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Abstract In this paper, functional convergence is derived for the partial maxima stochastic 
processes of multivariate linear processes with weakly dependent heavy-tailed innovations and 
random coefficients. The convergence takes place in the space of R𝑑-valued càdlàg functions 
on [0, 1] endowed with the weak Skorokhod 𝑀1 topology.
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1 Introduction

Let (𝑋𝑖)𝑖∈Z be a strictly stationary sequence of random variables, and denote by 
𝑀𝑛 = max{𝑋1, 𝑋2, . . . , 𝑋𝑛}, 𝑛 ≥ 1, its partial maxima. The asymptotic distributional 
behavior of 𝑀𝑛 is one of the main objects of interest of classical extreme value theory. 
When (𝑋𝑖) is an i.i.d. sequence and there exist constants 𝑎𝑛 > 0 and 𝑏𝑛 such that

P
(︃

𝑀𝑛 − 𝑏𝑛

𝑎𝑛
≤ 𝑥

)︃
→ 𝐺 (𝑥) as 𝑛 → ∞, (1)

with nondegenerated limit 𝐺, the limit belongs to the class of extreme value distri-
butions, see [13]. It is known that generalizations of this result to weak convergence 
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of partial maxima processes in the space of càdlàg functions hold. More precisely, 
relation (1) implies

𝑎−1
𝑛 (𝑀𝑛 ( · ) − 𝑏𝑛) := 𝑎−1

𝑛

(︃ ⌊𝑛 · ⌋⋁︂
𝑖=1 

𝑋𝑖 − 𝑏𝑛

)︃
𝑑 −→ 𝑌 ( · ) (2)

in the space 𝐷 ([0, 1],R) of real-valued càdlàg functions on [0, 1] endowed with the 
Skorokhod 𝐽1 topology, with 𝑌 being an extremal process generated by 𝐺 (see [11], 
and Proposition 4.20 in [13]). Simplifying notation, we sometimes omit brackets and 

write 𝑎−1
𝑛 (𝑀𝑛 − 𝑏𝑛) 𝑑 −→ 𝑌 . The convergence in relation (2) also holds for a special 

class of weakly dependent random variables, the linear or moving averages processes 
with i.i.d. heavy-tailed innovations and deterministic coefficients (see Proposition 4.28 
in [13]).

Recently, it was shown in [9] that the functional convergence in (2) holds for linear 
processes with i.i.d. heavy-tailed innovations and random coefficients. In this paper we 
aim to generalize this result in two directions, the first one by studying linear processes 
with weakly dependent innovations (and random coefficients), and the second one by 
extending this theory to the multivariate setting. Due to possible clustering of large 
values, the 𝐽1 topology becomes inappropriate, and therefore we will use the weaker 
Skorokhod 𝑀1 topology. This topology works well if all extremes within each cluster 
of large values have the same sign.

The paper is organized as follows. In Section 2 we introduce basic notions about 
regular variation, linear processes, point processes and Skorokhod topologies. In Sec-
tion 3 we derive the weak 𝑀1 convergence of the partial maxima stochastic process 
for finite order multivariate linear processes with weakly dependent heavy-tailed in-
novations and random coefficients. In Section 4 we extend this result to infinite order 
multivariate linear processes, and give an example which shows that the convergence 
in the weak 𝑀1 topology in general cannot be replaced by the standard 𝑀1 conver-
gence.

2 Preliminaries

We use superscripts in parentheses to designate vector components and coordinate 
functions, i.e. 𝑎 = (𝑎 (1) , . . . , 𝑎 (𝑑) ) ∈ R

𝑑 and 𝑥 = (𝑥 (1) , . . . , 𝑥 (𝑑) ) : [0, 1] → R
𝑑 . 

For two vectors 𝑎 = (𝑎 (1) , . . . , 𝑎 (𝑑) ), 𝑏 = (𝑏 (1) , . . . , 𝑏 (𝑑) ) ∈ R
𝑑 , 𝑎 ≤ 𝑏 means 

𝑎 (𝑘 ) ≤ 𝑏 (𝑘 ) for all 𝑘 = 1, . . . , 𝑑. The vector (𝑎 (1) , . . . , 𝑎 (𝑑) , 𝑏 (1) , . . . , 𝑏 (𝑑) ) will be 
denoted by (𝑎, 𝑏), and the vector (𝑎 (1) , 𝑏 (1) , 𝑎 (2) , 𝑏 (2) , . . . , 𝑎 (𝑑) , 𝑏 (𝑑) ) will be denoted 
by (𝑎 (𝑖) , 𝑏 (𝑖) )∗𝑖=1,...,𝑑 . Denote by 𝑎∨ 𝑏 the vector (𝑎 (1) ∨ 𝑏 (1) , . . . , 𝑎 (𝑑) ∨ 𝑏 (𝑑) ), where 
for 𝑐, 𝑑 ∈ R we put 𝑐 ∨ 𝑑 = max{𝑐, 𝑑}. Sometimes for convenience we will denote 
the vector 𝑎 by (𝑎 (𝑖) )𝑖=1,...,𝑑 . For a real number 𝑐 we write 𝑐𝑎 = (𝑐𝑎 (1) , . . . , 𝑐𝑎 (𝑑) ).

2.1 Regular variation

The R𝑑-valued random vector 𝜉 is (multivariate) regularly varying if there exist 𝛼 > 0
and a random vector Θ on the unit sphere S𝑑−1 = {𝑥 ∈ R

𝑑 : ∥𝑥∥ = 1} in R𝑑 , such that 
for every 𝑢 > 0,



𝑀1 convergence of maxima of multivariate linear processes 253

P(∥𝜉∥ > 𝑢𝑥, 𝜉/∥𝜉∥ ∈ · )
P(∥𝜉∥ > 𝑥) 

𝑤 −→ 𝑢−𝛼 P(Θ ∈ · ) as 𝑥 → ∞, (3)

where the arrow “ 𝑤 −→” denotes the weak convergence of finite measures and ∥ · ∥
denotes the max-norm on R𝑑. This definition does not depend on the choice of the 
norm, since if (3) holds for some norm on R𝑑 , it holds for all norms (of course, with 
different distributions of Θ). The number 𝛼 is called the index of regular variation of 𝜉, 
and the probability measure P(Θ ∈ · ) is called the spectral measure of 𝜉 with respect 
to the norm ∥ · ∥. In the one-dimensional case regular variation is characterized by 
P(|𝜉 | > 𝑥) = 𝑥−𝛼𝐿(𝑥), 𝑥 > 0, for some slowly varying function 𝐿 and the tail balance 
condition

lim 
𝑥→∞

P(𝜉 > 𝑥) 
P(|𝜉 | > 𝑥) = 𝑝, lim 

𝑥→∞
P(𝜉 < −𝑥)
P(|𝜉 | > 𝑥) = 𝑞,

where 𝑝 ∈ [0, 1] and 𝑝 + 𝑞 = 1.
A strictly stationary R𝑑-valued random process (𝜉𝑛)𝑛∈Z is regularly varying with 

index 𝛼 > 0 if for any nonnegative integer 𝑘 the 𝑘𝑑-dimensional random vector 
𝜉 = (𝜉1, . . . , 𝜉𝑘) is multivariate regularly varying with index 𝛼. According to [2] the 
regular variation property of the sequence (𝜉𝑛) is equivalent to the existence of a 
process (𝑌𝑛)𝑛∈Z which satisfies P(∥𝑌0∥ > 𝑦) = 𝑦−𝛼 for 𝑦 ≥ 1, and

(︁(𝑥−1 𝜉𝑛)𝑛∈Z
⃓⃓
∥𝜉0∥ > 𝑥

)︁ fidi −−→ (𝑌𝑛)𝑛∈Z as 𝑥 → ∞, (4)

where “ fidi −−→” denotes convergence of finite-dimensional distributions. The process 
(𝑌𝑛) is called the tail process of (𝜉𝑛).

2.2 Linear processes

Let (𝑍𝑖)𝑖∈Z be a strictly stationary sequence of random vectors in R𝑑, and assume 
𝑍1 is multivariate regularly varying with index 𝛼 > 0. We study multivariate linear 
processes with random coefficients, defined by

𝑋𝑖 =
∞ ∑︂
𝑗=0 

𝐶 𝑗 𝑍𝑖− 𝑗 , 𝑖 ∈ Z, (5)

where (𝐶 𝑗 ) 𝑗≥0 is a sequence of 𝑑 × 𝑑 matrices (with real-valued random variables as 
entries) independent of (𝑍𝑖) such that the above series is a.s. convergent. One sufficient 
condition for that is 

∑︁∞
𝑗=0 E∥𝐶 𝑗 ∥ 𝛿 < ∞ for some 𝛿 < 𝛼, 0 < 𝛿 ≤ 1 (see Section 4.5 in 

[13]), where for a 𝑑 × 𝑑 matrix 𝐶 = (𝐶𝑖, 𝑗 ), ∥𝐶∥ denotes the operator norm

∥𝐶∥ = sup{∥𝐶𝑥∥ : 𝑥 ∈ R
𝑑 , ∥𝑥∥ = 1} = max 

𝑖=1,...,𝑑

𝑑∑︂
𝑗=1 

|𝐶𝑖, 𝑗 |.

2.3 Skorokhod topologies

Denote by 𝐷𝑑 ≡ 𝐷 ([0, 1],R𝑑) the space of all right-continuous R𝑑-valued functions 
on [0, 1] with left limits. For 𝑥 ∈ 𝐷𝑑 the completed (thick) graph of 𝑥 is defined as
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𝐺𝑥 = {(𝑡, 𝑧) ∈ [0, 1] × R
𝑑 : 𝑧 ∈ [[𝑥(𝑡−), 𝑥(𝑡)]]},

where 𝑥(𝑡−) is the left limit of 𝑥 at 𝑡 and [[𝑎, 𝑏]] is the product segment, i.e. [[𝑎, 𝑏]] =
[𝑎 (1) , 𝑏 (1) ] × · · · × [𝑎 (𝑑) , 𝑏 (𝑑) ] for 𝑎 = (𝑎 (1) , . . . , 𝑎 (𝑑) ), 𝑏 = (𝑏 (1) , . . . , 𝑏 (𝑑) ) ∈
R

𝑑 , and [𝑎 (𝑖) , 𝑏 (𝑖) ] coincides with the closed interval [𝑎 (𝑖) ∧ 𝑏 (𝑖) , 𝑎 (𝑖) ∨ 𝑏 (𝑖) ], with 
𝑐 ∧ 𝑑 = min{𝑐, 𝑑} for 𝑐, 𝑑 ∈ R. On the graph 𝐺𝑥 we define an order by saying that 
(𝑡1, 𝑧1) ≤ (𝑡2, 𝑧2) if either (i) 𝑡1 < 𝑡2, or (ii) |𝑥 𝑗 (𝑡1−) − 𝑧

( 𝑗 )
1 | ≤ |𝑥 𝑗 (𝑡2−) − 𝑧

( 𝑗 )
2 | for 

all 𝑗 = 1, 2, . . . , 𝑑. A weak parametric representation of the graph 𝐺𝑥 is a continuous 
nondecreasing function (𝑟, 𝑢) mapping [0, 1] into 𝐺𝑥 , with 𝑟 being the time component 
and 𝑢 the spatial component, such that 𝑟 (0) = 0, 𝑟 (1) = 1 and 𝑢(1) = 𝑥(1). Let Π𝑤 (𝑥)
denote the set of weak parametric representations of 𝐺𝑥. For 𝑥1, 𝑥2 ∈ 𝐷𝑑 define

