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Abstract The mixed model with polynomial drift of the form X(t) = θP(t) + αW(t) +
σBn

H
(t) is studied, where Bn

H
is the nth-order fractional Brownian motion with Hurst index

H ∈ (n − 1, n) and n ≥ 2, independent of the Wiener process W . The polynomial function
P is known, with degree d(P) ∈ [1, n). Based on discrete observations and using the ergodic
theorem estimates of H , α2 and σ 2 are given. Finally, a continuous time maximum likelihood
estimator of θ is provided. Both strong consistency and asymptotic normality of the proposed
estimators are established.

Keywords nth-order fractional Brownian motion, maximum likelihood estimator,
ergodicity, consistency, asymptotic normality
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1 Introduction

Since the introduction of nth-order fractional Brownian motions (n-fBm’s) in [26],
less attention is devoted to them from the statistical point of view. Only a few papers
tackled the problem of estimation for models driven by n-fBm’s, like estimating the
Hurst parameter H ∈ (n − 1, n), n ∈ Z+, [26] or estimating the drift with possibly
other diffusion parameters [5, 10, 11]. The importance of n-fBm’s lies in themselves
as an extension of the fractional Brownian motion. They can capture a wide class
of 1/f δ-nonstationary signals with the range δ ∈ (1,∞), and their smoothness is
controlled by the order n. As self-similar processes they arise in image processing
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for modeling texture having multiscale patterns such as natural scenes [17, 25], bone
texture radiographs [21], or rough surfaces [33] and in Nile River data [3, p. 84]. For
other new application areas of n-fBm’s, we refer the reader to [14, 15]. For theoretical
analysis of the n-fBm, we refer to [9, 10, 16, 30]. Recently, some extensions of the
n-fBm are proposed and studied in [9, 10]. In the present work, we consider the
continuous time model

X(t) = θP(t) + αW(t) + σBn
H (t), t ≥ 0, (1)

where W is a Wiener process independent of the n-fBm Bn
H with the known order

n ≥ 2 and unknown Hurst parameter H ∈ (n − 1, n). We assume that P is a known
polynomial function of degree d(P) ∈ [1, n), thus the results we provide here can
be viewed as complementary to those in [11]. Clearly, the approach of [11] used to
estimate θ and σ relies on the crucial condition d(P) ≥ n which is violated here.
Therefore it is not applicable. Instead, we apply the method of moments and ergodic
theorem to estimate α2, σ 2 and H . Finally, we follow [4, 23] to estimate the drift
parameter θ .

The model (1) is one of the class of mixed models that have gained much atten-
tion from many researchers. The first initiative was taken by Cheridito [6]. In his work
the so-called mixed fBm (linear combination of two independent Wiener processes
and fBm) was introduced, and shown to be a good tool to describe the fluctuations
of financial assets in the presence of both arbitrage-free and long-range dependence.
These processes do not exhibit the self-similarity property, but instead the so-called
mixed self-similarity arises. It was shown in [6] that the mixed fBm is equivalent
to a Wiener process if and only if H ∈ (3/4, 1] ∪ {1/2}. We think this may be re-
strictive for the range of Hurst index H . Instead, we suggest the use of the nth-order
mixed fBm shown to be equivalent to a Wiener process [9, Theorem 2.2] with a wide
range of H . The statistical study for mixtures of fBm’s has attracted many researchers
(e.g., [1, 7, 8, 18, 32, 34] among others). The procedures of estimation used in these
references rely on one of the following methods: least squares method, mixed power-
variations, and maximum likelihood approach which may be combined with some
numerical optimization methods. In [18, 27, 28], the authors used the ergodic theorem
to estimate all the parameters at once by the generalized method of moments. This
approach seems very practical, and one can carefully adapt these procedures to solve
the problem of estimation for the more general model: X(t) = θt +∑p

k=1 αkB
k
Hk

,

t ≥ 0, where Bk
Hk

, k = 1, 2, . . . , p, are independent fBm’s with different Hurst pa-
rameters.

The rest of the paper is organized as follows. In Section 2 we present basic prop-
erties of the n-fBm. Section 3 is devoted to our main results. Namely, we discuss
the asymptotic behavior of the estimators of H , α2 and σ 2 in Subsection 3.1, while
Subsection 3.2 is devoted to examine the estimator of θ . In Section 4 we gather our
concluding remarks on the performance of the proposed estimators. Finally, some
auxiliary results with their proofs are relegated to Appendix A. On a stochastic basis
(�,F , (F)t ,P) we are concerned with convergence in law and almost surely, that

are denoted as
L−→ and

P−a.s−→ , respectively. If ξ , ζ are two random variables, then
Eθ (ξ), Varθ (ξ), Covθ (ξ, ζ ) and ξ �θ ζ will stand for the mean, the variance, the
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covariance and equality in law under Pθ , but if P is the probability of interest we
omit θ . We systematically use the notations a ∧ b := min(a, b), a ∨ b := max(a, b),
(a)+ = max(a, 0) for any a, b ∈ R, FX

t denotes the natural filtration of the process
X, while the transpose of a matrix M is denoted by M ′. When taking increments of a
function g(t) at t = t0, we simplify notations by setting 	hg(t0) = 	hg(t)|t=t0 .

