [5].

Proposition 6. Let coefficients a, b and c be such that f1 > 0, . . . , f4 > 0, with
f1, . . . , f4 defined in (31). Let X be a stationary random field, and ε be a collection of
zero-mean random variables with equal variance E ε2

i,j that satisfy (1). Then random
fields X and ε are jointly stationary with cross-autocovariance function

cov(Xi+h1,j+h2 , εi,j ) = 0 if h1 < 0 or h2 < 0,

cov(Xi+h1,j+h2 , εi,j ) =
min(h1,h2)∑

k=0

(
h1

k

)(
h2

k

)
ah1−kbh2−k(ab + c)kσ 2

ε

if h1 ≥ 0 and h2 ≥ 0.

Proof. The joint stationarity follows from (3) and the stationarity of X (this was al-
ready used in the proof of Proposition 3). The formula for the autocovariance function
follows from (27) and Proposition 4.

The following proposition provides a simple explicit expression for the autoco-
variance function γX(h1, h2) for arguments h1 and h2 of opposite sign for the causal
case. These formulas are proved in [5, Proposition 1] for a more general model
(namely, for ARMA(1,1) model).
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Proposition 7. Under conditions of Proposition 6, the autocovariance function of the
field X satisfies

γX(h1, h2) = α|h1|β |h2|σ 2
ε√

D
if h1h2 ≤ 0, (32)

where D is defined in Lemma 1, and

α = 2(a + bc)

1 + a2 − b2 − c2 + √
D

, β = 2(ac + b)

1 − a2 + b2 − c2 + √
D

.

The proof is by induction, by using results of Section 3.1 for the base case and
Yule–Walker equations for the induction step. As that adds nothing to [5], we skip the
detailed proof.

Thus, if h1h2 ≤ 0, then

γX(h1, h2)γX(0, 0) = γX(h1, 0)γX(0, h2),

corr(Xi,j , Xi−h1,j−h2) = corr(Xi,j , Xi−h1,j ) corr(Xi,j , Xi,j−h2).

This result can be generalized to autoregressive models of higher order, see [6].
Under conditions of Proposition 7,

γX(1,−1)γX(0, 0) = γX(1, 0)γX(0, 1). (33)

The results of Section 4.2 allow to compute the autocovariance function γX(h1, h2)

recursively. The Taylor expansion of the autocovariance function γX(h1, h2), with re-
spect to the parameter c, is provided in [19].

4.3 Stability

Lemma 3. Let a, b and c be such that f1, . . . , f4 defined in (31) are positive real
numbers. Let ψk,l be defined in (30) if k ≥ 0 and l ≥ 0, and ψk,l = 0 if k < 0 or
l < 0. Then ψk,l satisfy this equation:

ψk,l − aψk−1,l − bψk,l−1 − cψk−1,l−1 =
{

1 if k = l = 0,

0 otherwise.
(34)

Proof. Under conditions f1 > 0, . . . , f4 > 0, the coefficients ψk,l satisfy (9) for all
integer k and l. Respective transforms of the Fourier coefficients and the integrand in
(9) yield

ψk,l − aψk−1,l − bψk,l−1 − cψk−1,l−1

=
∫ 1/2

−1/2

∫ 1/2

−1/2
exp(−2π i(kν1 + lν2)) dν1 dν2 =

{
1 if k = l = 0,

0 otherwise.

Remark 4. In Lemma 3 the condition D > 0 is unnecessary. Indeed, condition D > 0
holds true for small a, b and c. The coefficients ψk,l are polynomials in a, b and c;
thus, the left-hand side of (34) is also a polynomial in a, b and c, and the fact that
(34) holds true for small a, b and c implies that (34) holds true for all real a, b and c.
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Proposition 8. Let a, b and c be such that f1, . . . , f4 defined in (31) are positive real
numbers. Consider the recurrence equation

xi,j = axi−1,j + bxi,j−1 + cxi−1,j−1 + vi,j (35)

for all positive integers i and j , where

• vi,j are known variables, i > 0 and j > 0;

• x0,0, xi,0 and x0,j are preset, so setting their values makes initial/boundary
conditions;

• xi,j (i > 0 and j > 0) are unknown variables.

Then the explicit formula for the solution is the following:

xi,j = ψi,j x0,0 +
i−1∑
k=0

ψk,j (xi−k,0 − axi−k−1,0)

+
j−1∑
l=0

ψi,l (x0,j−l − bx0,j−l−1) +
i−1∑
k=0

j−1∑
l=0

ψk,lvi−k,j−l , (36)

with ψk,l defined in (30).
If, in addition, the sequences of xi,0 and x0,j and the array of vi,j are bounded,

then the solution x is also bounded.

Proof. First, show that under convention that “an empty sum is zero,” namely∑−1
i=0 . . . = 0 and

∑−1
j=0 . . . = 0, the right side of (36) satisfies the boundary condi-

tions. For one or both indices being zero, the coefficients ψk,l equal

ψ0,0 = 1, ψk,0 = ak, ψ0,l = bl

for all integer k ≥ 0 and l ≥ 0. Hence,

ψ0,0x0,0 = xi,j ,

ψ0,j x0,0 +
j−1∑
l=0

ψ0,l(x0,j−l − bx0,j−l−1) = blx0,0 +
j−1∑
l=0

bl(x0,j−k − bx0,j−l−1)

= blx0,0 +
j−1∑
l=0

blx0,j−l −
j−1∑
l=0

bl+1x0,j−l−1

= blx0,0 +
j−1∑
l=0

blx0,j−l −
j∑

l=1

blx0,j−l = blx0,0 + x0,j − blx0,0 = x0,j

for integer j > 0, and due to symmetry for all integers i > 0

ψi,0x0,0 +
i−1∑
k=0

ψk,0 (xi−k,0 − axi−k−1,0) = xi,0.
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Known variables vi,j are defined for all integer i > 0 and j > 0. Extend their
domain for all integer i ≥ 0 and j ≥ 0 by assigning

v0,0 = 0; vi,0 = xi,0 − axi−1,0, i > 0; v0,j = x0,j − bx0,j−1, j > 0.

Then the right-hand side of (36) is

xRHS
i,j =

i∑
k=0

j∑
l=0

ψk,lvi−k,j−l , i ≥ 0, j ≥ 0.

In particular, xRHS
i,j = xi,j if either i = 0 or j = 0.