𝑑𝑤 (𝑥1, 𝑥2) = inf{∥𝑟1 − 𝑟2∥[0,1] ∨ ∥𝑢1 − 𝑢2∥[0,1] : (𝑟𝑖 , 𝑢𝑖) ∈ Π𝑤 (𝑥𝑖), 𝑖 = 1, 2},

where ∥𝑥∥[0,1] = sup{∥𝑥(𝑡)∥ : 𝑡 ∈ [0, 1]}. Now we say that a sequence (𝑥𝑛)𝑛
converges to 𝑥 in 𝐷𝑑 in the weak Skorokhod 𝑀1 topology if 𝑑𝑤 (𝑥𝑛, 𝑥) → 0 as 
𝑛 → ∞. If we replace the graph 𝐺𝑥 with the completed (thin) graph

Γ𝑥 = {(𝑡, 𝑧) ∈ [0, 1] × R
𝑑 : 𝑧 = 𝜆𝑥(𝑡−) + (1 − 𝜆)𝑥(𝑡) for some 𝜆 ∈ [0, 1]},

and weak parametric representations with strong parametric representations, that is 
continuous nondecreasing functions (𝑟, 𝑢) mapping [0, 1] onto Γ𝑥 , then we obtain the 
standard (or strong) Skorokhod 𝑀1 topology. This topology is induced by the metric

𝑑𝑀1 (𝑥1, 𝑥2) = inf{∥𝑟1 − 𝑟2∥[0,1] ∨ ∥𝑢1 − 𝑢2∥[0,1] : (𝑟𝑖 , 𝑢𝑖) ∈ Π𝑠 (𝑥𝑖), 𝑖 = 1, 2},

where Π𝑠 (𝑥) is the set of strong parametric representations of the graph Γ𝑥. Since 
Π𝑠 (𝑥) ⊆ Π𝑤 (𝑥) for all 𝑥 ∈ 𝐷𝑑 , the weak 𝑀1 topology is weaker than the standard 𝑀1
topology on 𝐷𝑑, but they coincide for 𝑑 = 1. The weak 𝑀1 topology coincides with 
the topology induced by the metric

𝑑𝑝 (𝑥1, 𝑥2) = max{𝑑𝑀1 (𝑥 ( 𝑗 )
1 , 𝑥

( 𝑗 )
2 ) : 𝑗 = 1, . . . , 𝑑} (6)

for 𝑥𝑖 = (𝑥 (1)
𝑖 , . . . , 𝑥 (𝑑)

𝑖 ) ∈ 𝐷𝑑 and 𝑖 = 1, 2. The metric 𝑑𝑝 induces the product 
topology on 𝐷𝑑.

By using parametric representations in which only the time component 𝑟 is non-
decreasing instead of (𝑟, 𝑢) we obtain Skorokhod’s weak and strong 𝑀2 topologies. 
The metric

𝑑𝑀2 (𝑥1, 𝑥2) =
(︃

sup 
𝑎∈Γ𝑥1

inf 
𝑏∈Γ𝑥2

𝑑 (𝑎, 𝑏)
)︃
∨
(︃

sup 
𝑎∈Γ𝑥2

inf 
𝑏∈Γ𝑥1

𝑑 (𝑎, 𝑏)
)︃

,

where 𝑑 (𝑎, 𝑏) = max{|𝑎 (𝑖) − 𝑏 (𝑖) | : 𝑖 = 1, . . . , 𝑑 + 1} for 𝑎 = (𝑎 (1) , . . . , 𝑎 (𝑑+1) ), 
𝑏 = (𝑏 (1) , . . . , 𝑏 (𝑑+1) ) ∈ R

𝑑+1, induces the strong 𝑀2 topology, which is weaker than 
the 𝑀1 topology. For more details and discussion on the 𝑀1 and 𝑀2 topologies we refer 
to Sections 12.3-5 and 12.10-11 in [17]. Since the sample paths of the partial maxima 
processes in (2) are nondecreasing, we will restrict our attention to the subspace 𝐷𝑑

↑
of functions 𝑥 in 𝐷𝑑 for which the coordinate functions 𝑥 (𝑖) are nondecreasing for all 
𝑖 = 1, . . . , 𝑑.
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2.4 Point processes
Let (𝑍𝑖)𝑖∈Z be a strictly stationary sequence of regularly varying R𝑑-valued random 
vectors with index 𝛼 > 0. Assume the elements of this sequence are pairwise asymp-
totically (or extremally) independent in the sense that

lim 
𝑥→∞

P(∥𝑍𝑖 ∥ > 𝑥, ∥𝑍 𝑗 ∥ > 𝑥)
P(∥𝑍1∥ > 𝑥) = 0 for all 𝑖 ≠ 𝑗 . (7)

We also assume asymptotical independence of the components of each 𝑍𝑖:

lim 
𝑥→∞ P(|𝑍 ( 𝑗 )

𝑖 | > 𝑥 
⃓⃓
|𝑍 (𝑘 )

𝑖 | > 𝑥) = 0 for all 𝑗 , 𝑘 ∈ {1, . . . , 𝑑}, 𝑗 ≠ 𝑘. (8)

Condition (7) implies the sequence (𝑍𝑖) is regularly varying with index 𝛼 (Proposition 
2.1.8 in [10]) with the tail process as in the i.i.d. case, that is 𝑌𝑖 = 0 for 𝑖 ≠ 0, and 
P(∥𝑌0∥ > 𝑦) = 𝑦−𝛼 for 𝑦 ≥ 1. Relation (8) implies that 𝑌0 a.s. has no two nonzero 
components.

Define the time-space point processes

𝑁𝑛 =
𝑛∑︂

𝑖=1 
𝛿 (𝑖/𝑛, 𝑍𝑖/𝑎𝑛 ) for all 𝑛 ∈ N,

with (𝑎𝑛) being a sequence of positive real numbers such that

𝑛 P(∥𝑍1∥ > 𝑎𝑛) → 1 as 𝑛 → ∞. (9)

The point process convergence for the sequence (𝑁𝑛) on the space [0, 1] × E
𝑑 , where 

E
𝑑 = [−∞,∞]𝑑 \ {0}, was obtained in [3] under the following two weak dependence 

conditions.
Condition 2.1 (Mixing condition). There exists a sequence of positive integers (𝑟𝑛)
such that 𝑟𝑛 → ∞ and 𝑟𝑛/𝑛 → 0 as 𝑛 → ∞ and such that for every nonnegative 
continuous function 𝑓 on [0, 1] ×E

𝑑 with compact support, denoting 𝑘𝑛 = ⌊𝑛/𝑟𝑛⌋, as 
𝑛 → ∞,

E
[︃

exp
{︃
−

𝑛∑︂
𝑖=1 

𝑓

(︃
𝑖

𝑛
,

𝑍𝑖

𝑎𝑛

)︃}︃]︃
−

𝑘𝑛∏︂
𝑘=1 

E
[︃

exp
{︃
−

𝑟𝑛∑︂
𝑖=1 

𝑓

(︃
𝑘𝑟𝑛

𝑛 
,

𝑍𝑖

𝑎𝑛

)︃}︃]︃
→ 0.

Condition 2.2 (Anticlustering condition). There exists a sequence of positive integers 
(𝑟𝑛) such that 𝑟𝑛 → ∞ and 𝑟𝑛/𝑛 → 0 as 𝑛 → ∞ and such that for every 𝑢 > 0,

lim 
𝑚→∞ lim sup

𝑛→∞ 
P
(︃

max 
𝑚≤ |𝑖 | ≤𝑟𝑛

∥𝑍𝑖 ∥ > 𝑢𝑎𝑛

⃓⃓⃓
⃓ ∥𝑍0∥ > 𝑢𝑎𝑛

)︃
= 0.

The sequences (𝑟𝑛) in these two conditions are assumed to be the same. It can be 
shown that Condition 2.1 holds for strongly mixing random sequences (see [5, 7]). 
Now we show that Condition 2.2 holds under condition (7). Let

𝑥𝑘,𝑛 :=
𝑘∑︂

|𝑖 |=1

P(∥𝑍𝑖 ∥ > 𝑢𝑎𝑛, ∥𝑍0∥ > 𝑢𝑎𝑛)
P(∥𝑍0∥ > 𝑢𝑎𝑛) 
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for 𝑘, 𝑛 ∈ N. For every 𝑘 ∈ N condition (7) implies that 𝑥𝑘,𝑛 → 0 as 𝑛 → ∞. An 
application of the triangular argument (Lemma A.1.3 in [10]) yields that there exists 
a nondecreasing sequence of positive integers (𝑠𝑛)𝑛 such that 𝑠𝑛 → ∞ and 𝑥𝑠𝑛 ,𝑛 → 0
as 𝑛 → ∞. Denote

𝑟𝑛 := min{𝑠𝑛, ⌊√𝑛⌋}, 𝑛 ∈ N. (10)
Then 𝑟𝑛 → ∞ and 𝑟𝑛/𝑛 → 0 as 𝑛 → ∞. For a fixed 𝑚 ∈ N and large 𝑟𝑛 (such that 
𝑟𝑛 ≥ 𝑚) it holds that

P
(︃

max 
𝑚≤ |𝑖 | ≤𝑟𝑛

∥𝑍𝑖 ∥ > 𝑢𝑎𝑛

⃓⃓⃓
⃓ ∥𝑍0∥ > 𝑢𝑎𝑛

)︃
≤

𝑟𝑛∑︂
|𝑖 |=𝑚

P(∥𝑍𝑖 ∥ > 𝑢𝑎𝑛, ∥𝑍0∥ > 𝑢𝑎𝑛)
P(∥𝑍0∥ > 𝑢𝑎𝑛) 

≤ 𝑥𝑠𝑛 ,𝑛,

and letting 𝑛 → ∞ we obtain

lim 
𝑛→∞ P

(︃
max 

𝑚≤ |𝑖 | ≤𝑟𝑛
∥𝑍𝑖 ∥ > 𝑢𝑎𝑛

⃓⃓⃓
⃓ ∥𝑍0∥ > 𝑢𝑎𝑛

)︃
= 0

for every 𝑚 ∈ N. Hence, letting 𝑚 → ∞, we see that Condition 2.2 holds. The latter 
condition holds also under Leadbetter’s condition 𝐷′:

lim 
𝑘→∞

lim sup
𝑛→∞ 

𝑛

⌊𝑛/𝑘 ⌋∑︂
𝑖=1 

P(∥𝑍0∥ > 𝑥𝑎𝑛, ∥𝑍𝑖 ∥ > 𝑥𝑎𝑛) = 0 for all 𝑥 > 0. (11)

The asymptotical independence condition (7) also holds under condition 𝐷′. For more 
discussion of the above weak dependence conditions, in the context of partial sums, 
we refer to Section 9.1 in [12] and [16].

In the sequel whenever we assume that Condition 2.1 holds we suppose that the 
sequence (𝑟𝑛) that appears in this condition is the same as in (10), and this will 
ensure that Conditions 2.1 and 2.2 are satisfied by the same sequence (𝑟𝑛). Under 
Condition 2.1 by Theorem 3.1 in [3], as 𝑛 → ∞,

𝑁𝑛
𝑑 −→ 𝑁 =

∑︂
𝑖

∑︂
𝑗

𝛿 (𝑇𝑖 ,𝑃𝑖 𝜂𝑖 𝑗 ) (12)

in [0, 1] × E
𝑑 , where

(i)
∑︁∞

𝑖=1 𝛿 (𝑇𝑖 ,𝑃𝑖 ) is a Poisson process on [0, 1] × (0,∞) with intensity measure 
Leb × 𝜈, with 𝜈(d𝑥) = 𝜃𝛼𝑥−𝛼−1 d𝑥 and 𝜃 = P(sup𝑖≤−1 ∥𝑌𝑖 ∥ ≤ 1).

