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Abstract A system of two nonlinear delay differential equations under stochastic perturbations 
is considered. Nonlinearity of the exponential type in each equation of the system under 
consideration depends on the both variables of the system. The stability in probability of 
the zero and nonzero equilibria of the system is studied via the general method of Lyapunov 
functionals construction and the method of linear matrix inequalities (LMIs). The obtained 
results are illustrated via examples and figures with numerical simulations of solutions of a 
considered system of stochastic differential equations. The proposed way of investigation can 
be applied to nonlinear systems of higher dimension and with other types of nonlinearity, both 
for delay differential equations and for difference equations.
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1 Introduction

Systems of differential and difference equations with various types of exponential 
nonlinearities are very popular both in theoretical research and in different applications 
(see, for instance, [2, 4, 5, 7–9, 15, 18–22, 24, 26–29, 33–41] and references therein).
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Here, similarly to [38], the stability of the positive equilibrium of a system with 
exponential nonlinearity is investigated under stochastic perturbations via the general 
method of Lyapunov functionals construction [16, 17, 31, 32] and the method of linear 
matrix inequalities (LMIs) [3, 6, 10–12, 14, 23, 25, 30]. However, unlike, for instance, 
[28, 37–39], where the exponential nonlinearity in each equation depends on only 
one variable, here each equation exponentially depends on all variables of the system 
under consideration. The obtained results are illustrated via examples and figures with 
numerical simulations of solutions of the considered system of stochastic differential 
equations. Numerical analysis of the considered LMI is carried out using MATLAB.

Consider the system of two nonlinear delay differential equations

𝑥1(𝑡) + 𝑎1𝑥1(𝑡) + 𝑏1𝑥1(𝑡 − ℎ) = 𝑐1𝑥1(𝑡)𝑒−𝑝1𝑥1 (𝑡 )−𝑞1𝑥2 (𝑡 ) ,

𝑥2(𝑡) + 𝑎2𝑥2(𝑡) + 𝑏2𝑥2(𝑡 − ℎ) = 𝑐2𝑥2(𝑡)𝑒−𝑝2𝑥1 (𝑡 )−𝑞2𝑥2 (𝑡 ) ,
𝑥𝑖 (𝑠) = 𝜙𝑖 (𝑠), 𝑠 ∈ [−ℎ, 0], 𝑖 = 1, 2, 𝑡 ≥ 0,

(1.1)

with positive parameters and positive initial conditions.
It is clear that the system (1.1) has the zero equilibrium 𝐸0 = (0, 0), and the 

nonzero equilibrium 𝐸∗ = (𝑥∗1, 𝑥∗2) of the system (1.1) is defined by the system of two 
algebraic equations

𝑎1 + 𝑏1 = 𝑐1𝑒
−𝑝1𝑥1−𝑞1𝑥2 ,

𝑎2 + 𝑏2 = 𝑐2𝑒
−𝑝2𝑥1−𝑞2𝑥2 ,

(1.2)

that can be presented in the form of the system of two linear equations

𝑝1𝑥1 + 𝑞1𝑥2 = 𝑟1,

𝑝2𝑥1 + 𝑞2𝑥2 = 𝑟2,

𝑟𝑖 = ln
(︁
𝑐𝑖/(𝑎𝑖 + 𝑏𝑖)

)︁
, 𝑖 = 1, 2,

(1.3)

with the solution

𝑥∗𝑖 =
Δ𝑖

Δ 
, 𝑖 = 1, 2, Δ =

⃓⃓
⃓⃓𝑝1 𝑞1
𝑝2 𝑞2

⃓⃓
⃓⃓ , Δ1 =

⃓⃓
⃓⃓𝑟1 𝑞1
𝑟2 𝑞2

⃓⃓
⃓⃓ , Δ2 =

⃓⃓
⃓⃓𝑝1 𝑟1
𝑝2 𝑟2

⃓⃓
⃓⃓ . (1.4)

