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Abstract We prove that a square-integrable set-indexed stochastic process is a set-indexed
Brownian motion if and only if its projection on all the strictly increasing continuous sequences
are one-parameter G-time-changed Brownian motions. In addition, we study the “sequence-
independent variation” property for group stationary-increment stochastic processes in general
and for a set-indexed Brownian motion in particular. We present some applications.
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1 Introduction

The set-indexed Brownian motion {XA : A ∈ A} is well defined and well studied (see
[6]). We will mention that the indexing collection A is a compact set collection on a
topological space T . The choice of the collection A is crucial: it must be sufficiently
rich in order to generate the Borel sets of T , but small enough to ensure the existence
of a continuous Gaussian process defined on A.

In this paper, we define a group action on the indexing collection A, and from
that we characterize the set-indexed Brownian motion by using the notion of an in-
creasing path introduced in [2]. The characterization of a set-indexed Brownian mo-
tion by group action (Theorem 1 in this article, which says that a square-integrable
set-indexed stochastic process is a set-indexed Brownian motion if and only if its
projection on all the strictly increasing continuous sequences are one-parameter G-
time-changed Brownian motions) is the key to most of the proofs in this article. It is
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of great importance since it allows us to “divide and conquer.” Therefore, many of the
proofs for a set-indexed Brownian motion can be recovered by reducing to a (clas-
sical) one-dimensional Brownian motion. The results that we have extended from
a classical Brownian motion to a set-indexed Brownian motion involve the follow-
ing issues: hitting time, maximum value, reflection principle, exiting from an inter-
val, time inversion, iterated logarithms, strong law of large numbers, unboundedness,
zero crossing, zero set, nondifferentiability, path-independent variation, martingale in
Brownian motion, and the like.

The frame of a set-indexed Brownian motion is not only a new step of general-
ization of a classical Brownian motion, but it proved a new look upon a Brownian
motion. In recent years, there have been many new results related to the dynami-
cal properties of random processes indexed by a class of sets. Set-indexed processes
have many potential areas of applications. For example: environment (increased oc-
currence of polluted wells in a rural area could indicate a geographic region that has
been subjected to industrial waste), astronomy (a cluster of black holes could be a re-
sult of an unobservable phenomenon affecting a region in space), quality control (an
increased rate of breakdowns in a certain type of equipment might follow the failure
of one or more components), population health (unusually frequent outbreaks of a
disease such as leukemia near a nuclear power plant could signal a region of possible
air or ground contamination), and the like.

Cairoli and Walsh [2] introduced the notion of path-independent variation (p.i.v)
for two-parameter processes. They proved (under some assumptions) that any strong
martingale has the path-independent variation property. We extend their results to
set-indexed strong martingales.

In the last section, we present some results concerning the compensators of a
set-indexed strong martingale and analyze the concept of path-independent varia-
tion in connection with independent increments in set-indexed process. We introduce
compensators and demonstrate that the path-independent variation property permits
a better understanding of the Doob–Meyer decomposition.

2 Preliminaries

We recall the definitions and notation from [6].

Definition 0. Let (T , τ ) be a nonvoid sigma-compact connected topological space.
A nonempty class A of compact connected subsets of T is called an indexing collec-
tion if it satisfies the following:

(1) ∅ ∈ A. In addition, there is an increasing sequence (Bn) of sets in A such that
T = ⋃∞

n=1B
◦
n .

(2) A is closed under arbitrary intersections, and if A,B ∈ A are nonempty, then
A ∩ B is nonempty. If (Ai) is an increasing sequence in A and if there exists n

such that Ai ⊆ Bn for every i, then
⋃

iAi ∈ A.

(3) σ(A) = B where B is the collection of Borel sets of T .
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Remarks. (a) Note that any collection of sets closed under intersections is a semilat-
tice with respect to the partial order of the inclusion.

(b) Definition 0 implies that a space T cannot be discrete and that A is at least a
continuum.

Examples. (a) The classical example is T = �2+ and A = A(�2+) = {[0, x] : x ∈
�2+} (This example can be extended to T = �d+ and A(�d+) = {[0, x] : x ∈ �d+},
which will give rise to a sort of 2d -sides process).

(b) The example (a) may be generalized as follows. Let T = �2+ and take A (or
A(Ls)) to be the class of compact lower sets, i.e. the class of compact subsets A of
T satisfying t ∈ A implies [0, t] ⊆ A.

Definition 1. Let (Ω, F, P ) be a complete probability space equipped with an A-
indexed filtration {FA : A ∈ A} that satisfies the following conditions:

(i) for all A ∈ A, we have FA ⊆ F , and FA contains the P -null sets.

(ii) for all A,B ∈ A, if A ⊆ B, then FA ⊆ FB .

(iii) F⋂
Ai

= ⋂
FAi

for any decreasing sequence {Ai} in A (for consistency, in what
follows, if T /∈ A, we define FT = F ).

We will need other classes of sets generated by A. The first is A(u), which is
the class of finite unions of sets in A. We remark that A(u) is itself a lattice with the
partial order induced by set inclusion. Let C consist of all the subsets of T of the form
C = A\B, A ∈ A, B ∈ A(u). If C ∈ C(u)\A (C(u) is the class of finite unions of
sets in C), then we denote

G∗
C =

∨
A∈A(u),A∩C=∅

FA.