Now prove that xRHS satisfies (35). To that end, let ψk,l = 0 if k < 0 or l < 0.
Then, for i and j positive integers,

xRHS
i,j − axRHS

i−1,j − bxRHS
i,j−1 − cxRHS

i−1,j−1

=
i∑

k=0

j∑
l=0

ψk,lvi−k,j−l − a

i−1∑
k=0

j∑
l=0

ψk,lvi−1−k,j−l

− b

i∑
k=0

j−1∑
l=0

ψk,lvi−k,j−1−l − c

i−1∑
k=0

j−1∑
l=0

ψk,lvi−1−k,j−1−l

=
i∑

k=0

j∑
l=0

ψk,lvi−k,j−l − a

i∑
k=1

j∑
l=0

ψk−1,lvi−k,j−l

− b

i∑
k=0

j∑
l=1

ψk,l−1vi−k,j−l − c

i∑
k=1

j∑
l=1

ψk−1,l−1vi−k,j−l

=
i∑

k=0

j∑
l=0

(ψk,l − aψk−1,l − bψk,l−1 − cψk−1,l−1)vi−k,j−l = vi,j ;

here we used Lemma 3.
Finally, equality xi,j = xRHS

i,j for all integer i ≥ 0 and j ≥ 0 can be proved by
induction.

If initial/boundary values and vi,j are bounded,

sup
i>0

|xi,0| < ∞, sup
j>0

|x0,j | < ∞, and sup
i,j>00

|vi,j | < ∞,

then

|xi,j | =
∣∣∣∣∣∣

i∑
k=0

j∑
k=0

ψk,lvi−k,j−l

∣∣∣∣∣∣ ≤
i∑

k=0

l∑
j=0

|ψi,j | max
0≤r≤1

max
0≤s≤1

|vr,s |

≤
i∑

k=0

l∑
j=0

|ψi,j | × max
(
|x0,0|, (1 + |a|) max

1≤r≤i
|xr,0|,

(1 + |b|) max
1≤s≤i

|x0,s |, max
1≤r≤i

max
1≤s≤i

|vi,j |
)
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≤
∞∑

k=0

∞∑
j=0

|ψi,j | × max
(
|x0,0|, (1 + |a|) sup

r≥1
|xr,0|,

(1 + |b|) sup
s≥1

|x0,s |, sup
r,s≥1

|vi,j |
)

< ∞.

Thus, the solution x is bounded. Here we used (28).

5 Symmetry, nonidentifiability, and special cases

In this section we consider the question how parameters change when the random
field X is flipped, and whether two or more sets of parameters correspond to the same
distribution (or the same autocovariance function) of X. Here are four parameters:
three coefficients a, b, and c and the variance of the error term σ 2

ε . Usually, two
sets of parameters (a, b, c, σ 2

ε ) correspond to the same autocovariance function. In
special cases, up to four sets of parameters can correspond to the same autocovariance
function. We start with special cases.

5.1 Special cases

The purpose of this section is to illustrate the use of results of Sections 2–4. The
symmetric case was studied in [10, 5]. In that case, the random field X is also called a
linear-by-linear process or a doubly-geometric process. For example, the formula for
the autocorrelation function in the symmetric case similar to (37) in Proposition 10
was given in [10, Section 3].

5.1.1 Symmetric case: ab + c = 0
Proposition 9. Let a stationary field X and a collection of uncorrelated zero-mean
equal-variance random variables ε be a solution to (1). The autocovariance function
γX is even with respect to each variable, γX(h1, h2) = γX(−h1, h2) = γX(h1,−h2)

if and only if ab + c = 0.

Proof. Equation (4) can be rewritten as

γX(h1, h2) =
∫ 1/2

−1/2
e2π ih2ν2

∫ 1/2

−1/2
e2π ih1ν1fX(ν1, ν2) dν1 dν2.

The even symmetry with respect to h2, γX(h1, h2) = γX(h1,−h2), is equivalent to
the inner integral being a real function,

∫ 1/2

−1/2
e2π ih1ν1fX(ν1, ν2) dν1

=
∫ 1/2

−1/2

exp(2π i h1ν1)σ
2
ε

|1 − ae2π iν1 − be2π iν2 − ce2π i(ν1+ν2)|2 dν1

=
∫ 1/2

−1/2

exp(2π i h1ν1)σ
2
ε

A + B cos(2πν1) + C sin(2πν2)
∈ R for almost all ν2 ∈ [− 1

2 , 1
2

]
,
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with A, B and C defined in (13) in Section 3.1. In turn, this is equivalent to the
function Fourier-transformed being an even function,

σ 2
ε

A + B cos(2πν1) + C sin(2πν1)
= σ 2

ε

A + B cos(−2πν1) + C sin(−2πν1)

for almost all ν1 and ν2 ∈ [− 1
2 , 1

2

]
, which holds true if and only if C = 2(ab +

c) sin(2πν2) = 0 for all ν2, which is equivalent to ab + c = 0.

Thus, we consider the case c = −ab. The following proposition establishes con-
ditions on a and b.

Proposition 10. Let c = −ab. The stationary field X and a collection of uncorrelated
zero-mean variables with equal variance σ 2

ε which satisfy (1) exist if and only if
|a| �= 1 and |b| �= 1. In that case, the autocovariance function of X is equal

γX(h1, h2) = a±h1b±h2σ 2
ε

|1 − a2| × |1 − b2| , (37)

where the signs “±” are chosen so that |a±h2 | < 1 and |b±h2 | < 1.
The field X is causal with respect to ε if and only if |a| < 1 and |b| < 1.

Proof. Apply Proposition 1. Since c = −ab,

D = (1 − a − b + ab)(1 − a + b − ab)(1 + a − b − ab)(1 + a + b + ab) =
= (1 − a)2(1 − b)2(1 + b)2(1 + a)2.

Thus, D ≥ 0, and the necessary and sufficient condition D > 0 for the desired
process to exist is satisfied if and only if (1 − a)(1 − b)(1 + b)(1 + a) �= 0, which is
equivalent to |a| �= 1 and |b| �= 1.

The spectral density (6) splits into two factors:

fX(ν1, ν2) = 1

|1 − ae2π iν1 |2 × σ 2
ε

|1 − be2π iν2 |2 .

Thus, the autocovariance function is

γX(h1, h2) =
∫ 1/2

−1/2

exp(2πh1ν1)

|1 − ae2π iν1 |2 dν1 ×
∫ 1/2

−1/2

exp(2πh2ν2)

|1 − be2π iν2 |2 dν2 σ 2
ε .

With Lemma 8,∫ 1/2

−1/2

exp(2πh1ν1)

|1 − ae2π iν1 |2 dν1 =
∫ 1/2

−1/2

exp(2πh1ν1)

1 + a2 − 2a cos(2πν1)
dν1

= α|h1|√
(1 + a2)2 − 4a2

= α|h1|

|1 − a2|
with

α = 2a

1 + a2 + |1 − a2| =
{

a if |a| < 1,

a−1 if |a| > 1.
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Thus, ∫ 1/2

−1/2

exp(2πh1ν1)

|1 − ae2π iν1 |2 dν1 = a±h1

|1 − a2| .

Similarly, ∫ 1/2

−1/2

exp(2πh2ν2)

|1 − be2π iν2 |2 dν2 = b±h2

|1 − b2| ,

and (37) holds true.
The causality conditions from Proposition 4 rewrite as follows:

(1 − a)(1 − b) > 0, (1 − a)(1 + b) > 0,

(1 + a)(1 − b) > 0, (1 + a)(1 + b) > 0.

