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A note on optimal liquidation with linear price impact

Yan Dolinsky∗, Doron Greenstein

Hebrew University, Department of Statistics, Mount Scopus, Jerusalem, Israel

yan.dolinsky@mail.huji.ac.il (Y. Dolinsky), doron.greenshtein@mail.huji.ac.il (D. Greenstein)

Received: 14 April 2024, Revised: 4 August 2024, Accepted: 4 August 2024,
Published online: 20 August 2024

Abstract In this note the maximization of the expected terminal wealth for the setup of
quadratic transaction costs is considered. First, a very simple probabilistic solution to the prob-
lem is provided. Although the problem was largely studied, as far as authors know up to date
this simple and probabilistic form of the solution has not appeared in the literature. Next, the
general result is applied for the numerical study of the case where the risky asset is given by a
fractional Brownian motion and the information flow of the investor can be diversified.
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1 Preliminaries and the general result

Consider a model with one risky asset which we denote by S = (St )0≤t≤T , where
T < ∞ is the time horizon. We assume that the investor has a bank account that, for
simplicity, bears no interest. The risky asset S is RCLL (right continuous with left lim-
its) and adapted process defined on a filtered probability space (�,F , (Ft )0≤t≤T ,P).
The filtration (Ft )0≤t≤T satisfies the usual assumptions (right continuity and com-
pleteness). Let us emphasize that we do not assume that the σ -algebra F0 is the trivial
σ -algebra.

In financial markets, trading moves prices against the trader: buying faster in-
creases execution prices, and selling faster decreases them. This aspect of liquidity,
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known as market depth (see [2]) or price-impact, has received large attention in opti-
mal liquidation problems, see, for instance, [1, 8, 4, 7] and the references therein.

Following [1], we model the investor’s market impact in a temporary linear form
and thus, when at time t the investor turns over her position �t at the rate φt = �̇t the
execution price is St + �

2 φt for some constant � > 0. In our setup the investor has to

liquidate his position, namely �T = �0 + ∫ T

0 φtdt = 0. For a given initial number
(deterministic) of shares �0, denote by A�0 the set of all progressively measurable

processes φ = (φt )0≤t≤T which satisfy
∫ T

0 φ2
t dt < ∞ and �0 + ∫ T

0 φtdt = 0. As
usual, all the equalities and the inequalities are understood in the almost surely sense.

The profits and losses from trading are given by

V
�0,φ
T := −�0S0 −

∫ T

0
φtStdt − �

2

∫ T

0
φ2

t dt. (1)

Observe that for φ ∈ A�0 the right-hand side of (1) is well defined if
∫ T

0 S2
t dt < ∞.

This inequality follows from the integrability condition given by (3). In particular, we
do not assume that S is a semimartingale.

Let us explain formula (1) in more detail. At time 0 the investor has �0 stocks and
the sum −�0S0 on her savings account. At time t ∈ [0, T ) the investor buys φtdt , an
infinitesimal number of stocks or, more intuitively, sell −φtdt number of shares and
so the (infinitesimal) change in the savings account is expressed by −φt

(
St + �

2 φt

)
dt .

Since we liquidate the portfolio at the maturity date, the terminal portfolio value is
equal to the terminal amount on the savings account and expressed by −�0S0 −∫ T

0 φt

(
St + �

2 φt

)
dt . We arrive at the right-hand side of (1). For the case where

S is a semimartingale, by applying the integration by parts formula
∫ T

0 �tdSt =
�T ST − �0S0 − ∫ T

0 Std�t and using the fact that �T = 0 (liquidation) we get that

the right-hand side of (1) is equal to
∫ T

0 �tdSt − �
2

∫ T

0 φ2
t dt .

We are interested in the following optimal liquidation problem:

Maximize E

[
V

�0,φ
T

]
over φ ∈ A�0, (2)

where E denotes the expectation with respect to P.
The following theorem provides a completely probabilistic solution to the opti-

mization problem (2).

