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Abstract In this paper, functional convergence is derived for the partial maxima stochastic
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1 Introduction

Let (Xi)i∈Z be a strictly stationary sequence of random variables, and denote by
Mn = max{X1, X2, . . . , Xn}, n ≥ 1, its partial maxima. The asymptotic distribu-
tional behavior of Mn is one of the main objects of interest of classical extreme value
theory. When (Xi) is an i.i.d. sequence and there exist constants an > 0 and bn such
that

P

(
Mn − bn

an

≤ x

)
→ G(x) as n → ∞, (1)

with nondegenerated limit G, the limit belongs to the class of extreme value distri-
butions, see [13]. It is known that generalizations of this result to weak convergence
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2 D. Krizmanić

of partial maxima processes in the space of càdlàg functions hold. More precisely,
relation (1) implies

a−1
n (Mn( · ) − bn) := a−1

n

( �n ·�∨
i=1

Xi − bn

)
d−→ Y( · ) (2)

in the space D([0, 1],R) of real-valued càdlàg functions on [0, 1] endowed with the
Skorokhod J1 topology, with Y being an extremal process generated by G (see [11],
and Proposition 4.20 in [13]). Simplifying notation, we sometimes omit brackets and

write a−1
n (Mn − bn)

d−→ Y . The convergence in relation (2) also holds for a spe-
cial class of weakly dependent random variables, the linear or moving averages pro-
cesses with i.i.d. heavy-tailed innovations and deterministic coefficients (see Propo-
sition 4.28 in [13]).

Recently, it was shown in [9] that the functional convergence in (2) holds for
linear processes with i.i.d. heavy-tailed innovations and random coefficients. In this
paper we aim to generalize this result in two directions, the first one by studying
linear processes with weakly dependent innovations (and random coefficients), and
the second one by extending this theory to the multivariate setting. Due to possible
clustering of large values, the J1 topology becomes inappropriate, and therefore we
will use the weaker Skorokhod M1 topology. This topology works well if all extremes
within each cluster of large values have the same sign.

The paper is organized as follows. In Section 2 we introduce basic notions about
regular variation, linear processes, point processes and Skorokhod topologies. In Sec-
tion 3 we derive the weak M1 convergence of the partial maxima stochastic process
for finite order multivariate linear processes with weakly dependent heavy-tailed in-
novations and random coefficients. In Section 4 we extend this result to infinite order
multivariate linear processes, and give an example which shows that the convergence
in the weak M1 topology in general cannot be replaced by the standard M1 conver-
gence.

2 Preliminaries

We use superscripts in parentheses to designate vector components and coordinate
functions, i.e. a = (a(1), . . . , a(d)) ∈ R

d and x = (x(1), . . . , x(d)) : [0, 1] → R
d .

For two vectors a = (a(1), . . . , a(d)), b = (b(1), . . . , b(d)) ∈ R
d , a ≤ b means

a(k) ≤ b(k) for all k = 1, . . . , d . The vector (a(1), . . . , a(d), b(1), . . . , b(d)) will be
denoted by (a, b), and the vector (a(1), b(1), a(2), b(2), . . . , a(d), b(d)) will be denoted
by (a(i), b(i))∗i=1,...,d . Denote by a ∨ b the vector (a(1) ∨ b(1), . . . , a(d) ∨ b(d)), where
for c, d ∈ R we put c ∨ d = max{c, d}. Sometimes for convenience we will denote
the vector a by (a(i))i=1,...,d . For a real number c we write ca = (ca(1), . . . , ca(d)).

2.1 Regular variation

The Rd -valued random vector ξ is (multivariate) regularly varying if there exist α > 0
and a random vector � on the unit sphere S

d−1 = {x ∈ R
d : ‖x‖ = 1} in R

d , such
that for every u > 0,
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P(‖ξ‖ > ux, ξ/‖ξ‖ ∈ · )
P(‖ξ‖ > x)

w−→ u−α P(� ∈ · ) as x → ∞, (3)

where the arrow “
w−→” denotes the weak convergence of finite measures and ‖ · ‖

denotes the max-norm on R
d . This definition does not depend on the choice of the

norm, since if (3) holds for some norm on R
d , it holds for all norms (of course, with

different distributions of �). The number α is called the index of regular variation
of ξ , and the probability measure P(� ∈ · ) is called the spectral measure of ξ with
respect to the norm ‖ ·‖. In the one-dimensional case regular variation is characterized
by P(|ξ | > x) = x−αL(x), x > 0, for some slowly varying function L and the tail
balance condition

lim
x→∞

P(ξ > x)

P(|ξ | > x)
= p, lim

x→∞
P(ξ < −x)

P(|ξ | > x)
= q,

where p ∈ [0, 1] and p + q = 1.
A strictly stationary R

d -valued random process (ξn)n∈Z is regularly varying with
index α > 0 if for any nonnegative integer k the kd-dimensional random vector
ξ = (ξ1, . . . , ξk) is multivariate regularly varying with index α. According to [2]
the regular variation property of the sequence (ξn) is equivalent to the existence of a
process (Yn)n∈Z which satisfies P(‖Y0‖ > y) = y−α for y ≥ 1, and

(
(x−1 ξn)n∈Z

∣∣ ‖ξ0‖ > x
) fidi−→ (Yn)n∈Z as x → ∞, (4)

where “
fidi−→” denotes convergence of finite-dimensional distributions. The process

(Yn) is called the tail process of (ξn).

2.2 Linear processes

Let (Zi)i∈Z be a strictly stationary sequence of random vectors in R
d , and assume

Z1 is multivariate regularly varying with index α > 0. We study multivariate linear
processes with random coefficients, defined by

Xi =
∞∑

j=0

CjZi−j , i ∈ Z, (5)

where (Cj )j≥0 is a sequence of d × d matrices (with real-valued random variables
as entries) independent of (Zi) such that the above series is a.s. convergent. One
sufficient condition for that is

∑∞
j=0 E‖Cj‖δ < ∞ for some δ < α, 0 < δ ≤ 1 (see

Section 4.5 in [13]), where for a d × d matrix C = (Ci,j ), ‖C‖ denotes the operator
norm

‖C‖ = sup{‖Cx‖ : x ∈ R
d, ‖x‖ = 1} = max

i=1,...,d

d∑
j=1

|Ci,j |.