(ii) (∑︁∞
𝑗=1 𝛿𝜂𝑖 𝑗 )𝑖 is an i.i.d. sequence of point processes in E𝑑 independent of ∑︁

𝑖 𝛿 (𝑇𝑖 ,𝑃𝑖 ) and with common distribution equal to the distribution of the point 
process 

∑︁
𝑗 𝛿˜︁𝑌𝑗/𝐿 (˜︁𝑌 ) , where 𝐿(˜︁𝑌 ) = sup 𝑗∈Z ∥˜︁𝑌 𝑗 ∥ and 

∑︁
𝑗 𝛿˜︁𝑌𝑗

is distributed as 
(∑︁ 𝑗∈Z 𝛿𝑌𝑗 | sup𝑖≤−1 ∥𝑌𝑖 ∥ ≤ 1).

Taking into account the form of the tail process (𝑌𝑖), it holds that 𝜃 = 1 and 
𝑁 =

∑︁
𝑖 𝛿 (𝑇𝑖 ,𝑃𝑖 𝜂𝑖0 ) with ∥𝜂𝑖0∥ = 1. Hence, denoting 𝑄𝑖 = 𝜂𝑖0, the limiting point 

process in relation (12) reduces to

𝑁 =
∑︂

𝑖

𝛿 (𝑇𝑖 ,𝑃𝑖𝑄𝑖 ) . (13)
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Since the sequence (𝑄𝑖) is independent of the Poisson process 
∑︁∞

𝑖=1 𝛿 (𝑇𝑖 ,𝑃𝑖 ) , an ap-
plication of Proposition 5.3 in [14] yields that 

∑︁
𝑖 𝛿 (𝑇𝑖 ,𝑃𝑖 ,𝑄𝑖 ) is a Poisson process on 

[0, 1] × (0,∞) × E
𝑑 with intensity measure Leb × 𝜈 × 𝐹, where 𝐹 is the common 

probability distribution of 𝑄𝑖.
For 𝑥 ∈ R let 𝑥+ = |𝑥 |1{𝑥>0} and 𝑥− = |𝑥 |1{𝑥<0}. Define the maximum functional 

Φ : M𝑝 ([0, 1] × E
𝑑) → 𝐷2𝑑2

↑ by

Φ
(︂∑︂

𝑖

𝛿 (𝑡𝑖 , (𝑥 (1)
𝑖 ,...,𝑥 (𝑑)

𝑖 ) )
)︂
(𝑡) =

(︃(︂⋁︂
𝑡𝑖≤𝑡

𝑥
( 𝑗 )+
𝑖 ,

⋁︂
𝑡𝑖≤𝑡

𝑥
( 𝑗 )−
𝑖

)︂∗

𝑗=1,...,𝑑

)︃
𝑘=1,...,𝑑

(14)

for 𝑡 ∈ [0, 1] (with the convention ∨∅ = 0), where the space M𝑝 ([0, 1]×E𝑑) of Radon 
point measures on [0, 1] × E

𝑑 is equipped with the vague topology (see Chapter 3 
in [13]). Note that on the right-hand side in (14) we repeat the 2𝑑 coordinates of the 

vector 
(︂⋁︁

𝑡𝑖≤𝑡 𝑥
( 𝑗 )+
𝑖 ,

⋁︁
𝑡𝑖≤𝑡 𝑥

( 𝑗 )−
𝑖

)︂∗

𝑗=1,...,𝑑
consecutively 𝑑 times. Let

Λ = {𝜂 ∈ M𝑝 ([0, 1] × E
𝑑) : 𝜂({0, 1} × E

𝑑) = 0 and

𝜂([0, 1] × {(𝑥 (1) , . . . , 𝑥 (𝑑) ) : |𝑥 (𝑖) | = ∞ for some 𝑖}) = 0}.

Then Proposition 3.1 in [9] and the definition of the metric 𝑑𝑝 in (6) yield the 
continuity of the maximum functional Φ on the set Λ in the weak 𝑀1 topology.

3 Finite order linear processes

Let (𝑍𝑖)𝑖∈Z be a strictly stationary sequence of regularly varying R𝑑-valued random 
vectors with index 𝛼 > 0. Fix 𝑚 ∈ N, and let

𝑋𝑖 =
𝑚∑︂
𝑗=0 

𝐶 𝑗 𝑍𝑖− 𝑗 , 𝑖 ∈ Z, (15)

be a finite order linear process, where 𝐶0, 𝐶1, . . . , 𝐶𝑚 are random 𝑑 × 𝑑 matrices 
independent of (𝑍𝑖). Define the corresponding partial maxima process by

𝑀𝑛 (𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑎−1
𝑛

⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑋𝑖 =
(︂

𝑎−1
𝑛

⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑋 (𝑘 )
𝑖

)︂
𝑘=1,...,𝑑

, 𝑡 ≥ 1 
𝑛

,

𝑎−1
𝑛 𝑋1 = 𝑎−1

𝑛 (𝑋 (1)
1 , . . . , 𝑋 (𝑑)

1 ), 𝑡 <
1 
𝑛

,

(16)

for 𝑡 ∈ [0, 1], with the normalizing sequence (𝑎𝑛) as in (9). For 𝑘, 𝑗 ∈ {1, . . . , 𝑑} let

𝐷
𝑘, 𝑗
+ =

𝑚⋁︂
𝑖=0 

𝐶+
𝑖;𝑘, 𝑗 and 𝐷𝑘, 𝑗

− =
𝑚⋁︂

𝑖=0 
𝐶−

𝑖;𝑘, 𝑗 , (17)

where 𝐶𝑖;𝑘, 𝑗 is the (𝑘, 𝑗)th entry of the matrix 𝐶𝑖, 𝐶+
𝑖;𝑘, 𝑗 = |𝐶𝑖;𝑘, 𝑗 |1{𝐶𝑖;𝑘, 𝑗>0} and 

𝐶−
𝑖;𝑘, 𝑗 = |𝐶𝑖;𝑘, 𝑗 |1{𝐶𝑖;𝑘, 𝑗<0}.
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First, we show in the proposition below that a particular process 𝑊𝑛, constructed 
from the sequence (𝑍𝑖), converges in 𝐷𝑑

↑ with the weak 𝑀1 topology. Later, in the 
main result of this section, we show that the weak 𝑀1 distance between processes 
𝑀𝑛 and 𝑊𝑛 is asymptotically negligible (as 𝑛 → ∞), which will imply the functional 
convergence of the maxima process 𝑀𝑛. The limiting process will be described in 
terms of certain extremal processes derived from the point process 𝑁 =

∑︁
𝑖 𝛿 (𝑇𝑖 ,𝑃𝑖𝑄𝑖 )

in relation (13). Extremal processes can be derived from Poisson processes in the 
following way. Let 𝜉 =

∑︁
𝑘 𝛿 (𝑡𝑘 , 𝑗𝑘 ) be a Poisson process on [0,∞) × [0,∞)𝑑 with 

mean measure Leb × 𝜇, where 𝜇 is a measure on [0,∞)𝑑 satisfying 𝜇({𝑥 ∈ [0,∞)𝑑 :
∥𝑥∥ > 𝛿}) < ∞ for any 𝛿 > 0. The extremal process 𝐺 ( · ) generated by 𝜉 is defined 
by 𝐺 (𝑡) = ⋁︁

𝑡𝑘≤𝑡 𝑗𝑘 for 𝑡 > 0. Then for 𝑥 ∈ [0,∞)𝑑 , 𝑥 ≠ 0, and 𝑡 > 0 it holds that 
P(𝐺 (𝑡) ≤ 𝑥) = exp(−𝑡𝜇([[0, 𝑥]]𝑐)) (cf. Section 5.6 in [14]). The measure 𝜇 is called 
the exponent measure.
Proposition 3.1. Let (𝑋𝑖) be a linear process defined in (15), where (𝑍𝑖)𝑖∈Z is a strictly 
stationary sequence of regularly varying R𝑑-valued random vectors with index 𝛼 > 0
that satisfy (7) and (8), and 𝐶0, 𝐶1, . . . , 𝐶𝑚 are random 𝑑 × 𝑑 matrices independent 
of (𝑍𝑖). Assume Condition 2.1 holds. Let

𝑊𝑛 (𝑡) :=
(︃ ⌊𝑛𝑡 ⌋⋁︂

𝑖=1 

𝑑⋁︂
𝑗=1 

𝑎−1
𝑛

(︂
𝐷

𝑘, 𝑗
+ 𝑍

( 𝑗 )+
𝑖 ∨ 𝐷𝑘, 𝑗

− 𝑍
( 𝑗 )−
𝑖

)︂)︃
𝑘=1,...,𝑑

, 𝑡 ∈ [0, 1],

with 𝐷𝑘, 𝑗
+ and 𝐷𝑘, 𝑗

− defined in (17). Then, as 𝑛 → ∞,

𝑊𝑛 ( · ) 𝑑 −→ 𝑀 ( · ) :=
(︃ 𝑑⋁︂

𝑗=1 

(︂˜︁𝐷𝑘, 𝑗
+ 𝑀 ( 𝑗+) ( · ) ∨ ˜︁𝐷𝑘, 𝑗

− 𝑀 ( 𝑗−) ( · )
)︂)︃

𝑘=1,...,𝑑

(18)

in 𝐷𝑑
↑ with the weak 𝑀1 topology, where 𝑀 ( 𝑗+) and 𝑀 ( 𝑗−) are extremal processes 

with exponent measures 𝜈 𝑗+ and 𝜈 𝑗− respectively, with

𝜈 𝑗+(d𝑥) = E(𝑄 ( 𝑗 )+
1 )𝛼 𝛼𝑥−𝛼−1 d𝑥 and 𝜈 𝑗− (d𝑥) = E(𝑄 ( 𝑗 )−

1 )𝛼 𝛼𝑥−𝛼−1 d𝑥

for 𝑥 > 0 ( 𝑗 = 1, . . . , 𝑑), and ((˜︁𝐷𝑘, 𝑗
+ , ˜︁𝐷𝑘, 𝑗

− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 is a 2𝑑2-dimensional 
random vector, independent of (𝑀 ( 𝑗+) , 𝑀 ( 𝑗−) ) 𝑗=1,...,𝑑 , such that

((˜︁𝐷𝑘, 𝑗
+ , ˜︁𝐷𝑘, 𝑗

− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑
𝑑
= ((𝐷𝑘, 𝑗

+ , 𝐷𝑘, 𝑗
− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 .

Remark 3.2. In Proposition 3.1, as well as in the sequel of this paper, we suppose 
𝑀 ( 𝑗+) is an extremal process if E(𝑄 ( 𝑗 )+

1 )𝛼 > 0, and a zero process if this quantity is 
equal to zero. Analogously for 𝑀 ( 𝑗−) .

Proof of Proposition 3.1. As noted in Subsection 2.4, condition (7) implies that the 
sequence (𝑍𝑖) is regularly varying with index 𝛼 and that Condition 2.2 holds. This, 
with Condition 2.1, implies the point process convergence in (12) with the limiting 
point process 𝑁 described in (13). Since 𝑁 is a Poisson process, it almost surely 
belongs to the set Λ. Therefore, since the maximum functional Φ is continuous on Λ, 
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the continuous mapping theorem (see, for instance, Theorem 3.1 in [14]) applied to 

the convergence in (12) yields Φ(𝑁𝑛) 𝑑 −→ Φ(𝑁) in 𝐷2𝑑2

↑ under the weak 𝑀1 topology, 
i.e.