Theorem 1. Assume that

E

[∫ T

0
S2

t dt

]
< ∞. (3)

Introduce the martingale

Mt := E

[∫ T

0
Sudu | Ft

]
, t ∈ [0, T ]. (4)

The unique (dt ⊗ P a.s) solution to the optimization problem (2) is given by

φ̂t := −�0

T
+ M0

T �
+ 1

�

(∫ t

0

dMu

T − u
− St

)
, t ∈ [0, T ), (5)



A note on optimal liquidation with linear price impact 125

and the corresponding value is equal to

maxφ∈A�0
E

[
V

�0,φ
T

]
= E

[
V

�0,φ̂
T

]
= −�2

0�

2T
+ �0E

[
M0
T

− S0

]
+ 1

2�
E

[∫ T

0

(
St − M0

T
− ∫ t

0
dMu

T −u

)2
dt

]
. (6)

A slightly more general form of the linear-quadratic optimization problem (2) has
been considered in [3], however, for the relatively simple setup of optimal liquidation
Theorem 1 provides a much simpler solution than [3]. As far as we know, up to date
this simple and probabilistic form of the solution has not appeared in the literature.

Before we prove Theorem 1, let us briefly collect some observations from this
result. First, let us notice that it is sufficient to define the optimal portfolio on the
half-open interval [0, T ) (as we do in (5)). We can just set φT := 0.

Next, observe that the optimal value given by the right-hand side of (6) can be de-

composed into three terms, the first term −�2
0�

2T
does not depend on the risky asset, the

second term is a product of the initial number of shares �0 and the term E

[
M0
T

− S0

]
which can be interpreted as the average drift of the risky asset S (recall that we do not

assume that S is a semimartingale). The last term 1
2�

E

[∫ T

0

(
St − M0

T
− ∫ t

0
dMu

T −u

)2
dt

]
is a product of the market depth 1

2�
and the distance of the risky asset S from a mar-

tingale. In particular, if S is a martingale then the last term is zero. Indeed, if S is a
martingale then (4) implies Mt = ∫ t

0 Sudu+(T − t)St , t ∈ [0, T ]. From the (stochas-
tic) Leibniz rule we get dMt = Stdt + (T − t)dSt −Stdt = (T − t)dSt . This together
with the equality M0

T
= S0 gives St = M0

T
+ ∫ t

0
dMu

T −u
for all t .

Next, we prove Theorem 1.

Proof. The proof will be done in three steps.

Step I. Introduce the process Nt := ∫ t

0
dMu

T −u
, t ∈ [0, T ). In this step we show that

E

[∫ T

0
StNtdt

]
= E

[∫ T

0
N2

t dt

]
≤ E

[∫ T

0
S2

t dt

]
. (7)

Fix n ∈ N and define the process Nn = (Nn
t )0≤t≤T by Nn

t := Nt∧(T −1/n), t ∈ [0, T ].
From (3) it follows that M and Nn are square integrable martingales.

Next, for any square integrable martingales X, Y we denote by [X] the quadratic
variation of X and by [X, Y ] the covariation of X and Y . Also, denote by I· the
indicator function.

Observe that

E

[∫ T

0 StN
n
t dt

]
= E

[
Nn

T

∫ T

0 Stdt
]

= E
[
MT Nn

T

]
= E

[[M,Nn]T
] = E

[∫ T

0
Is<T −1/n

T −s
d[M]s

]
= E

[∫ T

0

∫ T

s

Is<T −1/n

(T −s)2 dtd[M]s
]

= E

[∫ T

0

∫ t

0
Is<T −1/n

(T −s)2 d[M]sdt
]

= E

[∫ T

0 |Nn
t |2dt

]
.
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Indeed, the first equality follows from the fact that Nn is a square integrable mar-
tingale. The second equality is due to (4). The third equality follows from Theo-
rem 6.28 in [12] (we note that Nn

0 = 0). The fourth equality follows from Theo-
rem 9.15 in [12] where the integral with respect to d[M] is the (pathwise) Stieltjes
integral with respect to the nondecreasing process [M]. The fifth equality is obvi-
ous. The sixth equality is due to the Fubini theorem. Finally, the last equality is due
to the (generalized) Itô isometry (see Chapter IX in [12]) which says that for any
bounded and predictable process H and a square integrable martingale X we have

E

[(∫ T

0 HtdXt

)2
]

= E

[∫ T

0 H 2
t d[X]t

]
.

