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Abstract The paper focuses on the option price subdiffusive model under the unusual behav-
ior of the market, when the price may not be changed for some time, which is a quite common
situation in modern illiquid financial markets or during global crises. In the model, the risk-
free bond motion and classical geometrical Brownian motion (GBM) are time-changed by an
inverted inverse Gaussian(IG) subordinator. We explore the correlation structure of the subdif-
fusive GBM stock returns process, discuss option pricing techniques based on the martingale
option pricing method and the fractal Dupire equation, and demonstrate how it applies in the
case of the IG subordinator.

Keywords Option pricing, subdiffusion models, subordinator, inverse subordinator,
time-changed process, hitting time
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1 Introduction

Nowadays, modeling the financial market dynamics using diffusion processes has
become an active research area in financial risk management, asset valuation, and
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derivatives pricing. However, the classical diffusion models, like the Black-Scholes-
Merton (B-S) model and others based on Brownian motion (BM) have a normal dis-
tribution, independence of returns and are perpetually moving. These assumptions
are inconsistent with empirical properties such as heavy-tailed and skewed marginal
distributions, dependence on squared returns, and constant motionless periods (called
also trapping events). The trapping events can be observed, for example, during global
crises that negatively affect financial activity, and some types of risky assets have pe-
riods in their dynamics without changes. Such behavior is typical also for illiquid
markets with a low number of transactions, interest rate markets, and commodity
markets.

To overcome these difficulties, one can notice that the constant periods of stag-
nation in financial processes are analogous to the trapping events of the subdiffusive
particle, therefore, the physical models of subdiffusion (a kind of anomalous diffu-
sion, see [18]) can be successfully applied to describe financial data. Subdiffusion in
the different physical systems arises from some memory effect of previous states, as
a result of some fractal structure of the background space, or due to some nonlinear
interactions inherent in the system, etc. To model subdiffusion, the time structure of
the stochastic process is changed, and the time-changed process is no longer Markov.
(Markov means each new step in the motion depends only on the present state and is
independent of the previous states.)

The idea of the time-changed process was introduced in [3]. By time change we
mean the replacement of the calendar (deterministic) time in a considered stochas-
tic process St using a new random clock. In our case, as a particular random clock,
we consider the inverse Ht of a subordinator Gt . We recall that a subordinator is a
nondecreasing Lévy process, i.e. it has stationary and independent increments and it
is stochastically continuous. The inverse subordinator is used as a new random (“hit-
ting”) time Ht , thus as a studied model we obtain SHt . The distributional properties,
asymptotic behavior, and the simulation procedures of the time-change process were
considered for different types of subordinators and their inverses: α-stable, exponen-
tial, gamma, Pareto, Mittag-Leffler, and tempered distributions (see [22, 10, 14, 26, 2]
and other).

However, the pricing of derivatives in this framework remains a complicated
and under-researched problem. Nevertheless, more and more attention has been paid
to this problem recently. In the papers [16, 17], the authors applied the subdiffu-
sive mechanism of trapping events to describe financial data demonstrating periods
of constant values and introduced the subdiffusive geometric BM and subdiffusive
arithmetic BM. Ref. [16] showed that the considered models for α-subordinators are
arbitrage-free but incomplete, and used the martingale option pricing method. A gen-
eral result that implies that subdiffusive markets are generally incomplete is given in
[24], Theorem 2. In [20], Theorem 5, a pseudodifferential equation that generalizes
the Black and Scholes equation for the underlying time-changed geometric Brownian
motion (GBM) was derived. The other technique for European option pricing was
proposed in [7], where the derivative for the time in the Dupire equation is replaced
by a Dzerbayshan–Caputo (D-C) derivative for jump-diffusion. The applications of
anomalous diffusions for option pricing and the volatility term structure were consid-
ered in [9, 24]. Option pricing in time-changed Lévy models with compound Pois-
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son jumps was explored in [8]. The theory in these papers was detailed for inverse
α-stable ([16, 17, 7]), inverse tempered stable ([17, 24]), Mittag-Leffler ([20]) and
inverted Poisson processes ([7]).

The paper considers the GBM model in a subdiffusion regime, time-changed by
an inverted Inverse Gaussian (IG) subordinator. We aim to show that the studied sub-
diffusive model demonstrates long-range dependence of stock returns and to discuss
two different ways for option pricing. In addition, we propose a procedure for evalu-
ating value-at-risk in the considered model. From this perspective, our study closes a
gap which is of particular interest to investors.