2.3 Skorokhod topologies

Denote by Dd ≡ D([0, 1],Rd) the space of all right-continuous Rd -valued functions
on [0, 1] with left limits. For x ∈ Dd the completed (thick) graph of x is defined as
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Gx = {(t, z) ∈ [0, 1] × R
d : z ∈ [[x(t−), x(t)]]},

where x(t−) is the left limit of x at t and [[a, b]] is the product segment, i.e. [[a, b]] =
[a(1), b(1)] × · · · × [a(d), b(d)] for a = (a(1), . . . , a(d)), b = (b(1), . . . , b(d)) ∈
R

d , and [a(i), b(i)] coincides with the closed interval [a(i) ∧ b(i), a(i) ∨ b(i)], with
c ∧ d = min{c, d} for c, d ∈ R. On the graph Gx we define an order by saying that
(t1, z1) ≤ (t2, z2) if either (i) t1 < t2, or (ii) |xj (t1−)−z

(j)

1 | ≤ |xj (t2−)−z
(j)

2 | for all
j = 1, 2, . . . , d . A weak parametric representation of the graph Gx is a continuous
nondecreasing function (r, u) mapping [0, 1] into Gx , with r being the time compo-
nent and u the spatial component, such that r(0) = 0, r(1) = 1 and u(1) = x(1).
Let �w(x) denote the set of weak parametric representations of Gx . For x1, x2 ∈ Dd

define

dw(x1, x2) = inf{‖r1 − r2‖[0,1] ∨ ‖u1 − u2‖[0,1] : (ri , ui) ∈ �w(xi), i = 1, 2},
where ‖x‖[0,1] = sup{‖x(t)‖ : t ∈ [0, 1]}. Now we say that a sequence (xn)n con-
verges to x in Dd in the weak Skorokhod M1 topology if dw(xn, x) → 0 as n → ∞.
If we replace the graph Gx with the completed (thin) graph

�x = {(t, z) ∈ [0, 1] × R
d : z = λx(t−) + (1 − λ)x(t) for some λ ∈ [0, 1]},

and weak parametric representations with strong parametric representations, that is
continuous nondecreasing functions (r, u) mapping [0, 1] onto �x , then we obtain
the standard (or strong) Skorokhod M1 topology. This topology is induced by the
metric

dM1(x1, x2) = inf{‖r1 − r2‖[0,1] ∨ ‖u1 − u2‖[0,1] : (ri , ui) ∈ �s(xi), i = 1, 2},
where �s(x) is the set of strong parametric representations of the graph �x . Since
�s(x) ⊆ �w(x) for all x ∈ Dd , the weak M1 topology is weaker than the standard
M1 topology on Dd , but they coincide for d = 1. The weak M1 topology coincides
with the topology induced by the metric

dp(x1, x2) = max{dM1(x
(j)

1 , x
(j)

2 ) : j = 1, . . . , d} (6)

for xi = (x
(1)
i , . . . , x

(d)
i ) ∈ Dd and i = 1, 2. The metric dp induces the product

topology on Dd .
By using parametric representations in which only the time component r is non-

decreasing instead of (r, u) we obtain Skorokhod’s weak and strong M2 topologies.
The metric

dM2(x1, x2) =
(

sup
a∈�x1

inf
b∈�x2

d(a, b)

)
∨

(
sup

a∈�x2

inf
b∈�x1

d(a, b)

)
,

where d(a, b) = max{|a(i) −b(i)| : i = 1, . . . , d +1} for a = (a(1), . . . , a(d+1)), b =
(b(1), . . . , b(d+1)) ∈ R

d+1, induces the strong M2 topology, which is weaker than the
M1 topology. For more details and discussion on the M1 and M2 topologies we refer
to Sections 12.3-5 and 12.10-11 in [17]. Since the sample paths of the partial maxima
processes in (2) are nondecreasing, we will restrict our attention to the subspace Dd↑
of functions x in Dd for which the coordinate functions x(i) are nondecreasing for all
i = 1, . . . , d .
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2.4 Point processes

Let (Zi)i∈Z be a strictly stationary sequence of regularly varying R
d -valued random

vectors with index α > 0. Assume the elements of this sequence are pairwise asymp-
totically (or extremally) independent in the sense that

lim
x→∞

P(‖Zi‖ > x, ‖Zj‖ > x)

P(‖Z1‖ > x)
= 0 for all i �= j. (7)

We also assume asymptotical independence of the components of each Zi :

lim
x→∞ P(|Z(j)

i | > x
∣∣ |Z(k)

i | > x) = 0 for all j, k ∈ {1, . . . , d}, j �= k. (8)

Condition (7) implies the sequence (Zi) is regularly varying with index α (Proposi-
tion 2.1.8 in [10]) with the tail process as in the i.i.d. case, that is Yi = 0 for i �= 0,
and P(‖Y0‖ > y) = y−α for y ≥ 1. Relation (8) implies that Y0 a.s. has no two
nonzero components.

Define the time-space point processes

Nn =
n∑

i=1

δ(i/n, Zi/an) for all n ∈ N,

with (an) being a sequence of positive real numbers such that

n P(‖Z1‖ > an) → 1 as n → ∞. (9)

The point process convergence for the sequence (Nn) on the space [0, 1]×E
d , where

E
d = [−∞,∞]d \{0}, was obtained in [3] under the following two weak dependence

conditions.

Condition 2.1 (Mixing condition). There exists a sequence of positive integers (rn)

such that rn → ∞ and rn/n → 0 as n → ∞ and such that for every nonnegative
continuous function f on [0, 1] × E

d with compact support, denoting kn = �n/rn�,
as n → ∞,

E

[
exp

{
−

n∑
i=1

f

(
i

n
,
Zi

an

)}]
−

kn∏
k=1

E

[
exp

{
−

rn∑
i=1

f

(
krn

n
,
Zi

an

)}]
→ 0.

Condition 2.2 (Anticlustering condition). There exists a sequence of positive integers
(rn) such that rn → ∞ and rn/n → 0 as n → ∞ and such that for every u > 0,

lim
m→∞ lim sup

n→∞
P

(
max

m≤|i|≤rn
‖Zi‖ > uan

∣∣∣∣ ‖Z0‖ > uan

)
= 0.

The sequences (rn) in these two conditions are assumed to be the same. It can be
shown that Condition 2.1 holds for strongly mixing random sequences (see [5, 7]).
Now we show that Condition 2.2 holds under condition (7). Let

xk,n :=
k∑

|i|=1

P(‖Zi‖ > uan, ‖Z0‖ > uan)

P(‖Z0‖ > uan)
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for k, n ∈ N. For every k ∈ N condition (7) implies that xk,n → 0 as n → ∞. An
application of the triangular argument (Lemma A.1.3 in [10]) yields that there exists
a nondecreasing sequence of positive integers (sn)n such that sn → ∞ and xsn,n → 0
as n → ∞. Denote

rn := min{sn, �√n�}, n ∈ N. (10)

Then rn → ∞ and rn/n → 0 as n → ∞. For a fixed m ∈ N and large rn (such that
rn ≥ m) it holds that

P

(
max

m≤|i|≤rn
‖Zi‖ > uan

∣∣∣∣ ‖Z0‖ > uan

)
≤

rn∑
|i|=m

P(‖Zi‖ > uan, ‖Z0‖ > uan)

P(‖Z0‖ > uan)

≤ xsn,n,

and letting n → ∞ we obtain

lim
n→∞ P

(
max

m≤|i|≤rn
‖Zi‖ > uan

∣∣∣∣ ‖Z0‖ > uan

)
= 0

for every m ∈ N. Hence, letting m → ∞, we see that Condition 2.2 holds. The latter
condition holds also under Leadbetter’s condition D′:

lim
k→∞ lim sup

n→∞
n

�n/k�∑
i=1

P(‖Z0‖ > xan, ‖Zi‖ > xan) = 0 for all x > 0. (11)

The asymptotical independence condition (7) also holds under condition D′. For more
discussion of the above weak dependence conditions, in the context of partial sums,
we refer to Section 9.1 in [12] and [16].