They mean that 1 − a, 1 − b, 1 + a and 1 + b should be (nonzero and) of the same
sign. As sum of these factors (1 − a) + (1 − b) + (1 + a) + (1 + b) = 4 is positive,
the causality condition is equivalent to

1 − a > 0, 1 − b > 0, 1 + a > 0, and 1 + b > 0,

which in turn is equivalent to |a| < 1 and |b| < 1.

5.1.2 Case a = −bc: uncorrelated observations along transect line
Another special case is where the coefficients in (1) satisfy relation a = −bc.

Proposition 11. Let a = −bc. The stationary field X and a collection of uncorrelated
zero-mean variables with equal variance σ 2

ε which satisfy (1) exist if and only if
|b| �= 1 and |c| �= 1. The autocovariance function of X satisfies relations

γX(h1, 0) = 0, h1 �= 0 , γX(0, h2) = b±h2σ 2
ε

|1 − b2| × |1 − c2| ,

where the sign “±” is chosen so that |b±h2 | < 1.
The field X is causal with respect to ε if and only if |b| < 1 and |c| < 1.

Proof. Since a = −ac,

D = (1 + bc − b − c)(1 + bc + b + c)(1 − bc − b + c)(1 − bc + b − c) =
= (1 − b)2(1 − c)2(1 + b)2(1 + c)2.

Thus, D ≥ 0, and the necessary and sufficient condition of existence of a stationary
solution, namely D > 0, is satisfied if and only if (1 − b)(1 − c)(1 + b)(1 + c) �= 0,
which is equivalent to |b| �= 1 and |c| �= 1.

For the autocovariance function, we use results of Section 3.1. With notations (15)
and (19),

√
D = |1 − b2| × |1 − c2|, α = 0,
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Table 1. The autocovariance function γX(h1, h2) for a = −0.1, b = 0.5, c = 0.2, and
σ 2
ε = 0.72

Values of γX(h1, h2)

h2 h1=−2 h1=−1 h1=0 h1=1 h1=2 h1=3
3 0 0 0.125 0.1125 0.0225 –0.00225
2 0 0 0.25 0.15 0.0075 –0.003
1 0 0 0.5 0.15 –0.015 0.0015
0 0 0 1 0 0 0

–1 –0.015 0.15 0.5 0 0 0
–2 0.0075 0.15 0.25 0 0 0
–3 0.0225 0.1125 0.125 0 0 0

β = 2(−b2c + b)

1 − b2c2 + b2 − c2 + sign(1 − b2c2 + b2 − c2)
√

D

= 2(1 − c2)b

(1 + b2)(1 − c2) + sign(1 − c2)|1 − b2| × |1 − c2|
= 2(1 − c2)b

(1 + b2)(1 − c2) + |1 − b2| (1 − c2)

= 2b

(1 + b2) + |1 − b2| =
{

b if |b| < 1,

b−1 if |b| > 1.

The desired formulas for the autocovariance function follow from (16) and (18).
The causality conditions, which are obtained in Proposition 4, can be rewritten as

follows:

(1 − b)(1 − c) > 0, (1 + b)(1 + c) > 0,

(1 − b)(1 + c) > 0, (1 + b)(1 − c) > 0.

These conditions are equivalent to |b| < 1 and |c| < 1. The proof is similar to one in
Proposition 10.

The values of the autocovariance function for a = −0.1, b = 0.5, c = 0.2,
and σ 2

ε = 0.72 are shown in Table 1. The parameters are chosen in such a way that
var Xi,j = 1.

5.2 Nonidentifiability. Symmetry

Let X be a stationary solution to equation (1). Consider the relation between param-
eters a, b, c and σ 2

ε and the distribution of the random field X – more specifically, we
study the multiplicity of this relation. The situation is complicated by the fact that the
distribution of X is not determined uniquely by the parameters a, b, c and σ 2

ε ; it also
depends on the distribution of the error field ε besides the scaling coefficient σε .

Definition 2. Let us have a statistical model (�,F , Pθ,φ, (θ, φ) ∈ �), that is,
a family of probability measures Pθ,ψ on a common measurable space (�,F) is
indexed by parameter (θ, φ) ∈ �. The parameter θ is called identifiable if Pθ1,ψ1 =
Pθ2,ψ2 implies θ1 = θ2.
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Table 2. Correspondence of terms of the recurrence equation for fields Xi,j , X−i,−j , X−i,j

and Xi,−j

Line Field of Coefficients Error field
no., m interest variance values
1 Xi,j a b c σ 2

ε εi,j
2 X−i,−j −b/c −a/c 1/c c−2σ 2

ε −c−1ε1−i,1−j

3 X−i,j 1/a −c/a −b/a a−2σ 2
ε −a−1ε1−i,j

4 Xi,j−1 −c/b 1/b −a/b b−2σ 2
ε −b−1εi,1−j

In the model considered, the parameter of interest θ comprises the coefficients
and the error variance, θ = (a, b, c, σ 2

ε ) ∈ �, σε > 0,

� ={(a, b, c, v) : (1−a−b−c)(1−a+b+c)(1+a−b+c)(1+a+b−c) > 0

and v > 0}.
The nuisance “nonparametric” parameter φ describes the distribution of the normal-
ized error field σ−1

ε ε. In the Gaussian case, σ−1
ε ε is a collection of independent ran-

dom variables all of standard normal distribution. In general case, σ−1
ε ε is a collection

of uncorrelated zero-mean unit-variance random variables.
It is much simpler to consider the autocovariance function γX(h1, h2) than the

distribution of X, as γX(h1, h2) is uniquely determined by θ due to (12). In the Gaus-
sian case, the distribution of zero-mean stationary field X is uniquely determined by
its autocovariance function; and obviously the distribution uniquely determines the
autocovariance function. In general case, if parameters θ1 and θ2 determine the same
autocovariance function, then for any “distribution of a collection of uncorrelated
zero-mean unit-variance variables σ−1

ε ε” described by parameter φ1 there exists a
corresponding distribution described by parameter φ2 such that Pθ1,φ1 = Pθ2,φ2 . Thus,
it is enough to find out which parameters θ yield the same autocovariance function
γX(h1, h2).

In this section we will abuse notation by denoting the random field X as Xi,j .

Similarly, X−i,−j will be a random field X(2) defined so that X
(2)
i,j = X−i,−j .

By substitution of indices, (1) can be rewritten as

X−i,−j = −b

c
X1−i,−j − a

c
X−i,1−j + 1

c
X1−i,1−j − 1

c
ε1−i,1−j ,

X−i,j = 1

a
X1−i,j − c

a
X−1,j−1 − b

a
X1−i,j−1 − 1

a
ε1−i,j ,

Xi,−j = − c

b
Xi−1,−j + 1

b
Xi,1−j − a

b
Xi−1,1−j − 1

b
εi,1−j .