The paper is organized as follows.
For introducing a subdiffusive model for the dynamics of a financial market we

assume that the market consists of at least three components: one riskless asset Bt , one
risky asset with price St , and one derivative security, usually called call option with
price Ct . The dynamics of the first two components in the subdiffusive framework are
presented in the second section. We consider the IG process as the subordinator (wait-
ing time) and the inverse Inverse Gaussian IIG process as the inverse subordinator
(hitting time) for subdiffusive GBM, describe their properties and features, demon-
strate the simulation for them, and for the subdiffusive GBM stock returns processes.
We explore the correlation structure of the subdiffusive GBM stock returns process
and assume that the stock returns process has long-range dependence and it is pre-
sented in the squared returns. Finally, we mentioned the Fractional Fokker–Planck
equation (FFPE) for IG subordinator as the usual approach for modeling subdiffusion
in physics. This equation describes the probability density function w(t) of the stud-
ied subdiffusive stock process, and we discuss how it can be used for risk measuring.

The next section focuses on the third component of the model and discusses two
option pricing techniques. The one technique is very common for option pricing and
can be given by the discounted expectation of the payoff conditional on the natu-
ral filtration up to time t concerning an equivalent martingale measure. The other
technique is based on the fractal Dupire equation and uses the Dzerbayshan–Caputo
(D-C) derivative. Since the form of the D-C derivative depends upon the chosen in-
verted Lévy subordinator, we demonstrate how it applies to the IG subordinator. The
fourth section contains the numerical illustration for real financial data.

2 Subdiffusive GBM model with IG subordinator

To build the mathematical model for the dynamics of a financial market first, we need
to assume what kinds of securities evolve on the market and to describe their dynam-
ics. Assume that the market consists of at least one riskless asset, usually called bond
Bt , a risky asset with price St , usually called the stock, and one derivative security,
usually called call option, or put option, which will have a certain payoff at a specified
date in the future, depending on the values taken by the stock up to that date.

The idea is to replace the calendar time t in risk-free bond motion and classical
GBM by some stochastic process Ht , which will represent a stochastic clock or a
stochastic operation time.
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The time-changed risk-free bond has a value at time t equal to

dBHt

BHt

= rdHt , B0 = 1, (1)

and the movement of the underlying risk assets St follows a subdiffusive geometric
Brownian motion (GBM)

dSHt

SHt

=
(

μ + σ 2

2

)
dHt + σdBHt , t > 0, (2)

with the solution
St = S0e

μHt+σBHt , t > 0. (3)

In formula (3) the standard diffusive process St = SHt is time-changed by some
stochastic process Ht , which is called the inverse subordinator (“hitting time”). In
general, for a given subordinator Gt , the inverse subordinator Ht is defined as

Ht = inf {τ > 0 : Gτ ≥ t} , (4)

and interpreted as the first time at which Gt hits the barrier t . Ht is positive and
nondecreasing and has all the properties to be used as a stochastic clock. By con-
struction, the inverted process may be constant. Therefore, any process subordinated
by Ht exhibits motionless periods.

The definition (4) of the inverse subordinator is based on the use of some other
random process called a subordinator Gt . The subordinator Gt is generally a nonde-
creasing stochastic process with stationary independent increments (Lévy process),
taking values in R+ and having Laplace transform

E
(
e−uGt

)
= e−t�(u), (5)

where �(u) is called Lévy exponent, which can be written as

�(u) = bu +
∫ +∞

0

(
1 − e−ux

)
ν̃(dx). (6)

Here, b ≥ 0 is the drift parameter. If for simplicity, following [10], we assume b = 0,
then ν̃(dx) is an appropriate Lévy measure.

The subordinator Gt in our framework is often called the “waiting” time. In this
paper, we consider the Inverse Gaussian process as a subordinator.

2.1 The IG subordinator and its inverse

Inverse Gaussian (IG) subordinator Gt is a nondecreasing Lévy process, where the
increments Gt+s − Gs follow the inverse Gaussian distribution �(δt, γ ) with proba-
bilities density function (PDF) [22]

g(x, t) = δt√
2πx3

eδγ t−(δ2t2/x+γ 2x)/2, x > 0,
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and with the Lévy measure

ν̃(dx) = δ√
2πx3

e

(
− γ 2x

2

)
dx, x > 0, t > 0. (7)

For γ = δ = 1 we have the standard IG distribution in the form

f (x, t) = t√
2πx3

e

(
− (x−t)2

2x

)
, x > 0, t > 0.