Note that via (1.3) for an equilibrium 𝐸∗ = (𝑥∗1, 𝑥∗2) with both positive coordinates 
the condition 𝑟𝑖 > 0, i.e. 𝑐𝑖 > 𝑎𝑖 + 𝑏𝑖 , 𝑖 = 1, 2, must be satisfied. It is clear that for 
𝑐𝑖 < 𝑎𝑖 + 𝑏𝑖 we get a negative equilibrium, while for 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 there is the zero 
equilibrium. However, the inequality 𝑐𝑖 > 𝑎𝑖 + 𝑏𝑖 is only a necessary condition for 
the solution of the system (1.3) to be positive, but not a sufficient one. Indeed, for 
example, the system 2𝑥1 + 𝑥2 = 4, 𝑥1 + 𝑥2 = 1 with 𝑟1 = 4, 𝑟2 = 1 has the solution 
𝑥1 = 3, 𝑥2 = −2, the system 2𝑥1 + 𝑥2 = 4, 𝑥1 + 𝑥2 = 2 with 𝑟1 = 4, 𝑟2 = 2 has the 
solution 𝑥1 = 2, 𝑥2 = 0.

Below, the system (1.1) is investigated under stochastic perturbations, the condi-
tions of stability for both the zero and one positive equilibria are studied, the obtained 
results are illustrated by numerical simulations of solutions of the system under con-
sideration.
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2 Stochastic perturbations, centralization and linearization

Let (𝑥∗1, 𝑥∗2) be one of the equilibria of the system (1.1). Let us suppose that the 
system (1.1) is exposed to stochastic perturbations of the white noise type, that are 
directly proportional to the deviation of the system (1.1) state (𝑥1(𝑡), 𝑥2(𝑡)) from 
the equilibrium (𝑥∗1, 𝑥∗2). As a result, we obtain the system of Ito’s stochastic delay 
differential equations [13]

𝑑𝑥1(𝑡) =
(︁−𝑎1𝑥1(𝑡) − 𝑏1𝑥1(𝑡 − ℎ) + 𝑐1𝑥1(𝑡)𝑒−𝑝1𝑥1 (𝑡 )−𝑞1𝑥2 (𝑡 ))︁𝑑𝑡
+ 𝜎1

(︁
𝑥1(𝑡) − 𝑥∗1

)︁
𝑑𝑤1(𝑡),

𝑑𝑥2(𝑡) =
(︁−𝑎2𝑥2(𝑡) − 𝑏2𝑥2(𝑡 − ℎ) + 𝑐2𝑥2(𝑡)𝑒−𝑝2𝑥1 (𝑡 )−𝑞2𝑥2 (𝑡 ))︁𝑑𝑡
+ 𝜎2

(︁
𝑥2(𝑡) − 𝑥∗2

)︁
𝑑𝑤2(𝑡).

(2.1)

Note that stochastic perturbations of the type of (2.1) were first used in [1] and 
later in many other works (see, for instance, [31, 32] and references therein). In this 
case, the equilibrium (𝑥∗1, 𝑥∗2) of the deterministic system (1.1) is also the solution of 
the stochastic system (2.1).

2.1 Nonzero equilibrium

Let (𝑥∗1, 𝑥∗2) be the nonzero equilibrium of the system (1.1). Using the new variables 
𝑦𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥∗𝑖 , 𝑖 = 1, 2, and (1.2), transform the first equation of the system (2.1)
by the following way:

𝑑𝑦1(𝑡) =
[︁−𝑎1

(︁
𝑦1(𝑡) + 𝑥∗1

)︁ − 𝑏1
(︁
𝑦1 (𝑡 − ℎ) + 𝑥∗1

)︁
+ 𝑐1

(︁
𝑦1(𝑡) + 𝑥∗1

)︁
𝑒−𝑝1𝑦1 (𝑡 )−𝑞1𝑦2 (𝑡 )𝑒−𝑝1𝑥

∗
1−𝑞1𝑥

∗
2
]︁
𝑑𝑡 + 𝜎1𝑦1(𝑡)𝑑𝑤1(𝑡)

=
[︁−𝑎1

(︁
𝑦1(𝑡) + 𝑥∗1

)︁ − 𝑏1
(︁
𝑦1 (𝑡 − ℎ) + 𝑥∗1

)︁
+ (𝑎1 + 𝑏1)

(︁
𝑦1 (𝑡) + 𝑥∗1

)︁
𝑒−𝑝1𝑦1 (𝑡 )−𝑞1𝑦2 (𝑡 )]︁𝑑𝑡 + 𝜎1𝑦1(𝑡)𝑑𝑤1(𝑡)

=
[︁(︁
𝑦1(𝑡) + 𝑥∗1

)︁(︁(𝑎1 + 𝑏1)𝑒−𝑝1𝑦1 (𝑡 )−𝑞1𝑦2 (𝑡 ) − 𝑎1
)︁

− 𝑏1
(︁
𝑦1(𝑡 − ℎ) + 𝑥∗1

)︁]︁
𝑑𝑡 + 𝜎1𝑦1 (𝑡)𝑑𝑤1(𝑡).