2 nth-order fractional Brownian motion

The n-fBm (hereafter Bn
H (t), H ∈ (n − 1, n), n ≥ 1 is integer) was first introduced

in [26]. It is formally defined as a zero-mean Gaussian process starting at zero with
the integral representation

Bn
H (t) = 1

�(H + 1/2)

∫ 0

−∞

⎡⎣(t − s)H−1/2−
n−1∑
j=0

(
H − 1/2

j

)
(−s)H−1/2−j tj

⎤⎦dB(s)

+ 1

�(H + 1/2)

∫ t

0
(t − s)H−1/2dB(s), for all t ≥ 0, (2)

where B(t) is a two-sided standard Brownian motion, �(x) denotes the gamma func-
tion and (

α

j

)
= α(α − 1) · · · (α − (j − 1))

j ! ,

(
α

0

)
= 1 (by convention).

We retrieve the fBm in the case n = 1, as equation (2) reduces to the integral represen-
tation of the fBm given in [22]. The process Bn

H (t) satisfies the following properties
for which the proofs can be found in [9, 10, 26].

(i) Bn
H (t) is self-similar with exponent H , i.e. for any c > 0, the processes Bn

H (ct)

and cH Bn
H (t) have the same finite dimensional distributions.

(ii) Bn
H (t) admits derivatives up to order n − 1 starting at zero and the (n − 1)th

derivative coincides with the fBm, that is, dn−1

dtn−1 (Bn
H (t)) = B1

H−(n−1)(t).

(iii) Bn
H (t) exhibits a long-range dependence with stationarity of increments achieved

at order n, which means that the increments 	
(k)
s Bn

H (t), s > 0, k ≤ n − 1, are

nonstationary and 	
(n)
s Bn

H (t) is a stationary process. Here 	
(k)
l g(x) denotes

the increments of order k of the function g(x) with the explicit form

	
(k)
l g(x) =

k∑
j=0

(−1)k−j

(
k

j

)
g(x + j l).

If g is a multivariate function, then we distinguish the increments with respect
to variables as 	

(k)
l,xj

g(x1, . . . , xm), j = 1, . . . , m. For a definition and detailed
discussion on the long-range dependence, we refer the reader to [12, Subsec-
tion 2.2].
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(iv) The covariance function of the process Bn
H (t) is given by

GH,n(t, s)

=(−1)n
Cn

H

2

⎧⎨⎩|t − s|2H −
n−1∑
j=0

(−1)j
(

2H

j

)[(
t

s

)j

|s|2H +
(

s

t

)j

|t |2H

]⎫⎬⎭,

(3)

where Cn
H is a nonnegative constant defined recursively by C1

H = 1/(�(2H +
1) sin(πH)) and for n ≥ 2

Cn
H = C1

H−(n−1)

(2H)(2H − 1) · · · (2H − (2n − 3))
(4)

= 1

�(2H + 1)| sin(πH)| . (5)

In particular,

Var
(
Bn

H (t)
) = Cn

H

(
2H − 1
n − 1

)
|t |2H . (6)

(v) For any n ≥ 2 the process Bn
H (t) is a semimartingale with finite variation.

(vi) Bn
H (t) is only a Markov process in the case n = 1 and H = 1/2.

(vii) Bn
H (t) can be extended to an α-order fBm Uα

H (t) (see [10]) defined as

Uα
H (t) = 1

�(α + 1)

∫ t

0
(t − s)αdBH (s), H ∈ (0, 1), α ∈ (−1,∞).

whenever this integral exists. Here BH denotes a one-sided fBm. In the case
α = 0, we retrieve the fBm BH . If α = n − 1, then Uα

H (t) coincides with the
n-fBm with the Hurst parameter H ′ = H + (n − 1).

3 The main results

3.1 Estimating the noise parameters H , α2 and σ 2

Fix h, l > 0 and consider the process X defined by (1). After taking the increments
of order n we can get a stationary sequence Zk , k = 1, 2, . . .. In fact, we have

Zh(t) := 	
(n)
h X(t) = α	

(n−1)
h 	hW(t) + σ	

(n)
h Bn

H (t)

= α

n−1∑
j=0

d
(n−1)
j Yh,j (t) + σ	

(n)
h Bn

H (t), where

Yh,j (t) = W
(
t + h(j + 1)

)− W(t + hj) and

d
(n)
j = (−1)n−j

(
n

j

)
.
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Now, we define our sequence {Z(l)
k }k≥0 as Z

(l)
k = Zlh(t)|t=kh, k = 1, 2, . . .. This

sequence is stationary, and one can observe that Ylh,j (t), j = 0, 1, . . . , (n − 1), with

fixed t are independent, and independent of 	
(n)
lh Bn

H (t). Therefore,

E
[(

Z
(l)
0

)2] = α2
n−1∑
j=0

(
d

(n−1)
j

)2
E
∣∣W (lh(j + 1)

)− W(lhj)
∣∣2 + σ 2

E
∣∣	(n)

lh Bn
H (0)

∣∣2
= lhα2

n−1∑
j=0

(
d

(n−1)
j

)2+(lh)2H σ 2

⎡⎣(−1)n
Cn

H

2

n∑
j=−n

(−1)j
(

2n

n + j

)
|j |2H

⎤⎦
=: �l,n

(
H,α2, σ 2).

Let us introduce some statistics which will be essential for establishing the asymptotic
behavior of our estimators. For fixed h > 0 and l = 1, 2, 4 we define

Jl,N = 1

N

N−1∑
k=0

( n∑
j=0

d
(n)
j X

(
h(k + lj )

))2

. (7)

Lemma 1. For a fixed h, l > 0 we have

Jl,N
P-a.s.−→ �l,n

(
H,α2, σ 2), as N → ∞.

Proof. The statistic Jl,N defined in (7) can be rewritten as Jl,N = 1
N

∑N−1
k=0 (Z

(l)
k )2.