Thus, random fields X−i,−j , X−i,j and Xi,−j satisfy equations of the structure of
(1), but with different coefficients and different error term. The correspondence of
parameters is presented in Table 2.

However, the random fields Xi,j and X−i,−j have the same autocovariance func-
tion, γXi,j

(h1, h2) = γX−i,−j
(h1, h2). Hence, two sets of parameters θ1 = (a, b, c, σ 2

ε )
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Table 3. Four sets of parameters θ = (a, b, c, σ 2
ε ) that determine the same autocovariance

function γX(h1, h2)

a b c = −ab σ 2
ε

a−1 b−1 −a−1b−1 a−2b−2σ 2
ε

a−1 b −a−1b a−2σ 2
ε

a b−1 −ab−1 b−2σ 2
ε

Table 4. Relation between the signs of f1, . . . , f4 and line in Table 2 where parameters satisfy
the causality condition

Signs of f1, . . . , f4 The Which Outcome
signs parameter-
imply ization
that is causal, m

f1 > 0, f2 > 0, f3 > 0, f4 > 0 1 Xi,j is causal w.r.t. εi,j
f1 < 0, f2 > 0, f3 > 0, f4 < 0 c > 0 2 X−i,−j is causal
f1 > 0, f2 < 0, f3 < 0, f4 > 0 c < 0 w.r.t. ε1−i,1−j

f1 < 0, f2 < 0, f3 > 0, f4 > 0 a > 0 3 X−i,j is causal
f1 > 0, f2 > 0, f3 < 0, f4 < 0 a < 0 w.r.t. ε1−i,j

f1 < 0, f2 > 0, f3 < 0, f4 > 0 b > 0 4 Xi,−j is causal
f1 > 0, f2 < 0, f3 > 0, f4 < 0 b < 0 w.r.t. εi,1−j

and θ2 = (−b/c,−a/c, 1/c, c−2σ 2
ε ) determine the same autocovariance function of

the field X.
The autocovariance function of random fields X−i,j and Xi,−j is flip-symmetric

to the autocovariance function of the field Xi,j :

γX−i,j
(h1, h2) = γXi,−j

(h1, h2) = γXi,j
(−h1, h2) = γXi,j

(h1,−h2).

In the symmetric case ab + c = 0, where the autocovariance function γXi,j
(h1, h2) is

even in each of the arguments, the autocovariance functions of the random fields Xi,j ,
X−i,−j , X−i,j and Xi,−j are all equal. Hence, four sets of parameters presented in
Table 3 determine the same autocovariance function of the random fields Xi,j . Hence,
four sets of parameters θ1 = (a, b,−bc, σ 2

ε ), θ2 = (a−1, b−1,−a−1b−1, a−2b−2σ 2
ε ),

θ3 = (a−1, b,−a−1b, a−2σ 2
ε ) and θ4 = (a, b−1,−ab−1, b−2σ 2

ε ) determine the same
autocovariance function of the random field X.

Now we prove that there no other spurious cases where different sets of parame-
ters determine the same autocovariance function.

Lemma 4. Let D > 0, with D defined in Lemma 1. Then of four sets of parameters
listed in Table 2, exactly one set satisfy the causality conditions specified in Proposi-
tion 4.

The proof involves the search of 7 cases of different signs of f1, . . . , f4 defined
in (31), and evaluating inequalities. For brevity, we do not present the full proof;
however, in Table 4 we list for what signs of f1, . . . , f4 which parameterization is
causal.
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Lemma 5. In the causal case, that is, under causality conditions stated in Proposi-
tion 4, the autocovariance function uniquely determines coefficients a, b and c and
error variance σ 2

ε .

Proof. Using the Yule–Walker equations, (20) and (33), we can express the parame-
ters a, b, c and σ 2

ε in terms of γX(0, 0), γX(1, 0), γX(0, 1) and γX(1, 1). The explicit
formulas are

a = γX(1, 0)γX(0, 0) − γX(0, 1)γX(1, 1)

γX(0, 0)2 − γX(0, 1)2 ,

b = γX(0, 1)γX(0, 0) − γX(1, 0)γX(1, 1)

γX(0, 0)2 − γX(1, 0)2 ,

c = γX(1, 1) − aγX(0, 1) − bγX(1, 0)

γX(0, 0)
,

σ 2
ε = γX(0, 0)

√
D,

where D is defined in Lemma 1.

The following proposition provides a necessary condition for two sets of param-
eters to determine the same autocovariance function of the field X.

Proposition 12. Let stationary fields X(1) and X(2) satisfy (1)-like equation with
parameters θ1 = (a1, b1, c1, σ

2
ε,1) and θ2 = (a2, b2, c2, σ

2
ε,2):

X
(1)
i,j = a1X

(1)
i−1,j + b1X

(1)
i,j−1 + c1X

(1)
i−1,j−1 + ε

(1)
i,j ,

X
(2)
i,j = a2X

(2)
i−1,j + b2X

(2)
i,j−1 + c2X

(2)
i−1,j−1 + ε

(2)
i,j ,

var ε
(1)
i,j = σ 2

ε,1, var ε
(2)
i,j = σ 2

ε,2.

If random fields X(1) and X(2) have the same autocovariance function, then the pa-
rameters θ1 and θ2 relate to each other as quadruples of parameters in Table 2.

Proof. Denote Tm : �m → � the operator that transforms the quadruple of parame-
ters in the fist line of Table 2 into one in the mth line, m = 1, 2, 3, 4. Thus,

T2(a, b, c, σ 2
ε ) = (− b

c
,− a

c
, 1

c
, c−2σ 2

ε

)
,

T3(a, b, c, σ 2
ε ) = ( 1

a
,− c

a
,− b

a
, a−2σ 2

ε

)
,

T4(a, b, c, σ 2
ε ) = (− c

b
, 1

b
,− a

b
, b−2σ 2

ε

)
,

and T1 is the identity operator, T1(θ) = θ . Here �m ⊂ � is the domain where the
operator Tm is well defined, e.g., �2 = {(a, b, c, σ 2

ε ) ∈ � : c �= 0}. We have to prove
that θ1 = Tmθ0 and θ2 = Tnθ0 for some m, n = 1, . . . , 4 and θ0 ∈ �.

According to Lemma 4, one of parameterization T1θ1, . . . , T4θ1 satisfies the con-
ditions for causality; let it be Tmθ1 = θ3. Denote also by X(3) and ε(3) the random field
defined by such parameterization, and the respective white noise; what this means is
listed in Table 2. For example, if m = 1, that X(3) = X(1), and if m = 2, then
X

(3)
i,j = X

(1)
−i,−j .
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The random fields X(1) and X(3) are either equal or flip or turn symmetric to
each other, X

(3)
i,j = X

(1)
±i,±j . Hence, their autocovariance functions are either equal or

one-variable symmetric to each other: either

γX(3) (h1, h2) = γX(1) (h1, h2) for all h1 and h2,

or
γX(3) (h1, h2) = γX(1) (−h1, h2) = γX(1) (h1,−h2) for all h1 and h2.