Similarly, for the second equation of the system (2.1) we have

𝑑𝑦2(𝑡) =
[︁−𝑎2

(︁
𝑦2(𝑡) + 𝑥∗2

)︁ − 𝑏2
(︁
𝑦2 (𝑡 − ℎ) + 𝑥∗2

)︁
+ 𝑐2

(︁
𝑦2(𝑡) + 𝑥∗2

)︁
𝑒−𝑝2𝑦1 (𝑡 )−𝑞2𝑦2 (𝑡 )𝑒−𝑝2𝑥

∗
1−𝑞2𝑥

∗
2
]︁
𝑑𝑡 + 𝜎2𝑦2(𝑡)𝑑𝑤2(𝑡)

=
[︁−𝑎2

(︁
𝑦2(𝑡) + 𝑥∗2

)︁ − 𝑏2
(︁
𝑦2 (𝑡 − ℎ) + 𝑥∗2

)︁
+ (𝑎2 + 𝑏2)

(︁
𝑦2 (𝑡) + 𝑥∗2

)︁
𝑒−𝑝2𝑦1 (𝑡 )−𝑞2𝑦2 (𝑡 )]︁𝑑𝑡 + 𝜎2𝑦2(𝑡)𝑑𝑤2(𝑡)

=
[︁(︁
𝑦2(𝑡) + 𝑥∗2

)︁(︁(𝑎2 + 𝑏2)𝑒−𝑝2𝑦1 (𝑡 )−𝑞2𝑦2 (𝑡 ) − 𝑎2
)︁

− 𝑏2
(︁
𝑦2(𝑡 − ℎ) + 𝑥∗2

)︁]︁
𝑑𝑡 + 𝜎2𝑦2 (𝑡)𝑑𝑤2(𝑡).
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As a result, we obtain the system of two nonlinear Ito’s stochastic delay differential 
equations [13] with the zero solution:

𝑑𝑦1(𝑡) =
[︁(︁
𝑦1(𝑡) + 𝑥∗1

)︁(︁(𝑎1 + 𝑏1)𝑒−𝑝1𝑦1 (𝑡 )−𝑞1𝑦2 (𝑡 ) − 𝑎1
)︁

− 𝑏1
(︁
𝑦1(𝑡 − ℎ) + 𝑥∗1

)︁]︁
𝑑𝑡 + 𝜎1𝑦1 (𝑡)𝑑𝑤1(𝑡),

𝑑𝑦2(𝑡) =
[︁(︁
𝑦2(𝑡) + 𝑥∗2

)︁(︁(𝑎2 + 𝑏2)𝑒−𝑝2𝑦1 (𝑡 )−𝑞2𝑦2 (𝑡 ) − 𝑎2
)︁

− 𝑏2
(︁
𝑦2(𝑡 − ℎ) + 𝑥∗2

)︁]︁
𝑑𝑡 + 𝜎2𝑦2 (𝑡)𝑑𝑤2(𝑡).

(2.2)

Using the representation 𝑒−𝑥 = 1 − 𝑥 + 𝑜(𝑥), where lim𝑥→0
𝑜(𝑥 )
𝑥 = 0, we obtain 

the linear part of the system (2.2). Really, neglecting the nonlinear terms in the square 
brackets of the first equation (2.2), we have
(︁
𝑦1(𝑡) + 𝑥∗1

)︁(︁(𝑎1 + 𝑏1)𝑒−𝑝1𝑦1 (𝑡 )−𝑞1𝑦2 (𝑡 ) − 𝑎1
)︁ − 𝑏1

(︁
𝑦1(𝑡 − ℎ) + 𝑥∗1

)︁
=
(︁
𝑦1 (𝑡) + 𝑥∗1

)︁(︁(𝑎1 + 𝑏1)
(︁
1 − 𝑝1𝑦1(𝑡) − 𝑞1𝑦2(𝑡)

)︁ − 𝑎1
)︁ − 𝑏1

(︁
𝑦1(𝑡 − ℎ) + 𝑥∗1

)︁
=
(︁
𝑦1 (𝑡) + 𝑥∗1

)︁(︁
𝑏1 − (𝑎1 + 𝑏1)