In addition, let A′ be any finite subsemilattice of A closed under intersection. For
A ∈ A′, define the left neighborhood of A in A′ to be the set CA = A\⋃B∈A′,B⊂AB.
We note that

⋃
A∈A′A = ⋃

A∈A′CA and that the latter union is disjoint. The sets in
A′ can always be numbered in the following way: A0 = ∅′ (∅′ = ⋂

n

⋂
A∈An,A�=∅

A;
note that ∅′ �= ∅), and given A0, . . . , Ai−1, we choose Ai to be any set in A′ such
that A ⊂ Ai implies that A = Aj for some j = 1, . . . , i − 1. Any such numbering
A′ = {A0, . . . , Ak} will be called “consistent with the strong past” (i.e., if Ci is the
left neighborhood of Ai in A′, then Ci = ⋃i

j=0Aj\⋃i−1
j=0Aj and Aj ∩ Ci = ∅ for

all j = 0, . . . , i − 1, i = 1, 2, . . . , k).
Any A-indexed function that has a (finitely) additive extension to C will be called

additive (and is easily seen to be additive on C(u) as well). For stochastic processes,
we do not necessarily require that each sample path be additive, but the additivity will
be imposed in an almost sure sense:

Definition 2. A set-indexed stochastic process X = {XA : A ∈ A} is additive if
it has an (almost sure) additive extension to C: X∅ = 0, and if C,C1, C2 ∈ C
with C = C1 ∪ C2 and C1 ∩ C2 = ∅, then almost surely XC1 + XC2 = XC . In
particular, if C ∈ C and C = A\⋃n

i=1Ai , A,A1, . . . , An ∈ A, then almost surely
XC = XA − ∑n

i=1 XA∩Ai
+ ∑

i<j XA∩Ai∩Aj
− · · · + (−1)nXA∩⋂n

i=1Ai
.
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We shall always assume that our stochastic processes are additive. We note that
a process with an (almost sure) additive extension to C also has an (almost sure)
additive extension to C(u).

Definition 3. Let (G, ·) be a group. The group G will be called a permutation group
on [a, b] if G = {π : [a, b] → [a, b] | π is a one-to-one and onto function}, and we
denote this group by S[a,b] (i.e., S[a,b] is the class of all the bijection functions from
[a, b] to [a, b]).
Definition 4. A positive measure σ on (T , B) is called strictly monotone on A if
σ∅′ = 0 and σA < σB for all A,B ∈ A such that A � B. The collection of these
measures is denoted by M(A).

The classical examples for this definition are the Lebesgue measure or Radon
measure when T = �d+ and A = A(�d+).

Definition 5. Let σ ∈ M(A), and let (G, ·) be a group. A group action ∗ of (G, ·)
on A is defined by g ∗ (A ∪ B) = g ∗ A ∪ g ∗ B, g ∗ (A\B) = g ∗ A\g ∗ B for all
A,B ∈ A and g ∈ G, and there exists η : G → �+ such that σ(g ∗ A) = η(g)σ (A)

for all A ∈ A and g ∈ G.

The classical examples are the following:

(a) Let G = (�d+, ·) and A = A(�d+) = {[0, x] : x ∈ �d+}. Then a group action
is defined by g ∗ [0, t] = [0, g · t] = [0, g1t1] × [0, g2t2] × · · · × [0, gd td ],
σ(g ∗ [0, t]) = g1g2 . . . gnσ ([0, t]) for all g = (g1, . . . , gd) ∈ G and t =
(t1, . . . , td ) ∈ �d+.

(b) Let G = (S[0,∞), ◦) and A = A(�d+) = {[0, x] : x ∈ �d+}. Then a group action
is defined by π ∗ [0, t] = [0, π ◦ t1] × · · · × [0, π ◦ td ] for all π ∈ S[0,∞) and
t = (t1, . . . , td) ∈ �d+.

Definition 6. Let I ⊆ �, and let A = {Aα}α∈I be increasing sequence in A(u).

(a) The sequence A is called “strictly increasing” if Aα � Aβ for all α, β ∈ I such
that α < β.

(b) If I = [a, b], then the sequence A is called a “continuous sequence” if As =⋃
u<sAu = ⋂

v>sAv for all s ∈ (a, b) and Aa = ⋂
v>aAv , Ab = ⋃

u<bAu.

Given a set-indexed stochastic process X and increasing sequence {Aα}α∈[a,b] in
A(u), we define a process Y indexed by [a, b] as follows: Ys = XAs = XA

s for all
s ∈ [a, b].

A set-indexed stochastic process X is called outer-continuous if X is finitely
additive on C and for any decreasing sequence {An} ∈ A, X⋂

nAn
= limn XAn

and is called inner-continuous if for any increasing sequence {An} ∈ A such that⋃
nAn = A ∈ A, XA = limn XAn .

Lemma 1 ([6]). Let A′ = {∅′ = A0, . . . , Ak} be any finite subsemilattice of A
equipped with a numbering consistent with the strong past. Then there exists a con-
tinuous (strictly) flow f : [0, k] → A(u) such that the following are satisfied:
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(i) f (0) = ∅′, f (k) = ⋃k
j=0Aj .