If {Z(l)
k }k≥0 is ergodic, then Lemma 1 follows immediately. Since {Z(l)

k }k≥0 is a cen-
tered stationary Gaussian sequence, it suffices to show that its autocovariance function
vanishes as the time lag tends to infinity. Indeed, we have

E
(
Z

(l)
0 Z

(l)
k

)
= E

⎡⎣(α

n−1∑
j=0

d
(n−1)
j Ylh,j (0) + σ	

(n)
lh Bn

H (0)

)

×
(

α

n−1∑
j=0

d
(n−1)
j Ylh,j (kh) + σ	

(n)
lh Bn

H (kh)

)⎤⎦
= α2

n−1∑
r1,r2=0

d(n−1)
r1

d(n−1)
r2

E
(
Ylh,r1(0)Ylh,r2(kh)

)+ σ 2
E
(
	

(n)
lh Bn

H (0)	
(n)
lh Bn

H (kh)
)

= hα2
n−1∑

r1,r2=0

d(n−1)
r1

d(n−1)
r2

{(
l ∧ (k + l(r2 − r1) + l

))
+−(l ∧ (k + l(r2 − r1)

))
+
}

+ σ 2G
(n)
H,n(kh)

∼ σ 2DH l2nh2H k2H−2n −→ 0, as k ↑ ∞ (because H ∈ (n − 1, n)), (8)

where DH is some nonnegative constant independent of k. Here G
(n)
H,n(τ ) denotes

the autocovariance function of 	
(n)
lh Bn

H with time lag τ . Formula (8) is justified by
equations (26)–(29) in [26].
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Theorem 1. The statistic ̂ = (Ĥ , α̂2, σ̂ 2) defined by

Ĥ = 1

2
log+

2

(
J4,N − 2J2,N

J2,N − 2J1,N

)
, (9)

α̂2 = J2,N − 22Ĥ J1,N

h(2 − 22Ĥ )
∑n−1

j=0(d
(n−1)
j )2

, (10)

σ̂ 2 = 2(−1)n�(2Ĥ + 1)| sin(πĤ )|(J2,N − 2J1,N )

h2Ĥ (22Ĥ − 2)
∑n

j=−n(−1)j
( 2n

n+j

)|j |2Ĥ
(11)

is a strongly consistent estimator of  = (H, α2, σ 2), as N → ∞, where{
log+

2 (x) = log2(x), if x > 0,

log+
2 (x) = 0, if x ≤ 0.

Proof. The strong consistency follows readily by Lemma 1 combined with the con-
tinuous mapping theorem. Let us now justify the construction of our estimators (9)–
(11). According to Lemma 1 we have the following almost sure convergences, as
N → ∞, ⎧⎪⎨⎪⎩

J1,N −→ �1,n(H, α2, σ 2) = hα2V + h2H σ 2UH ,

J2,N −→ �2,n(H, α2, σ 2) = 2hα2V + 22H h2H σ 2UH ,

J4,N −→ �4,n(H, α2, σ 2) = 4hα2V + 42H h2H σ 2UH ,

(12)

where V = ∑n−1
j=0(d

(n−1)
j )2 and UH = (−1)n

Cn
H

2

∑n
j=−n(−1)j

( 2n
n+j

)|j |2H . It is not
hard to see that {

J4,N − 2J2,N −→ 22H (22H − 2)h2H σ 2UH ,

J2,N − 2J1,N −→ (22H − 2)h2H σ 2UH ,

which in turn implies (J4,N −2J2,N )/(J2,N −2J1,N ) −→ 22H , as N → ∞. It is then
natural to define Ĥ by (9). Substituting H by Ĥ in (12) and using similar procedures
one can justify (10)–(11).

Remark 1. The estimators given in (10)–(11) depend on Ĥ . As a result, our estima-
tors should be computed in the following order: Ĥ , α̂2 and σ̂ 2.

The following notations are needed to establish the asymptotic normality of the
estimator ̂ = (Ĥ , α̂2, σ̂ 2)′ :

 = (H,α2, σ 2)′, �(·) = (�1,n(·),�2,n(·),�4,n(·)
)′
, (13)

�l,n

(
H,α2, σ 2) = lα2V + l2H σ 2UH , V = h

n−1∑
j=0

(
d

(n−1)
j

)2
, (14)

UH = (−1)nh2H fH

2�(2H + 1)| sin(πH)| , fH =
n∑

j=−n

(−1)j
(

2n

n + j

)
|j |2H . (15)
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Theorem 2. Consider the vector JN = (J1,N , J2,N , J4,N )′, where Jl,N is defined
by (7). Then for any H ∈ (n − 1, n − 1/4) we have

√
N
(
JN − �()

) L−→ N (0, �), as N → ∞, (16)

where

(�)i,j = 2Cov2(	(n)

2i−1h
X(0),	

(n)

2j−1h
X(0)

)
+ 4

∞∑
k=1

Cov2(	(n)

2i−1h
X(0),	

(n)

2j−1h
X(kh)

)
, for all 1 ≤ i, j ≤ 3. (17)

Proof. First, we recall that Jl,N = 1
N

∑N−1
k=0 (Z

(l)
k )2, Z

(l)
k = 	

(n)
lh X(kh). Let λ =

(λ1, λ2, λ3) ∈ R3 and set FN(λ) =∑3
j=1 λj {

√
N(J2j−1,N − �2j−1,n())}. Straight-

forward computations lead to

FN(λ) =
3∑

j=1

λj

{√
N

(
1

N

N−1∑
k=0

(
Z

(2j−1)
k

)2 − �2j−1,n()