(︁
𝑝1𝑦1(𝑡) + 𝑞1𝑦2(𝑡)

)︁)︁ − 𝑏1
(︁
𝑦1 (𝑡 − ℎ) + 𝑥∗1

)︁
= 𝑏1

(︁
𝑦1(𝑡) + 𝑥∗1

)︁ − (𝑎1 + 𝑏1)𝑥∗1
(︁
𝑝1𝑦1 (𝑡) + 𝑞1𝑦2(𝑡)

)︁ − 𝑏1
(︁
𝑦1(𝑡 − ℎ) + 𝑥∗1

)︁
=
(︁
𝑏1 − (𝑎1 + 𝑏1)𝑥∗1𝑝1

)︁
𝑦1(𝑡) − (𝑎1 + 𝑏1)𝑥∗1𝑞1𝑦2(𝑡) − 𝑏1𝑦1(𝑡 − ℎ).

Similarly, for the second equation (2.2) we obtain
(︁
𝑦2(𝑡) + 𝑥∗2

)︁(︁(𝑎2 + 𝑏2)𝑒−𝑝2𝑦1 (𝑡 )−𝑞2𝑦2 (𝑡 ) − 𝑎2
)︁ − 𝑏2

(︁
𝑦2(𝑡 − ℎ) + 𝑥∗2

)︁
=
(︁
𝑦2 (𝑡) + 𝑥∗2

)︁(︁(𝑎2 + 𝑏2)
(︁
1 − 𝑝2𝑦1(𝑡) − 𝑞2𝑦2(𝑡)

)︁ − 𝑎2
)︁ − 𝑏2

(︁
𝑦2(𝑡 − ℎ) + 𝑥∗2

)︁
=
(︁
𝑦2 (𝑡) + 𝑥∗2

)︁(︁
𝑏2 − (𝑎2 + 𝑏2)

(︁
𝑝2𝑦1(𝑡) + 𝑞2𝑦2(𝑡)

)︁)︁ − 𝑏2
(︁
𝑦2 (𝑡 − ℎ) + 𝑥∗2

)︁
= 𝑏2

(︁
𝑦2(𝑡) + 𝑥∗2

)︁ − (𝑎2 + 𝑏2)𝑥∗2
(︁
𝑝2𝑦1 (𝑡) + 𝑞2𝑦2(𝑡)

)︁ − 𝑏2
(︁
𝑦2(𝑡 − ℎ) + 𝑥∗2

)︁
= −(𝑎2 + 𝑏2)𝑥∗2𝑝2𝑦1 (𝑡) +

(︁
𝑏2 − (𝑎2 + 𝑏2)𝑥∗2𝑞2

)︁
𝑦2(𝑡) − 𝑏2𝑦2(𝑡 − ℎ).

As a result, we obtain the linear part of the system (2.2)

𝑑𝑧1(𝑡) =
[︁(︁
𝑏1 − (𝑎1 + 𝑏1)𝑥∗1𝑝1

)︁
𝑧1 (𝑡) − (𝑎1 + 𝑏1)𝑥∗1𝑞1𝑧2 (𝑡) − 𝑏1𝑧1 (𝑡 − ℎ)]︁𝑑𝑡

+ 𝜎1𝑧1(𝑡)𝑑𝑤1(𝑡),
𝑑𝑧2(𝑡) =

[︁−(𝑎2 + 𝑏2)𝑥∗2𝑝2𝑧1(𝑡) +
(︁
𝑏2 − (𝑎2 + 𝑏2)𝑥∗2𝑞2

)︁
𝑧2(𝑡) − 𝑏2𝑧2(𝑡 − ℎ)]︁𝑑𝑡

+ 𝜎2𝑧2(𝑡)𝑑𝑤2(𝑡),

or in the matrix form

𝑑𝑧(𝑡) = (︁
𝐴𝑧(𝑡) − 𝐵𝑧(𝑡 − ℎ))︁𝑑𝑡 +

2 ∑︂
𝑖=1 

𝐶𝑖𝑧(𝑡)𝑑𝑤𝑖 (𝑡), (2.3)

where

𝑧(𝑡) =
[︃
𝑧1(𝑡)
𝑧2(𝑡)

]︃
, 𝐴 =

[︃
𝑏1 − (𝑎1 + 𝑏1)𝑥∗1𝑝1 −(𝑎1 + 𝑏1)𝑥∗1𝑞1
−(𝑎2 + 𝑏2)𝑥∗2𝑝2 𝑏2 − (𝑎2 + 𝑏2)𝑥∗2𝑞2

]︃
,

𝐵 =

[︃
𝑏1 0
0 𝑏2

]︃
, 𝐶1 =

[︃
𝜎1 0
0 0

]︃
, 𝐶2 =

[︃
0 0
0 𝜎2

]︃
.