We conclude

E

[∫ T

0
StN

n
t dt

]
= E

[∫ T

0
|Nn

t |2dt

]
. (8)

Hence,

0 ≤ E

[∫ T

0
|St − Nn

t |2dt

]
= E

[∫ T

0
S2

t dt

]
− E

[∫ T

0
|Nn

t |2dt

]
. (9)

From (3) and (8)–(9) we obtain

E

[∫ T

0 StNtdt
]

= limn→∞ E

[∫ T

0 StN
n
t dt

]
= limn→∞ E

[∫ T

0 |Nn
t |2dt

]
= E

[∫ T

0 N2
t dt

]
≤ E

[∫ T

0 S2
t dt

]
and (7) follows.

Step II. Let φ ∈ A�0 . In this step we prove that E
[
V

�0,φ
T

]
is not bigger than the

right-hand side of (6). Without loss of generality we assume that E
[
V

�0,φ
T

]
> −∞.

From (1) and the Cauchy–Schwarz inequality it follows that√∫ T

0
S2

t dt

√∫ T

0
φ2

t dt − �

2

∫ T

0
φ2

t dt ≥ V
�0,φ
T + �0S0.

Thus,

�

2

⎛
⎝

√∫ T

0
φ2

t dt − 1

�

√∫ T

0
S2

t dt

⎞
⎠

2

≤ 1

2�

∫ T

0
S2

t dt − V
�0,φ
T − �0S0.

This together with the integrability condition (3) and the inequality E

[
V

�0,φ
T

]
>

−∞ gives that
√∫ T

0 φ2
t dt − 1

�

√∫ T

0 S2
t dt ∈ L2(P). Clearly, (due to (3))

√∫ T

0 S2
t dt ∈

L2(P), and so we conclude that
√∫ T

0 φ2
t dt ∈ L2(P), i.e. E

[∫ T

0 φ2
t dt

]
< ∞.
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Next, set Z := −�0�
T

+ M0
T

and choose n ∈ N. From the estimate E
[∫ T

0 φ2
t dt

]
<

∞ and the fact that Nn is a square integrable martingale we obtain

E

[∫ T

0
φtN

n
t dt

]
= E

[
Nn

T

∫ T

0
φtdt

]
= −�0E

[
Nn

T

] = 0.

This together with (1) and the simple inequality xy − �
2 x2 ≤ y2

2�
, x, y ∈ R, yields

E

[
V

�0,φ
T

]
= E

[
−�0(S0 − Z) − ∫ T

0 φt (St − Z − Nn
t )dt − �

2

∫ T

0 φ2
t dt

]
≤ E

[
−�0(S0 − Z) + 1

2�

∫ T

0 |St − Z − Nn
t |2dt

]
.

By taking n → ∞ in the above inequality and applying (7) we obtain

E

[
V

�0,φ
T

]
≤ −�2

0�

2T
+ �0E

[
M0

T
− S0

]
+ 1

2�
E

[∫ T

0

(
St − M0

T
− Nt

)2

dt

]
(10)

as required.

Step III. In this step we complete the proof. Consider the trading strategy given by
(5). From the Fubini theorem it follows that∫ T

0
φ̂t dt = −�0 + 1

�

(
M0 + MT − M0 −

∫ T

0
Stdt

)
= −�0.

Moreover, from (7) it follows that E
[∫ T

0 φ̂2
t dt

]
< ∞. Thus, φ̂ ∈ A�0 .

Next, choose n ∈ N. By using the same arguments as in Step II we get

E

[∫ T

0 φ̂tN
n
t dt

]
= 0. Observe that for t ≤ T − 1/n we have φ̂t = Z+Nn

t −St

�
, where

(recall) Z = −�0�
T

+ M0
T

. Hence,

E

[
V

�0,φ̂
T

]
= E

[
−�0(S0 − Z) − ∫ T

0 φ̂t (St − Z − Nn
t )dt − �

2

∫ T

0 φ̂2
t dt

]
= E

[
−�0(S0 − Z) + 1

2�

∫ T −1/n

0 |St − Z − Nt |2dt
]

− E

[∫ T

T −1/n
φ̂t (St − Z − Nn

t )dt + �
2

∫ T

T −1/n
φ̂2

t dt
]
.