(ii) Each left neighborhood C generated by A′ is of the form C = f (i)\f (i − 1),
1 ≤ i ≤ k.

(iii) If C = f (t)\f (s), then C ∈ C(u) and Ff (s) ⊆ G∗
C (for the definition of

a continuous flow, see [6]).

Lemma 2. Let A′ = {∅′ = A0, . . . , Ak} be any finite subsemilattice of A equipped
with a numbering consistent with the strong past.

(a) Then there exists a strictly increasing and continuous sequence

B(k) = {
B(k)

α

}
α∈[0,k]

in A(u) such that the following are satisfied:

(i) B
(k)
0 = ∅′, B

(k)
k = ⋃k

j=0Aj .

(ii) Each left neighborhood C generated by A′ is of the form C = B
(k)
i \B(k)

i−1,
1 ≤ i ≤ k.

(iii) If C = B
(k)
t \B(k)

s , then C ∈ C(u) and F
B

(k)
s

⊆ G∗
C .

(b) Then there exists a strictly increasing and continuous sequence

B = {Bα}α∈[0,∞)

in A(u) such that the following are satisfied:

(i) B0 = ∅′, Bk = ⋃k
j=0Aj .

(ii) Each left neighborhood C generated by A′ is of the form C = Bi\Bi−1,
1 ≤ i ≤ k.

(iii) If C = Bt\Bs , then C ∈ C(u) and FBs ⊆ G∗
C .

Proof. (a) It is clear from Lemma 1 by setting B
(k)
i = f (i), 1 ≤ i ≤ k.

(b) Notice that for each k, B(k) = B(k+1) on [0, k]. Then we can define the se-
quence B = {Bα}α∈[0,∞) in A(u) by Bα = B

([α]+1)
α for all α.

Remark 1. Similarly to the construction performed in Lemma 2, we can prove that
for all increasing sequences {Bn}∞n=1 ∈ A(u), there exists a strictly increasing and
continuous sequence {Aα}α∈[0,∞) in A(u) such that An = Bn.

3 A characterization of a set-indexed Brownian motion by sequences

Definition 7. Let σ ∈ M(A). We say that an A-indexed process X is a Brownian
motion with variance σ if X can be extended to a finitely additive process on C(u)

and if for disjoint sets C1, . . . , Cn ∈ C, XC1, . . . , XCn are independent zero-mean
Gaussian random variables with variances σC1, . . . , σCn , respectively.

For any σ ∈ M(A), there exists a set-indexed Brownian motion with variance
σ [6].
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Definition 8. (a) Let X = {Xt : t ≥ 0} be a stochastic process, and let ∗ be a group
action of (G, ·) on �+. The process X is called a G-time-changed Brownian motion
if there exists g ∈ G such that Xg = {Xg∗t : t ≥ 0} is a Brownian motion.

(b) Let X = {XA : A ∈ A} be a set-indexed process, {Aα}α∈[0,∞) be an increasing
sequence in A(u), and ∗ be a group action of (S[0,∞), ◦) on �+. The process XA (see
Definition 6) is called a G-time-changed Brownian motion if there exists π ∈ S[0,∞)

such that Xπ,A = {Xπ∗Aα : α ∈ [0,∞)} = {XAπ(α)
: α ∈ [0,∞)} is a Brownian

motion.

The characterization of a set-indexed Brownian motion by a group action on a
sequence (Theorem 1) is very important and is the key to most of the proofs in this
part of the paper. It is of great importance since it allows us to “divide and conquer.”
Therefore, many properties of a set-indexed Brownian motion can be recovered by
reducing them to a (classical) one-dimensional Brownian motion. Theorem 1 further
says that a square-integrable set-indexed stochastic process is a set-indexed Brownian
motion if and only if its projections on all the strictly increasing continuous sequences
by a group action are one-parameter time-changed Brownian motions.

Theorem 1 (Characterization of a set-indexed Brownian motion by a group action on
sequences). Let X = {XA : A ∈ A} be a square-integrable set-indexed stochastic
process. Suppose that there exists a group action ∗ of (S[0,∞), ◦) on A. Let σ ∈ M(A).
Then X is a set-indexed Brownian motion with variance σ if and only if the process
XA = {XAα : α ∈ [0,∞)} is an S[0,∞)-time-changed Brownian motion for all
strictly increasing and continuous sequences {Aα}α∈[0,∞) in A(u). In other words
(by Definition 8), for all strictly increasing and continuous sequences {Aα}α∈[0,∞) in
A(u), there exists π ∈ S[0,∞) such that Xπ,A = {Xπ∗Aα : α ∈ [0,∞)} = {XAπ(α)

:
α ∈ [0,∞)} is a Brownian motion.