The Laplace transform of the IG subordinator is

E
(
e−uGt

)
= e−tδ(

√
2u+γ 2−γ ),

therefore, the Laplace exponent for IG process is given by

�IG(u) = δ(

√
2u + γ 2 − γ ). (8)

The tail probability for the IG subordinator is of the form ([26])

P(Gt > x) ∼
√

2

π

δt

γ 2 eγ δtx−3/2e−(γ 2/2)x, x → ∞,

where f (x) ∼ g(x) as x → 0 means limx→0
f (x)
g(x)

= 1. Notice, that the tail prob-
ability decreases exponentially for γ �= 0. Thus all moments of the process Gt are
finite.

The qth moments for the IG process are found in the paper [11]:

E(G
q
t ) =

√
2

π
δ

(
δ

γ

)q−1/2

tq+1/2eδγ tKq−1/2(δγ t),

where Kq(ω) is the modified Bessel function of the third kind with index q. Moreover,
in [11] it was shown that if t → ∞, then

E(G
q
t ) ∼

(
δ

γ

)q

tq . (9)

For the standard distribution, we have E(G(t)) ∼ t , var(G(t)) ∼ t2.
The algorithm of the simulation of the IG process Gt for time points t1 = 1

n
, t2 =

2
n
, . . . , tn = 1 was proposed in some literature (see, for example, [26, 22]). Since

the process Gt has independent and stationary increments, Fi = Gti − Gti−1 =
Gdt ∼ �(dt, 1) for i = 1, 2, . . . n and dt = 1

n
, so following [26] we generate n

i.i.d. IG variables Fi assuming γ = δ = 1. For this, we simulate a standard normal
random variable N and a uniform [0, 1] random variable U . Then assign X = N2 and
Y = dt + X

2 − 1
2

√
4dtX + X2. According this algorithm, if U ≤ dt

dt+Y
then return Y ;

otherwise return (dt)2

Y
. After assigning Gt0 = 0 and Gti = ∑i

j=1 Fj , i = 1, 2, . . . , n,
we obtain Gt1 ,Gt2 , . . . ,Gtn , which are simulated values of the IG process at times



140 N. Shchestyuk, S. Tyshchenko

Fig. 1. Simulation of the IG process trajectories for γ = δ = 1

t1, t2, . . . , tn, respectively. The simulated trajectories of the standard IG process are
shown in Figure 1.

Now we discuss the properties of the inverse subordinator (hitting time) Ht de-
fined by (4). The inverse to the inverse Gaussian (IIG) process is not Lévy and has
monotonically increasing continuous sample paths. Moreover, the sample paths of
the IIG process are constant over the intervals where Gt has jumped. It follows from
the fact that the trajectories of Gt are strictly increasing with jumps.

The distribution of Ht is not infinitely divisible ([26]).
The density function h(x, t) of Ht can be put in the integral form ([25]):

h(x, t) = δ

π
eδγ x− γ 2

2

∫ ∞

0

e−ty

y + γ 2

2

(γ sin (δx
√

2y) + √
2y cos (δx

√
2y))dy. (10)

It is worth noticing that if γ = 0 then Laplace exponent (8) has the form �γ=0(u) =
(δ

√
2)u1/2, and it means that we have the stable distribution TS(1/2, 0, δ). In the case

γ �= 0 we have the tempered stable distribution TS(1/2, γ 2, δ). For the particular
case γ = 0, δ = 1 we have 1/2−stable distribution S(α), α = 1/2, and the density
function for the inverse IG process is equal

h(x, t) =
√

2

πt
e− x2

2t .

It should be mentioned that the expression (10) has been extended to general inverse
tempered stable subordinators in [13], and the case of a stable subordinator can be
deduced as a limit. So, the explicit expression (10) for the hitting time allows us to
find the closed form for a tempered 1/2-stable subordinator and 1/2-stable process as
particular cases. Moreover, the closed form of the density distribution of hitting time
will be used to compute option pricing in the next section.
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Fig. 2. Simulation of the inverse to the IG process trajectories for γ = δ = 1

The qth moments for the IIG process may be numerically evaluated for known t

by using the density function h(x, t). However, an explicit expression for the first and
second order was obtained by using the Laplace transformation in [25].