By taking n → ∞ in the above equality and applying (7) we obtain (notice that

E

[∫ T

0 φ̂2
t dt

]
< ∞)

E

[
V

�0,φ̂
T

]
= E

[
−�0(S0 − Z) + 1

2�

∫ T

0 |St − Z − Nt |2dt
]

= −�2
0�

2T
+ �0E

[
M0
T

− S0

]
+ 1

2�
E

[∫ T

0

(
St − M0

T
− Nt

)2
dt

]
. (11)

By combining (10)–(11) we conclude (6).
Finally, the uniqueness of the optimal trading strategy follows from the strict con-

vexity of the map φ → V
�0,φ
T .
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We end this section with the following example.

Example 1. Assume that S is a square integrable martingale with respect to the fil-
tration (Ft )0≤t≤T . By applying the same arguments as in the paragraph before the
proof of Theorem 1, we obtain that St = M0

T
+ ∫ t

0
dMu

T −u
, t ∈ [0, T ]. This together with

(5) gives that the optimal strategy is purely deterministic and equals to φ̂t ≡ −�0
T

.
Namely, we liquidate our initial position �0 at a constant rate. From (6) we obtain that

the corresponding value is equal to −�2
0�

2T
. Since φ̂ is deterministic, then in the case

of partial information, i.e. where the investor’s filtration is smaller than (Ft )0≤t≤T ,
the solution to the optimization problem (2) will be the same.

A more interesting case is where the filtration is larger than (Ft )0≤t≤T . More
precisely, fix � ∈ (0, T ] and consider the case where the investor can peek � time
units into the future, and so her information flow is given by the filtration (Ft+�)t≥0.

From (4) we obtain that

Mt =
∫ (t+�)∧T

0
Sudu + (T − t − �)+S(t+�)∧T , t ∈ [0, T ].

Thus, M0 = ∫ �

0 Sudu + (T − �)S� and from the Leibniz rule we get

dMt = It<T −� (St+�dt + (T − t − �) dSt+� − St+�dt)

= It<T −� (T − t − �) dSt+�, t ∈ [0, T ].
Hence,

M0
T

+ ∫ t

0
dMu

T −u
− St

= 1
T

(∫ �

0 Sudu + (T − �)S�

)
+ ∫ (t+�)∧T

�
T −u

T +�−u
dSu − St

=
∫ �

0 (Su−S�)du

T
+ S(t+�)∧T − St − �

∫ (t+�)∧T

�
dSu

T +�−u
, t ∈ [0, T ].

This together with (5), (6) yields that the optimal strategy is given by

φ̂t = −�0

T
+

∫ �

0 (Su − S�)du

T �
+ S(t+�)∧T − St

�
− �

�

∫ (t+�)∧T

�

dSu

T + � − u

and the corresponding value (notice that E[M0] = S0T ) is equal to

E

[
V

�0,φ̂
T

]
= −�2

0�

2T
+ I

2�

where

I := E

⎡
⎣∫ T

0

(∫ �

0 (Su − S�)du

T
+ S(t+�)∧T − St − �

∫ (t+�)∧T

�

dSu

T + � − u

)2

dt

⎤
⎦

can be viewed as the premium of being able to peek ahead by � units of time.
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2 The case of fractional Brownian motion

The fractional Brownian motion BH = (BH
t )∞t=0 with the Hurst parameter H ∈ (0, 1)

is a continuous, zero-mean Gaussian process such that

cov
(
BH

t , BH
u

)
= t2H + u2H − |t − u|2H

2
, t, u ≥ 0.

The process BH is self similar, BH
at ∼ aH BH

t , and has stationary increments. More-
over, the successive increments of BH are positively correlated for H > 1/2, nega-
tively correlated for H < 1/2, while H = 1/2 recovers the usual Brownian motion
with independent increments.