)}

= 1√
N

N−1∑
k=0

3∑
j=1

λj

{(
Z

(2j−1)
k

)2 − E
(
Z

(2j−1)
k

)2}
=: 1√

N

N−1∑
k=0

{
f (Zk) − Ef (Zk)

}
, Zk = (Z(1)

k , Z
(2)
k , Z

(4)
k

)
,

where f (x, y, z) = λ1x
2 + λ2y

2 + λ3z
2. According to the Cramér–Wold device, the

vector
√

N(JN − �()) is asymptotically normal if and only if FN(λ) is asymp-
totically normal for each λ ∈ R3. Since f is of Hermite rank 2 (see Lemma 3 in
the Appendix), and because of stationarity of the sequence {Zk}∞k=0, we need only to
examine the asymptotics of the covariance functions

Ri,j (k) := E
(
Z(2i−1)

m Z
(2j−1)
m+k

) = E
(
Z

(2i−1)
0 Z

(2j−1)
k

)
, 1 ≤ i, j ≤ 3.

In fact, we shall prove that
∑∞

k=−∞ Ri,j (k)2 < ∞ for each i, j . Set l = 2i−1,
p = 2j−1. We have

Ri,j (k)

= E
(
	

(n)
lh X(0)	

(n)
phX(kh)

)
= α2

n−1∑
r1r2=0

d(n−1)
r1

d(n−1)
r2

E
(
Y

(n)
lh,r1

(0)Y
(n)
ph,r2

(kh)
)+ σ 2

E
(
	

(n)
lh Bn

H (0)	
(n)
phBn

H (kh)
)

(18)

= hα2
n−1∑

r1r2=0

d(n−1)
r1

d(n−1)
r2

{(
l ∧ (k + pr2 − lr1 + p)

)
+ − (l ∧ (k + pr2 − lr1)

)
+
}

(19)
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+ σ 2
E
(
	

(n)
lh Bn

H (0)	
(n)
phBn

H (kh)
)

∼ C(n)
H (l, h)h2H−2nk2H−2n, as k → ∞. (20)

In (18)–(19) we used the stationarity of increments of W and the fact that Y
(n)
lh,r are

independent of Bn
H , while (20) is justified by Lemma 4 in the Appendix. It follows

that
∞∑

k=1

Ri,j (k)2 ∼ C(n)
H (l, h)2h4H−4n

∞∑
k=1

k4H−4n < ∞, (21)

provided that H < n − 1/4. Similarly, we have
∑−1

k=−∞ Ri,j (k)2 < ∞. Hence, by

[2, Theorem 4] one has FN(λ)
L−→ N (0, σ 2(λ)), as N → ∞, with

σ 2(λ) = Var
(
f (Z0)

)+ 2
∞∑

k=1

Cov
(
f (Z0) , f (Zk)

)
= Var

{ 3∑
j=1

λj

(
Z

(2j−1)
0

)2}+2
∞∑

k=1

Cov

{ 3∑
i=1

λi

(
Z

(2i−1)
0

)2
,

3∑
j=1

λj

(
Z

(2j−1)
k

)2}

=
3∑

i,j=1

λiλj

{
E
((

Z
(2i−1)
0

)2(
Z

(2j−1)
0

)2)− E
(
Z

(2i−1)
0

)2
E
(
Z

(2j−1)
0

)2}
+ 2

∞∑
k=1

3∑
i,j=1

λiλj

{
E
((

Z
(2i−1)
0

)2(
Z

(2j−1)
k

)2)− E
(
Z

(2i−1)
0

)2
E
(
Z

(2j−1)
k

)2}
= 2

3∑
i,j=1

λiλjCov2(Z(2i−1)
0 , Z

(2j−1)
0

)+4
∞∑

k=1

3∑
i,j=1

λiλjCov2(Z(2i−1)
0 , Z

(2j−1)
k

)
=

3∑
i,j=1

λiλj

[
2Cov2(Z(2i−1)

0 , Z
(2j−1)
0

)+ 4
∞∑

k=1

Cov2(Z(2i−1)
0 , Z

(2j−1)
k

)]
= λ′�λ,

where � is defined by (17). In the fourth equality above we used the fact that for any
centered Gaussian vector (ξ, ζ ), we have Cov(ξ2, ζ 2) = 2Cov2(ξ, ζ ). It is not hard
to see that

Eeiλ′{√N(JN−�())} = EeiFN (λ) −→ e− 1
2 λ′�λ, i = √−1,

which completes the proof of (16).

Now, we are ready to apply the Delta method with the use of (16) to get the joint
asymptotic normality of the estimators Ĥ , α̂2 and σ̂ 2.

Remark 2. Note that in both Theorem 2 and Theorem 3 we restrict ourselves to
the range H ∈ (n − 1, n − 1/4) so that the series (21) converges. This is a crucial
condition needed in establishing the asymptotic normality.
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Theorem 3. Consider ̂, the estimator of  = (H, α2, σ 2)′ defined by (9)–(11), and

let H ∈ (n − 1, n − 1/4). Then we have
√

N(̂ − )
L−→ N (0, (D−1

� )�(D−1
� )′)

where D−1
� denotes the inverse of the Jacobian matrix

D� =
⎛⎝∂H �1,n() ∂α2�1,n() ∂σ 2�1,n()

∂H �2,n() ∂α2�2,n() ∂σ 2�2,n()

∂H �4,n() ∂α2�4,n() ∂σ 2�4,n()

⎞⎠
=
⎛⎝ σ 2U ′

H V UH

σ 222H (2 log(2)UH + U ′
H ) 2V 22H UH

σ 242H (2 log(4)UH + U ′
H ) 4V 42H UH

⎞⎠ ,

where U ′
H = ∂H UH with V , UH and �l,n(), l > 0, being defined by (13)–(15).