Moreover, in [11] you can find the following result regarding the asymptotic be-
havior of E(Ht) and Var(Ht ). If t → ∞, then

E(Ht) ∼
⎧⎨
⎩

( γ
δ

)
t, γ > 0,(

1
δ

√
2t
π

)
t, γ = 0,

(11)

Var(Ht ) ∼
(γ

δ

)2
t2. (12)

For the standard distribution we have E(Ht) ∼ t , var(Ht ) ∼ t2.
To simulate the approximate trajectory of the inverse subordinator Ht , we define

H�
t as follows [26]:

H�
t = [min{n ∈ N : G�n > t} − 1]�, n = 1, 2, . . . , (13)

where � is the step length and G�n is the value of the Inverse Gaussian process Gt at
�n. The simulation of the trajectory Ht for γ = δ = 1 is demonstrated in Figure 2.

For modeling of the stochastic subdiffusive GBM we propose the iterative scheme

St+1 = St + μStH
�
t + σSt

√
H�

t εt , (14)

where ε is a white noise with the normal standard distribution, and H�
t are given in

(13). The trajectories of the subdiffusion GBM with the inverse to the IG process are
demonstrated in Figure 3.
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Fig. 3. Simulation of the subdiffusive GBM time-changed by an inverse IG subordinator

2.2 Correlation structure for log returns of time-changed GBM

Exploring the dependence structure for stock processes or their stock returns is an
important issue in the study of diffusive and subdiffusive models (see, for example,
[9, 26, 14] and [4]).

First, we compute

log SHt = log S0 + μHt + σB
(1)
Ht

,

where SHt is a stochastic process given by (3).
Then denote τt = Ht − Ht−1 and obtain the stock returns in the form

Xt = log
SHt

SHt−1

= μτt + σ
√

τtB
(1)
1 , (15)

using the scaling law of the Brownian motion.

Proposition 1. Let Xt be a stochastic process given by (15), then for any integer
k ≥ 0:

1.
Cov(Xt ,Xt+k) = μ2Cov(τt , τt+k); (16)

and stock returns are uncorrelated for μ = 0: Covμ=0(Xt ,Xt+k) = 0.

2. There is a long-range dependence in the squared returns:

Cov(X2
t , X

2
t+k)

= σ 4Cov(τt , τt+k) + μ4Cov(τ 2
t , τ 2

t+k) + 2μ2σ 2Cov(τ 2
t , τt+k); (17)

in particular, Covμ=0(X
2
t , X

2
t+k) = σ 4Cov(τt , τt+k).
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Proof. For the covariance function of the log returns process Xt (15), we obtain

Cov(Xt ,Xt+k) = Cov(μτt + σ
√

τtB
(1)
1 , μτt+kσ

√
τt+kB

(2)
1 )

= E
[(

μτt + σ
√

τtB
(1)
1 − μE[τt ]

) (
μτt+k + σ

√
τt+kB

(2)
1 − μE[τt+k]

)]
= μ2 (E[τt τt+k] − E[τt ]E[τt+k]) = μ2Cov(τt , τt+k),

where the second and third equalities follow from the independence between the two
stochastic processes.

The covariance function of the process X2
t can be computed as

Cov(X2
t , X

2
t+k) = Cov

(
(μτt + σ

√
τtB

(1)
1 )2, (μτt+k + σ

√
τt+kB

(2)
1 )2

)
= σ 4Cov(τt , τt+k) + μ4Cov(τ 2

t , τ 2
t+k)

+ μ2σ 2Cov(τ 2
t , τt+k) + μ2σ 2Cov(τt+k, τ

2
t ),

where from the last expression we immediately get the result.

Thus, if the increments τt of the subordinated process Ht exhibit long-range de-
pendence, the same holds for the log returns of X2

t and we have long-range depen-
dence for stock process (3) in the squared returns.

2.3 Fractional Fokker–Planck equation and risk measuring for subdiffusion
The usual model of subdiffusion in physics is the celebrated Fractional Fokker–
Planck equation (see, for example, [18]). This equation was derived from the con-
tinuous time random walk scheme with heavy-tailed waiting times and describes the
probability density function w(t) of the subdiffusive studied stock process:

∂w

∂t
= �t

[
−μ

∂

∂x
+ σ 2

2

∂2

∂x2

]
w(x, t), (18)

where �t is the integro-differential operator defined as

�tf (t) = d

dt

∫ t

0
M(t − y)f (y)dy,

with the memory kernel M(t) defined via its Laplace transform

M̃(u) =
∫ ∞

0
e−utM(t)dt = 1

�(u)
,

where �(u) is the Laplace exponent of the IG subordinator and can be written as in
(8). This implies that the memory kernel M(t) can be expressed as