Proof. (if) Suppose that X is a set-indexed Brownian motion with variance σ . Define
θ : �+ → �+by θ(α) = σ(Aα) ,α ∈ [0,∞). The function θ is strictly increasing
and continuous because A is strictly increasing and continuous. Since σ ∈ M(A), θ is
invertible. Let π(α) = θ−1(α); π is continuous, and σ(Aπ(α)) = α. Then π ∈ S[0,∞),
and Xπ,A = {Xπ∗Aα : α ∈ [0,∞)} = {XAπ(α)

: α ∈ [0,∞)} is a Brownian motion.
(only if) Suppose that for all strictly continuous sequences {Aα}α∈[0,∞) in A(u),

there exists π ∈ S[0,∞) such that Xπ,A is a Brownian motion. It must be shown that
if {C1, . . . , Ck} ∈ C are disjoint, then XC1, . . . , XCk

are independent normal random
with variances σ(C1), . . . , σ (Ck), respectively. Without loss of generality, we may
assume that the sets {C1, . . . , Ck} are the left neighborhoods of the subsemilattice A′
of A equipped with a numbering consistent with the strong past. By Lemma 2 there
exists a strictly increasing and continuous sequence {Aα}α∈[0,∞) in A(u) such that
each left neighborhood generated by A′ is of the form Ci = Ai\Ai−1, 1 ≤ i ≤ k.
Thus, XA is an S[0,∞]-time-changed Brownian motion such that XCi

= XAi
− XAi−1

and σ(Ci) = σ(Ai) − σ(Ai−1); therefore, XC1 , . . . , XCk
are independent normal

random with variances σ(C1), . . . , σ (Ck), respectively.

Corollary 1. Let X = {XA : A ∈ A} be a square-integrable set-indexed stochastic
process with X∅′ = 0 that is inner- and outer-continuous. Let σ ∈ M(A). Then X is
a set-indexed Brownian motion with variance σ if and only if for all strictly continu-
ous sequences {Aα}α∈[0,∞) in A(u), the process XA has independent increments and
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there exists π ∈ S[0,∞) such that Xπ,A = {XAπ(α)
: α ∈ [0,∞)} has stationary incre-

ments. (The definition and more details about independent increments and stationary
increments can be found in [6].)

Proof. (if) Obvious.
(only if) Suppose that for all strictly continuous sequences {Aα}α∈[0,∞) in A(u),

the process XA has independent increments and there exists π ∈ S[0,∞) such that
Xπ,A = {XAπ(α)

: α ∈ [0,∞)} has stationary increments. Since X is inner- and outer-
continuous, XA is continuous (see [6]). The process XA has independent increments,
and there exists π ∈ S[0,∞) such that Xπ,A has stationary increments; therefore,
XA is an S[0,∞)-time-changed Brownian motion for all strictly continuous sequences
{Aα}α∈[0,∞) in A(u). Thus, from Theorem 1 we conclude that X is a set-indexed
Brownian motion with variance σ .

Definition 9 ([6]). Let X = {XA : A ∈ A} be an integrable additive set-indexed
stochastic process adapted with respect to filtration F = {FA : A ∈ A}. The process
X is said to be:

1. A C-strong martingale (or in short notation, a strong martingale) if for all
C ∈ C, we have E[XC |G∗

C] = 0;

2. A martingale if for any A,B ∈ A such that A ⊆ B, we have E[XB |FA] = XA.

For studies of different kinds of martingales, see [7, 8, 11].
In particular, if T = �2+ and A = A(�2+) then X is said to be a strong martingale-

�2+ if X is adapted, vanishes on the axes, and E[X((z, z′])|F 1
z ∨F 2

z ] = 0 for all z ≤ z′,
where [z, z′] = [s, s′] × [t, t ′], F 1

z = ∨
vFsv , F 2

z = ∨
uFut , z = (s, t), z′ = (s′, t ′).

(This definition and additional explanation can be found in [2]).

Remark. Under some hypotheses, we can define 〈X〉 to be the compensator associ-
ated with the submartingale X2. The definition and more details regarding 〈X〉 can be
found in [6, 2].

From the well-known Lévy martingale characterization of the Brownian motion
(see [3] or [10]) we get the following corollary.

Corollary 2. Let X = {XA : A ∈ A} be a square-integrable set-indexed martingale
with X∅′ = 0 that is inner- and outer-continuous. Let σ ∈ M(A). Then X is a set-
indexed Brownian motion with variance σ if and only if 〈XA〉 is deterministic for all
strictly increasing and continuous sequence {Aα}α∈[0,∞) in A(u).

Proof. (if) Suppose that X is a set-indexed Brownian motion with variance σ . By
Theorem 1 the process XA is an S[0,∞)-time-changed Brownian motion for all strictly
increasing and continuous sequences {Aα}α∈[0,∞) in A(u). Then from the Lévy char-
acterization we conclude that 〈XA〉 is deterministic for all strictly increasing and con-
tinuous sequences {Aα}α∈[0,∞) in A(u).

(only if) Suppose that 〈XA〉 is deterministic for all strictly increasing and contin-
uous sequences {Aα}α∈[0,∞) in A(u). Since X is inner- and outer-continuous, XA is
continuous (see [6]). Since X is a set-indexed martingale, XAis a martingale. But if
the process XA is a martingale and 〈XA〉 is deterministic, then based on the Lévy
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characterization we get that XA is an S[0,∞)-time-changed Brownian motion for all
strictly increasing and continuous sequences {Aα}α∈[0,∞) in A(u). Thus, from Theo-
rem 1 we conclude that X is a set-indexed Brownian motion with variance σ .