The random field X(3) is causal w.r.t. white noise ε(3). Hence, due to Proposi-
tion 7,

γX(3) (h1, h2) = γX(3) (h1, 0)γX(3) (0, h2)

γX(3) (0, 0)
if h1h2 < 0. (38)

We do the same with the field X(2). There is n and a field X(4) that satisfy a
(1)-like equation with parameters θ4 = Tnθ2; these parameters satisfy the conditions
for causality, and either

γX(4) (h1, h2) = γX(2) (h1, h2) for all h1 and h2, or

γX(4) (h1, h2) = γX(2) (−h1, h2) = γX(2) (h1,−h2) for all h1 and h2,

and also

γX(4) (h1, h2) = γX(4) (h1, 0)γX(4) (0, h2)

γX(4) (0, 0)
if h1h2 < 0. (39)

Similar relations hold for autocovariance functions of X(3) and X(4): either

γX(4) (h1, h2) = γX(3) (h1, h2) for all h1 and h2, or

γX(4) (h1, h2) = γX(3) (−h1, h2) = γX(3) (h1,−h2) for all h1 and h2,

This implies that γX(4) (h1, h2) = γX(3) (h1, h2) if h1 = 0 or h2 = 0, and because of
(38) and (39),

γX(4) (h1, h2) = γX(3) (h1, h2) if h1h2 < 0.

All above implies that random fields X(3) and X(4) have the same autocovariance
function. These fields are causal w.r.t. respective white noises. According to Lemma 5,
their parameters are equal, θ3 = θ4.

The operators T1, . . . , T4 are self-inverse; T 2
k is the identity operator. Thus,

Tmθ1 = θ3 = θ4 = Tnθ2 implies θ1 = Tnθ3 and θ2 = Tmθ4. Thus, parameters θ1
and θ2 relate to each other as the mth and nth rows of Table 2.

The following corollary combines necessary and sufficient conditions for param-
eters to determine the same autocovariance function; it also takes into account where
the parameters make sense.

Corollary 2. The parameter set � splits into two-element, four-element and one-
element classes of parameters that define the same autocovariance function
γX(h1, h2) as follows:

1. In generic case −ab �= c �= 0, the parameter (a, b, c, σ 2
ε ) belongs to a two-

element class. It determines the same autocovariance function as the parameter
(−b/c,−a/c, 1/c, c−2σ 2

ε ).
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2. In symmetric case −ab = c �= 0, the parameter (a, b,−bc, σ 2
ε ) belongs to a

four-element class. All four sets of parameters listed in Table 3 determine the
same autocovariance function.

3. In symmetric case a �= 0, b = c = 0, the parameter (a, 0, 0, σ 2
ε ) belongs

to a two-element class. It determines the same autocovariance function as the
parameter (a−1, 0, 0, a−2σ 2

ε ).

Similarly, if b �= 0, then the parameter (0, b, 0, σ 2
ε ) belongs to two-element

class and determines the same autocovariance function as the parameter
(0, b−1, 0, b−2σ 2

ε ).

4. For −ab �= c = 0, the parameter (a, b, 0, σ 2
ε ) makes a class of its own. Like-

wise, for a = b = c = 0, the parameter (0, 0, 0, σ 2
ε ) makes a class of its

own. These are exceptional cases where the autocovariance function uniquely
determines the parameters.

Next proposition shows how the asymmetric case is split into two major subcases.

Proposition 13. Let X be a stationary field and ε be a collection of zero-mean equal-
variance random variables that satisfy (1).

1. If ab + c = 0, then

γX(h1, h2) = γX(h1, 0)γX(0, h2)

γX(0, 0)
for all h1 and h2.

2. If ab + c �= 0 and 1 + c2 > a2 + b2, then

γX(1,−1) = γX(1, 0)γX(0, 1)

γX(0, 0)
�= γX(1, 1),

γX(h1, h2) = γX(h1, 0)γX(0, h2)

γX(0, 0)
for all h1 and h2 such that h1h2 ≤ 0.

3. If ab + c �= 0 and 1 + c2 < a2 + b2, then

γX(1,−1) �= γX(1, 0)γX(0, 1)

γX(0, 0)
= γX(1, 1),

γX(h1, h2) = γX(h1, 0)γX(0, h2)

γX(0, 0)
for all h1 and h2 such that h1h2 ≥ 0.

Proof. The symmetric case ab+c = 0 has been studied in Section 5.1.1. The desired
equality follows from Proposition 10.

Let us borrow some notation from the proof of Proposition 12, with X(1) = X.
Let θ3 = (a3, b3, c3, σ

2
ε,3) = Tm(a, b, c, σ 2

ε ) be a set of parameters obtained from

Lemma 4 that satisfy the causality conditions and let X(3) be a stationary random
field defined by this parameterization; X(3) is causal w.r.t. the respective white noise.
The sign of

1 + c2 − a2 − b2 = f1f4 + f2f3

2
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determines the relation between the autocovariance functions of fields X and X(3). If
1 + c2 > a2 + b2, then either X(3) = X or X

(3)
i,j = X−i,−j ; in either case the fields

X and X(3) have the same autocovariance function. Otherwise, if 1 + c2 < a2 + b2,
then either X

(3)
i,j = X−i,j or X

(3)
i,j = Xi,−j ; in both cases the autocovariance functions

are one-variable symmetric, γX(3) (h1, h2) = γX(h1,−h2).
As X(3) is causal, due to Proposition 7

γX(3) (h1, h2) = γX(3) (h1, 0)γX(3) (0, h2)

γX(3) (0, 0)
if h1h2 ≤ 0.

Hence, and from the relation between γX and γX(3) all the desired equalities follow.
Now prove the inequalities. Assume that the would-be inequality is actually an

equality, that is γX(1, 1) = γX(1, 0)γX(0, 1)/γX(0, 0) in case 1 + c2 > a2 + b2

or γX(1,−1) = γX(1, 0)γX(0, 1)/γX(0, 0) in case 1 + c2 < a2 + b2. Then the
autocovariance function of the field X(3) satisfies

γX(3) (1, 1) = γX(3) (1, 0)γX(3) (0, 1)

γX(3) (0, 0)
.

The field X(3) is causal, and formulas in Lemma 5 yield

a3 = γX(3) (1, 0)

γX(3) (0, 0)
, b3 = γX(3) (0, 1)

γX(3) (0, 0)
, c3 = −γX(3) (1, 0)γX(3) (0, 1)

γX(3) (0, 0)2 = −a3b3.

Examining 4 cases, we can verify a similar relation for the original parameterization,
c = −ab.

6 Pure nondeterminism

6.1 Sufficient condition
We borrow the definition of a pure nondeterministic random field from [16]. For the
field on a planar lattice, the definition rewrites as follows, in term of subspaces of the
Hilbert space of finite-variance random variables L2(�,F , P).