(2.4)



Stability with exponential nonlinearity 317

2.2 Zero equilibrium
Let us linearize the system (2.1) with the zero equilibrium. Neglecting the nonlinear 
terms, transform the expression in brackets of the first equation (2.1) by the following 
way:

− 𝑎1𝑥1(𝑡) − 𝑏1𝑥1(𝑡 − ℎ) + 𝑐1𝑥1(𝑡)𝑒−𝑝1𝑥1 (𝑡 )−𝑞1𝑥2 (𝑡 )

= −𝑎1𝑥1(𝑡) − 𝑏1𝑥1(𝑡 − ℎ) + 𝑐1𝑥1(𝑡)
(︁
1 − 𝑝1𝑥1(𝑡) − 𝑞1𝑥2(𝑡)

)︁
= (𝑐1 − 𝑎1)𝑥1(𝑡) − 𝑏1𝑥1(𝑡 − ℎ).

Similarly, for the second equation (2.1) we have

− 𝑎2𝑥2(𝑡) − 𝑏2𝑥2(𝑡 − ℎ) + 𝑐2𝑥2(𝑡)𝑒−𝑝2𝑥1 (𝑡 )−𝑞2𝑥2 (𝑡 )

= −𝑎2𝑥2(𝑡) − 𝑏2𝑥2(𝑡 − ℎ) + 𝑐2𝑥2(𝑡)
(︁
1 − 𝑝2𝑥1(𝑡) − 𝑞2𝑥2(𝑡)

)︁
= (𝑐2 − 𝑎2)𝑥2(𝑡) − 𝑏2𝑥2(𝑡 − ℎ).

As a result, we obtain that the linearized system decomposes into two unrelated 
equations of the same type

𝑑𝑧1(𝑡) =
[︁(𝑐1 − 𝑎1)𝑧1(𝑡) − 𝑏1𝑧1(𝑡 − ℎ)]︁𝑑𝑡 + 𝜎1𝑧1(𝑡)𝑑𝑤1(𝑡),

𝑑𝑧2(𝑡) =
[︁(𝑐2 − 𝑎2)𝑧2(𝑡) − 𝑏2𝑧2(𝑡 − ℎ)]︁𝑑𝑡 + 𝜎2𝑧2(𝑡)𝑑𝑤2(𝑡).

(2.5)

3 Stability

3.1 Some necessary definitions and statements
Let {Ω,𝔉,P} be a complete probability space, {𝔉𝑡}𝑡≥0 be a nondecreasing family of 
sub-𝜎-algebras of 𝔉, i.e. 𝔉𝑠 ⊂ 𝔉𝑡 for 𝑠 < 𝑡, P{·} be the probability of an event enclosed 
in the braces, E be the mathematical expectation, 𝐻2 be the space of 𝔉0-adapted 
stochastic processes 𝜑(𝑠) = (𝜑1(𝑠), 𝜑2(𝑠)), 𝑠 ∈ [−ℎ, 0], ∥𝜑∥0 = sup𝑠∈[−ℎ,0] |𝜑(𝑠) |, 
∥𝜑∥2

1 = sup𝑠∈[−ℎ,0] E|𝜑(𝑠) |2, |𝜑(𝑠) | =
√︂
𝜑2

1 (𝑠) + 𝜑2
2(𝑠), |𝜑(𝑠) |2 = 𝜑2

1 (𝑠) + 𝜑2
2 (𝑠).