M(t) = L−1

(
1

δ(
√

2u + γ 2 − γ )

)
, (19)

where L−1(f ) is the inverse Laplace transform of the function f (t), which can be
computed as in [10]. Thus, the formula (18) allows us to find, at least in some par-
ticular cases of parameters γ , δ, closed-form formulas for the PDF of the studied
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subdiffusive stock processes. In general, approximated solutions w(t) of (18) can
be derived by the finite element method for FFPE (see, for example, [6]) or by the
Monte Carlo techniques based on the simulation algorithm of the time-changed stock
process (see the section above).

Thus, the possibility of numerical computing of the probability density function
w(t) for the studied subdiffusive stock process (with IG subordinator) opens the way
to evaluate the value-at-risk (VaR) in this model.

The value-at-risk is a quite useful tool for investors and can be used for under-
standing the past and making medium-term and strategic decisions for the future. On
the other side, we can apply VaR for checking of the model performance. For this, we
can use the most important criterion of a risk management system, namely, to check
if the regulatory requirements are fulfilled.

VaR can be defined as α-quantile of the profit (loss) function.
Let (�,F , P ) be the probability space. The value-at-risk of level α, 0 < α ≤ 1, is

a probability functional defined as α-quantile of the profit (loss) function Y ∈ L(�):

VaRα(Y ) = W−1(α) = inf{y ∈ R : α ≤ W(y)}, (20)

where W is the distribution function of Y , W−1 is the quantile function of α, 0 <

α ≤ 1.
Let the time horizon coincide with the time to maturity, then the loss (profit)

function of the call option with strike price K is

Y = Y(S) = |S − K|+ − c0,

and the value-at-risk of level α, 0 < α ≤ 1, for the random variable Y is

VaRα(Y ) = VaRα(|S − K|+) − c0 (21)

due to the translation-equivariant property of the probability functional VaR.
The cumulative distribution function (CDF) for Y(S) = |S − K|+ is given [21]

by

WY (y) =

⎧⎪⎪⎨
⎪⎪⎩

y∫
−∞

wS(u + K) du, y ≥ 0,

0, y < 0.

(22)

Thus, if the time horizon coincides with the time to maturity, one can find the
value-at-risk of level α, 0 < α ≤ 1, as (21)–(22), where w(t) is a solution of (18)
with memory kernel (19).

3 Option pricing

Even if subdiffusions can be successfully applied for modeling illiquidity, option pric-
ing in this framework remains insufficiently researched.

Recall that in the classical GBM model the fair price of the European call option
is given by the Black–Scholes formula

C(S,K, T , r, σ ) = N(d1)S − N(d2)Ke−rT , (23)
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where

d1 = log S0
K

+ rT + 1
2σ 2T

σ
√

T
, d2 = log S0

K
+ rT − 1

2σ 2T

σ
√

T
(24)

both are functions of five parameters T ,K, S0, r, σ , and �(·) is the standard normal
cumulative distribution function.

Consider a time-changed version of the B-S model, where the price of the bond
evolves as (1) and the underlying risky assets follow (2) with IG subordinator. Now
we discuss two approaches to option pricing in the proposed model with inverse Gaus-
sian subordinator.

Let the evolution of this market up to time horizon T be contained in the probabil-
ity space (�,F , P ). Here, � is the sample space, F contains all statements that can
be made about the behavior of prices, and P is the “objective” probability measure.
We denote by (Ft ), t ∈ [0, T ], the information about the history of asset prices SH up
to time t . (Ft ) is also called filtration and is interpreted as the background informa-
tion that is available for the investor. The more time proceeds the more information
is revealed to the investor.

Proposition 2. The European call option price CH = CH (S,K, T , σ ) for a time-
changed version of the B-S model with IG subordinator satisfies

CH =
∫ ∞

0

∫ ∞

0
C(x)

δ

π
eδγ x− γ 2

2
e−Ty

y + γ 2

2

(
γ sin (ρ(x, y)) + √

2y cos (ρ(x, y))
)

dydx,

(25)

where
ρ(x, y) = δx

√
2y,

and C(T ) = C(S,K, T , σ ) is given by (23).