Proof. First, observe that ̂ is constructed by solving the equation JN = �(̂),
that is, ̂ = �−1(JN). To get the asymptotic normality of ̂, it suffices to apply
the Delta method to JN with the function �−1. If D�−1 , the Jacobian matrix of

�−1, exists then by [31, Theorem 3.1] we have
√

N(̂ − )
L−→ D�−1N (0, �) =

N (0, (D−1
� )�(D−1

� )′). Note that D�−1 exists if D� is invertible. Evaluating the de-
terminant of D� gives

|D� | =
∣∣∣∣∣∣

σ 2U ′
H V UH

σ 222H (2 log(2)UH + U ′
H ) 2V 22H UH

σ 242H (2 log(4)UH + U ′
H ) 4V 42H UH

∣∣∣∣∣∣
= V σ 2UH

∣∣∣∣∣∣
U ′

H 1 1
22H (2 log(2)UH + U ′

H ) 2 22H

42H (4 log(2)UH + U ′
H ) 4 42H

∣∣∣∣∣∣
= V σ 2UH

∣∣∣∣∣∣
U ′

H 1 1
log(2)22H+1UH + (22H − 2)U ′

H 0 (22H − 2)

log(2)24H+2UH + (24H − 4)U ′
H 0 (24H − 4)

∣∣∣∣∣∣
= −V σ 2UH

(
22H − 2

) ∣∣∣∣log(2)22H+1UH + (22H − 2)U ′
H 1

log(2)24H+2UH + (24H − 4)U ′
H (22H + 2)

∣∣∣∣
= −V σ 2UH

(
22H − 2

){
log(2)22H+1(22H + 2

)
UH − log(2)24H+2UH

}
= V σ 2U2

H log(2)22H+1(22H − 2
)2

> 0.

Hence, D� is invertible and the proof is complete.

3.2 Estimating the drift parameter θ

The approach used in Subsection 3.1 to estimate H , α2 and σ 2 is suitable for the
model (1) with no restrictions on d(P), the degree of P . Albeit, the drift parameter
θ should be estimated differently, because taking higher increments cancels out the
drift term. In the case where d(P) ≥ n, we may readily estimate θ by θ̃t := X(t)

P(t)
,

which satisfies the usual properties. But if d(P) < n this estimator becomes incon-
sistent under P. Assume that the parameters H , α2 and σ 2 are known (or previously
estimated) with α > 0, and let P0 be the probability measure under which W is a
Wiener process independent of Bn

H . Then the following results are obtained.
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Proposition 1. The maximum likelihood estimator (MLE) of θ is given by

θ̂T = α
MT

〈M〉T , (22)

where Mt = E0(
∫ t

0 P ′(s)dW(s) | FX
t ) is a Gaussian martingale with quadratic

variation 〈M〉t = E0(M
2
t ).

Proof. We proceed as in [4, 23] and construct the right likelihood function. In the
first stage we rewrite (1) as X(t) = αW(t) + σBn

H (t) with W(t) = W(t) − θ
α
P(t),

where W is a Wiener process under Pθ . Here, Pθ is the probability measure under
which W and Bn

H are independent. Clearly, Pθ � P0, where P0 corresponds to the
case when θ = 0. The corresponding Radon–Nikodym derivative is given by

dPθ

dP0
= exp

(
θ

α

∫ T

0
P ′(s)dW(s) − θ2

2α2

∫ T

0
P ′(s)2ds

)
and is justified by the Girsanov theorem. But it is not the likelihood of (1) unless
FW

t = FX
t , otherwise, we shall consider its conditional expectation

LT (X, θ) = E0

(
dPθ

dP0
| FX

T

)
= E0

{
exp

(
θ

α

∫ T

0
P ′(s)dW(s) − θ2

2α2

∫ T

0
P ′(s)2ds

)
| FX

T

}
= E0

{
exp

(
θ

α

∫ T

0
P ′(s)dW(s) − θ2

2α2

∫ T

0
P ′(s)2ds

)
| FX

T

}
(23)

= exp

(
− θ2

2α2 〈ζ 〉T
)
E0

{
exp

(
θ

α
ζT

)
| FX

T

}
= exp

(
θ

α
MT − θ2

2α2

(〈ζ 〉T − VT

))
, (24)

where ζt = ∫ t

0 P ′(s)dW(s) with its quadratic variation 〈ζ 〉t , MT = E0(ζT | FX
T )

and VT = E0((MT − ζT )2 | FX
T ). In (23) we used the fact that W coincides with W

under P0, while (24) is due to the Gaussian nature of ζT given FX
t with mean MT and

variance VT . It is worth to mention that LT (X, θ) is the Radon–Nikodym derivative
of μθ with respect to μ0, where μθ is the probability induced by X on the space of
continuous functions with the usual supremum topology under probability Pθ .

Since M is an FX
t -measurable Gaussian martingale, then its quadratic variation

〈M〉 is deterministic and one has

〈M〉t = E0
(
M2

t

) = E0
(
MtE0

(
ζt | FX

t

)) = E0(Mtζt )

= 1

2
E0
{
M2

t + ζ 2
t − (Mt − ζt )

2}
= E0

(
ζ 2
t

)− E0(Mt − ζt )
2

= 〈ζ 〉t − E0(Mt − ζt )
2. (25)



Statistical inference for nth-order mixed fractional Brownian motion 11

As a result, we have the martingale property:

E0
{
M2

t − [〈ζ 〉t − E0(Mt − ζt )
2] | FX

s

} = M2
s − [〈ζ 〉s − E0(Ms − ζs)

2], ∀t > s.