In addition, Theorem 1 is an important “bridge” from a set-indexed Brownian mo-
tion to a Brownian motion, and from that we extend many theorems, such as hitting
time (Corollary 3), reflection principle (Corollary 4), exiting from an interval (Corol-
lary 5), unboundedness (Corollary 6), strong law of large numbers (Corollary 7), law
of iterated logarithm (Corollary 8), the zero set (Corollary 9), and the like.

Let L be a decreasing continuous line in �2+. If A ∈ A(�2+), then we

(a) write A ≺ L (A � L) if there exist (x, y) ∈ L such that A ⊂ [0, x] × [0, y]
(A ⊃ [0, x] × [0, y]);

(b) write A � L (A � L) if there exist (x, y) ∈ L such that A ⊆ [0, x] × [0, y]
(A ⊇ [0, x] × [0, y]).

(c) write A ∈ L if there exist (x, y) ∈ L such that A = [0, x] × [0, y].
Let X = {XA : A ∈ A(�2+)} be a set-indexed Brownian motion. For a > 0, we

define La to be a decreasing continuous line in �2+ such that

(a) if A ≺ La , then XA < a, and

(b) if A ∈ La , then XA ≥ a for the first time on A.

(In other words, La is the collection of points (x, y) when X reaches the value a for
the first time.)

Corollary 3 (Hitting time). Let X = {XA : A ∈ A(�2+)} be a set-indexed Brownian
motion with variance σ (Lebesgue measure). Then

P [La � A] = 2 − 2Φ

(
a√
σA

)
for all A ∈ A

(�2+
)

(Φ is the standard Gaussian distribution function).

Proof. Let A ∈ A(�2+). Then P [XA ≥ a] = P [XA ≥ a|A ≺ La]P [A ≺ La] +
P [XA ≥ a|A � La]P [A � La]. From the definition of La we conclude that if
A ≺ La , then XA < a, and thus P [XA ≥ a|A ≺ La] = 0. It is clear that there
exist a strictly increasing and continuous sequence {Bα}α∈[0,∞) in A(u) and α0 ≥ 0
such that Bα0 = A. The sequence B = {Bα}α∈[0,∞) is strictly continuous; therefore,
from Theorem 1 we conclude that XB is a G-time-changed Brownian motion. (In
other words, there exists π ∈ S[0,∞) such that Xπ,B is a Brownian motion.) By
the symmetry of Xπ,B it is clear that P [XA ≥ a|A � La] = P [Xπ,B

α0
≥ a|A �

La] = P [XBπ(α0)
≥ a|A � La] = 1

2 , and thus P [La � A] = 2P [XA ≥ a] =
2 − 2Φ( a√

σA
).
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Corollary 4 (Reflection principle). Let X = {XA : A ∈ A(�2+)} be a set-indexed
Brownian motion with variance σ (Lebesgue measure). Then, for A ∈ A,

WA =
{

XA, A ≺ La

2a − XA, A � La

}

is a set-indexed Brownian motion with variance σ .

Proof. We must show that if {C1, . . . , Ck} are disjoint, then WC1, . . . ,WCk
are in-

dependent normal random variables with variances σC1 , . . . , σCk
, respectively. Sim-

ilarly to the construction done in Theorem 1, we can get that there exists a strictly
increasing and continuous sequence {Aα}α∈[0,∞) in A(u) such that Ci = Ai\Ai−1.
The sequence {Aα}α∈[0,∞) is strictly continuous; therefore, from Theorem 1 we con-
clude that there exists π ∈ S[0,∞) such that Xπ,A is a Brownian motion. Clearly,
there exists αa ≥ 0 such that Aπ(αa) ∈ La . We recall that if X = {Xt : t ≥ 0} is be a
classical Brownian motion and Ta = inf{t ≥ 0 : Xt = a}, then

Zt =
{

Xt, t < Ta

2a − Xt, t ≥ Ta

}
(t ≥ 0)

is a Brownian motion [4]. Thus, if we define

Wα =
{

Xπ,A
α , α < αa

2a − Xπ,A
α , α ≥ αa

}
,

then Wα turns out to be a Brownian motion, and so WC1, . . . ,WCk
are independent

normal random variables with variances σC1, . . . , σCk
, respectively.

Let X = {XA : A ∈ A(�2+)} be a set-indexed Brownian motion. For a < 0 < b,
define D(a,b) = {A ∈ A : XA /∈ (a, b) for the first time}. (In other words, D(a,b) is
the collection of sets A ∈ A such that if A ∈ D(a,b), then XA /∈ (a, b) for the first
time on A).

Corollary 5 (Reflection principle). Let X = {XA : A ∈ A(�2+)} be a set-indexed
Brownian motion with variance σ (Lebesgue measure). If T (a, b) = ⋂

A∈D(a,b)A,

then P [XT (a,b) = b] = |a|
b+|a| .