Proof. For the subdiffusion market described above the usual requirement for fair
option pricing is that arbitrage opportunities do not exist. For this, it is enough to
prove the existence of the equivalent martingale measure. In [16], the measure

Q(A) =
∫

A

exp

{
−τBHT

− τ 2

2
HT

}
dP (26)

was introduced, where τ = μ+σ 2

σ
and A ∈ F , and it was proved that subdiffusive

GBM (3) with α-stable subordinator is a martingale with respect to Q. The Theorem
1 in Magdziarz and Schilling (2015) extend the results for the α-stable case to any
case of the Lévy distribution. Consequently, using the Fundamental theorem of asset
pricing (see [22]) we can state that the subdiffusion market model with any Lévy
subordinator is arbitrage-free.

The second question is the completeness of the subdiffusive market model. In
the mathematical theory of arbitrage, the model is complete if and only if there is
a unique martingale measure. In Theorem 2 of [24] the whole family of possible
transformations of equivalent martingale measures was constructed, which shows that
the measure Q is not unique, and therefore the subdiffusive markets are generally
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incomplete. Particularly it applies to inverse-tempered stable subordinators. Thus, the
subdiffusive IIG market is incomplete, and it is natural because it takes into account
the presence of a market risk of trade duration.

Then, for arbitrage-free and incomplete IIG market, we apply a common tech-
nique for time-changed processes (see [16, 17, 4, 8]) and find the corresponding fair
price of the European call option written on the time-changed asset as the discounted
expected payoff under measure Q (26):

CH (S,K, T , σ ) = 〈C (S,K,HT , σ )〉 = EQ
(
e−rHT (SHT

− K)+|F0

)
.

Therefore, conditioning on HT , we obtain

CH (S,K, T , σ ) =
∫ ∞

0
C (S,K, x, σ ) h�(x, T )dx. (27)

Here, h�(x, T ) is the PDF of HT for the subordinator with Lévy exponent � and
C(S,K, T , σ ) is given by (23).

If we note that h�(x, T ) is PDF of IGG process for the considered model (10),
then this ends the proof of formula (25).

Remark 1. The presented option pricing subdiffusive model with IG(δ, γ ) subor-
dinator has an interesting interpretation of its parameters in light of the market price
of risk. Thanks to the theorem about the incompleteness of the subdiffusive market,
the existence of a market price of duration risk naturally arises (see [24]). Once St is
calibrated to liquid market prices, the market price of duration risk will be reflected
in the martingale density parameters, and these same features will be thus reflected
in the (risk-adjusted) frequency and duration of trade pauses incorporated in hitting
time Ht .

Since IG subordinator with parameters δ and γ can be considered as tempered
stable Lévy subordinator TS(1/2, γ 2, δ), we can refer to the paper [24], where the
market price of risk was explored for the class of tempered subdiffusive models. From
this paper, we can state that the parameter γ 2 expresses belief in the speed at which
the granular price evolution of the asset will revert to a fully “liquid” state, which
is well approximated by a standard Lévy-driven diffusion. So, γ captures the risk
of latency to liquidity, while absolute trade duration risk remains constant and is
defined by 1/2. Moreover, if γ = 0 we get a regime where prices exhibit maximum
staleness at all temporal scales. Therefore, IG models offer a unified framework in
which ultrashort-term option pricing accounts for the microstructural duration effect,
whereas options at typical maturities are priced according to the usual Lévy paradigm:
the cut-off between the two states is encoded in γ (see [24] for more details).

Remark 2. In the above equation (27) we can evaluate the subdiffusive call price
C(·) by computing the integral numerically. An alternative consists of calculating
the price by Monte Carlo simulations. First, one simulates the trajectories for the
inverse subordinator on the interval [0, T ] by the approximation scheme (13). Then,
one obtains the fair price as an estimation of the expected value for simulated prices
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where the inverse subordinator stands for calendar time T in (27)

CH (S,K, T , r, σ ) = 〈C(S,K,HT , σ )〉 = 1

n

n∑
i=1

C(S,K,H
(i)
T , σ ), (28)

where C(S,K, T , σ ) is taken from the Black–Scholes option pricing formula (23).

It is worth noticing, that the application of the Monte Carlo method for option
pricing in subdiffusive models can be seen in the papers [16, 17] for α-stable subor-
dinator.