(26)
On the other hand, for all t > s

E0
{
M2

t − [〈ζ 〉t − Vt

] | FX
s

} = E0
{
E0
(
ζ 2
t − 〈ζ 〉t | FX

t

) | FX
s

}
= E0

{
E0
(
ζ 2
t − 〈ζ 〉t | Fs

) | FX
s

}
,
(
FX

s ⊂ FX
t and FX

s ⊂ Fs

)
= E0

(
ζ 2
s − 〈ζ 〉s | FX

s

) = E0
(
ζ 2
s | FX

s

)− 〈ζ 〉s
= M2

s − [〈ζ 〉s + M2
s − E0

(
ζ 2
s | FX

s

)] = M2
s − [〈ζ 〉s − Vs

]
. (27)

We used Vt = E0(ζ
2
t | FX

t ) − M2
t in the first equality above, while the third equality

follows by the martingale property of (ζt ,Ft ). Combining (26)–(27) with (25) we can
assert that 〈M〉t = 〈ζ 〉t − E0(Mt − ζt )

2 = 〈ζ 〉t − Vt . Hence, (24) becomes

LT (X, θ) = exp

(
θ

α
MT − θ2

2α2 〈M〉T
)

.

This expression of the likelihood at hand allows us to define the MLE of θ as
θ̂T = α MT〈M〉T . Hence, the proof is complete.

Proposition 2. The estimator θ̂T defined by (22) can be rewritten as

θ̂T =
∫ T

0 K(T , s)dX(s)∫ T

0 K(T , s)P ′(s)ds
, (28)

where the kernel K(·, ·) is defined by K(T , s) = 1
T

gT ( s
T

), for all s ∈ [0, T ] with

gT (s) = T

α
P ′(T s) +

∑
j≥0

ajψj (s), for all s ∈ [0, T ], (29)

and aj = − σ 2T 2H γj

α(α2 + σ 2T 2H−1γj )

∫ 1

0
P ′(T u)ψj (u)du. (30)

Here (γj , ψj )
∞
j=0 denotes the system of eigenvalues and eigenvectors of the integral

operator with the kernel GH−1,n−1 defined by formula (3).

Proof. Under Pθ , the model (1) can be rewritten as X(t) = σ
∫ t

0 Bn−1
H−1(s)ds +∫ t

0 αdW(s), for all t ∈ [0, T ]. Set ζ T = ∫ T

0 P ′(s)dW(s). It is not hard to see that
(ζ T ,X(t)) forms a Gaussian system, thus we can assert that (e.g., [20, Lemma 10.1])
for each t ∈ [0, T ] there is a function s �→ K(t, s) defined on [0, t] such that

Eθ

(
ζ T | FX

t

) =
∫ t

0
K(t, s)dX(s), Pθ -a.s.

In particular,

MT = E0
(
ζT | FX

T

) =
∫ T

0
K(T , s)dX(s), P0-a.s. (31)
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Note that we used the fact that W = W under P0. We know also that

〈M〉T = E0
(
M2

T

) = E0(MT ζT )

= E0

{∫ T

0
P ′(s)dW(s)

(
α

∫ T

0
K(T , s)dW(s) + σ

∫ T

0
K(T , s)dBn

H (s)

)}
= α

∫ T

0
K(T , s)P ′(s)ds.

It follows that

θ̂T = α
MT

〈M〉T =
∫ T

0 K(T , s)dX(s)∫ T

0 K(T , s)P ′(s)ds
. (32)

To complete the proof we shall justify equations (29)–(30). First, observe that
under P0 we have

dX(t) = αdW(t) + σdBn
H (t)

= αdW(t) + σBn−1
H−1(t)dt.

Second, by definition MT must satisfy the equation E0(X(s)ζT ) = E0(X(s)MT ), for
all s ∈ [0, T ], which becomes, after some computations,

α

∫ s

0
P ′(u)du = α2

∫ s

0
K(T , u)du + σ 2

∫ T

0

∫ s

0
K(T , u)GH−1,n−1(u, v)dvdu.

Differentiating this equation with respect to the variable s yields

αP ′(s) = α2K(T , s) + σ 2
∫ T

0
K(T , u)GH−1,n−1(u, s)du

for all s ∈ [0, T ]. Set gT (s) = T K(T , T s). After the change of variables v = u/T

and substituting s by T s we get

ϕT (s) = gT (s) + λ2
∫ 1

0
gT (u)GT (s, u)du (λ = σ/α), (33)

GT (s, u) = T 2H−1GH−1,n−1(u, s), ϕT (s) = T

α
P ′(T s),

for all s ∈ [0, 1]. We will construct a solution gT (·) to this equation. As the ker-
nel GH−1,n−1 is continuous symmetric and positive on [0, 1] × [0, 1], it follows by
Mercer’s theorem (e.g., [13, p. 136]) that for all s, u ∈ [0, 1]

GT (s, u) = T 2H−1
∑
j≥0

γjψj (s)ψj (u),

with (γj , ψj )
∞
j=0 being the system of eigenvalues and eigenvectors of the integral

operator defined on L2([0, 1]) by

G(f )(t) :=
∫ 1

0
GH−1,n−1(t, s)f (s)ds,
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where (ψj )
∞
j=0 forms an orthonormal basis of L2([0, 1]) and {γj }∞j=0 ↓ 0. A solution

to (33) of the form y(s) = ϕT (s) +∑j≥0 ajψj (s) exists if and only if

∑
j≥0

ψj (s)

[
aj +λ2T 2H−1γj

(∫ 1

0
ϕT (u)ψj (u)du+

∑
l≥0

al

∫ 1

0
ψl(u)ψj (u)du

)]
= 0.