In the sequel whenever we assume that Condition 2.1 holds we suppose that the
sequence (rn) that appears in this condition is the same as in (10), and this will ensure
that Conditions 2.1 and 2.2 are satisfied by the same sequence (rn). Under Condi-
tion 2.1 by Theorem 3.1 in [3], as n → ∞,

Nn
d−→ N =

∑
i

∑
j

δ(Ti ,Piηij ) (12)

in [0, 1] × E
d , where

(i)
∑∞

i=1 δ(Ti ,Pi ) is a Poisson process on [0, 1] × (0,∞) with intensity measure
Leb × ν, with ν(dx) = θαx−α−1 dx and θ = P(supi≤−1 ‖Yi‖ ≤ 1).

(ii) (
∑∞

j=1 δηij
)i is an i.i.d. sequence of point processes in E

d independent of∑
i δ(Ti ,Pi ) and with common distribution equal to the distribution of the point

process
∑

j δỸj /L(Ỹ ), where L(Ỹ ) = supj∈Z ‖Ỹj‖ and
∑

j δỸj
is distributed as

(
∑

j∈Z δYj
| supi≤−1 ‖Yi‖ ≤ 1).

Taking into account the form of the tail process (Yi), it holds that θ = 1 and
N = ∑

i δ(Ti ,Piηi0) with ‖ηi0‖ = 1. Hence, denoting Qi = ηi0, the limiting point
process in relation (12) reduces to

N =
∑

i

δ(Ti ,PiQi). (13)
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Since the sequence (Qi) is independent of the Poisson process
∑∞

i=1 δ(Ti ,Pi ), an ap-
plication of Proposition 5.3 in [14] yields that

∑
i δ(Ti ,Pi ,Qi) is a Poisson process on

[0, 1] × (0,∞) × E
d with intensity measure Leb × ν × F , where F is the common

probability distribution of Qi .
For x ∈ R let x+ = |x|1{x>0} and x− = |x|1{x<0}. Define the maximum func-

tional � : Mp([0, 1] × E
d) → D2d2

↑ by

�
( ∑

i

δ
(ti ,(x

(1)
i ,...,x

(d)
i ))

)
(t) =

(( ∨
ti≤t

x
(j)+
i ,

∨
ti≤t

x
(j)−
i

)∗
j=1,...,d

)
k=1,...,d

(14)

for t ∈ [0, 1] (with the convention ∨∅ = 0), where the space Mp([0, 1] × E
d) of

Radon point measures on [0, 1]×Ed is equipped with the vague topology (see Chapter
3 in [13]). Note that on the right-hand side in (14) we repeat the 2d coordinates of the

vector
( ∨

ti≤t x
(j)+
i ,

∨
ti≤t x

(j)−
i

)∗
j=1,...,d

consecutively d times. Let

 = {η ∈ Mp([0, 1] × E
d) : η({0, 1} × E

d) = 0 and

η([0, 1] × {(x(1), . . . , x(d)) : |x(i)| = ∞ for some i}) = 0}.
Then Proposition 3.1 in [9] and the definition of the metric dp in (6) yield the conti-
nuity of the maximum functional � on the set  in the weak M1 topology.

3 Finite order linear processes

Let (Zi)i∈Z be a strictly stationary sequence of regularly varying R
d -valued random

vectors with index α > 0. Fix m ∈ N, and let

Xi =
m∑

j=0

CjZi−j , i ∈ Z, (15)

be a finite order linear process, where C0, C1, . . . , Cm are random d × d matrices
independent of (Zi). Define the corresponding partial maxima process by

Mn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a−1
n

�nt�∨
i=1

Xi =
(
a−1
n

�nt�∨
i=1

X
(k)
i

)
k=1,...,d

, t ≥ 1

n
,

a−1
n X1 = a−1

n (X
(1)
1 , . . . , X

(d)
1 ), t <

1

n
,

(16)

for t ∈ [0, 1], with the normalizing sequence (an) as in (9). For k, j ∈ {1, . . . , d} let

D
k,j
+ =

m∨
i=0

C+
i;k,j

and D
k,j
− =

m∨
i=0

C−
i;k,j

, (17)

where Ci;k,j is the (k, j)th entry of the matrix Ci , C+
i;k,j

= |Ci;k,j |1{Ci;k,j >0} and

C−
i;k,j

= |Ci;k,j |1{Ci;k,j <0}.
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First, we show in the proposition below that a particular process Wn, constructed
from the sequence (Zi), converges in Dd↑ with the weak M1 topology. Later, in the
main result of this section, we show that the weak M1 distance between processes Mn

and Wn is asymptotically negligible (as n → ∞), which will imply the functional
convergence of the maxima process Mn. The limiting process will be described in
terms of certain extremal processes derived from the point process N = ∑

i δ(Ti ,PiQi)

in relation (13). Extremal processes can be derived from Poisson processes in the
following way. Let ξ = ∑

k δ(tk,jk) be a Poisson process on [0,∞) × [0,∞)d with
mean measure Leb×μ, where μ is a measure on [0,∞)d satisfying μ({x ∈ [0,∞)d :
‖x‖ > δ}) < ∞ for any δ > 0. The extremal process G( · ) generated by ξ is defined
by G(t) = ∨

tk≤t jk for t > 0. Then for x ∈ [0,∞)d , x �= 0, and t > 0 it holds
that P(G(t) ≤ x) = exp(−tμ([[0, x]]c)) (cf. Section 5.6 in [14]). The measure μ is
called the exponent measure.

Proposition 3.1. Let (Xi) be a linear process defined in (15), where (Zi)i∈Z is a
strictly stationary sequence of regularly varying R

d -valued random vectors with in-
dex α > 0 that satisfy (7) and (8), and C0, C1, . . . , Cm are random d × d matrices
independent of (Zi). Assume Condition 2.1 holds. Let

Wn(t) :=
( �nt�∨

i=1

d∨
j=1

a−1
n

(
D

k,j
+ Z

(j)+
i ∨ D

k,j
− Z

(j)−
i

))
k=1,...,d

, t ∈ [0, 1],

with D
k,j
+ and D

k,j
− defined in (17). Then, as n → ∞,

Wn( · ) d−→ M( · ) :=
( d∨

j=1

(
D̃

k,j
+ M(j+)( · ) ∨ D̃

k,j
− M(j−)( · )

))
k=1,...,d

(18)

in Dd↑ with the weak M1 topology, where M(j+) and M(j−) are extremal processes
with exponent measures νj+ and νj− respectively, with

νj+(dx) = E(Q
(j)+
1 )α αx−α−1 dx and νj−(dx) = E(Q

(j)−
1 )α αx−α−1 dx

for x > 0 (j = 1, . . . , d), and ((D̃
k,j
+ , D̃

k,j
− )∗j=1,...,d )k=1,...,d is a 2d2-dimensional

random vector, independent of (M(j+),M(j−))j=1,...,d , such that

((D̃
k,j
+ , D̃

k,j
− )∗j=1,...,d )k=1,...,d

d= ((D
k,j
+ ,D

k,j
− )∗j=1,...,d )k=1,...,d .