𝑊★
𝑛 ( · ) :=

(︃(︃
𝑎−1

𝑛

⌊𝑛 · ⌋⋁︂
𝑖=1 

𝑍
( 𝑗 )+
𝑖 , 𝑎−1

𝑛

⌊𝑛 · ⌋⋁︂
𝑖=1 

𝑍
( 𝑗 )−
𝑖

)︃∗

𝑗=1,...,𝑑

)︃
𝑘=1,...,𝑑

𝑑 −→ 𝑊 ( · ) :=
(︃(︃ ⋁︂

𝑇𝑖≤ ·
𝑃𝑖𝑄

( 𝑗 )+
𝑖 ,

⋁︂
𝑇𝑖≤ ·

𝑃𝑖𝑄
( 𝑗 )−
𝑖

)︃∗

𝑗=1,...,𝑑

)︃
𝑘=1,...,𝑑

. (19)

By the same arguments as in the proof of Proposition 3.2 in [9] we obtain that 𝐷2𝑑2

↑
with the weak 𝑀1 topology is a Polish space, and hence by Corollary 5.18 in [4] we 
can find a random vector ((˜︁𝐷𝑘, 𝑗

+ , ˜︁𝐷𝑘, 𝑗
− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 , independent of 𝑊 , such that

((˜︁𝐷𝑘, 𝑗
+ , ˜︁𝐷𝑘, 𝑗

− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑
𝑑
= ((𝐷𝑘, 𝑗

+ , 𝐷𝑘, 𝑗
− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 .

This, relation (19) and the fact that ((𝐷𝑘, 𝑗
+ , 𝐷𝑘, 𝑗

− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 is independent of 
𝑊★

𝑛 , by an application of Theorem 3.29 in [4], imply that

(𝐵, 𝑊★
𝑛 )

𝑑 −→ (˜︁𝐵, 𝑊) as 𝑛 → ∞ (20)

in 𝐷4𝑑2

↑ with the product 𝑀1 topology, where 𝐵 = ((𝐵𝑘, 𝑗
+ , 𝐵𝑘, 𝑗

− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 and ˜︁𝐵 = ((˜︁𝐵𝑘, 𝑗
+ , ˜︁𝐵𝑘, 𝑗

− )∗𝑗=1,...,𝑑)𝑘=1,...,𝑑 are random elements in 𝐷2𝑑2

↑ such that 𝐵𝑘, 𝑗
+ (𝑡) =

𝐷
𝑘, 𝑗
+ , 𝐵𝑘, 𝑗

− (𝑡) = 𝐷𝑘, 𝑗
− , ˜︁𝐵𝑘, 𝑗

+ (𝑡) = ˜︁𝐷𝑘, 𝑗
+ and ˜︁𝐵𝑘, 𝑗

− (𝑡) = ˜︁𝐷𝑘, 𝑗
+ for 𝑡 ∈ [0, 1].

A multivariate version of Lemma 2.1 in [9] implies that the function 𝑔 : 𝐷4𝑑2

↑ →
𝐷2𝑑2

↑ defined by

𝑔(𝑥) = (𝑥 (1)𝑥 (2𝑑2+1) , 𝑥 (2)𝑥 (2𝑑2+2) , . . . , 𝑥 (2𝑑2 )𝑥 (4𝑑2 ) )

for 𝑥 = (𝑥 (1) , . . . , 𝑥 (4𝑑2 ) ) ∈ 𝐷4𝑑2

↑ , is continuous in the weak 𝑀1 topology on the set of 
all functions in 𝐷4𝑑2

↑ for which the first 2𝑑2 component functions have no discontinuity 

points, and this yields P[(˜︁𝐵, 𝑊) ∈ Disc(𝑔)] = 0, where Disc(𝑔) denotes the set of 
discontinuity points of 𝑔. A multivariate version of Lemma 2.2 in [9] shows that the 
function ℎ : 𝐷2𝑑2

↑ → 𝐷𝑑
↑ , defined by

ℎ(𝑥) =
(︃ 2𝑑 ⋁︂

𝑖=1 
𝑥 (𝑖) ,

4𝑑 ⋁︂
𝑖=2𝑑+1

𝑥 (𝑖) , . . . ,
2𝑑2⋁︂

𝑖=2(𝑑−1)𝑑+1
𝑥 (𝑖)

)︃

for 𝑥 = (𝑥 (𝑖) )𝑖=1,...,2𝑑2 ∈ 𝐷2𝑑2

↑ , is continuous when both spaces 𝐷2𝑑2

↑ and 𝐷𝑑
↑ are 

endowed with the weak 𝑀1 topology. Therefore, the continuous mapping theorem 

applied to the convergence in (20) yields (ℎ ◦ 𝑔)(𝐵, 𝑊★
𝑛 )

𝑑 −→ (ℎ ◦ 𝑔)(˜︁𝐵, 𝑊) as 𝑛 → ∞, 
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i.e.
(︃ ⌊𝑛 · ⌋⋁︂

𝑖=1 

𝑑⋁︂
𝑗=1 

𝐷
𝑘, 𝑗
+ 𝑍

( 𝑗 )+
𝑖 ∨ 𝐷𝑘, 𝑗

− 𝑍
( 𝑗 )−
𝑖

𝑎𝑛

)︃
𝑘=1,...,𝑑

𝑑 −→
(︃ ⋁︂

𝑇𝑖≤ ·

𝑑⋁︂
𝑗=1 

(˜︁𝐷𝑘, 𝑗
+ 𝑃𝑖𝑄

( 𝑗 )+
𝑖 ∨ ˜︁𝐷𝑘, 𝑗

− 𝑃𝑖𝑄
( 𝑗 )−
𝑖 )

)︃
𝑘=1,...,𝑑

in 𝐷𝑑
↑ with the weak 𝑀1 topology. Note that (ℎ ◦ 𝑔)(𝐵, 𝑊★

𝑛 ) is equal to 𝑊𝑛.
To finish the proof, it remains to show that (ℎ ◦ 𝑔)(˜︁𝐵, 𝑊) is equal to the limiting 

process in relation (18). By an application of Propositions 5.2 and 5.3 in [14] we obtain 
that for every 𝑗 = 1, . . . , 𝑑 the point process 

∑︁
𝑖 𝛿 (𝑇𝑖 ,𝑃𝑖𝑄

( 𝑗)+
𝑖 ) is a Poisson process with 

intensity measures Leb × 𝜈 𝑗+, and hence 𝑀 ( 𝑗+) (𝑡) :=
⋁︁

𝑇𝑖≤𝑡 𝑃𝑖𝑄
( 𝑗 )+
𝑖 is an extremal 

processes with exponent measures 𝜈 𝑗+ (see Section 4.3 in [13]; and [14], p. 161). 
Analogously, 𝑀 ( 𝑗−) (𝑡) :=

⋁︁
𝑇𝑖≤𝑡 𝑃𝑖𝑄

( 𝑗 )−
𝑖 is an extremal processes with exponent 

measures 𝜈 𝑗− , and hence

(ℎ ◦ 𝑔)(˜︁𝐵, 𝑊) =
(︂ 𝑑⋁︂

𝑗=1 

(︂˜︁𝐷𝑘, 𝑗
+ 𝑀 ( 𝑗+) ∨ ˜︁𝐷𝑘, 𝑗

− 𝑀 ( 𝑗−)
)︂)︂

𝑘=1,...,𝑑
, 𝑡 ∈ [0, 1] .

□

The proof of the next theorem relies on the proof of Theorem 3.3 in [9] where 
the functional convergence of the partial maxima process is established for univariate 
linear processes with i.i.d. innovations and random coefficients. We will omit some 
details of those parts of the proof that remain the same in our case, but we will 
show how to handle those parts that differ due to the multivariate setting and weak 
dependence of innovations.
Theorem 3.3. Let (𝑍𝑖)𝑖∈Z be a strictly stationary sequence of regularly varying 
R

𝑑-valued random vectors with index 𝛼 > 0 that satisfy (7) and (8), and let 𝐶0, 𝐶1,
. . . , 𝐶𝑚 be random 𝑑 × 𝑑 matrices independent of (𝑍𝑖). Assume Condition 2.1 holds. 
Then 𝑀𝑛

𝑑 −→ 𝑀 as 𝑛 → ∞ in 𝐷𝑑
↑ endowed with the weak 𝑀1 topology.

Proof. Let 𝑊𝑛 be as defined in Proposition 3.1. If we show that for every 𝛿 > 0,

lim 
𝑛→∞ P[𝑑𝑝 (𝑊𝑛, 𝑀𝑛) > 𝛿] = 0,

then from Proposition 3.1 by an application of Slutsky’s theorem (see Theorem 3.4 

in [14]) it will follow that 𝑀𝑛
𝑑 −→ 𝑀 in 𝐷𝑑

↑ with the weak 𝑀1 topology. Taking into 
account (6) we need to show

lim 
𝑛→∞ P[𝑑𝑀1 (𝑊 ( 𝑗 )

𝑛 , 𝑀
( 𝑗 )
𝑛 ) > 𝛿] = 0,

for every 𝑗 = 1, . . . , 𝑑, but it is enough to prove the last relation only for 𝑗 = 1 (since 
the proof is analogous for all coordinates 𝑗). In fact, it suffices to show

lim 
𝑛→∞ P[𝑑𝑀2 (𝑊 (1)

𝑛 , 𝑀 (1)
𝑛 ) > 𝛿] = 0, (21)
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since for 𝑥, 𝑦 ∈ 𝐷1
↑ it holds that 𝑑𝑀2 (𝑥, 𝑦) = 𝑑∗

𝑀1
(𝑥, 𝑦), where 𝑑∗

𝑀1
is a complete 

metric topologically equivalent to 𝑑𝑀1 (see Remark 12.8.1 in [17]; and [9], page 247).
In order to show (21), fix 𝛿 > 0 and let 𝑛 ∈ N be large enough, i.e. 𝑛 >

max{2𝑚, 2𝑚/𝛿}. By the definition of the metric 𝑑𝑀2 we have

𝑑𝑀2 (𝑊 (1)
𝑛 , 𝑀 (1)

𝑛 ) =
(︃

sup 
𝑣∈Γ

𝑊
(1)
𝑛

inf 
𝑧∈Γ

𝑀
(1)
𝑛

𝑑 (𝑣, 𝑧)
)︃
∨
(︃

sup 
𝑣∈Γ

𝑀
(1)
𝑛

inf 
𝑧∈Γ

𝑊
(1)
𝑛

𝑑 (𝑣, 𝑧)
)︃

=: 𝑅𝑛 ∨ 𝑇𝑛.

Hence
P[𝑑𝑀2 (𝑊 (1)

𝑛 , 𝑀 (1)
𝑛 ) > 𝛿] ≤ P(𝑅𝑛 > 𝛿) + P(𝑇𝑛 > 𝛿). (22)

To estimate the first term on the right-hand side of (22), define

𝐷𝑛 = {∃ 𝑣 ∈ Γ
𝑊 (1)

𝑛
such that 𝑑 (𝑣, 𝑧) > 𝛿 for every 𝑧 ∈ Γ

𝑀 (1)
𝑛
}.