Identifying the coefficients we get, for each j ≥ 0,

aj = − λ2T 2H−1γj

1 + λ2T 2H−1γj

∫ 1

0
ϕT (u)ψj (u)du,

and the proof is then complete.

Theorem 4. The estimator θ̂T defined by (28)–(30) is unbiased with variance vanish-
ing at infinity, that is, Eθ (θ̂T ) = θ and Varθ (θ̂T ) −→ 0, as T → ∞. Furthermore,√∫ T

0
K(T , s)P ′(s)ds(θ̂T − θ) � N (0, α).

Proof. Taking expectations in both sides of (32) and observing that 〈M〉T is deter-
ministic we obtain

Eθ (θ̂T ) = Eθ

(
α

MT

〈M〉T
)

= α

〈M〉T E0
(
MT LT (X, θ)

)
= α

〈M〉T E0
(
MT e

θ
α
MT − θ2

2α2 〈M〉T )
= α

〈M〉T e
− θ2

2α2 〈M〉T
E0

(
α

d

dθ

(
e

θ
α
MT
))

= α2

〈M〉T e
− θ2

2α2 〈M〉T d

dθ

{
e

θ2

2α2 〈M〉T
E0
(
LT (X, θ)

)} = θ.

Similarly, we have

Eθ

(
θ̂2
T

) = α2

〈M〉2
T

E0
(
M2

T LT (X, θ)
)

= α2

〈M〉2
T

E0
(
M2

T e
θ
α
MT − θ2

2α2 〈M〉T )
= α2

〈M〉2
T

e
− θ2

2α2 〈M〉T
E0

(
α2 d2

dθ2

(
e

θ
α
MT
))

= α4

〈M〉2
T

e
− θ2

2α2 〈M〉T d2

dθ2

{
e

θ2

2α2 〈M〉T
E0
(
LT (X, θ)

)}
= α2

〈M〉T + θ2.
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Hence, Var(θ̂T ) = α2/〈M〉T and by Gaussianity of θ̂T the last statement follows.
There remains to show that 〈M〉T −→ ∞ as T → ∞. Let d be the degree of P . By
virtue of the self-similarity of W and the change of variables u = s/T one has

MT = E0
(
ζT | FX

T

) = E0

(∫ T

0
P ′(s)dW(s) | FX

T

)
= T 1/2

E0

(∫ 1

0
P ′(T u)dW(u) | FX

T

)

= T 1/2
d∑

j=1

(jaj )T
j−1

E0

(∫ 1

0
uj−1dW(u) | FX

T

)

=: T 1/2
d∑

j=1

(jaj )T
j−1Aj,T .

Let {Tk}∞k=1 ↑ ∞ be a sequence of nonnegative numbers and set ξk = T
1/2−d
k MTk

.
Clearly, FX∞ = σ (

⋃
t≥0 FX

t ) = σ (
⋃∞

k=1 FX
Tk

) and FX
T1

⊆ FX
T2

⊆ · · ·F . On the

other hand, E0|
∫ 1

0 uj−1dW(u)| ≤
√∫ 1

0 u2j−2du ≤ 1, for all j = 1, 2, . . . , d .
Therefore, for each j we have almost surely (e.g., [29, p. 510]) Aj,Tk

−→ Aj,∞
as k ↑ ∞. So we deduce that ξ2

k ∼ (dadAd,∞)2, as k ↑ ∞. One can readily verify
that supk≥1 E0(ξ

4
k ) < ∞, which guarantees the uniform integrability of {ξ2

k }k . Thus

(e.g., [29, Theorem 4]) T 1−2d
k 〈M〉Tk

= E0(ξ
2
k ) −→ E0(dadAd,∞)2. Finally, by the

arbitrariness of {Tk}k we conclude that 〈M〉T ∼ E0(dadAd,∞)2T 2d−1, as T → ∞
with d ∈ [1, n).

Corollary 1. For any γ > 1/(2d(P) − 1) the estimator θ̂Nγ is strongly consistent,
where d(P) is the degree of the polynomial function P .

Proof. While proving Theorem 4 we have shown that Eθ (θ̂T − θ)2 = α2/〈M〉T and
〈M〉T ∼ E0(dadAd,∞)2T 2d−1, as T → ∞, where

Ad,∞ = E0

(∫ 1

0
ud−1dW(u) | FX∞

)
and ad is the leading coefficient of the polynomial function P of degree d = d(P) ∈
[1, n). Let ε > 0 and set T = Nγ . We have∑

N≥1

Pθ

(|θ̂Nγ − θ | > ε
) ≤ ε−2

∑
N≥1

Eθ (θ̂Nγ − θ)2

≤
∑
N≥1

α2

ε2〈M〉Nγ
∼ C

∑
N≥1

Nγ(1−2d) < ∞,

provided that γ > 1/(2d − 1) and C is some nonnegative constant. By using the
Borel–Cantelli lemma we can assert that Corollary 1 is well established.
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4 Concluding remarks