Remark 3.2. In Proposition 3.1, as well as in the sequel of this paper, we suppose
M(j+) is an extremal process if E(Q

(j)+
1 )α > 0, and a zero process if this quantity is

equal to zero. Analogously for M(j−).

Proof of Proposition 3.1. As noted in Subsection 2.4, condition (7) implies that the
sequence (Zi) is regularly varying with index α and that Condition 2.2 holds. This,
with Condition 2.1, implies the point process convergence in (12) with the limiting
point process N described in (13). Since N is a Poisson process, it almost surely
belongs to the set . Therefore, since the maximum functional � is continuous on ,
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the continuous mapping theorem (see, for instance, Theorem 3.1 in [14]) applied to

the convergence in (12) yields �(Nn)
d−→ �(N) in D2d2

↑ under the weak M1 topology,
i.e.

W�
n( · ) :=

((
a−1
n

�n ·�∨
i=1

Z
(j)+
i , a−1

n

�n ·�∨
i=1

Z
(j)−
i

)∗

j=1,...,d

)
k=1,...,d

d−→ W( · ) :=
(( ∨

Ti≤ ·
PiQ

(j)+
i ,

∨
Ti≤ ·

PiQ
(j)−
i

)∗

j=1,...,d

)
k=1,...,d

. (19)

By the same arguments as in the proof of Proposition 3.2 in [9] we obtain that D2d2

↑
with the weak M1 topology is a Polish space, and hence by Corollary 5.18 in [4] we
can find a random vector ((D̃

k,j
+ , D̃

k,j
− )∗j=1,...,d )k=1,...,d , independent of W , such that

((D̃
k,j
+ , D̃

k,j
− )∗j=1,...,d )k=1,...,d

d= ((D
k,j
+ ,D

k,j
− )∗j=1,...,d )k=1,...,d .

This, relation (19) and the fact that ((D
k,j
+ ,D

k,j
− )∗j=1,...,d )k=1,...,d is independent of

W�
n , by an application of Theorem 3.29 in [4], imply that

(B,W�
n)

d−→ (B̃,W) as n → ∞ (20)

in D4d2

↑ with the product M1 topology, where B = ((B
k,j
+ , B

k,j
− )∗j=1,...,d )k=1,...,d and

B̃ = ((B̃
k,j
+ , B̃

k,j
− )∗j=1,...,d )k=1,...,d are random elements in D2d2

↑ such that B
k,j
+ (t) =

D
k,j
+ , B

k,j
− (t) = D

k,j
− , B̃

k,j
+ (t) = D̃

k,j
+ and B̃

k,j
− (t) = D̃

k,j
+ for t ∈ [0, 1].

A multivariate version of Lemma 2.1 in [9] implies that the function g : D4d2

↑ →
D2d2

↑ defined by

g(x) = (x(1)x(2d2+1), x(2)x(2d2+2), . . . , x(2d2)x(4d2))

for x = (x(1), . . . , x(4d2)) ∈ D4d2

↑ , is continuous in the weak M1 topology on the set

of all functions in D4d2

↑ for which the first 2d2 component functions have no discon-

tinuity points, and this yields P[(B̃,W) ∈ Disc(g)] = 0, where Disc(g) denotes the
set of discontinuity points of g. A multivariate version of Lemma 2.2 in [9] shows
that the function h : D2d2

↑ → Dd↑, defined by

h(x) =
( 2d∨

i=1

x(i),

4d∨
i=2d+1

x(i), . . . ,

2d2∨
i=2(d−1)d+1

x(i)

)

for x = (x(i))i=1,...,2d2 ∈ D2d2

↑ , is continuous when both spaces D2d2

↑ and Dd↑ are
endowed with the weak M1 topology. Therefore, the continuous mapping theorem

applied to the convergence in (20) yields (h◦g)(B,W�
n)

d−→ (h◦g)(B̃,W) as n → ∞,



10 D. Krizmanić

i.e. ( �n ·�∨
i=1

d∨
j=1

D
k,j
+ Z

(j)+
i ∨ D

k,j
− Z

(j)−
i

an

)
k=1,...,d

d−→
( ∨

Ti≤ ·

d∨
j=1

(D̃
k,j
+ PiQ

(j)+
i ∨ D̃

k,j
− PiQ

(j)−
i )

)
k=1,...,d

in Dd↑ with the weak M1 topology. Note that (h ◦ g)(B,W�
n) is equal to Wn.

To finish the proof, it remains to show that (h ◦ g)(B̃,W) is equal to the limiting
process in relation (18). By an application of Propositions 5.2 and 5.3 in [14] we
obtain that for every j = 1, . . . , d the point process

∑
i δ

(Ti ,PiQ
(j)+
i )

is a Poisson

process with intensity measures Leb × νj+, and hence M(j+)(t) := ∨
Ti≤t PiQ

(j)+
i

is an extremal processes with exponent measures νj+ (see Section 4.3 in [13]; and

[14], p. 161). Analogously, M(j−)(t) := ∨
Ti≤t PiQ

(j)−
i is an extremal processes

with exponent measures νj−, and hence

(h ◦ g)(B̃,W) =
( d∨

j=1

(
D̃

k,j
+ M(j+) ∨ D̃

k,j
− M(j−)

))
k=1,...,d

, t ∈ [0, 1].

The proof of the next theorem relies on the proof of Theorem 3.3 in [9] where
the functional convergence of the partial maxima process is established for univariate
linear processes with i.i.d. innovations and random coefficients. We will omit some
details of those parts of the proof that remain the same in our case, but we will show
how to handle those parts that differ due to the multivariate setting and weak depen-
dence of innovations.

Theorem 3.3. Let (Zi)i∈Z be a strictly stationary sequence of regularly varying
R

d -valued random vectors with index α > 0 that satisfy (7) and (8), and let C0, C1,

. . . , Cm be random d × d matrices independent of (Zi). Assume Condition 2.1 holds.

Then Mn
d−→ M as n → ∞ in Dd↑ endowed with the weak M1 topology.