Proof. It is clear that T (a, b) ∈ A(�2+). It is easy to see that there exists a strictly
increasing and continuous sequence {Aα}α∈[0,∞) in A(u) and there exists 0 ≤ β such
that Aβ = T (a, b). The sequence {Aα}α∈[0,∞) is strictly increasing and continuous;
therefore, from Theorem 1 we conclude that XA is an S[0,∞)-time-changed Brownian
motion. (In other words, there exists a π ∈ S[0,∞) such that Xπ,A = {XAπ(α)

:
α ∈ [0,∞)} is a Brownian motion, and there exists 0 ≤ α(a,b) such that Aβ =
Aπ(α(a,b)) = T (a, b)). We recall that if X = {Xt : t ≥ 0} is a Brownian motion and

t (a, b) := inft≥0{Xt /∈ (a, b)} for a < 0 < b, then P [Xt(a,b) = b] = |a|
b+|a| . Thus,

P [XT (a,b) = b] = P [Xπ,A
α(a,b)

= b] = |a|
b+|a| .

Corollary 6 (Unboundedness). Let σ ∈ M(A), and let X = {XA : A ∈ A} be
a set-indexed Brownian motion with variance σ . Then supA∈AXA(ω) = +∞ and
infA∈A XA(ω) = −∞ for almost all ω.
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Proof. Clearly, we have supα≥0XAα(ω) ≤ supA∈A XA(ω) (infα≥0XAα(ω) ≥
infA∈AXA(ω)) for all strictly increasing and continuous sequences {Aα}α∈[0,∞) in
A(u). By Theorem 1 the process XA is an S[0,∞)-time-changed Brownian motion
for all strictly increasing and continuous sequences {Aα}α∈[0,∞) in A(u); therefore,
+∞ = supα≥0XAπ(α)

(ω) ≤ supA∈AXA(ω) for almost all ω (−∞ infα≥0 XAπ(α)
(ω) ≥

infA∈A XA(ω) for almost all ω).

Let B ∈ A(u).

1. Let A = {An} be an increasing sequence in A. We write An ↑ B (or, in short
notation, A ↑ B) if An �= B for all n and

⋃
nAn = B.

2. Let A = {An} be a decreasing sequence in A. We write An ↓ B (or, in short
notation, A ↓ T ) if An �= B for all n and

⋂
nAn = B.

Corollary 7 (Strong law of large numbers and unboundedness). Let σ ∈ M(A), and
let X = {XA : A ∈ A} be a set-indexed Brownian motion with variance σ . Then

(a) limA↑T
XA

σA
= 0 for almost all ω, and for all sequences An ↑ T , {An} ∈ A.

(b) P [limA↑T XA = −∞] = P [limA↑T XA = ∞] = 1.

Proof. Let An ↑ T . By Theorem 1 and Remark 1 there exists a strictly increasing and
continuous sequence {Bα}α∈[0,∞) ∈ A(u) such that XB is an S[0,∞)-time-changed
Brownian motion when An = Bn . (In other words, there exist a strictly increasing
and continuous sequence {Bα}α∈[0,∞) ∈ A(u) and {αn} ∈ [0,∞) such that XB,π is a
Brownian motion when An = Bn = Bπ(αn) and π ∈ S[0,∞)). Then

(a) limA↑T
XA

σA
= limn→∞

XB,π
n

σ (Bπ(n))
= limαn→∞

XB
αn

αn

∗= 0 for almost all ω (for the

equality
∗=, see [1]).

(b) P [limA↑T XA = −∞] = P [limαn→∞ XB
αn

= −∞] ∗∗= 1 and P [limA↑T XA =
∞] = P [limαn→∞ XB

αn
= ∞] ∗∗= 1 (for the equality

∗∗=, see [4]).

Corollary 8 (Law of iterated logarithm). Let σ ∈ M(A), and let X = {XA : A ∈ A}
be a set-indexed Brownian motion with variance σ . Then

lim
A↑T

XA√
2σA ln ln(σA)

= −1

and

lim
A↑T

XA√
2σA ln ln(σA)

= 1

for almost all ω and for all A ↑ T .

Proof. Let An ↑ T . By Theorem 1 and Remark 1 there exists a strictly increasing and
continuous sequence {Bα}α∈[0,∞) ∈ A(u) such that XB is an S[0,∞)-time-changed
Brownian motion when An = Bn. (In other words, there exist a strictly increasing
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and continuous sequence {Bα}α∈[0,∞) ∈ A(u) and {αn} ∈ [0,∞) such that XB,π is a
Brownian motion when An = Bn = Bπ(αn) and π ∈ S[0,∞)). Then

lim
A↑T

XA√
2σA ln ln(σA)

= lim
αn→∞

XB,π
αn√

2αn ln ln(αn)

∗= −1

and

lim
A↑T

XA√
2σA ln ln(σA)

= lim
αn→∞

XB,π
αn√

2αn ln ln(αn)

∗= 1

for almost all ω (for the equality
∗=, see [1]).

Corollary 9 (The zero set). Let σ ∈ M(A), and let X = {XA : A ∈ A} be a set-
indexed Brownian motion with variance σ . Let ω ∈ Ω and set Zω = {A ∈ A :
XA(ω) = 0}; then the set Zω is uncountable and without monotone accumulation
sets.

(The set A ∈ A is said to be a monotone accumulation set if there exists an in-
creasing (decreasing) sequence {An} ∈ Zω such that An �= A and An ↑ A (An ↓ A).)