In the present work an nth-order mixed fractional Brownian motion with polyno-
mial drift was studied. Based on discrete observations, we constructed estimators
(Ĥ , α̂2, σ̂ 2) of the noise parameters (H, α2, σ 2) and examined their asymptotic be-
havior (consistency and asymptotic normality) by taking higher order increments and
using the ergodic theorem. We stress that taking higher order increments cancels out
the drift. Thus, we estimated the drift parameter θ independently by using the maxi-
mum likelihood approach based on continuous obervations {X(t) : t ∈ [0, T ]}. Based
on limiting distributions results with the use of Prohorov’s theorem, the estimators of
α2 and θ (with T = N being the time horizon or number of observations) show the
same performance as those given in [11]. They have the rate of convergence of order
OP(N−1/2) and OP(N1/2−d(P)), respectively. Unlike [11] in which the estimator of
σ 2 has the rate of convergence of order OP(N1/2−H ), the rate of convergence es-
tablished here equals OP(N−1/2) and is of great importance when H ∈ (0, 1). The
limiting distributions provided in [11] are nonnormal (except for the estimator of α2),
while those given here are all normal. This would simplify the task of finding the
associated confidence intervals. An extension of this work would be to study a model
driven by an infinite mixture of higher order fBm’s (see [9]).

A Appendix

In this section we provide some auxiliary results needed to establish Theorem 2 and
Theorem 3. Lemma 2 is elementary, while Lemma 3 can be found in [24] or [19].
Let us recall the definition of the operator of increments 	·,·. Given a multivariate
function g : Rm −→ R we define its increments of order k with step h (with respect
to xj ) as

	
(k)
h,xj

g(x) =
k∑

r=0

(−1)k−r

(
k

r

)
g(x1, . . . , xj−1, xj + rh, xj+1, . . . , xm),

for all x = (x1, . . . , xm) and j = 1, 2, . . . , m. By convention 	
(0)
h,xj

= id (identity

application) and 	
(1)
h,xj

= 	h,xj
.

Lemma 2. The following statements hold true.

(i) The operator 	·,· is linear and commutes with the expectation.

(ii) For a given function g : R2 −→ R we have

	l,t	h,sg(t, s) = 	h,s	l,t g(t, s)

= 	−l,s	h,sg(t, s), if g(t, s) = G(t − s).

(iii) For any l, h ∈ R and j, p, q ∈ N with p + q > j we have 	
(p)
l,t 	

(q)
h,t (t

j ) = 0
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Definition 1. Let f : Rd −→ R be a function, and let ξ = (ξ (1), . . . , ξ (d)) be
a Gaussian vector such that f (ξ) has finite second moment. We define the Hermite
rank of f with respect to ξ as

rank(f ) := inf
{
τ : ∃ a polynomial P of degree τ with E

[(
f (ξ)−Ef (ξ)

)
P(ξ)

] �= 0
}
.

Lemma 3. Let q > −1/2, (λ1, . . . , λd) ∈ Rd and let ξ = (ξ (1), . . . , ξ (d)) be a
centered Gaussian vector. Then the function f : Rd −→ R defined by: f (ξ) =∑d

j=1 λj |ξ (j)|q is of Hermite rank 2.

Lemma 4. Let Bn
H be the n-fBm defined by (2). Then for s ≥ 0 fixed and l, h > 0 we

have

Cov
(
	

(n)
l Bn

H (t),	
(n)
h Bn

H (s)
) = C(n)

H (l, h)t2H−2n + o
(
t2H−2n

)
, as t ↑ ∞,

where C(n)
H (l, h) is a constant independent of t , s given as

C(n)
H (l, h) = (−1)n

(
2H
2n

)∑n
r,k=0(−1)r+k

(
n
r

)(
n
k

)
(kh − rl)2n

2�(2H + 1)| sin(πH)| .

Proof. Let t > s ≥ 0 and set κn = (−1)n
Cn

H

2 , cH,j = (−1)j
( 2H

j

)
. By using

Lemma 2 we obtain

Cov
(
	

(n)
l Bn

H (t),	
(n)
h Bn

H (s)
) = 	

(n)
l,t 	

(n)
h,sE

(
Bn

H (t), Bn
H (s)

)
= κn

{
	

(n)
l,t 	

(n)
h,s |t − s|2H −

n−1∑
j=0

cH,j

[
	

(n)
l,t 	

(n)
h,s

(
tj s2H−j

)+ 	
(n)
l,t 	

(n)
h,s

(
sj t2H−j

)]}

= κn

{
	

(n)
l,t 	

(n)
h,s |t − s|2H −

n−1∑
j=0

cH,j

[
	

(n)
l,t

(
tj
)
	

(n)
h,s

(
s2H−j

)+	
(n)
h,s

(
sj
)
	

(n)
l,t

(
t2H−j

)]}

= κn	
(n)
l,t 	

(n)
h,s |t − s|2H = κn	

(n)
l,t 	

(n)
h,s

(
t2H

(
1 − s

t

)2H)
= κn	

(n)
l,t 	

(n)
h,s

( ∞∑
k=0

(
2H

k

)
(−1)kskt2H−k

)

= κn

∞∑
k=0

(
2H

k

)
(−1)k	

(n)
−l,s	

(n)
h,s

(
skt2H−k

)
= κn

∞∑
k=0

(
2H

k

)
(−1)kt2H−k	

(n)
−l,s	

(n)
h,s

(
sk
)

= κn

∞∑
k=2n

(
2H

k

)
(−1)kt2H−k	

(n)
−l,s	

(n)
h,s

(
sk
)

= κn

(
2H

2n

)
t2H−2n	

(n)
−l,s	

(n)
h,s

(
s2n
)+ o

(
t2H−2n

)
, as t → ∞.

Finally, we substitute κn and 	
(n)
−l,s	

(n)
h,s(s

2n) by their values with the use of (5) to
complete the proof.
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