Proof. Let Wn be as defined in Proposition 3.1. If we show that for every δ > 0,

lim
n→∞ P[dp(Wn,Mn) > δ] = 0,

then from Proposition 3.1 by an application of Slutsky’s theorem (see Theorem 3.4

in [14]) it will follow that Mn
d−→ M in Dd↑ with the weak M1 topology. Taking into

account (6) we need to show

lim
n→∞ P[dM1(W

(j)
n ,M

(j)
n ) > δ] = 0,

for every j = 1, . . . , d , but it is enough to prove the last relation only for j = 1
(since the proof is analogous for all coordinates j ). In fact, it suffices to show

lim
n→∞ P[dM2(W

(1)
n ,M(1)

n ) > δ] = 0, (21)
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since for x, y ∈ D1↑ it holds that dM2(x, y) = d∗
M1

(x, y), where d∗
M1

is a complete
metric topologically equivalent to dM1 (see Remark 12.8.1 in [17]; and [9], page 247).

In order to show (21), fix δ > 0 and let n ∈ N be large enough, i.e. n >

max{2m, 2m/δ}. By the definition of the metric dM2 we have

dM2(W
(1)
n ,M(1)

n ) =
(

sup
v∈�

W
(1)
n

inf
z∈�

M
(1)
n

d(v, z)

)
∨

(
sup

v∈�
M

(1)
n

inf
z∈�

W
(1)
n

d(v, z)

)

=: Rn ∨ Tn.

Hence
P[dM2(W

(1)
n ,M(1)

n ) > δ] ≤ P(Rn > δ) + P(Tn > δ). (22)

To estimate the first term on the right-hand side of (22), define

Dn = {∃ v ∈ �
W

(1)
n

such that d(v, z) > δ for every z ∈ �
M

(1)
n

}.
Note that {Rn > δ} ⊆ Dn. On the event Dn it holds that d(v, �

M
(1)
n

) > δ. Let
v = (tv, xv). Then as in the proof of Theorem 3.3 in [9], for all l = 0, 1, . . . , m it
holds that ∣∣∣W(1)

n

( i∗

n

)
− M(1)

n

( i∗ + l

n

)∣∣∣ ≥ d(v, �
M

(1)
n

) > δ (23)

with i∗ = �ntv� or i∗ = �ntv� − 1. Note that i∗ is a random index. Let D =∨
k,j=1,...,d (D

k,j
+ ∨ D

k,j
− ). This implies |Ci:k,j | ≤ D for all i ∈ {0, . . . , m} and

k, j ∈ {1, . . . , d}. Denote δ∗ = δ/[8(m + 1)d]. We claim that

Dn ⊆ Hn,1 ∪ Hn,2 ∪ Hn,3, (24)

where

Hn,1 =
{
∃ l ∈ {−m, . . . , m} ∪ {n − m + 1, . . . , n} s.t.

D‖Zl‖
an

> δ∗
}
,

Hn,2 =
{
∃ k ∈ {1, . . . , n} and ∃ l ∈ {k − m, . . . , k + m} \ {k}

such that
D‖Zk‖

an

> δ∗ and
D‖Zl‖

an

> δ∗
}
,

Hn,3 =
{
∃ k ∈ {1, . . . , n}, ∃ j0 ∈ {1, . . . , d} and ∃p ∈ {1, . . . , d} \ {j0}

such that
D|Z(j0)

k |
an

> δ∗ and
D|Z(p)

k |
an

> δ∗
}
.

Note that relation (24) will be proven if we show that

D̂n := Dn ∩ (Hn,1 ∪ Hn,2 ∪ Hn,3)
c = ∅.

Assume the event D̂n occurs. Then necessarily W
(1)
n (i∗/n) > δ∗. Indeed, if

W
(1)
n (i∗/n) ≤ δ∗, that is

i∗∨
i=1

d∨
j=1

a−1
n

(
D

1,j
+ Z

(j)+
i ∨ D

1,j
− Z

(j)−
i

)
= W(1)

n

( i∗

n

)
≤ δ∗,
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then for every s ∈ {m + 1, . . . , i∗} it holds that

X
(1)
s

an

=
m∑

r=0

d∑
j=1

Cr;1,jZ
(j)
s−r

an

≤
m∑

r=0

d∑
j=1

D
1,j
+ Z

(j)+
s−r ∨ D

1,j
− Z

(j)−
s−r

an

≤
m∑

r=0

d∑
j=1

δ

8(m + 1)d
= δ

8
, (25)

since by the definition of D
1,j
+ and D

1,j
− we have D

1,j
+ Z

(j)+
s−r ≥ 0, D1,j

− Z
(j)−
s−r ≥ 0 and

Cr;1,jZ
(j)
s−r ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
1,j
+ Z

(j)+
s−r , if Cr;1,j > 0 and Z

(j)
s−r > 0,

D
1,j
− Z

(j)−
s−r , if Cr;1,j < 0 and Z

(j)
s−r < 0,

0, if Cr;1,j · Z
(j)
s−r ≤ 0.

Since the event Hc
n,1 occurs for every s ∈ {1, . . . , m}, we also have

|X(1)
s |

an

≤
m∑

r=0

d∑
j=1

|Cr;1,j | |Z
(j)
s−r |
an

≤
m∑

r=0

d∑
j=1

D‖Zs−r‖
an

≤ (m + 1)d δ∗ = δ

8
. (26)

Combining (25) and (26) we obtain

− δ

8
≤ X

(1)
1

an

≤ M(1)
n

( i∗

n

)
=

i∗∨
s=1

X
(1)
s

an

≤ δ

8
,

and thus∣∣∣W(1)
n

( i∗

n

)
− M(1)

n

( i∗

n

)∣∣∣ ≤
∣∣∣W(1)

n

( i∗

n

)∣∣∣ +
∣∣∣M(1)

n

( i∗

n

)∣∣∣ ≤ δ

8(m + 1)d
+ δ

8
≤ δ

4
,

which is in contradiction to (23).
Therefore W

(1)
n (i∗/n) > δ∗, and hence there exist k ∈ {1, . . . , i∗} and j0 ∈

{1, . . . , d} such that

W(1)
n

( i∗

n

)
= a−1

n

(
D

1,j0+ Z
(j0)+
k ∨ D

1,j0− Z
(j0)−
k

)
> δ∗.

This implies

D‖Zk‖
an

= D

an

d∨
j=1

|Z(j)
k | ≥ D

an

|Z(j0)
k | ≥ 1

an

(
D

1,j0+ Z
(j0)+
k ∨ D

1,j0− Z
(j0)−
k

)
> δ∗.