Proof. From Theorem 1 we conclude that the process XA is an S[0,∞)-time-changed
Brownian motion for all strict increasing and continuous sequences {Aα}α∈[0,∞) in
A(u) (in other words, for all strict increasing and continuous sequences {Aα} in A(u),
there exists π ∈ S[0,∞) such that Xπ,A = {Xπ∗Aα : α ∈ [0,∞)} = {XAπ(α)

: α ∈
[0,∞)} is a Brownian motion). Then (see [1]) the set ZA

ω = {α ≥ 0 : XA,π
α (ω) = 0}

is uncountable and without monotone accumulation sets. Thus, Zω is uncountable.
The set Zω is without monotone accumulation sets; if not, then there exists an in-
creasing sequence {An} ∈ Zω such that An �= A and An ↑ A, so that based on Theo-
rem 1, it is easy to see that there exists a strictly increasing and continuous sequence
{Bα}α∈[0,∞) ∈ A(u) such that XB is an S[0,∞)-time-changed Brownian motion when
An = Bn. (In other words, there exist a strictly increasing and continuous sequence
{Bα}α∈[0,∞) ∈ A(u) and {αn} ∈ [0,∞) such that XB,π is a Brownian motion when
An = Bn = Bπ(αn) and π ∈ S[0,∞)). Then the set ZB,π

ω = {α ≥ 0 : XB,π
αn

(ω) = 0}
has a monotone accumulation set, which is a contradiction (see [1]). (In the same
way, we can proceed in the case where An ↓ A).

4 Sequence-independent variation

Definition 10. Let σ be a positive and continuous measure in A (Radon measure).
For A ∈ A and ε > 0, we define Dε

A = {B ∈ A : A ⊆ B, σ(B\A) = ε}. Assume that
Dε

A �= ∅ and let Aε be an element in Dε
A.

Hereafter, we assume that the space T has a positive and continuous measure σ

in A such that for all A ∈ A, there exists Aε such that σ(Aε\A) = ε for all ε > 0.
The classical example for definition is T = �2+ and A = A(�2+) when σ is

a Lebesgue or Radon measure.
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Definition 11. Let X = {XA : A ∈ A} be a set-indexed stochastic process.

(a) X is said to have σ -stationary increments if

XAε
1
− XA1

d= · · · d= XAε
n
− XAn

for all {Ai}ni=1 ∈ A, all ε > 0, and all Aε
i ∈ Dε

Ai
(the notation

d= means the
equality in distribution).

(b) X is said to have independent increments if XC1, . . . , XCn are independent
random variables whenever C1, . . . , Cn are disjoint sets in C.

Let X = {Xt : t ≥ 0} be a square-integrable martingale. It is known that we
can associate with X a unique predictable process, denoted 〈X〉, such that X2 − 〈X〉
is a martingale. Little is known in the set-indexed case. However, the concept of
increasing path allows us to study such processes.

Definition 12. A square-integrable set-indexed martingale X = {XA : A ∈ A}
is said to have sequence-independent variation (s.i.v.) on A(u) (or path-independent
variation (p.i.v.)) if for any strict increasing continuous sequences {Aα}α∈[a,b] and
{Bβ}β∈[a,b] in A(u) with Aa = Ba and Ab = Bb, we have 〈XA〉(b) = 〈XB〉(b).

Remarks. (a) This definition of s.i.v. on A(u) was introduced by Cairoli and Walsh
in the plane [2]. Here we extend it to the set-indexed framework.

(b) The definition and more details about 〈X〉, can be found in [6].

Theorem 2. Let X = {XA : A ∈ A(�2+)} be a set-indexed strong martingale-�2+. If
supA∈A E[X4

A] < ∞ or the filtration F is generated by a Brownian motion, then X

has s.i.v. on A(u).

Proof. It suffices to prove that for all increasing continuous sequences {Aα}α∈[a,b]
in A(u) and all a ≤ s ≤ t ≤ b, E[X2

At
− X2

As
|FAs ] = E[〈X〉At − 〈X〉As |FAs ].

If {Aα}α∈[a,b] is an increasing continuous sequence, then As ⊆ At . The set At\As

can be divided to n disjoint rectangles {Ri}ni=1 such that At\As = ⋃n
i=1Ri . If X

is a strong martingale-�2+, then E[X2
At

− X2
As

|FAs ] = E[(XAt − XAs )
2|FAs ] and,

by the division, E[(XAt − XAs )
2|FAs ] = E[(XR1 + · · · + XRn)

2|FAs ]. It is clear
that FAs ⊆ G∗

Ri
and for all i �= j, E[XRi

XRj
|FAs ] = E[E[XRi

XRj
|G∗

Ri
]|FAs ]

= E[XRi
E[XRj

|G∗
Ri

]|FAs ] = 0; therefore, E[X2
At

− X2
As

|FAs ] = E[X2
R1

+ · · ·
+ X2

Rn
|FAs ] #= E[〈X〉R1 + · · · + 〈X〉Rn |FAs ] = E[〈X〉At − 〈X〉As |FAs ] (for the

equality
#=, see [2]).

Theorem 3. Let σ ∈ M(A). If X = {XA : A ∈ A} is a set-indexed square-integrable
outer-continuous process with independent and σ -stationary increments, then X has
s.i.v.