Note that {𝑅𝑛 > 𝛿} ⊆ 𝐷𝑛. On the event 𝐷𝑛 it holds that 𝑑 (𝑣, Γ
𝑀 (1)

𝑛
) > 𝛿. Let 

𝑣 = (𝑡𝑣 , 𝑥𝑣). Then as in the proof of Theorem 3.3 in [9], for all 𝑙 = 0, 1, . . . , 𝑚 it holds 
that ⃓⃓⃓

𝑊 (1)
𝑛

(︂ 𝑖∗

𝑛 

)︂
− 𝑀 (1)

𝑛

(︂ 𝑖∗ + 𝑙

𝑛 

)︂⃓⃓⃓
≥ 𝑑 (𝑣, Γ

𝑀 (1)
𝑛
) > 𝛿 (23)

with 𝑖∗ = ⌊𝑛𝑡𝑣⌋ or 𝑖∗ = ⌊𝑛𝑡𝑣⌋ − 1. Note that 𝑖∗ is a random index. Let 𝐷 =⋁︁
𝑘, 𝑗=1,...,𝑑 (𝐷𝑘, 𝑗

+ ∨ 𝐷𝑘, 𝑗
− ). This implies |𝐶𝑖:𝑘, 𝑗 | ≤ 𝐷 for all 𝑖 ∈ {0, . . . , 𝑚} and 

𝑘, 𝑗 ∈ {1, . . . , 𝑑}. Denote 𝛿∗ = 𝛿/[8(𝑚 + 1)𝑑]. We claim that

𝐷𝑛 ⊆ 𝐻𝑛,1 ∪ 𝐻𝑛,2 ∪ 𝐻𝑛,3, (24)

where

𝐻𝑛,1 =

{︃
∃ 𝑙 ∈ {−𝑚, . . . , 𝑚} ∪ {𝑛 − 𝑚 + 1, . . . , 𝑛} s.t.

𝐷∥𝑍𝑙 ∥
𝑎𝑛

> 𝛿∗
}︃

,

𝐻𝑛,2 =

{︃
∃ 𝑘 ∈ {1, . . . , 𝑛} and ∃ 𝑙 ∈ {𝑘 − 𝑚, . . . , 𝑘 + 𝑚} \ {𝑘} 

such that
𝐷∥𝑍𝑘 ∥

𝑎𝑛
> 𝛿∗ and

𝐷∥𝑍𝑙 ∥
𝑎𝑛

> 𝛿∗
}︃

,

𝐻𝑛,3 =

{︃
∃ 𝑘 ∈ {1, . . . , 𝑛}, ∃ 𝑗0 ∈ {1, . . . , 𝑑} and ∃ 𝑝 ∈ {1, . . . , 𝑑} \ { 𝑗0}

such that
𝐷 |𝑍 ( 𝑗0 )

𝑘 |
𝑎𝑛

> 𝛿∗ and
𝐷 |𝑍 (𝑝)

𝑘 |
𝑎𝑛

> 𝛿∗
}︃

.

Note that relation (24) will be proven if we show that
ˆ︁𝐷𝑛 := 𝐷𝑛 ∩ (𝐻𝑛,1 ∪ 𝐻𝑛,2 ∪ 𝐻𝑛,3)𝑐 = ∅.

Assume the event ˆ︁𝐷𝑛 occurs. Then necessarily 𝑊 (1)
𝑛 (𝑖∗/𝑛) > 𝛿∗. Indeed, if 

𝑊 (1)
𝑛 (𝑖∗/𝑛) ≤ 𝛿∗, that is

𝑖∗⋁︂
𝑖=1 

𝑑⋁︂
𝑗=1 

𝑎−1
𝑛

(︂
𝐷

1, 𝑗
+ 𝑍

( 𝑗 )+
𝑖 ∨ 𝐷1, 𝑗

− 𝑍
( 𝑗 )−
𝑖

)︂
= 𝑊 (1)

𝑛

(︂ 𝑖∗

𝑛 

)︂
≤ 𝛿∗,
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then for every 𝑠 ∈ {𝑚 + 1, . . . , 𝑖∗} it holds that

𝑋 (1)
𝑠

𝑎𝑛
=

𝑚∑︂
𝑟=0 

𝑑∑︂
𝑗=1 

𝐶𝑟 ;1, 𝑗 𝑍
( 𝑗 )
𝑠−𝑟

𝑎𝑛
≤

𝑚∑︂
𝑟=0 

𝑑∑︂
𝑗=1 

𝐷
1, 𝑗
+ 𝑍

( 𝑗 )+
𝑠−𝑟 ∨ 𝐷1, 𝑗

− 𝑍
( 𝑗 )−
𝑠−𝑟

𝑎𝑛

≤
𝑚∑︂

𝑟=0 

𝑑∑︂
𝑗=1 

𝛿

8(𝑚 + 1)𝑑 =
𝛿

8 
, (25)

since by the definition of 𝐷1, 𝑗
+ and 𝐷1, 𝑗

− we have 𝐷1, 𝑗
+ 𝑍

( 𝑗 )+
𝑠−𝑟 ≥ 0, 𝐷1, 𝑗

− 𝑍
( 𝑗 )−
𝑠−𝑟 ≥ 0 and

𝐶𝑟 ;1, 𝑗 𝑍
( 𝑗 )
𝑠−𝑟 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝐷
1, 𝑗
+ 𝑍

( 𝑗 )+
𝑠−𝑟 , if 𝐶𝑟 ;1, 𝑗 > 0 and 𝑍

( 𝑗 )
𝑠−𝑟 > 0,

𝐷1, 𝑗
− 𝑍

( 𝑗 )−
𝑠−𝑟 , if 𝐶𝑟 ;1, 𝑗 < 0 and 𝑍

( 𝑗 )
𝑠−𝑟 < 0,

0, if 𝐶𝑟 ;1, 𝑗 · 𝑍
( 𝑗 )
𝑠−𝑟 ≤ 0.

Since the event 𝐻𝑐
𝑛,1 occurs for every 𝑠 ∈ {1, . . . , 𝑚}, we also have

|𝑋 (1)
𝑠 |
𝑎𝑛

≤
𝑚∑︂

𝑟=0 

𝑑∑︂
𝑗=1 

|𝐶𝑟 ;1, 𝑗 | |𝑍
( 𝑗 )
𝑠−𝑟 |
𝑎𝑛

≤
𝑚∑︂

𝑟=0 

𝑑∑︂
𝑗=1 

𝐷∥𝑍𝑠−𝑟 ∥
𝑎𝑛

≤ (𝑚 + 1)𝑑 𝛿∗ =
𝛿

8 
. (26)

Combining (25) and (26) we obtain

−𝛿

8 
≤ 𝑋 (1)

1
𝑎𝑛

≤ 𝑀 (1)
𝑛

(︂ 𝑖∗

𝑛 

)︂
=

𝑖∗⋁︂
𝑠=1 

𝑋 (1)
𝑠

𝑎𝑛
≤ 𝛿

8 
,

and thus⃓⃓⃓
𝑊 (1)

𝑛

(︂ 𝑖∗

𝑛 

)︂
− 𝑀 (1)

𝑛

(︂ 𝑖∗

𝑛 

)︂⃓⃓⃓
≤
⃓⃓⃓
𝑊 (1)

𝑛

(︂ 𝑖∗

𝑛 

)︂⃓⃓⃓
+
⃓⃓⃓
𝑀 (1)

𝑛

(︂ 𝑖∗

𝑛 

)︂⃓⃓⃓
≤ 𝛿

8(𝑚 + 1)𝑑 + 𝛿

8 
≤ 𝛿

4 
,

which is in contradiction to (23).
Therefore 𝑊 (1)

𝑛 (𝑖∗/𝑛) > 𝛿∗, and hence there exist 𝑘 ∈ {1, . . . , 𝑖∗} and 𝑗0 ∈
{1, . . . , 𝑑} such that

𝑊 (1)
𝑛

(︂ 𝑖∗

𝑛 

)︂
= 𝑎−1

𝑛

(︂
𝐷

1, 𝑗0
+ 𝑍

( 𝑗0 )+
𝑘 ∨ 𝐷1, 𝑗0− 𝑍

( 𝑗0 )−
𝑘

)︂
> 𝛿∗.

This implies

𝐷∥𝑍𝑘 ∥
𝑎𝑛

=
𝐷 
𝑎𝑛

𝑑⋁︂
𝑗=1 

|𝑍 ( 𝑗 )
𝑘 | ≥ 𝐷 

𝑎𝑛
|𝑍 ( 𝑗0 )

𝑘 | ≥ 1 
𝑎𝑛

(︂
𝐷

1, 𝑗0
+ 𝑍

( 𝑗0 )+
𝑘 ∨ 𝐷1, 𝑗0− 𝑍

( 𝑗0 )−
𝑘

)︂
> 𝛿∗.

From this, since 𝐻𝑐
𝑛,1 ∩ 𝐻𝑐

𝑛,2 ∩ 𝐻𝑐
𝑛,3 occurs, it follows that 𝑚 + 1 ≤ 𝑘 ≤ 𝑛 − 𝑚,

𝐷∥𝑍𝑙 ∥
𝑎𝑛

≤ 𝛿∗ for all 𝑙 ∈ {𝑘 − 𝑚, . . . , 𝑘 + 𝑚} \ {𝑘}, (27)
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and
𝐷 |𝑍 (𝑝)

𝑘 |
𝑎𝑛

≤ 𝛿∗ for all 𝑝 ∈ {1, . . . , 𝑑} \ { 𝑗0}. (28)

Similarly as in the proof of Theorem 3.3 in [9] one can show that 𝑀 (1)
𝑛 (𝑖∗/𝑛) = 𝑋 (1)

𝑗 /𝑎𝑛

for some 𝑗 ∈ {1, . . . , 𝑖∗} \ {𝑘, . . . , 𝑘 + 𝑚}. Now we have four cases:

(A1) all random vectors 𝑍 𝑗−𝑚, . . . , 𝑍 𝑗 are “small”,

(A2) exactly one is “large” with exactly one “large” component,

(A3) exactly one is “large” with at least two “large” components,

(A4) at least two of them are “large”,

where we say 𝑍 is “large” if 𝐷∥𝑍 ∥/𝑎𝑛 > 𝛿∗, otherwise it is “small”, and similarly the 
component 𝑍 (𝑠) is “large” if 𝐷 |𝑍 (𝑠) |/𝑎𝑛 > 𝛿∗.

Following the arguments from [9], adjusted to the multivariate setting, it can be 
shown that the cases (A1) and (A2) are not possible (see the arXiv preprint [6] for 
details). The case (A3) is not possible on the event 𝐻𝑐

𝑛,3, and the case (A4) is not 
possible on the event 𝐻𝑐

𝑛,2. Since neither of the four cases (A1)–(A4) is possible, we 

conclude that ˆ︁𝐷𝑛 = ∅, and hence (24) holds.
The next step is to show that P(𝐻𝑛,𝑘) → 0 as 𝑛 → ∞ for 𝑘 = 1, 2, 3. By stationarity 

we have P(𝐻𝑛,1) ≤ (3𝑚 + 1) P(𝐷∥𝑍1∥ > 𝛿∗𝑎𝑛), and therefore

lim 
𝑛→∞ P(𝐻𝑛,1) = 0. (29)

As for 𝐻𝑛,2 we have

P(𝐻𝑛,2 ∩ {𝐷 ≤ 𝑐}) =
𝑛∑︂

𝑘=1 

𝑘+𝑚 ∑︂
𝑙 = 𝑘 − 𝑚

𝑙 ≠ 𝑘

P
(︃

𝐷∥𝑍𝑘 ∥
𝑎𝑛

> 𝛿∗, 
𝐷∥𝑍𝑙 ∥

𝑎𝑛
> 𝛿∗, 𝐷 ≤ 𝑐

)︃

≤ 2𝑛
𝑚∑︂

𝑖=1 
P
(︃ ∥𝑍0∥

𝑎𝑛
>

𝛿∗

𝑐
, 
∥𝑍𝑖 ∥
𝑎𝑛

>
𝛿∗

𝑐

)︃

≤ 2
𝑚∑︂

𝑖=1 
𝑛 P

(︃ ∥𝑍0∥
𝑎𝑛

>
𝛿∗

𝑐

)︃P
(︂

∥𝑍0 ∥
𝑎𝑛

> 𝛿∗
𝑐 , ∥𝑍𝑖 ∥

𝑎𝑛
> 𝛿∗

𝑐

)︂

P
(︂

∥𝑍0 ∥
𝑎𝑛

> 𝛿∗
𝑐

)︂

for an arbitrary 𝑐 > 0. Therefore regular variation and the asymptotical independence 
condition (7) yield lim𝑛→∞ P(𝐻𝑛,2 ∩ {𝐷 ≤ 𝑐}) = 0, and this implies

lim sup
𝑛→∞ 

P(𝐻𝑛,2) ≤ lim sup
𝑛→∞ 

P(𝐻𝑛,2 ∩ {𝐷 > 𝑐}) ≤ P(𝐷 > 𝑐).