Definition 3.1. The zero solution of the system (2.2) with the initial condition 𝑦(𝑠) =
(𝑦1(𝑠), 𝑦2(𝑠)) = 𝜙(𝑠), 𝑠 ∈ [−ℎ, 0], is called stable in probability if for any 𝜀1 > 0
and 𝜀2 > 0 there exists 𝛿 > 0 such that the solution 𝑦(𝑡, 𝜙) of the system (2.2)
satisfies the condition P{sup𝑡≥0 |𝑦(𝑡, 𝜙) | > 𝜀1} < 𝜀2 for any initial function 𝜙 such 
that P{∥𝜙∥0 < 𝛿} = 1.
Definition 3.2. The zero solution of the equation (2.3) with the initial condition 
𝑧(𝑠) = 𝜙(𝑠), 𝑠 ∈ [−ℎ, 0], is called:

• mean square stable if for each 𝜀 > 0 there exists a 𝛿 > 0 such that E|𝑧(𝑡, 𝜙) |2 < 𝜀, 
𝑡 ≥ 0, provided that ∥𝜙∥2

1 < 𝛿;

• asymptotically mean square stable if it is mean square stable and 
lim𝑡→∞ E|𝑧(𝑡, 𝜙) |2 = 0 for each initial function 𝜙.
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Remark 3.1. Note that the level of nonlinearity of the system (2.2) is more than one. It 
is known [32] that in this case sufficient conditions for asymptotic mean square stability 
of the zero solution of the linear part of this system, i.e. of the equation (2.3), are also 
sufficient conditions for stability in probability of the zero solution of the nonlinear 
system (2.2) and therefore are sufficient conditions for stability in probability of the 
equilibrium (𝑥∗1, 𝑥∗2) of the system (2.1).

Let 𝑧(𝑡) be a value of the solution of the equation (2.3) in the time moment 𝑡 and 
𝑧𝑡 = 𝑧(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0], be a trajectory of the solution of the equation (2.3) until the 
time moment 𝑡.

Consider a functional 𝑉 (𝑡, 𝜑) : [0,∞) × 𝐻2 → R+ that can be represented in the 
form 𝑉 (𝑡, 𝜑) = 𝑉 (𝑡, 𝜑(0), 𝜑(𝑠)), 𝑠 ∈ [−ℎ, 0), and for 𝜑 = 𝑧𝑡 put

𝑉𝜑 (𝑡, 𝑧) = 𝑉 (𝑡, 𝜑) = 𝑉 (𝑡, 𝑧𝑡 ) = 𝑉
(︁
𝑡, 𝑧, 𝑧(𝑡 + 𝑠))︁,

𝑧 = 𝜑(0) = 𝑧(𝑡), 𝑠 ∈ [−ℎ, 0). (3.1)

Let 𝐷 be the set of the functionals, for which the function 𝑉𝜑 (𝑡, 𝑧) defined by (3.1)
has a continuous derivative with respect to 𝑡 and two continuous derivatives with 
respect to 𝑧. The generator 𝐿 of the equation (2.3) is defined on the functionals from 
𝐷 and has the form [13, 32] (here and everywhere below ′ is the sign of transposition)

𝐿𝑉 (𝑡, 𝑧𝑡 ) = 𝜕

𝜕𝑡
𝑉𝜑

(︁
𝑡, 𝑧(𝑡))︁ + ∇𝑉 ′

𝜑

(︁
𝑡, 𝑧(𝑡))︁(︁𝐴𝑧(𝑡) − 𝐵𝑥(𝑡 − ℎ))︁

+ 1
2

2 ∑︂
𝑖=1 

𝑧′ (𝑡)𝐶′
𝑖∇2𝑉𝜑

(︁
𝑡, 𝑧(𝑡))︁𝐶𝑖𝑧(𝑡). (3.2)

Theorem 3.1 ([32]). Let there exist a functional 𝑉 (𝑡, 𝜑) ∈ 𝐷, positive constants 𝑐1, 
𝑐2, 𝑐3, such that the following conditions hold:

E𝑉 (𝑡, 𝑥𝑡 ) ≥ 𝑐1E|𝑥(𝑡) |2, E𝑉 (0, 𝜙) ≤ 𝑐2∥𝜙∥2, E𝐿𝑉 (𝑡, 𝑥𝑡 ) ≤ −𝑐3E|𝑥(𝑡) |2.

Then the zero solution of the equation (2.3) is asymptotically mean square stable.