For the proof, we need two auxiliary propositions.

Proposition 1. If {Aα}α∈[0,∞) is a strictly increasing continuous sequence in A(u),
then XA is a G-time-changed right-continuous martingale with independent and sta-
tionary increments. (In other words, for all strictly increasing continuous sequences
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{Aα}α∈[0,∞) in A(u), there exists π ∈ G such that Xπ,A is a right-continuous mar-
tingale with independent and stationary increments).

Proof. The process X is outer-continuous; therefore, XA is right-continuous. Since
X has independent increments, it is a strong martingale. In particular, X is a martin-
gale [6]. It is easy to see that XA is a martingale for all strict continuous sequences
{Aα}α∈[0,∞) in A(u). Moreover, X has σ -stationary increments; therefore, XA is a
G-time-changed right-continuous martingale with independent and stationary incre-
ments for all strict continuous sequences {Aα}α∈[0,∞) in A(u).

Now, for any increasing continuous sequences {Aα}α∈[0,∞) and {Bβ}β∈[0,∞) in
A(u), Xπ1,A and Xπ2,B are right-continuous martingales with independent and sta-
tionary increments. We recall that if X = {Xt : t ≥ 0} is a right-continuous martin-
gale with independent and stationary increments such that E[X2

t ] < ∞ for all t ,
then 〈X〉t = tE[X2

1] for all t . Thus, 〈Xπ1,A〉, 〈Xπ2,B〉 are deterministic; in par-
ticular, 〈Xπ1,A〉(c) = 〈Xπ2,B〉(c) when π1 ∗ Ac = π2 ∗ Bc, and for all 0 ≤ t ,
〈Xπ1,A〉(c) = σ(Aπ1(t)).

Proposition 2. If σ(Ac) = k, then there exists a unique s ∈ �+ such that Aπ1(s) = Ac

and s = k for all a strict continuous sequences {Aα}α∈[0,∞) in A(u).

Proof. It is clear that σ(Aπ1(k)) = k from the definition of π1 (π1(α) = θ−1(α)

when θ : �+ → �+, θ(α) = σ(Aα)); therefore, Aπ1(k) = Ac or there exists r �= k

when Aπ1(r) = Ac and Aπ1(r) �= Aπ1(k) because of strictly increasing continuous
sequences. Without loss of generality, we may assume that Aπ1(r) ⊂ Aπ1(k) when
σ(Aπ1(r)) = σ(Aπ1(k)), which is a contradiction to σ ∈ M(A).

Proof of Theorem 3. Let {Aα}α∈[0,∞) and {Bβ}β∈[0,∞) in A(u) be two strictly in-
creasing continuous sequences. If A0 = B0 and Ac = Bc, then σ(Ac) = σ(Bc) = k.
From Proposition 2 we get that if Ac = Aπ1(k), Bc = Bπ2(k), then 〈XA〉(c) =
〈Xπ1,A〉(k) = 〈Xπ2,B〉(k) = 〈XB〉(c).
Theorem 4. Let σ ∈ M(A), and let X = {XA : A ∈ A} be a set-indexed Brownian
motion with variance σ . Then X has s.i.v, and 〈X〉A = σA for all A ∈ A.

Proof. Since X is a set-indexed Brownian motion, by Theorem 1 XA is a G[0,∞)-
time-changed Brownian motion for all strictly continuous sequences {Aα}α∈[0,∞) in
A(u) (in other words, for all strictly increasing and continuous sequences {Aα}α∈[0,∞)

in A(u), there exists π ∈ S[0,∞) such that Xπ,A = {Xπ∗Aα : α ∈ [0,∞)} =
{XAπ(α)

: α ∈ [0,∞)} is a Brownian motion). For any increasing continuous se-
quences {Aα}α∈[0,∞) and {Bβ}β∈[0,∞) in A(u), Xπ1,A and Xπ2,B are Brownian mo-
tions; therefore, 〈Xπ1,A〉 and 〈Xπ2,B〉 are deterministic; in particular, 〈Xπ1,A〉(c) =
〈Xπ2,B〉(c) when Aπ1(c) = Bπ2(c), and for all 0 ≤ t , 〈Xπ1,A〉(c) = σ(Aπ1(t)).

Let {Aα}α∈[0,∞) and {Bβ}β∈[0,∞) in A(u) be two increasing continuous sequences
with A0 = B0 and Ac = Bc then σ(Aπ1(c)) = σ(Bπ2(c)) = k

Returning to the proof of Theorem 4, from Proposition 2 in Theorem 3 we get
that if Ac = Aπ1(k) and Bc = Bπ2(k), then 〈XA〉(c) = 〈Xπ1,A〉(k) = 〈Xπ2,B〉(k) =
〈XB〉(c) and, in particular, 〈XA〉(t) = σ(At ) for all 0 ≤ t .
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Now, if D ∈ A, then there exist a continuous sequence {Aα}α∈[0,∞) in A(u) and
d ∈ �+ such that Ad = D. Then, by Theorem 1, Xπ,A is a G[0,∞)-time-changed
Brownian motion, and 〈X〉D = 〈Xπ,A〉d = 〈Xπ 〉Ad

= σAd
= σD .
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