Definition 3. Let X be a field of random variables of finite variances. X is called
purely nondeterministic if and only if

span
i,j

Xi,j = span
i,j

(
span{Xr,s : r ≤ i} ∩ (span{Xr,s : r < i})⊥

∩ span{Xr,s : s ≤ j} ∩ (span{Xr,s : s < j})⊥
)
. (40)

Here spani,j Xi,j is the smallest (closed) subspace of L2(�,F , P) that contains
all observations of the field X, while span{Xr,s : r ≤ i} is a similar minimal subspace
which contains all observations Xr,s of the field X with the first index r ≤ i. The
outer span in the right-hand side of (40) is the smallest subspace that contains all
subspaces used as an argument.

Pure nondeterminism is a sufficient condition for a stationary field to be repre-
sentable in form (29), where ε is some collection of uncorrelated variables, and co-
efficients ψk,l satisfy

∑∞
k=0

∑∞
l=0 ψ2

k,l < ∞. This follows from [16, Theorem 2.1],
while the necessity is easy to verify.
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Proposition 14. Let X be a stationary field and ε be a collection of uncorrelated
zero-mean unit-variance random variables that satisfy (1). If 1 + c2 > a2 + b2, then
X is purely nondeterministic.

Proof. We use notation D from Lemma 1 and notation f1, . . . , f4 from (31).
The existence of a stationary solution to (31) imply that D > 0. As shown in the

proof of Proposition 13, inequalities D > 0 and 1 + c2 > a2 + b2 hold true in three
cases, f1 > 0, f2 > 0, f3 > 0, f4 > 0 or f1 < 0, f2 > 0, f3 > 0, f4 < 0 or f1 > 0,
f2 < 0, f3 < 0, f3 < 0.

If f1 > 0, f2 > 0, f3 > 0, f4 > 0, then the field X is causal with respect to white
noise ε. Equations (1) and (29) imply that

span{Xr,s : r ≤ i} = span{εr,s : r ≤ i}, span{Xr,s : s ≤ j} = span{εr,s : s ≤ j},
whence

span{Xr,s : r ≤ i} ∩ (span{Xr,s : r < i})⊥
∩ span{Xr,s : s ≤ j} ∩ (span{Xr,s : s < j})⊥ = span εi,j .

Thus,

span
i,j

(
span{Xr,s : r ≤ i} ∩ (span{Xr,s : r < i})⊥

∩ span{Xr,s : s ≤ j} ∩ (span{Xr,s : s < j})⊥
)

= span
i,j

εi,j = span
i,j

Xi,j ,

and (40) holds true.
Now consider two other cases, where −f1, f2, f3 and −f4 are nonzero and of the

same sign. In these cases c �= 0, and

ε̃i,j = Xi,j + b

c
Xi−1,j + a

c
Xi,j−1 − 1

c
Xi−1,j−1

is also a collection of uncorrelated zero-mean equal-variance random variables (to
verify this, one can compute the spectral density of ε̃). Causality condition in Propo-
sition 4 can be easily verified; the stationary field X is causal w.r.t. white noise ε̃. The
field X is causal in these cases likewise.

6.2 Counterexample to Tjøstheim

It would be tempting to use the sufficient condition for pure nondeterminism from
[16, Theorem 3.1]; however, as noted in [18], that condition is not correct. A coun-
terexample is constructed below.

Let 0 < |θ | < 1. Let X be a stationary field that satisfies the equation

Xi−1,j = θXi,j−1 + εi,j ,

where ε is a collection of independent random variables with standard normal distri-
bution, εi,j ∼ N (0, 1).
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The spectral density of the field X is

fX(ν1, ν2) = 1

|e2π iν1 − θe2π iν2 |2 .

The denominator |e2π iν1 − θe2π iν2 |2 attains only positive values and is a continu-
ous function. Thus, the field X satisfies the sufficient condition stated in [16, Theo-
rem 3.1].

In the field X the diagonals {Xi,j , i + j = n} are independent for different n.
The random variables on each diagonal are jointly distributed as values of a centered
Gaussian AR(1) process with the coefficient θ .

Let
ε̃i,j = Xi,j−1 − θXi−1,j .

Then ε̃ is a collection of uncorrelated zero-mean unit-variance variables. (Since ε̃ is
a Gaussian field, it is a collection independent variables with distribution N (0, 1).)

The field X can be represented as

Xi,j =
∞∑

k=0

θkεi+k+1,j−k =
∞∑

k=0

θkε̃i−k,j+k+1.

Hence,

ε̃i,j = −θεi,j + (1 − θ2)

∞∑
k=0

εi+k+1,j−k−1.

These representations imply that

span{Xr,s : r ≤ i} = span{ε̃r,s : r ≤ i}, span{Xr,s : s ≤ j} = span{εr,s : s ≤ j}.
Hence,

span{Xr,s : r ≤ i} ∩ (span{Xr,s : r < i})⊥
∩ span{Xr,s : s ≤ j} ∩ (span{Xr,s : s < j})⊥ = span

s
ε̃i,s ∩ span

r
εr,j .

Now prove that spans ε̃i,s ∩ spanr εr,j is a trivial subspace. Let ζ ∈ spans ε̃i,s ∩
spanr εr,j ,

ζ =
∞∑

s=−∞
ks ε̃i,s =

∞∑
r=−∞

crεr,j .

Here the coefficients satisfy
∑∞

s=−∞ k2
s = ∑∞

r=−∞ c2
r < ∞; the series converge in

mean squares. The covariance between ε̃i,s and εr,j is

E ε̃i,sεr,j =

⎧⎪⎨
⎪⎩

−θ if i = r and s = j ,

θr−i−1(1 − θ2) if r − i = s − j > 0,

0 otherwise.

Anyway, E ε̃i,sεr,j = 0 if r − i �= s − j , and | E ε̃i,sεr,j | < 1 if r − i = s − j .
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Compute E ε̃i,j−nζ and E ζ εi−n,j using two different expressions:

∞∑
s=−∞

ks E ε̃i,j−nε̃i,s = E ε̃i,j−nζ =
∞∑

r=−∞
cr E ε̃i,j−nεr,j ,

∞∑
s=−∞

ks E ε̃i,sεi−n,j = E ζ εi−n,j =
∞∑

r=−∞
cr E εr,j εi−n,j .

In the series, the only nonzero term might be where s = j − n and r = i − n. Thus,

kj−n = ci−n E ε̃i,j−nεi−n,j , kj−n E ε̃i,j−nεi−n,j = ci−n. (41)

As | E ε̃i,j−nεi−n,j | < 1, (41) imply kj−n = ci−n = 0. As this holds true for all
integer n, ks = cr = 0 for all s and r , and ζ = 0 almost surely. Thus,

span{Xr,s : r ≤ i} ∩ (span{Xr,s : r < i})⊥
∩ span{Xr,s : s ≤ j} ∩ (span{Xr,s : s < j})⊥ = {0},

and the right-hand side of (40) is the trivial subspace. Thus, the random field X is not
purely nondeterministic.