From this, since Hc
n,1 ∩ Hc

n,2 ∩ Hc
n,3 occurs, it follows that m + 1 ≤ k ≤ n − m,

D‖Zl‖
an

≤ δ∗ for all l ∈ {k − m, . . . , k + m} \ {k}, (27)
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and
D|Z(p)

k |
an

≤ δ∗ for all p ∈ {1, . . . , d} \ {j0}. (28)

Similarly as in the proof of Theorem 3.3 in [9] one can show that M
(1)
n (i∗/n) =

X
(1)
j /an for some j ∈ {1, . . . , i∗} \ {k, . . . , k + m}. Now we have four cases:

(A1) all random vectors Zj−m, . . . , Zj are “small”,

(A2) exactly one is “large” with exactly one “large” component,

(A3) exactly one is “large” with at least two “large” components,

(A4) at least two of them are “large”,

where we say Z is “large” if D‖Z‖/an > δ∗, otherwise it is “small”, and similarly
the component Z(s) is “large” if D|Z(s)|/an > δ∗.

Following the arguments from [9], adjusted to the multivariate setting, it can be
shown that the cases (A1) and (A2) are not possible (see the arXiv preprint [6] for
details). The case (A3) is not possible on the event Hc

n,3, and the case (A4) is not
possible on the event Hc

n,2. Since neither of the four cases (A1)–(A4) is possible, we

conclude that D̂n = ∅, and hence (24) holds.
The next step is to show that P(Hn,k) → 0 as n → ∞ for k = 1, 2, 3. By

stationarity we have P(Hn,1) ≤ (3m + 1) P(D‖Z1‖ > δ∗an), and therefore

lim
n→∞ P(Hn,1) = 0. (29)

As for Hn,2 we have

P(Hn,2 ∩ {D ≤ c}) =
n∑

k=1

k+m∑
l = k − m

l �= k

P

(
D‖Zk‖

an

> δ∗, D‖Zl‖
an

> δ∗, D ≤ c

)

≤ 2n

m∑
i=1

P

(‖Z0‖
an

>
δ∗

c
,

‖Zi‖
an

>
δ∗

c

)

≤ 2
m∑

i=1

n P

(‖Z0‖
an

>
δ∗

c

)P
( ‖Z0‖

an
> δ∗

c
,

‖Zi‖
an

> δ∗
c

)
P

( ‖Z0‖
an

> δ∗
c

)
for an arbitrary c > 0. Therefore regular variation and the asymptotical independence
condition (7) yield limn→∞ P(Hn,2 ∩ {D ≤ c}) = 0, and this implies

lim sup
n→∞

P(Hn,2) ≤ lim sup
n→∞

P(Hn,2 ∩ {D > c}) ≤ P(D > c).

Letting c → ∞ we conclude

lim
n→∞ P(Hn,2) = 0. (30)
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By the definition of the set Hn,3 and stationarity it holds that

P(Hn,3 ∩ {D ≤ c}) =
n∑

k=1

d∑
l, s = 1
l �= s

P

(
D|Z(l)

k |
an

> δ∗,
D|Z(s)

k |
an

> δ∗, D ≤ c

)

≤
d∑

l, s = 1
l �= s

n P

( |Z(s)
1 |
an

>
δ∗

c

)
P

( |Z(l)
1 |

an

>
δ∗

c

∣∣∣∣ |Z(s)
1 |
an

>
δ∗

c

)

≤
d∑

l, s = 1
l �= s

n P

(‖Z1‖
an

>
δ∗

c

)
P

( |Z(l)
1 |

an

>
δ∗

c

∣∣∣∣ |Z(s)
1 |
an

>
δ∗

c

)
,

and hence regular variation and condition (8) yield

lim
n→∞ P(Hn,3) = 0. (31)

Now from relations (24) and (29)–(31) we obtain limn→∞ P(Dn) = 0, and since
{Rn > δ} ⊆ Dn, we conclude that

lim
n→∞ P(Rn > δ) = 0. (32)

Interchanging the roles of M
(1)
n and W

(1)
n in handling the event Dn, and using the

arguments from the proof of Theorem 3.3 in [9], adjusted to the multivariate setting,
we can show

lim
n→∞ P(Tn > δ) = 0 (33)

(for details see the arXiv preprint [6]). Now from (22), (32) and (33) we obtain (21),

which means that Mn
d−→ M in Dd↑ with the weak M1 topology.

4 Infinite order linear processes

Let (Zi)i∈Z be a strictly stationary sequence of regularly varying R
d -valued random

vectors with index α > 0, and (Ci)i≥0 a sequence of random d ×d matrices indepen-
dent of (Zi) such that the series defining the linear process

Xi =
∞∑

j=0

CjZi−j , i ∈ Z, (34)

is a.s. convergent. For k, j ∈ {1, . . . , d} let

D
k,j
+ = max{C+

i;k,j
: i ≥ 0} and D

k,j
− = max{C−

i;k,j
: i ≥ 0},

where Ci;k,j is the (k, j)th entry of the matrix Ci . Let Mn be the partial maxima
process as defined in (16), and M the limiting process from Proposition 3.1.
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To obtain functional convergence of the partial maxima process for infinite order
linear processes, we first approximate them by a sequence of finite order linear pro-
cesses, for which Theorem 3.3 holds, and then show that the error of approximation
is negligible in the limit with respect to the weak M1 topology. In this case, besides
the conditions from Theorem 3.3 for finite order linear processes, we will need also
some moment conditions on the sequence of coefficients.

Theorem 4.1. Let (Zi)i∈Z be a strictly stationary sequence of regularly varying R
d -

valued random vectors with index α > 0 that satisfy (7) and (8), and let (Ci)i≥0 be a
sequence of random d ×d matrices independent of (Zi). Assume Condition 2.1 holds
and suppose ⎧⎪⎪⎨

⎪⎪⎩
∑∞

j=0 E(‖Cj‖δ + ‖Cj‖γ ) < ∞, if α ∈ (0, 1),∑∞
j=0 E(‖Cj‖δ + ‖Cj‖) < ∞, if α = 1,∑∞
j=0 E‖Cj‖ < ∞, if α > 1,

(35)

for some δ ∈ (0, α) and γ ∈ (α, 1). Then Mn
d−→ M as n → ∞ in Dd↑ endowed with

the weak M1 topology.

Proof. For m ∈ N, m ≥ 2, define

Xm
i =

m−2∑
j=0

CjZi−j + C(m,∨)Zi−m+1 + C(m,∧)Zi−m, i ∈ Z,

and

Mn,m(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a−1
n

�nt�∨
i=1

Xm
i , t ∈

[1

n
, 1

]
,

a−1
n Xm

1 , t ∈
[
0,

1

n

)
,

where C(m,∨) = max{Ci : i ≥ m − 1} and C(m,∧) = min{Ci : i ≥ m − 1}, with
the maximum and minimum of matrices interpreted componentwise, i.e. the (k, j)th
entry of the matrix C(m,∨) is C

(m,∨)
k,j = max{Ci;k,j : i ≥ m − 1}, and the (k, j)th

entry of the matrix C(m,∧) is C
(m,∧)
k,j = min{Ci;k,j : i ≥ m − 1}.