The second approach to option pricing in the considered model is much more
interesting and based on a fractional version of what is called Dupire’s equation.
Dupire has established a forward partial differential equation for call options with lo-
cal volatility. The fractional Dupire’s equation was proposed by [7] and it is integro-
differential equation in partial derivatives. (PIDE). This equation was presented in a
very general form and valid for all invertible Lévy subordinators. In the PIDE the
derivative with respect to time was replaced by a convolution-type derivative, called
the Dzerbayshan–Caputo (D-C) derivative. D-C derivative is a kind of fractional
derivative, which is more advantageous than its classical counterparts due to cap-
turing the past history. The Dzerbayshan–Caputo derivative depends upon the chosen
kind of subordinator and its Lévy exponent �(.), which is often called the Bernstein
function.

The next proposition is the application of this PIDE to B-S subdiffusion with IG
subordinators.

Proposition 3. The European call option price CH (T , k) = CH (S,K, T , σ ) for
a time-changed version of the B-S model with IG subordinator is a solution of a
fractional PIDE equation

∫ T

0
δ

∂

∂t
CH (T − s, k)

⎛
⎝γ (�

(
γ
√

s
) − 1) + e− sγ 2

2√
2πs

⎞
⎠ ds

= − r

2

∂

∂k
CH (T , k) + σ 2

4

∂2

∂k2 CH (T , k),

with the initial condition CH (0,K) = (SH0 − K)+, and k = ln K . The European
put option price is a solution of the same fractional PIDE equation but with initial
condition PH (0,K) = (K − PH0)

+.

Proof. In [7], a fractional PIDE equation for option pricing was presented in the
fractional jump-diffusion setting. In the Black and Scholes (B-S) regime, when the
Brownian volatility is constant and there are no jumps, the fractional Dupire equation
has the form

�DCH (T , k) = −r
∂

∂k
CH (T , k) + σ 2

2

∂2

∂k2 CH (T , k), (29)

where �Du(t) is the convolution-type derivative, called the Dzerbayshan–Caputo
(D-C) derivative. The generalized D-C derivative according to the function � is de-
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fined as (see, for example, [23])

�Du(t) = b
d

dt
u(t) +

∫ t

0

∂

∂t
u(t − s)ν(s)ds. (30)

The function � is the Lévy exponent for a given subordinator Gt , and we use its
Lévy–Khintchine representation

�(x) =
∫ +∞

0
(1 − e−sz)ν̃(dz),

where ν̃ is the Lévy measure for this subordinator.
For IG Lévy subordinator the Lévy measure ν̃(s) is defined by (7). The integral

kernel ν(s) is the integral of ν̃ over (s,∞):

ν(s) =
∫ +∞

s

δ√
2πx3

e

(
− γ 2x

2

)
dx = δγ

2
√

π

∫ +∞
sγ 2

2

1√
z3

e−zdz = δγ

2
√

π
�(−1/2,

sγ 2

2
),

where �(a, b) is the upper incomplete Gamma function. If we use the fact that �(a +
1, b) = a�(a, b) + bae−b and expression for �(1/2, b), then D-C derivative (30) for
IG subordinator can be written as

�Du(t) = δγ

∫ t

0

∂

∂t
u(t − s)

⎛
⎝erf

(
γ
√

2s

2

)
− 1 + 2e− sγ 2

2

γ
√

2πs

⎞
⎠ ds,

where erf (.) is the error function, which can be expressed in terms of the standard
normal cumulative distribution function �(·):

�Du(t) = 2δ

∫ t

0

∂

∂t
u(t − s)

⎛
⎝γ (� (γ s) − 1) + e− sγ 2

2√
2πs

⎞
⎠ ds. (31)

Thus, if we substitute (31) in (29), the proposition follows.

We can notice that the derivative we obtain is a tempered D-C derivative (see
[19, 20]). In general, these kinds of convolution operators were introduced in [12]
and then further explored in [23, 1] and [5]. To solve (29), we need to extend a finite
difference approach explored in [6] to the fractional kind of Dupire equation with IG
subordinator.

4 Numerical illustration

We illustrate the call option pricing for the subdiffusive IIG market.
We choose Airbnb, Inc. Class A Common Stock listed on the NASDAQ stock

exchange and use their daily returns during the last two years for model calibration.
All the prices and relative data we take on 24 June 2022. We fixed the strike price as
100 and observed the options prices with time to maturity ranging from the 1st of July



Subdiffusive option price model with Inverse Gaussian subordinator 149

Fig. 4. Simulated prices for the diffusive and subdiffusive B-S models

Table 1. Call option prices for strike price K = 100 and varying times of maturity

1 Jul 8 Jul 15 Jul 22 Jul 29 Jul 19 Aug 16 Sep 21 Oct 16 Dec 20 Jan
Market 5.60 6.88 8.10 9.25 9.95 12.75 14.72 16.15 19.50 21.30
B-S diff 6.02 7.47 8.65 9.70 10.64 13.09 15.83 18.77 22.83 25.08
B-S subdiff 7.40 8.37 9.51 9.91 11.32 12.72 14.69 15.61 18.11 18.91

2022 to the 20th of January 2023. Market parameters are: S0 = 103.51, K = 100,
r = 0.168, μ = −0.0015.