Letting 𝑐 → ∞ we conclude
lim 
𝑛→∞ P(𝐻𝑛,2) = 0. (30)



264 D. Krizmanić

By the definition of the set 𝐻𝑛,3 and stationarity it holds that

P(𝐻𝑛,3 ∩ {𝐷 ≤ 𝑐}) =
𝑛∑︂

𝑘=1 

𝑑∑︂
𝑙, 𝑠 = 1
𝑙 ≠ 𝑠

P
(︃

𝐷 |𝑍 (𝑙)
𝑘 |

𝑎𝑛
> 𝛿∗, 

𝐷 |𝑍 (𝑠)
𝑘 |

𝑎𝑛
> 𝛿∗, 𝐷 ≤ 𝑐

)︃

≤
𝑑∑︂

𝑙, 𝑠 = 1
𝑙 ≠ 𝑠

𝑛 P
(︃ |𝑍 (𝑠)

1 |
𝑎𝑛

>
𝛿∗

𝑐

)︃
P
(︃ |𝑍 (𝑙)

1 |
𝑎𝑛

>
𝛿∗

𝑐

⃓⃓⃓
⃓ |𝑍

(𝑠)
1 |
𝑎𝑛

>
𝛿∗

𝑐

)︃

≤
𝑑∑︂

𝑙, 𝑠 = 1
𝑙 ≠ 𝑠

𝑛 P
(︃ ∥𝑍1∥

𝑎𝑛
>

𝛿∗

𝑐

)︃
P
(︃ |𝑍 (𝑙)

1 |
𝑎𝑛

>
𝛿∗

𝑐

⃓⃓⃓
⃓ |𝑍

(𝑠)
1 |
𝑎𝑛

>
𝛿∗

𝑐

)︃
,

and hence regular variation and condition (8) yield

lim 
𝑛→∞ P(𝐻𝑛,3) = 0. (31)

Now from relations (24) and (29)–(31) we obtain lim𝑛→∞ P(𝐷𝑛) = 0, and since 
{𝑅𝑛 > 𝛿} ⊆ 𝐷𝑛, we conclude that

lim 
𝑛→∞ P(𝑅𝑛 > 𝛿) = 0. (32)

Interchanging the roles of 𝑀 (1)
𝑛 and 𝑊 (1)

𝑛 in handling the event 𝐷𝑛, and using the 
arguments from the proof of Theorem 3.3 in [9], adjusted to the multivariate setting, 
we can show

lim 
𝑛→∞ P(𝑇𝑛 > 𝛿) = 0 (33)

(for details see the arXiv preprint [6]). Now from (22), (32) and (33) we obtain (21), 
which means that 𝑀𝑛

𝑑 −→ 𝑀 in 𝐷𝑑
↑ with the weak 𝑀1 topology. □

4 Infinite order linear processes

Let (𝑍𝑖)𝑖∈Z be a strictly stationary sequence of regularly varying R𝑑-valued random 
vectors with index 𝛼 > 0, and (𝐶𝑖)𝑖≥0 a sequence of random 𝑑×𝑑 matrices independent 
of (𝑍𝑖) such that the series defining the linear process

𝑋𝑖 =
∞ ∑︂
𝑗=0 

𝐶 𝑗 𝑍𝑖− 𝑗 , 𝑖 ∈ Z, (34)

is a.s. convergent. For 𝑘, 𝑗 ∈ {1, . . . , 𝑑} let

𝐷
𝑘, 𝑗
+ = max{𝐶+

𝑖;𝑘, 𝑗 : 𝑖 ≥ 0} and 𝐷𝑘, 𝑗
− = max{𝐶−

𝑖;𝑘, 𝑗 : 𝑖 ≥ 0},

where 𝐶𝑖;𝑘, 𝑗 is the (𝑘, 𝑗)th entry of the matrix 𝐶𝑖. Let 𝑀𝑛 be the partial maxima 
process as defined in (16), and 𝑀 the limiting process from Proposition 3.1.
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To obtain functional convergence of the partial maxima process for infinite order 
linear processes, we first approximate them by a sequence of finite order linear pro-
cesses, for which Theorem 3.3 holds, and then show that the error of approximation 
is negligible in the limit with respect to the weak 𝑀1 topology. In this case, besides 
the conditions from Theorem 3.3 for finite order linear processes, we will need also 
some moment conditions on the sequence of coefficients.
Theorem 4.1. Let (𝑍𝑖)𝑖∈Z be a strictly stationary sequence of regularly varying R𝑑-
valued random vectors with index 𝛼 > 0 that satisfy (7) and (8), and let (𝐶𝑖)𝑖≥0 be a 
sequence of random 𝑑 × 𝑑 matrices independent of (𝑍𝑖). Assume Condition 2.1 holds 
and suppose

⎧⎪⎪⎨
⎪⎪⎩

∑︁∞
𝑗=0 E(∥𝐶 𝑗 ∥ 𝛿 + ∥𝐶 𝑗 ∥𝛾) < ∞, if 𝛼 ∈ (0, 1),∑︁∞
𝑗=0 E(∥𝐶 𝑗 ∥ 𝛿 + ∥𝐶 𝑗 ∥) < ∞, if 𝛼 = 1,∑︁∞
𝑗=0 E∥𝐶 𝑗 ∥ < ∞, if 𝛼 > 1,

(35)

for some 𝛿 ∈ (0, 𝛼) and 𝛾 ∈ (𝛼, 1). Then 𝑀𝑛
𝑑 −→ 𝑀 as 𝑛 → ∞ in 𝐷𝑑

↑ endowed with 
the weak 𝑀1 topology.

Proof. For 𝑚 ∈ N, 𝑚 ≥ 2, define

𝑋𝑚
𝑖 =

𝑚−2∑︂
𝑗=0 

𝐶 𝑗 𝑍𝑖− 𝑗 + 𝐶 (𝑚,∨)𝑍𝑖−𝑚+1 + 𝐶 (𝑚,∧)𝑍𝑖−𝑚, 𝑖 ∈ Z,

and

𝑀𝑛,𝑚 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

𝑎−1
𝑛

⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑋𝑚
𝑖 , 𝑡 ∈

[︂1 
𝑛

, 1
]︂
,

𝑎−1
𝑛 𝑋𝑚

1 , 𝑡 ∈
[︂
0,

1 
𝑛

)︂
,

where 𝐶 (𝑚,∨) = max{𝐶𝑖 : 𝑖 ≥ 𝑚 − 1} and 𝐶 (𝑚,∧) = min{𝐶𝑖 : 𝑖 ≥ 𝑚 − 1}, with 
the maximum and minimum of matrices interpreted componentwise, i.e. the (𝑘, 𝑗)th 
entry of the matrix 𝐶 (𝑚,∨) is 𝐶 (𝑚,∨)

𝑘, 𝑗 = max{𝐶𝑖;𝑘, 𝑗 : 𝑖 ≥ 𝑚 − 1}, and the (𝑘, 𝑗)th 

entry of the matrix 𝐶 (𝑚,∧) is 𝐶 (𝑚,∧)
𝑘, 𝑗 = min{𝐶𝑖;𝑘, 𝑗 : 𝑖 ≥ 𝑚 − 1}.

For 𝑘, 𝑗 ∈ {1, . . . , 𝑑} define

𝐷
𝑚,𝑘, 𝑗
+ =

(︃ 𝑚−2⋁︂
𝑖=0 

𝐶+
𝑖;𝑘, 𝑗

)︃
∨ 𝐶 (𝑚,∨)+

𝑘, 𝑗 ∨ 𝐶 (𝑚,∧)+
𝑘, 𝑗

and

𝐷𝑚,𝑘, 𝑗
− =

(︂ 𝑚−2⋁︂
𝑖=0 

𝐶−
𝑖;𝑘, 𝑗

)︂
∨ 𝐶 (𝑚,∨)−

𝑘, 𝑗 ∨ 𝐶 (𝑚,∧)−
𝑘, 𝑗 .

Then 𝐷𝑚,𝑘, 𝑗
+ = 𝐷

𝑘, 𝑗
+ and 𝐷𝑚,𝑘, 𝑗

− = 𝐷𝑘, 𝑗
− , and therefore for the sequence of finite order 

linear processes (𝑋𝑚
𝑖 )𝑖 by Theorem 3.3 we obtain 𝑀𝑛,𝑚

𝑑 −→ 𝑀 as 𝑛 → ∞ in 𝐷𝑑
↑ with 

the weak 𝑀1 topology.
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If we show that for every 𝜖 > 0

lim 
𝑚→∞ lim sup

𝑛→∞ 
P[𝑑𝑝 (𝑀𝑛, 𝑀𝑛,𝑚) > 𝜖] = 0,

then by a generalization of Slutsky’s theorem (see Theorem 3.5 in [14]) it will follow 

that 𝑀𝑛
𝑑 −→ 𝑀 in 𝐷𝑑

↑ with the weak 𝑀1 topology. Taking into account (6) and the fact 
that the metric 𝑑𝑀1 on 𝐷1

↑ is bounded above by the uniform metric, it suffices to show 
that

lim 
𝑚→∞ lim sup

𝑛→∞ 
P
(︃

sup 
0≤𝑡≤1

|𝑀 ( 𝑗 )
𝑛 (𝑡) − 𝑀

( 𝑗 )
𝑛,𝑚 (𝑡) | > 𝜖

)︃
= 0,

for every 𝑗 = 1, . . . , 𝑑, and further, as in the proof of Theorem 3.3, it is enough 
to show the last relation only for 𝑗 = 1. Denote by 𝐽𝑛,𝑚 the probability in the 
last relation (for 𝑗 = 1). Now we treat separately the cases 𝛼 ∈ (0, 1) and 𝛼 ∈
[1,∞).

Case 𝛼 ∈ (0, 1). Recalling the definitions, we have

𝐽𝑛,𝑚 ≤ P
(︃ 𝑛⋁︂

𝑖=1 

|𝑋 (1)
𝑖 − 𝑋𝑚(1)

𝑖 |
𝑎𝑛

> 𝜖

)︃
≤ P

(︃ 𝑛∑︂
𝑖=1 

|𝑋 (1)
𝑖 − 𝑋𝑚(1)

𝑖 |
𝑎𝑛

> 𝜖

)︃
. (36)

Similarly as in the univariate case treated in [9] we obtain

𝑋 (1)
𝑖 − 𝑋𝑚(1)

𝑖 =
𝑑∑︂

𝑗=1 

(︃ ∞ ∑︂
𝑘=𝑚+1

𝐶𝑘;1, 𝑗 𝑍
( 𝑗 )
𝑖−𝑘 + (𝐶𝑚−1;1, 𝑗 − 𝐶 (𝑚,∨)

1, 𝑗 )𝑍 ( 𝑗 )
𝑖−𝑚+1

+ (𝐶𝑚;1, 𝑗 − 𝐶 (𝑚,∧)
1, 𝑗 )𝑍 ( 𝑗 )

𝑖−𝑚

)︃
,

and

𝑛∑︂
𝑖=1 

|𝑋 (1)
𝑖 − 𝑋𝑚(1)

𝑖 |

≤
𝑑∑︂

𝑗=1 

[︃ 0 ∑︂
𝑖=−∞

|𝑍 ( 𝑗 )
𝑖−𝑚 |

𝑛∑︂
𝑠=1 

∥𝐶𝑚−𝑖+𝑠 ∥ +
(︃

2
∞ ∑︂

𝑙=𝑚−1
∥𝐶𝑙 ∥

)︃ 𝑛+1 ∑︂
𝑖=1 

|𝑍 ( 𝑗 )
𝑖−𝑚 |

]︃
.