A fractional Brownian motion which displays the long-range dependence ob-
served in empirical data (see [6, 16, 18] and the references therein) is not a semi-
martingale when H �= 1

2 and so, in the frictionless case it leads to arbitrage oppor-
tunities (see, for instance, [17, 5]). In the presence of market price impact arbitrage
opportunities disappear and the expected profits are finite (see [10, 11]). In [11] the
authors studied the asymptotic behavior (as the maturity date goes to infinity) of the
optimal liquidation problem with temporary price impact, for the case where the risky
asset is given by a fractional Brownian motion. It is also important to mention the re-
cent paper [9] which is closely related.

In this section, for the financial model where the risky asset is given by a frac-
tional Brownian motion, we study the dependence of the optimal liquidation problem
as a function of the investor’s information. We deal with three types of investors. The
first one is the “usual” investor with information flow which is given by the filtration
generated by the risky asset. The second type is an investor which receives the infor-
mation with a delay. The last type is a “frontrunner” which is able to peek some time
units into the future. Of course the “frontrunner” cannot freely take an advantage of
her extra knowledge due to the linear price impact which leads to quadratic transac-
tion costs. For the above three cases we solve the corresponding optimal liquidation
problem and derive numerical results for the value (see Figure 1) and for the optimal
strategy (see Figure 2).

Let H ∈ (0, 1) and consider the optimization problem (2) for the case where the
risky asset is of the form St = S0 +σBH

t +μt where σ > 0 and μ ∈ R are constants.
From Theorem 1 and the discussion afterwards it follows that (for simplicity) we can
take μ = S0 = 0 and σ = � = 1. Thus, S = BH for some H ∈ (0, 1) and � = 1.

For H ∈ (0, 1) introduce the Volterra kernel

ZH (t, s) = cH

((
t
s

)H− 1
2 (t − s)H− 1

2

− (
H − 1

2

)
s

1
2 −H

∫ t

s
uH− 3

2 (u − s)H− 1
2 du

)
, 0 < s < t,

where cH :=
(

2H�
(

3
2 −H

)
�

(
H+ 1

2

)
�(2−2H)

)1/2

. Then, taking an ordinary Brownian motion

W = (Wt)
∞
t=0, the formula

BH
t =

∫ t

0
ZH (t, s)dWs, t ≥ 0, (12)
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defines a fractional Brownian motion with the Hurst parameter H , which generates
the same filtration as W (see [15]). Moreover, given BH , the Wiener process W can
be recovered by the relations

Wt := 2H

cH

∫ t

0
sH− 1

2 dMs, t ≥ 0,

where

Mt := 1

2H�
( 3

2 − H
)
�

(
H + 1

2

) ∫ t

0
s

1
2 −H (t − s)

1
2 −H dBH

s , t ≥ 0.

Denote by (FW
t )t≥0 the augmented filtration which is generated by W .

2.1 Standard information

Consider the case where the filtration (Ft )0≤t≤T (which represent the investor’s flow
of information) is equal to (FW

t )0≤t≤T . From the Fubini theorem and (12) it follows
that the martingale defined in (4) is equal to

MH
t =

∫ t

0

(∫ T

s

ZH (u, s)du

)
dWs, t ∈ [0, T ].

Hence, (5) and (12) yield that the optimal strategy is given by

φ̂H
t :=

∫ t

0

⎛
⎝

(∫ T

s
ZH (u, s)du

)
T − s

− ZH (t, s)

⎞
⎠ dWs, t ∈ [0, T ].

From the Itô isometry and (6) we obtain that the corresponding value is given by

E

[
V

0,φ̂H

T

]
= ∫ T

0

∫ t

0 Z2
H (t, s)dsdt − ∫ T

0

(∫ T
s ZH (u,s)du

)2

T −s
ds

= T 2H+1

2H+1 − ∫ T

0

(∫ T
s ZH (u,s)du

)2

T −s
ds.