To simplify the calculations, we put parameters γ = δ = 1 because this assump-
tion allows getting the desired result regarding the asymptotic behavior of the hitting
time. In this case, when t → ∞, it follows that E(Ht) ∼ t , var(Ht ) ∼ t2 (11)–(12).
So, we estimate only the σ parameters based on the least squares technique. We ob-
tain that the value σ = 0.3 is the best to minimize the square error over the difference
between the real option quotes and the estimated ones.

We estimated the prices (28) of call options using Monte Carlo methods based on
the above-described simulation procedure for HT .

The results are presented in Table 1 and in graphic shape, where we compare the
B-S subdiffusive European call options with the classical one and with the market
price.

As we can see from the graphics in Figure 4, the diffusive option pricing model
shows better results in the short-term period, while the subdiffusive model is more
effective in the long-term perspective.

To compare numerical results we use absolute relative percentage (ARPE) and
root mean squared error (RMSE):

ARPE = |C(Tk) − Cmarket(Tk)|
Cmarket(Tk)

(32)
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Table 2. The ARP errors for B-S diffusion, B-S subdiffusion to the market price

1 Jul 8 Jul 15 Jul 22 Jul 29 Jul 19 Aug 16 Sep 21 Oct 16 Dec 20 Jan Mean
B-S 0.08 0.09 0.07 0.05 0.07 0.03 0.08 0.16 0.17 0.18 0.10
B-S Subdiffusion 0.32 0.22 0.17 0.07 0.14 0.00 0.00 0.03 0.07 0.11 0.11

Table 3. The RMS errors for diffusion and subdiffusion regarding the market price

1 Jul – 29 Jul 19 Aug – 20 Jan Overall
B-S 0.07 0.14 0.11
B-S Subdiffusion 0.20 0.06 0.15

RMSE =
√

1

n
�n

i=1

(C(Ti) − Cmarket(Ti)

Cmarket(Ti)

)2
(33)

It is worth mentioning, that in econometrics, the root mean squared error (RMSE)
(32) is a key criterion for model selection. The mean squared error indicates the mean
squared deviation between the forecast and the outcome. It sums the squared bias
and the variance of the estimator. The advantage of the ARPE (33) relative to the
RMSE measure is that it gives a percentage value of the pricing error. Therefore, if
we use both these errors it provides more insight into the economic significance of
performance differences.

Upon dividing the RMSE analysis into two distinct periods, a noteworthy obser-
vation emerges: during the initial short period, the diffusive model outperforms, while
in the subsequent long period, the subdiffusive model exhibits superior performance.

In the framework of the paper, we just illustrate the application of the studied
model and compare option pricing results in a situation when strike price K was
fixed (in the money), while time to maturity T was changing.

For detailed model performance we need to examine the ARP pricing errors of
the proposed option pricing models in more detail (see [15]) and consider the pricing
errors as a regression on the time to maturity T (in years), the moneyness of the
option, and a binary variable that is set to unity, if the option is a call and to zero
in the case of a put. This can indicate a level of explanatory value of moneyness,
maturity, and the put-call dummy in the model.

However, this model performance and application of a finite difference approach
for solving the fractional Dupire equation is a future work beyond the scope of the
present paper.

5 Conclusion

The paper developed a subdiffusive model with the following features of stock re-
turns, which are quite well documented in the financial and econometric literature:
(i) the stochastic processes have continuous paths with motionless periods of time;
(ii) the returns processes are uncorrelated; (iii) dependence is presented in squared
returns; (iv) the hitting time is defined by the inverse to IG subordinator which is not
infinitely divisible. For the model, two option pricing techniques were discussed, a
procedure for evaluating value-at-risk was proposed. The results of comparing the
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studied model with the classical one show that the classical B-S model demonstrates
better results in the short-term period, while the subdiffusive model is more effective
in the long-term perspective.

Thanks to the proposed approaches, the investor gets tools that allow him to take
into account the market’s illiquidity.
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