For k, j ∈ {1, . . . , d} define

D
m,k,j
+ =

( m−2∨
i=0

C+
i;k,j

)
∨ C

(m,∨)+
k,j ∨ C

(m,∧)+
k,j

and

D
m,k,j
− =

( m−2∨
i=0

C−
i;k,j

)
∨ C

(m,∨)−
k,j ∨ C

(m,∧)−
k,j .

Then D
m,k,j
+ = D

k,j
+ and D

m,k,j
− = D

k,j
− , and therefore for the sequence of finite

order linear processes (Xm
i )i by Theorem 3.3 we obtain Mn,m

d−→ M as n → ∞ in
Dd↑ with the weak M1 topology.
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If we show that for every ε > 0

lim
m→∞ lim sup

n→∞
P[dp(Mn,Mn,m) > ε] = 0,

then by a generalization of Slutsky’s theorem (see Theorem 3.5 in [14]) it will follow

that Mn
d−→ M in Dd↑ with the weak M1 topology. Taking into account (6) and the

fact that the metric dM1 on D1↑ is bounded above by the uniform metric, it suffices to
show that

lim
m→∞ lim sup

n→∞
P

(
sup

0≤t≤1
|M(j)

n (t) − M
(j)
n,m(t)| > ε

)
= 0,

for every j = 1, . . . , d , and further, as in the proof of Theorem 3.3, it is enough
to show the last relation only for j = 1. Denote by Jn,m the probability in the
last relation (for j = 1). Now we treat separately the cases α ∈ (0, 1) and α ∈
[1,∞).

Case α ∈ (0, 1). Recalling the definitions, we have

Jn,m ≤ P

( n∨
i=1

|X(1)
i − X

m(1)
i |

an

> ε

)
≤ P

( n∑
i=1

|X(1)
i − X

m(1)
i |

an

> ε

)
. (36)

Similarly as in the univariate case treated in [9] we obtain

X
(1)
i − X

m(1)
i =

d∑
j=1

( ∞∑
k=m+1

Ck;1,jZ
(j)
i−k + (Cm−1;1,j − C

(m,∨)
1,j )Z

(j)
i−m+1

+ (Cm;1,j − C
(m,∧)
1,j )Z

(j)
i−m

)
,

and

n∑
i=1

|X(1)
i − X

m(1)
i |

≤
d∑

j=1

[ 0∑
i=−∞

|Z(j)
i−m|

n∑
s=1

‖Cm−i+s‖ +
(

2
∞∑

l=m−1

‖Cl‖
) n+1∑

i=1

|Z(j)
i−m|

]
.

Therefore from (36) by applying condition (35) and the multivariate generalization
of Lemma 3.2 in [8] (for the proof of this generalization see the arXiv preprint [6]) it

follows that limm→∞ lim supn→∞ Jn,m = 0, which means that Mn
d−→ M as n → ∞

in Dd↑ with the weak M1 topology.
Case α ∈ [1,∞). Define

Ak,j =

⎧⎪⎨
⎪⎩

Ck;1,j − C
(m,∨)
1,j , if k = m − 1,

Ck;1,j − C
(m,∧)
1,j , if k = m,

Ck;1,j , if k ≥ m + 1,
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for k ≥ m − 1 and j ∈ {1, . . . , d}. Then using the representation of X
(1)
i − X

m(1)
i

obtained in the previous case we get

|M(1)
n (t) − M(1)

n,m(t)| ≤
n∨

i=1

|X(1)
i − X

m(1)
i |

an

=
n∨

i=1

d∑
j=1

∣∣∣∣
∞∑

k=m−1

Ak,j

Z
(j)
i−k

an

∣∣∣∣
for every t ∈ [0, 1]. This, (35) and Lemma 5.2 in the arXiv preprint [6] yield

limm→∞ lim supn→∞ Jn,m = 0. Thus in this case also Mn
d−→ M as n → ∞ in

Dd↑ with the weak M1 topology.

Remark 4.2. When the sequence of coefficients (Ci) is deterministic, the limiting
process M in Theorem 4.1 has the representation

M(t) =
∨
Ti≤t

PiSi, t ∈ [0, 1],

where Si = (S
(1)
i , . . . , S

(d)
i ), with S

(k)
i = ∨d

j=1(D
k,j
+ Q

(j)+
i ∨ D

k,j
− Q

(j)−
i ) for k =

1, . . . , d . It is an extremal process with an exponent measure ρ, where for x ∈
[0,∞)d , x �= 0,

ρ([[0, x]]c) =
∫ ∞

0
P

(
y

d∨
k=1

S
(k)
1

x(k)
> 1

)
αy−α−1 dy.

Remark 4.3. A special case of multivariate linear processes studied in this paper is

Xi =
∞∑

j=0

BjZi−j , i ∈ Z,

where (Bi)i≥0 is a sequence of random variables independent of (Zi). To obtain this
linear process from the general one in (34) take

Ci;k,j =
{

Bi, if k = j,

0, if k �= j,

for i ≥ 0 and k, j ∈ {1, . . . , d}. In this case, under the conditions from Theorem 4.1
the limiting process M reduces to

M(t) =
(
D̃

k,k
+ M(k+)(t) ∨ D̃

k,k
− M(k−)(t)

)
k=1,...,d

=
(
B̃+M(k+)(t) ∨ B̃−M(k−)(t)

)
k=1,...,d

for t ∈ [0, 1], where (B̃+, B̃−) is a two-dimensional random vector, independent of

(M(k+),M(k−))∗k=1,...,d , such that (B̃+, B̃−)
d= (

∨
i≥0 B+

i ,
∨

i≥0 B−
i ). By an appli-

cation of Propositions 5.2 and 5.3 in [14] we can represent M in the form

M(t) = B̃+M+(t) ∨ B̃−M−(t), t ∈ [0, 1],
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where M+(t) = (M(k+))k=1,...,d and M−(t) = (M(k−))k=1,...,d are extremal pro-
cesses with exponent measures ν+ and ν− respectively, where for x ∈ [0,∞)d , x �= 0,

ν+([[0, x]]c) =
∫ ∞

0
P

(
y

d∨
k=1

Q
(k)+
1

x(k)
> 1

)
αy−α−1 dy

and

ν−([[0, x]]c) =
∫ ∞

0
P

(
y

d∨
k=1

Q
(k)−
1

x(k)
> 1

)
αy−α−1 dy.

In the following example we show that the functional convergence in the weak
M1 topology in Theorems 3.3 and 4.1 in general cannot be replaced by convergence
in the stronger standard M1 topology.

Example 4.4. Let (Ti)i∈Z be a sequence of i.i.d. unit Fréchet random variables,
i.e. P(Ti ≤ x) = e−1/x for x > 0. Take a sequence of positive real numbers (an)

such that n P(T1 > an) → 1/2 as n → ∞, for instance, we can take an = 2n. Let

Zi = (T2i−1, T2i ), i ∈ Z.