Therefore from (36) by applying condition (35) and the multivariate generalization of 
Lemma 3.2 in [8] (for the proof of this generalization see the arXiv preprint [6]) it 
follows that lim𝑚→∞ lim sup𝑛→∞ 𝐽𝑛,𝑚 = 0, which means that 𝑀𝑛

𝑑 −→ 𝑀 as 𝑛 → ∞ in 
𝐷𝑑

↑ with the weak 𝑀1 topology.
Case 𝛼 ∈ [1,∞). Define

𝐴𝑘, 𝑗 =

⎧⎪⎨
⎪⎩

𝐶𝑘;1, 𝑗 − 𝐶 (𝑚,∨)
1, 𝑗 , if 𝑘 = 𝑚 − 1,

𝐶𝑘;1, 𝑗 − 𝐶 (𝑚,∧)
1, 𝑗 , if 𝑘 = 𝑚,

𝐶𝑘;1, 𝑗 , if 𝑘 ≥ 𝑚 + 1,
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for 𝑘 ≥ 𝑚 − 1 and 𝑗 ∈ {1, . . . , 𝑑}. Then using the representation of 𝑋 (1)
𝑖 − 𝑋𝑚(1)

𝑖
obtained in the previous case we get

|𝑀 (1)
𝑛 (𝑡) − 𝑀 (1)

𝑛,𝑚 (𝑡) | ≤
𝑛⋁︂

𝑖=1 

|𝑋 (1)
𝑖 − 𝑋𝑚(1)

𝑖 |
𝑎𝑛

=
𝑛⋁︂

𝑖=1 

𝑑∑︂
𝑗=1 

⃓⃓⃓
⃓

∞ ∑︂
𝑘=𝑚−1

𝐴𝑘, 𝑗

𝑍
( 𝑗 )
𝑖−𝑘

𝑎𝑛

⃓⃓⃓
⃓

for every 𝑡 ∈ [0, 1]. This, (35) and Lemma 5.2 in the arXiv preprint [6] yield 

lim𝑚→∞ lim sup𝑛→∞ 𝐽𝑛,𝑚 = 0. Thus in this case also 𝑀𝑛
𝑑 −→ 𝑀 as 𝑛 → ∞ in 𝐷𝑑

↑ with 
the weak 𝑀1 topology. □

Remark 4.2. When the sequence of coefficients (𝐶𝑖) is deterministic, the limiting 
process 𝑀 in Theorem 4.1 has the representation

𝑀 (𝑡) =
⋁︂
𝑇𝑖≤𝑡

𝑃𝑖𝑆𝑖 , 𝑡 ∈ [0, 1],

where 𝑆𝑖 = (𝑆 (1)
𝑖 , . . . , 𝑆 (𝑑)

𝑖 ), with 𝑆 (𝑘 )
𝑖 =

⋁︁𝑑
𝑗=1 (𝐷𝑘, 𝑗

+ 𝑄
( 𝑗 )+
𝑖 ∨ 𝐷𝑘, 𝑗

− 𝑄
( 𝑗 )−
𝑖 ) for 𝑘 =

1, . . . , 𝑑. It is an extremal process with an exponent measure 𝜌, where for 𝑥 ∈ [0,∞)𝑑 , 
𝑥 ≠ 0,

𝜌([[0, 𝑥]]𝑐) =
∫ ∞

0
P
(︃

𝑦
𝑑⋁︂

𝑘=1 

𝑆 (𝑘 )
1

𝑥 (𝑘 ) > 1
)︃

𝛼𝑦−𝛼−1 d𝑦.

Remark 4.3. A special case of multivariate linear processes studied in this paper is

𝑋𝑖 =
∞ ∑︂
𝑗=0 

𝐵 𝑗 𝑍𝑖− 𝑗 , 𝑖 ∈ Z,

where (𝐵𝑖)𝑖≥0 is a sequence of random variables independent of (𝑍𝑖). To obtain this 
linear process from the general one in (34) take

𝐶𝑖;𝑘, 𝑗 =

{︃
𝐵𝑖 , if 𝑘 = 𝑗 ,

0, if 𝑘 ≠ 𝑗 ,

for 𝑖 ≥ 0 and 𝑘, 𝑗 ∈ {1, . . . , 𝑑}. In this case, under the conditions from Theorem 4.1
the limiting process 𝑀 reduces to

𝑀 (𝑡) =
(︂˜︁𝐷𝑘,𝑘

+ 𝑀 (𝑘+) (𝑡) ∨ ˜︁𝐷𝑘,𝑘
− 𝑀 (𝑘−) (𝑡)

)︂
𝑘=1,...,𝑑

=
(︂˜︁𝐵+𝑀 (𝑘+) (𝑡) ∨ ˜︁𝐵−𝑀 (𝑘−) (𝑡)

)︂
𝑘=1,...,𝑑

for 𝑡 ∈ [0, 1], where (˜︁𝐵+, ˜︁𝐵−) is a two-dimensional random vector, independent of 
(𝑀 (𝑘+) , 𝑀 (𝑘−) )∗𝑘=1,...,𝑑 , such that (˜︁𝐵+, ˜︁𝐵−) 𝑑

= (⋁︁𝑖≥0 𝐵+
𝑖 ,
⋁︁

𝑖≥0 𝐵−
𝑖 ). By an application 

of Propositions 5.2 and 5.3 in [14] we can represent 𝑀 in the form

𝑀 (𝑡) = ˜︁𝐵+𝑀+(𝑡) ∨ ˜︁𝐵−𝑀− (𝑡), 𝑡 ∈ [0, 1],
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where 𝑀+(𝑡) = (𝑀 (𝑘+) )𝑘=1,...,𝑑 and 𝑀− (𝑡) = (𝑀 (𝑘−) )𝑘=1,...,𝑑 are extremal processes 
with exponent measures 𝜈+ and 𝜈− respectively, where for 𝑥 ∈ [0,∞)𝑑 , 𝑥 ≠ 0,

𝜈+([[0, 𝑥]]𝑐) =
∫ ∞

0
P
(︃

𝑦
𝑑⋁︂

𝑘=1 

𝑄 (𝑘 )+
1

𝑥 (𝑘 ) > 1
)︃

𝛼𝑦−𝛼−1 d𝑦

and

𝜈− ([[0, 𝑥]]𝑐) =
∫ ∞

0
P
(︃

𝑦
𝑑⋁︂

𝑘=1 

𝑄 (𝑘 )−
1

𝑥 (𝑘 ) > 1
)︃

𝛼𝑦−𝛼−1 d𝑦.

In the following example we show that the functional convergence in the weak 𝑀1
topology in Theorems 3.3 and 4.1 in general cannot be replaced by convergence in the 
stronger standard 𝑀1 topology.

Example 4.4. Let (𝑇𝑖)𝑖∈Z be a sequence of i.i.d. unit Fréchet random variables, 
i.e. P(𝑇𝑖 ≤ 𝑥) = 𝑒−1/𝑥 for 𝑥 > 0. Take a sequence of positive real numbers (𝑎𝑛) such 
that 𝑛 P(𝑇1 > 𝑎𝑛) → 1/2 as 𝑛 → ∞, for instance, we can take 𝑎𝑛 = 2𝑛. Let

𝑍𝑖 = (𝑇2𝑖−1, 𝑇2𝑖), 𝑖 ∈ Z.

Then it follows easily that 𝑛 P(∥𝑍1∥ > 𝑎𝑛) → 1 as 𝑛 → ∞. It is straightforward to see 
that the random process (𝑍𝑖)𝑖∈Z satisfies all conditions of Theorem 3.3, and hence the 
partial maxima processes 𝑀𝑛( · ) of the linear process

𝑋𝑖 = 𝐶0𝑍𝑖 + 𝐶1𝑍𝑖−1, 𝑖 ∈ Z,

with
𝐶0 =

(︃
1 1
0 0

)︃
and 𝐶1 =

(︃
0 0
1 1

)︃
,

converges in distribution in 𝐷2
↑ with the weak 𝑀1 topology.

Next we show that 𝑀𝑛 ( · ) do not converge in distribution under the standard 𝑀1
topology on 𝐷2

↑. This shows that the weak 𝑀1 topology in Theorems 3.3 and 4.1 in 
general cannot be replaced by the standard 𝑀1 topology. Let

𝑉𝑛 (𝑡) = 𝑀 (1)
𝑛 (𝑡) − 𝑀 (2)

𝑛 (𝑡), 𝑡 ∈ [0, 1],

where

𝑀 (1)
𝑛 (𝑡) =

⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑍 (1)
𝑖 + 𝑍 (2)

𝑖

𝑎𝑛
=

⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑇2𝑖−1 + 𝑇2𝑖

𝑎𝑛

and

𝑀 (2)
𝑛 (𝑡) =

⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑍 (1)
𝑖−1 + 𝑍 (2)

𝑖−1
𝑎𝑛

=
⌊𝑛𝑡 ⌋⋁︂
𝑖=1 

𝑇2𝑖−3 + 𝑇2𝑖−2
𝑎𝑛

.

The first step is to show that 𝑉𝑛( · ) does not converge in distribution in 𝐷1 endowed 
with the standard 𝑀1 topology. According to [15] (see also Proposition 2 in [1], where 
the term “weak 𝑀1 convergence” is used for convergence in distribution in the standard 
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𝑀1 topology) it suffices to show that

lim 
𝛿→0

lim sup
𝑛→∞ 

P(𝜔𝛿 (𝑉𝑛) > 𝜖) > 0 (37)

for some 𝜖 > 0, where

𝜔𝛿 (𝑥) = sup 
𝑡1 ≤ 𝑡 ≤ 𝑡2

0 ≤ 𝑡2 − 𝑡1 ≤ 𝛿

𝑀 (𝑥(𝑡1), 𝑥(𝑡), 𝑥(𝑡2))

(𝑥 ∈ 𝐷1, 𝛿 > 0) and

𝑀 (𝑥1, 𝑥2, 𝑥3) =
{︃

0, if 𝑥2 ∈ [𝑥1, 𝑥3],
min{|𝑥2 − 𝑥1 |, |𝑥3 − 𝑥2 |}, otherwise.

Denote by 𝑖′ = 𝑖′ (𝑛) the index at which max1≤𝑖≤𝑛−1 𝑇𝑖 is obtained. Fix 𝜖 > 0 and let 
𝐴𝑛,𝜖 = {𝑇𝑖′ > 𝜖𝑎𝑛} and

𝐵𝑛,𝜖 = {𝑇𝑖′ > 𝜖𝑎𝑛 and ∃ 𝑘 ∈ {−𝑖′ − 1, . . . , 3} \ {0} such that 𝑇𝑖′+𝑘 > 𝜖𝑎𝑛/8}.