7 Conclusion

We considered AR(1) model on a plane. We found conditions (in terms of the regres-
sion coefficients) under which the autoregressive equation has a stationary solution
X. As for the autocovariance function of the stationary solution X, we presented a
simple formula for it at some points, and proved Yule–Walker equations. These allow
to compute the autocovariance function recursively at all points.

We found conditions under which the stationary solution to the autoregressive
equation satisfies the causality condition with respect to the underlying white noise.
These conditions also appear to be sufficient conditions for stability of the determin-
istic problem of solving a recursive equations in a quadrant, with preset values on the
border of the quadrant.

We described sets of parameters (the coefficients and the variance of the under-
lying white noise) where different parameters determine the same autocovariance
function of the stationary solution.

We found sufficient conditions for the stationary solution X to be a pure non-
deterministic random field. This condition is related to the causality condition with
respect to some (nonfixed) white noise, which is called innovations; in particular, the
innovations need not coincide with the white noise in the autoregressive equation.

The causality condition and pure-nondeterministic property seem to be too re-
strictive because the coordinate-wise order between coordinates of ε and X in the
representation (29) is a partial order. More general representation with the lexical
order, which is a total order, is suggested in [21, Section 6]:

Xi,j =
∞∑

k=1

∞∑
l=−∞

ψk,lXi−k,j−l +
∞∑
l=0

ψ0,lXi,j−l .
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A further discussion can be found in [9, 17].
With exception for the identifiability topic, we did not consider the estimation at

all.
Most results of this paper are necessary and sufficient conditions for some proper-

ties of the stationary field X. However, for pure nondeterminism of X and for stability
of the deterministic equation, we obtained only sufficient conditions. Obtaining nec-
essary conditions is an interesting open problem.

A Appendix: Auxiliary results

A.1 Existence of a random field with given spectral density

The next lemma is used in the proof of Proposition 1. It is a modification of the similar
result stated for stochastic processes [15].

Lemma 6. Let f (ν1, ν2) be an even integrable function
[− 1

2 , 1
2

]2 → [0,∞], that is,

f (ν1, ν2) = f (−ν1,−ν2) ≥ 0 for all ν1, ν2 ∈ [− 1
2 , 1

2 ],∫∫
[−1/2, 1/2]2

f (ν1, ν2) dν1 dν2 < ∞.

Then there exists a Gaussian stationary field {Xi,j , i, j ∈ Z} on some (specially
constructed) probability space that has spectral density f (ν1, ν2).

Proof. Let us construct a probability space with two independent Brownian fields on
a plane {Wk(t, s), t, s ∈ [0, 1]} (a zero-mean Gaussian field with covariance function
cov(Wk(t1, s1), Wk(t2, s2)) = min(t1, t2) min(s1, s2), k = 1, 2).

Extend the function X by periodicity, f (ν1, ν2) = f (ν1 − 1, ν2) if 1
2 < ν1 ≤ 1,

and then f (ν1, ν2) = f (ν1, ν2 − 1) if 1
2 < ν2 ≤ 1.

Denote

Xi,j =
∫∫

[0,1]2
cos(2π(iν1 + jν2))

√
f (ν1, ν2) d2W1(ν1, ν2)

+
∫∫

[0,1]2
sin(2π(iν1 + jν2))

√
f (ν1, ν2) d2W2(ν1, ν2).

The constructed field is zero-mean Gaussian as the integral of nonstochastic kernel
with respect to the Gaussian field. The autocovariance function is as expected,

cov(Xi,j , Xi+h1,j+h2) =
∫∫

[0,1]2
cos(2π(h1ν1 + h2ν2))f (ν1, ν2) dν1 dν2

=
∫∫

[−1/2,1/2]2
exp(2π i(h1ν1 + h2ν2))f (ν1, ν2) dν1 dν2.
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A.2 Summation

The next two propositions are used implicitly when we use double-series notation.

Proposition 15. Let {ξi,j , i, j ∈ Z} be a collection of random variables bounded in
mean squares, supi,j E ξ2

i,j < ∞. Let {ξi,j , i, j ∈ Z} be a collection of real num-

bers such that
∑ ∑∞

i,j=−∞|ai,j | < ∞. Then the double series
∑∑∞

i,j=−∞ai,j ξi,j

converges in mean squares and almost surely. The limit is the same for both types of
convergence (up to equal-almost-surely equivalence); it also does not depend on the
order the terms of the double series are added.

Remark 5.

1. Under conditions of Proposition 15, the double series
∑∑∞

i,j=−∞ai,j ξi,j con-
verges in mean and in probability, as well – to the same limit.

2. The iterated series
∑∞

i=−∞
(∑∞

j=−∞ ai,j ξi,j

)
converges to the same limit.

3. P
(∑∑∞

i,j=−∞|ai,j ξi,j | < ∞
)

= 1, and whenever
∑ ∑∞

i,j=−∞|ai,j ξi,j | <

∞, the double series
∑ ∑∞

i,j=−∞ai,j ξi,j converges, and its limit does not de-
pend on the order its terms are added.

Proposition 16. Let {εi,j , i, j ∈ Z} be a collection of random uncorrelated variables
with zero mean and same variance var εi,j = σ 2

ε < ∞. Let {ξi,j , i, j ∈ Z} be a
collection of real numbers such that

∑ ∑∞
i,j=−∞a2

i,j < ∞. Then the double series∑ ∑∞
i,j=−∞ai,j ξi,j converges in mean squares. The limit does not depend on the

order the terms of the double series are added: it is the same up to equal-almost-
surely equivalence.

Remark 6.

1. Under conditions of Proposition 16, the double series
∑∑∞

i,j=−∞ai,j ξi,j con-
verges in mean and in probability, as well.

2. The iterated series
∑∞

i=−∞
(∑∞

j=−∞ ai,j ξi,j

)
converges in mean squares to

the same limit.

The next lemma is used in Proposition 4.

Lemma 7. Let f ∈ C(R2) be a biperiodic function of two variables with continuous
mixed derivative:

f (x, y) = f (x + 1, y) = f (x, y + 1) for all x, y ∈ R,

f ∈ C(R2),
∂f

∂x
∈ C(R2),

∂f

∂y
∈ C(R2),

∂2f

∂x ∂y
∈ C(R2).

Then Fourier coefficients of the function f are summable:

∞∑
k=−∞

∞∑
l=−∞

∣∣∣∣
∫ 1

0

∫ 1

0
exp(2π i (kx + ly)) f (x, y) dx dy

∣∣∣∣ < ∞.
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Proof. Denote the Fourier coefficients ck,l :

ck,l =
∫ 1

0

∫ 1

0
exp(2π i (kx + ly)) f (x, y) dx dy.