Then it follows easily that n P(‖Z1‖ > an) → 1 as n → ∞. It is straightforward
to see that the random process (Zi)i∈Z satisfies all conditions of Theorem 3.3, and
hence the partial maxima processes Mn( · ) of the linear process

Xi = C0Zi + C1Zi−1, i ∈ Z,

with

C0 =
(

1 1
0 0

)
and C1 =

(
0 0
1 1

)
,

converges in distribution in D2↑ with the weak M1 topology.
Next we show that Mn( · ) do not converge in distribution under the standard M1

topology on D2↑. This shows that the weak M1 topology in Theorems 3.3 and 4.1 in
general cannot be replaced by the standard M1 topology. Let

Vn(t) = M(1)
n (t) − M(2)

n (t), t ∈ [0, 1],
where

M(1)
n (t) =

�nt�∨
i=1

Z
(1)
i + Z

(2)
i

an

=
�nt�∨
i=1

T2i−1 + T2i

an

and

M(2)
n (t) =

�nt�∨
i=1

Z
(1)
i−1 + Z

(2)
i−1

an

=
�nt�∨
i=1

T2i−3 + T2i−2

an

.

The first step is to show that Vn( · ) does not converge in distribution in D1 endowed
with the standard M1 topology. According to [15] (see also Proposition 2 in [1],
where the term “weak M1 convergence” is used for convergence in distribution in
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the standard M1 topology) it suffices to show that

lim
δ→0

lim sup
n→∞

P(ωδ(Vn) > ε) > 0 (37)

for some ε > 0, where

ωδ(x) = sup
t1 ≤ t ≤ t2

0 ≤ t2 − t1 ≤ δ

M(x(t1), x(t), x(t2))

(x ∈ D1, δ > 0) and

M(x1, x2, x3) =
{

0, if x2 ∈ [x1, x3],
min{|x2 − x1|, |x3 − x2|}, otherwise.

Denote by i′ = i′(n) the index at which max1≤i≤n−1 Ti is obtained. Fix ε > 0 and let
An,ε = {Ti′ > εan} and

Bn,ε = {Ti′ > εan and ∃ k ∈ {−i′ − 1, . . . , 3} \ {0} such that Ti′+k > εan/8}.
The regular variation property of T1 yields n P(T1 > can) → (2c)−1 as n → ∞ for
c > 0, and this, together with the fact that (Ti) is a sequence of i.i.d. variables, yield

lim
n→∞ P(An,ε) = 1 − lim

n→∞

(
1 − n P(T1 > εan)

n

)n−1

= 1 − e−(2ε)−1
(38)

and

lim sup
n→∞

P(Bn,ε) ≤ lim sup
n→∞

n−1∑
i=1

3∑
k = −n

k �= 0

P(Ti > εan, Ti+k > εan/8)

≤ lim sup
n→∞

(n − 1)(n + 3) P(T1 > εan) P(T1 > εan/8) = 2ε−2. (39)

Note that on the event An,ε \Bn,ε it holds that Ti′ > εan and Ti′+k ≤ εan/8 for every
k ∈ {−i′ − 1, . . . , 3} \ {0}. Now we distinguish two cases.

(i) i′ is an even number. Then i′ = 2i∗ for some integer i∗. Observe that on the
set An,ε \ Bn,ε we have

M(1)
n

( i∗

n

)
= Ti′−1 + Ti′

an

> ε and M(2)
n

( i∗

n

)
=

i∗∨
i=1

T2i−3 + T2i−2

an

≤ ε

4
,

and similarly

M(1)
n

( i∗ − 1

n

)
≤ ε

4
and M(2)

n

( i∗ − 1

n

)
≤ ε

4
.

This implies

Vn

( i∗

n

)
= M(1)

n

( i∗

n

)
− M(2)

n

( i∗

n

)
>

3ε

4
,
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and

Vn

( i∗ − 1

n

)
= M(1)

n

( i∗ − 1

n

)
− M(2)

n

( i∗ − 1

n

)
∈

[
− ε

4
,
ε

4

]
.

Further, on the set An,ε \ Bn,ε it holds that

M(1)
n

( i∗ + 1

n

)
= Ti′−1 + Ti′

an

and M(2)
n

( i∗ + 1

n

)
= Ti′−1 + Ti′

an

,

which yields

Vn

( i∗ + 1

n

)
= 0.

(ii) i′ is an odd number. Then i′ = 2i∗ − 1 for some integer i∗. Similarly as in the
case (i) on the event An,ε \ Bn,ε one obtains

Vn

( i∗

n

)
>

3ε

4
, Vn

( i∗ − 1

n

)
∈

[
− ε

4
,
ε

4

]
and Vn

( i∗ + 1

n

)
= 0.

Hence from (i) and (ii) we conclude that on the set An,ε \ Bn,ε it holds that

∣∣∣Vn

( i∗

n

)
− Vn

( i∗ − 1

n

)∣∣∣ >
3ε

4
− ε

4
= ε

2
(40)

and ∣∣∣Vn

( i∗ + 1

n

)
− Vn

( i∗

n

)∣∣∣ >
3ε

4
. (41)

Note that on the set An,ε \ Bn,ε one also has

Vn

( i∗

n

)
/∈

[
Vn

( i∗ − 1

n

)
, Vn

( i∗ + 1

n

)]
,

and therefore taking into account (40) and (41) we obtain

ω2/n(Vn) ≥ M
(
Vn

( i∗ − 1

n

)
, Vn

( i∗

n

)
, Vn

( i∗ + 1

n

))
>

ε

2

on the event An,ε \ Bn,ε . Therefore, since ωδ( · ) is nondecreasing in δ, it holds that

lim inf
n→∞ P(An,ε \ Bn,ε) ≤ lim inf

n→∞ P(ω2/n(Vn) > ε/2)

≤ lim
δ→0

lim sup
n→∞

P(ωδ(Vn) > ε/2). (42)

Since x2(1 − e−(2x)−1
) tends to infinity as x → ∞, we can find ε > 0 such that

ε2(1 − e−(2ε)−1
) > 2, that is 1 − e−(2ε)−1

> 2ε−2. For this ε, by relations (38) and
(39), we have

lim
n→∞ P(An,ε) > lim sup

n→∞
P(Bn,ε),

i.e.
lim inf
n→∞ P(An,ε \ Bn,ε) ≥ lim

n→∞ P(An,ε) − lim sup
n→∞

P(Bn,ε) > 0.
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This and (42) imply (37), and hence Vn( · ) does not converge in distribution in D1

with the standard M1 topology.
To finish, if Mn( · ) would converge in distribution in the standard M1 topology on

D2↑, and then also on D2, using the fact that linear combinations of the coordinates
are continuous in the same topology (see Theorems 12.7.1 and 12.7.2 in [17]) and
the continuous mapping theorem, we would obtain that Vn( · ) = M

(1)
n ( · ) − M

(2)
n ( · )

converges in D1 with the standard M1 topology, which is impossible, as is shown
above.
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