2.2 Delayed information

We fix a positive number � ∈ (0, T ] and consider a situation where the risky asset S

is observed with a delay � > 0. Namely, the filtration is Ft = FW
(t−�)+ , t ∈ [0, T ]. In

particular the underlying process S = BH is no longer adapted to the above filtration.
For the continuous filtration FW

(t−�)+ , t ∈ [0, T ], consider the corresponding op-

tional projection (see Chapter V in [12]) of BH

Ŝt := E

[
BH

t |FW
(t−�)+

]
=

∫ (t−�)+

0
ZH (t, s)dWs, t ∈ [0, T ].

The Fubini theorem gives that for any process γ ∈ L2(dt ⊗ P) which is progres-

sively measurable with respect to FW
(t−�)+ , t ∈ [0, T ], we have E

[∫ T

0 γtB
H
t dt

]
=

E

[∫ T

0 γt Ŝt dt
]
. Hence, we can apply Theorem 1 for the optional projection Ŝ.
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From the Fubini theorem∫ T

0
Ŝt dt =

∫ T −�

0

(∫ T

s+�

ZH (u, s)du

)
dWs.

Thus, the martingale M defined in (4) is equal to

M
H,�,−
t =

∫ (t−�)+

0

(∫ T

s+�

ZH (u, s)du

)
dWs, t ∈ [0, T ],

and so, the optimal strategy is given by

φ̂
H,�,−
t =

∫ (t−�)+

0

(∫ T

s+�
ZH (u, s)du

T − � − s
− ZH (t, s)

)
dWs, t ∈ [0, T ].

Finally, the corresponding value is given by

E

[
V

0,φ̂H,�,−
T

]
=

∫ T

0

∫ (t−�)+

0
Z2

H (t, s)dsdt −
∫ T −�

0

(∫ T

s+�
ZH (u, s) du

)2

T − � − s
ds.

2.3 Insider information
Rather than having access to just the natural augmented filtration (FW

t )t≥0 for making
decisions, the investor can peek � ∈ (0, T ] time units into the future, and so, her
information flow is given by the filtration (FW

t+�)t≥0.
The martingale M defined in (4) is equal to

M
H,�,+
t =

∫ (t+�)∧T

0

(∫ T

s

ZH (u, s)du

)
dWs, t ∈ [0, T ].

Hence, the optimal strategy is given by

φ̂
H,�,+
t = 1

T

∫ �

0

(∫ T

s
ZH (u, s)du

)
dWs

+ ∫ (t+�)∧T

�

∫ T
s ZH (u,s)du

T +�−s
dWs − ∫ t

0 ZH (t, s)dWs, t ∈ [0, T ],
and the corresponding value is given by

E

[
V

0,φ̂H,�,+
T

]
= ∫ T

0

∫ t

0 Z2
H (t, s)dsdt −

∣∣∣MH,�,+
0

∣∣∣2
T

− ∫ T

�

(∫ T
s ZH (u,s)du

)2

T +�−s
ds

= T 2H+1

2H+1 − 1
T

∫ �

0

(∫ T

s
ZH (u, s)du

)2
ds − ∫ T

�

(∫ T
s ZH (u,s)du

)2

T +�−s
ds.

Remark 1. Observe that the calculations of this section can be done in a similar
way for any square integrable Gaussian–Volterra process with RCLL paths and the
following property: the process generates the same filtration as the underlying Brow-
nian motion. This property was studied in details in [13, 14]. In this paper we focus
on the case where the risky asset is given by a fractional Brownian motion. In par-
ticular, we apply the obtained formulas in order to study numerically the value of
the liquidation problem (for different flows of information) as a function of the Hurst
parameter.
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Fig. 1. The value of the liquidation problem for different flows of information (shown in dif-
ferent colors) as a function of the Hurst parameter H . Observe that for delayed information
the value function is no longer decreasing for H < 0.5. The reason is that for very low H

values the correlation between the increments decays faster to 0 with their time distance, hence
a delay results in almost complete loss of information regarding the current price

Fig. 2. In this figure we simulate a sample path of a fractional Brownian motion with the Hurst
parameter H = 0.7 and the corresponding optimal trading strategies (we take maturity date
T = 5). We observe that the Regular Information graph, is a “lagged version” of the Insider
Information graph and the Delayed Information graph is a “lagged version” of the Regular
Information graph
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