The coefficients ck,l are also equal

ck,l = i

2πk

∫ t

0

∫ 1

0
exp(2π i (kx + ly)) f ′

1(x, y) dx dy if k �= 0;

ck,l = i

2πl

∫ t

0

∫ 1

0
exp(2π i (kx + ly)) f ′

2(x, y) dx dy if l �= 0;

ck,l = −1

4π2kl

∫ t

0

∫ 1

0
exp(2π i (kx + ly)) f ′′

12(x, y) dx dy if k �= 0 and l �= 0,

where f ′
1(x, y), f ′

2(x, y), and f ′′
12(x, y) are partial and mixed derivatives; here the

periodicity of the function f is used. The coefficients ck,l allow bounding:

ck,0 ≤ 1

2π |k| max
x,y

∣∣∣∣∂f (x, y)

∂x

∣∣∣∣ if k �= 0;

c0,l ≤ 1

2π |l| max
x,y

∣∣∣∣∂f (x, y)

∂y

∣∣∣∣ if l �= 0;

ck,l ≤ 1

4π2|kl| max
x,y

∣∣∣∣∂2f (x, y)

∂y∂x

∣∣∣∣ if k �= 0 and l �= 0,

which implies the summability.

A.3 Integration

Lemma 8. If A > 0, B and C are real numbers such that A2 > B2 + C2, then

∫ 1/2

−1/2

dt

A + B cos(2πt) + C sin(2πt)
= 1√

A2 − B2 − C2
. (42)

If A and B are real numbers, A > |B|, and n is integer, then

∫ 1/2

−1/2

exp(2π int)

A + B cos(2πt)
dt = α|n|

√
A2 − B2

, (43)

where

α = −B

A + √
A2 − B2

=
{

0 if B = 0,

(−A + √
A2 − B2)/B if B �= 0.

In (43), if α = 0 and n = 0, then α|n| = 1 by convention.

Proof. That is easy to check that the antiderivative in (42) is∫
dt

A + B cos(2πt) + C sin(2πt)
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= 1

π
√

A2 − B2 − C2
arctan

(
(A − B) tan(πt) + C√

A2 − B2 − C2

)
+ const,

whence (42) follows. (Notice that A − B > 0.)
In (43), the function

1

A + B cos(2πt)
= 1 + α2

A (1 − 2α cos(2πt) + α2)
= 1 + α2

A

1

|1 − α exp(2π it)|2
is the spectral density of AR(1) stationary autoregressive process Xk = αXk−1 + εk

with the white noise variance var εk = (1 + α2)/A. (Conditions imply that |α| < 1.)
The integral is the autocovariance function of the process. It equals∫ 1/2

−1/2

exp(2π int)

A + cos(2πt)
dt = cov(Xk+n,Xk) = 1 + α2

A

α|n|

1 − α2 = α|n|
√

A2 − B2
;

here equality
1 + α2

1 − α2 = A√
A2 − B2

is used.

Lemma 9. If A and B are complex numbers, |A| �= |B|, and n is an integer number,
then

∫ 1/2

−1/2

e2π inν

A − Be2π iν dν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

An−1B−n if n ≤ 0 and |A| > |B|,
0 if n ≤ 0 and |A| < |B|,
0 if n ≥ 1 and |A| > |B|,
−An−1B−n if n ≥ 1 and |A| < |B|.

Proof. For n = 1, the integral can be rewritten as the contour integral,∫ 1/2

−1/2

e2π iν

A − Be2π iν
dν = 1

2π i

∮
z=exp(2π iν)

1

A − Bz
dz,

and the residue formula is applicable. Other cases can be reduced to the case n = 1
recursively.

Lemma 10. Let a, b and c be real numbers such that 1−a−b−c > 0, 1−a+b+c >

0, 1 + a − b + c > 0 and 1 + a + b − c > 0. Let n1 and n2 be nonnegative integers.
Then

∫ 1/2

−1/2

(a + ce2π iν)n1e−2π in2ν

(1 − be2π iν)n1+1
dν =

min(n1,n2)∑
k=0

(
n1

k

)(
n2

k

)
an1−kbn2−k(ab + c)k.

Proof. Conditions of the lemma imply that

1 − b = (1 − a − b − c) + (1 + a − b + c)

2
> 0,

1 + b = (1 − a + b + c) + (1 + a + b − c)

2
> 0,
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|b| < 1.

Let k ≥ 0 and n be integer numbers. By the binomial formula,

1

(1 − bz)k+1 =
∞∑

m=0

(−k − 1

m

)
(−bz)m =

∞∑
m=0

(
k + m

m

)
(bz)m (44)

for all complex z such that |bz| < 1, in particular, for all z such that |z| ≤ 1. Here(−k−1
m

) = (−k−1)···(−k−m)
1···m = (−1)m

(
k+m
m

)
is a coefficient in a binomial series. The

rational function zn(1 − bz)−k−1 has a singularity at point 1/b and a potential singu-
larity (if n < 0) at point 0. The point 1/b lies outside the unit circle, and point 0 lies
inside the unit circle. The expansion (44) implies that

Resz=0

(
zn

(1 − bz)k+1

)
= Resz=0

( ∞∑
m=0

(
k + m

m

)
bmzm+n

)

=
{

0 if n ≥ 0,(
k−n−1
−n−1

)
b−n−1 if n ≤ −1 .

By the residue formula,∮
zn

(1 − bz)k+1 dz = 2π i Resz=0

(
zn

(1 − bz)k+1

)

=
{

0 if n ≥ 0,

2π i
(
k−n−1
−n−1

)
b−n−1 if n ≤ −1,

where the contour integral is taken along the unit circle contour.
Recall that n2 ≥ 0 is integer. Then

∫ 1/2

−1/2

exp(2π i(k − n2)ν2)

(1 − be2π iν2)1+k
dν2 = 1

2π i

∮
zk−n2−1

(1 − bz)k+1 dz

=
{

0 if k > n2,(
n2

n2−k

)
bn2−k if k ≤ n2

=
{

0 if k > n2,(
n2
k

)
bn2−k if k ≤ n2.

(45)

The constant n1 ≥ 0 is also integer, and by the binomial formula

(a + ce2π iν)n1 = ((ab + c)e2π iν + a(1 − be2π iν))n1

=
n1∑

k=0

(
n1

k

)
(ab + c)ke2π ikνan1−k(1 − be2π iν)n1−k. (46)

Finally, with use of (46) and (45),

∫ 1/2

−1/2

e−2π in2ν(a + ce2π iν)n1

(1 − be2π iν)n1+1 dν
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=
1/2∫

−1/2

e−2π in2ν

(1−be2π iν)n1+1

n1∑
k=0

(
n1

k

)
(ab+c)ke2π ikνan1−k(1−be2π iν)n1−kdν

=
n1∑

k=0

(
n1

k

)
an1−k(ab + c)k

∫ 1/2

−1/2

e2π i(k−n2)ν

(1 − be2π iν)1+k
dν

=
min(n1, n2)∑

k=0

(
n1

k

)
an1−k(ab + c)k

(
n2

k

)
bn2−k.
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