The regular variation property of 𝑇1 yields 𝑛 P(𝑇1 > 𝑐𝑎𝑛) → (2𝑐)−1 as 𝑛 → ∞ for 
𝑐 > 0, and this, together with the fact that (𝑇𝑖) is a sequence of i.i.d. variables, yield

lim 
𝑛→∞ P(𝐴𝑛,𝜖 ) = 1 − lim 

𝑛→∞

(︃
1 − 𝑛 P(𝑇1 > 𝜖𝑎𝑛)

𝑛 

)︃𝑛−1
= 1 − 𝑒−(2𝜖 )−1

(38)

and

lim sup
𝑛→∞ 

P(𝐵𝑛,𝜖 ) ≤ lim sup
𝑛→∞ 

𝑛−1∑︂
𝑖=1 

3 ∑︂
𝑘 = −𝑛
𝑘 ≠ 0

P(𝑇𝑖 > 𝜖𝑎𝑛, 𝑇𝑖+𝑘 > 𝜖𝑎𝑛/8)

≤ lim sup
𝑛→∞ 

(𝑛 − 1)(𝑛 + 3) P(𝑇1 > 𝜖𝑎𝑛) P(𝑇1 > 𝜖𝑎𝑛/8) = 2𝜖−2. (39)

Note that on the event 𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 it holds that 𝑇𝑖′ > 𝜖𝑎𝑛 and 𝑇𝑖′+𝑘 ≤ 𝜖𝑎𝑛/8 for every 
𝑘 ∈ {−𝑖′ − 1, . . . , 3} \ {0}. Now we distinguish two cases.

(i) 𝑖′ is an even number. Then 𝑖′ = 2𝑖∗ for some integer 𝑖∗. Observe that on the set 
𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 we have

𝑀 (1)
𝑛

(︂ 𝑖∗

𝑛 

)︂
=

𝑇𝑖′−1 + 𝑇𝑖′

𝑎𝑛
> 𝜖 and 𝑀 (2)

𝑛

(︂ 𝑖∗

𝑛 

)︂
=

𝑖∗⋁︂
𝑖=1 

𝑇2𝑖−3 + 𝑇2𝑖−2
𝑎𝑛

≤ 𝜖

4
,

and similarly

𝑀 (1)
𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
≤ 𝜖

4
and 𝑀 (2)

𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
≤ 𝜖

4
.

This implies

𝑉𝑛

(︂ 𝑖∗

𝑛 

)︂
= 𝑀 (1)

𝑛

(︂ 𝑖∗

𝑛 

)︂
− 𝑀 (2)

𝑛

(︂ 𝑖∗

𝑛 

)︂
>

3𝜖

4 
,
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and
𝑉𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
= 𝑀 (1)

𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
− 𝑀 (2)

𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
∈
[︂
− 𝜖

4
,

𝜖

4

]︂
.

Further, on the set 𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 it holds that

𝑀 (1)
𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂
=

𝑇𝑖′−1 + 𝑇𝑖′

𝑎𝑛
and 𝑀 (2)

𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂
=

𝑇𝑖′−1 + 𝑇𝑖′

𝑎𝑛
,

which yields

𝑉𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂
= 0.

(ii) 𝑖′ is an odd number. Then 𝑖′ = 2𝑖∗ − 1 for some integer 𝑖∗. Similarly as in the 
case (i) on the event 𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 one obtains

𝑉𝑛

(︂ 𝑖∗

𝑛 

)︂
>

3𝜖

4 
, 𝑉𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
∈
[︂
− 𝜖

4
,

𝜖

4

]︂
and 𝑉𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂
= 0.

Hence from (i) and (ii) we conclude that on the set 𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 it holds that
⃓⃓⃓
𝑉𝑛

(︂ 𝑖∗

𝑛 

)︂
−𝑉𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂⃓⃓⃓
>

3𝜖

4 
− 𝜖

4
=

𝜖

2
(40)

and ⃓⃓⃓
𝑉𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂
−𝑉𝑛

(︂ 𝑖∗

𝑛 

)︂⃓⃓⃓
>

3𝜖

4 
. (41)

Note that on the set 𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 one also has

𝑉𝑛

(︂ 𝑖∗

𝑛 

)︂
∉
[︂
𝑉𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
, 𝑉𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂]︂
,

and therefore taking into account (40) and (41) we obtain

𝜔2/𝑛 (𝑉𝑛) ≥ 𝑀
(︂

𝑉𝑛

(︂ 𝑖∗ − 1
𝑛 

)︂
, 𝑉𝑛

(︂ 𝑖∗

𝑛 

)︂
, 𝑉𝑛

(︂ 𝑖∗ + 1
𝑛 

)︂)︂
>

𝜖

2

on the event 𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 . Therefore, since 𝜔𝛿 ( · ) is nondecreasing in 𝛿, it holds that

lim inf
𝑛→∞ 

P(𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 ) ≤ lim inf
𝑛→∞ 

P(𝜔2/𝑛 (𝑉𝑛) > 𝜖/2)

≤ lim 
𝛿→0

lim sup
𝑛→∞ 

P(𝜔𝛿 (𝑉𝑛) > 𝜖/2). (42)

Since 𝑥2(1 − 𝑒−(2𝑥 )−1) tends to infinity as 𝑥 → ∞, we can find 𝜖 > 0 such that 
𝜖2(1 − 𝑒−(2𝜖 )−1) > 2, that is 1 − 𝑒−(2𝜖 )−1

> 2𝜖−2. For this 𝜖 , by relations (38) and 
(39), we have

lim 
𝑛→∞ P(𝐴𝑛,𝜖 ) > lim sup

𝑛→∞ 
P(𝐵𝑛,𝜖 ),

i.e.
lim inf
𝑛→∞ 

P(𝐴𝑛,𝜖 \ 𝐵𝑛,𝜖 ) ≥ lim 
𝑛→∞ P(𝐴𝑛,𝜖 ) − lim sup

𝑛→∞ 
P(𝐵𝑛,𝜖 ) > 0.
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This and (42) imply (37), and hence 𝑉𝑛 ( · ) does not converge in distribution in 𝐷1

with the standard 𝑀1 topology.
To finish, if 𝑀𝑛 ( · ) would converge in distribution in the standard 𝑀1 topology 

on 𝐷2
↑, and then also on 𝐷2, using the fact that linear combinations of the coordinates 

are continuous in the same topology (see Theorems 12.7.1 and 12.7.2 in [17]) and 
the continuous mapping theorem, we would obtain that 𝑉𝑛( · ) = 𝑀 (1)

𝑛 ( · ) − 𝑀 (2)
𝑛 ( · )

converges in 𝐷1 with the standard 𝑀1 topology, which is impossible, as is shown 
above.

Acknowledgments

The author would like to thank the referee for valuable comments and suggestions, 
which helped to improve the paper.

Funding

This work has been supported by University of Rijeka research grant uniri-iskusni-
prirod-23-98.

References

[1] Avram, F., Taqqu, M.: Weak convergence of sums of moving averages in the 𝛼–stable 
domain of attraction. Ann. Probab. 20, 483–503 (1992) MR1143432

[2] Basrak, B., Segers, J.: Regularly varying multivariate time series. Stoch. Process. Appl. 
119, 1055–1080 (2009) MR2508565. https://doi.org/10.1016/j.spa.2008.05.004

[3] Basrak, B., Tafro, A.: A complete convergence theorem for stationary regularly vary-
ing multivariate time series. Extremes 19, 549–560 (2016) MR3535966. https://doi.org/
10.1007/s10687-016-0253-5

[4] Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997) 
MR1464694

[5] Krizmanić, D.: Functional limit theorems for weakly dependent regularly varying time 
series. Ph.D. dissertation, University of Zagreb, Croatia, https://www.math.uniri.hr/
~dkrizmanic/DKthesis.pdf. Accessed 28 June 2024. 

[6] Krizmanić, D.: Skorokhod 𝑀1 convergence of maxima of multivariate linear processes 
with heavy-tailed innovations and random coefficients. arXiv preprint, https://arxiv.org/
abs/2208.04054, 2022. Accessed 28 June 2024. 

[7] Krizmanić, D.: Functional weak convergence of partial maxima processes. Extremes 19, 
7–23 (2016) MR3454028. https://doi.org/10.1007/s10687-015-0236-y

[8] Krizmanić, D.: Functional convergence for moving averages with heavy tails and random 
coefficients. ALEA Lat. Am. J. Probab. Math. Stat. 16, 729–757 (2019) MR3949276. 
https://doi.org/10.30757/alea.v16-26

[9] Krizmanić, D.: Maxima of linear processes with heavy-tailed innovations and random 
coefficients. J. Time Ser. Anal. 43, 238–262 (2022) MR4400293. https://doi.org/10.1111/
jtsa.12610

[10] Kulik, R., Soulier, P.: Heavy-Tailed Time Series. Springer, New York (2020) MR4174389. 
https://doi.org/10.1007/978-1-0716-0737-4

http://www.ams.org/mathscinet-getitem?mr=1143432
http://www.ams.org/mathscinet-getitem?mr=2508565
https://doi.org/10.1016/j.spa.2008.05.004
http://www.ams.org/mathscinet-getitem?mr=3535966
https://doi.org/10.1007/s10687-016-0253-5
https://doi.org/10.1007/s10687-016-0253-5
http://www.ams.org/mathscinet-getitem?mr=1464694
https://www.math.uniri.hr/~dkrizmanic/DKthesis.pdf
https://www.math.uniri.hr/~dkrizmanic/DKthesis.pdf
https://arxiv.org/abs/2208.04054
https://arxiv.org/abs/2208.04054
http://www.ams.org/mathscinet-getitem?mr=3454028
https://doi.org/10.1007/s10687-015-0236-y
http://www.ams.org/mathscinet-getitem?mr=3949276
https://doi.org/10.30757/alea.v16-26
http://www.ams.org/mathscinet-getitem?mr=4400293
https://doi.org/10.1111/jtsa.12610
https://doi.org/10.1111/jtsa.12610
http://www.ams.org/mathscinet-getitem?mr=4174389
https://doi.org/10.1007/978-1-0716-0737-4


272 D. Krizmanić

[11] Lamperti, J.: On extreme order statistics. Ann. Math. Stat. 35, 1726–1737 (1964) 
MR0170371. https://doi.org/10.1214/aoms/1177700395

[12] Mikosch, T., Wintenberger, O.: Extreme Value Theory for Time Series. Models with 
Power-Law Tails. Springer, New York (2024) MR4823721. https://doi.org/10.1007/978-
3-031-59156-3

[13] Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New 
York (1987) MR0900810. https://doi.org/10.1007/978-0-387-75953-1

[14] Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, 
New York (2007) MR2271424

[15] Skorohod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl. 1, 261–290 
(1956) MR0084897

[16] Tyran-Kamińska, M.: Convergence to Lévy stable processes under some weak dependence 
conditions. Stoch. Process. Appl. 120, 1629–1650 (2010) MR2673968. https://doi.org/10.
1016/j.spa.2010.05.010

[17] Whitt, W.: Stochastic-Process Limits. Springer, New York (2002) MR1876437

http://www.ams.org/mathscinet-getitem?mr=0170371
https://doi.org/10.1214/aoms/1177700395
http://www.ams.org/mathscinet-getitem?mr=4823721
https://doi.org/10.1007/978-3-031-59156-3
https://doi.org/10.1007/978-3-031-59156-3
http://www.ams.org/mathscinet-getitem?mr=0900810
https://doi.org/10.1007/978-0-387-75953-1
http://www.ams.org/mathscinet-getitem?mr=2271424
http://www.ams.org/mathscinet-getitem?mr=0084897
http://www.ams.org/mathscinet-getitem?mr=2673968
https://doi.org/10.1016/j.spa.2010.05.010
https://doi.org/10.1016/j.spa.2010.05.010
http://www.ams.org/mathscinet-getitem?mr=1876437

	Introduction
	Preliminaries
	Regular variation
	Linear processes
	Skorokhod topologies
	Point processes

	Finite order linear processes
	Infinite order linear processes