3.2 Nonzero equilibrium

Theorem 3.2. Let there exist positive definite matrices 𝑃 and 𝑅, such that the linear 
matrix inequality (LMI)

Φ =

[︃
𝑃𝐴 + 𝐴′𝑃 + 𝑆0 + 𝑅 −𝑃𝐵

−𝐵′𝑃 −𝑅
]︃
< 0 (3.3)

holds, where via (2.4)

𝑆0 =
2 ∑︂
𝑖=1 

𝐶′
𝑖𝑃𝐶𝑖 =

[︃
𝜎2

1 𝑝11 0
0 𝜎2

2 𝑝22

]︃

and 𝑝11, 𝑝22 are diagonal elements of the matrix 𝑃. Then the equilibrium (𝑥∗1, 𝑥∗2) of 
the system (2.1) is stable in probability.
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Proof. Following Remark 3.1, it is enough to prove the asymptotic mean square 
stability of the zero solution of the linear equation (2.3). Using the general method of 
Lyapunov functionals construction [16, 17, 31, 32], consider the functional 𝑉 = 𝑉1+𝑉2, 
where 𝑉1(𝑧(𝑡)) = 𝑧′ (𝑡)𝑃𝑧(𝑡), 𝑃 > 0, the additional functional 𝑉2 will be chosen below. 
Via (2.3), (3.2) and ∇𝑉1(𝑧(𝑡) = 2𝑃𝑧(𝑡), ∇2𝑉1 (𝑧(𝑡)) = 2𝑃, we have

𝐿𝑉1
(︁
𝑧(𝑡))︁ = 2𝑧′ (𝑡)𝑃(︁𝐴𝑧(𝑡) − 𝐵𝑥(𝑡 − ℎ))︁ + 𝑧′ (𝑡)𝑆0𝑧(𝑡)

= 𝑧′ (𝑡)(︁𝑃𝐴 + 𝐴′𝑃 + 𝑆0
)︁
𝑧(𝑡) − 2𝑧′ (𝑡)𝑃𝐵𝑧(𝑡 − ℎ).

Putting 𝑉2(𝑧𝑡 ) =
∫ 𝑡

𝑡−ℎ 𝑧
′ (𝑠)𝑅𝑧(𝑠)𝑑𝑠, 𝑅 > 0, with 𝐿𝑉2 (𝑧𝑡 ) = 𝑧′ (𝑡)𝑅𝑧(𝑡) − 𝑧′ (𝑡 −

ℎ)𝑅𝑧(𝑡 − ℎ), as a result for the functional 𝑉 = 𝑉1 +𝑉2, we obtain

𝐿𝑉
(︁
𝑧(𝑡))︁ = 𝑧′ (𝑡)(︁𝑃𝐴 + 𝐴′𝑃 + 𝑆0 + 𝑅

)︁
𝑧(𝑡)

− 2𝑧′ (𝑡)𝑃𝐵𝑧(𝑡 − ℎ) − 𝑧′ (𝑡 − ℎ)𝑅𝑧(𝑡 − ℎ)
= 𝜂′ (𝑡)Φ𝜂(𝑡),

where 𝜂(𝑡) = (𝑧(𝑡), 𝑧(𝑡 − ℎ))′ and the matrix Φ is defined in (3.3). From here and the 
LMI (3.3) it follows that 𝐿𝑉 (𝑧(𝑡)) ≤ −𝑐 |𝜂(𝑡) |2 ≤ −𝑐 |𝑧(𝑡) |2 for some 𝑐 > 0. Via The-
orem 3.1 it means that the zero solution of the linear equation (2.3) is asymptotically 
mean square stable.

Via Remark 3.1 the sufficient conditions for asymptotic mean square stability 
of the zero solution of the linear equation (2.3) are also sufficient conditions for 
stability in probability of the zero solution of the nonlinear system (2.2) and therefore 
are sufficient conditions for stability in probability of the equilibrium (𝑥∗1, 𝑥∗2) of the 
system (2.1). The proof is completed. □

Example 3.1. Consider the system (2.1) with the following values of the parameters:

𝑎1 = 1, 𝑏1 = 0.02, 𝑐1 = 4, 𝑝1 = 2, 𝑞1 = 0.2, 𝜎1 = 1, ℎ = 1,
𝑎2 = 2, 𝑏2 = 0.03, 𝑐2 = 5, 𝑝2 = 0.2, 𝑞2 = 2, 𝜎2 = 1.

(3.4)

By that from (1.4) and (2.4) we obtain

𝑥∗1 = 0.6446, 𝑥∗2 = 0.3862,

𝐴 =

[︃−1.2950 −0.1315
−0.1568 −1.5381

]︃
, 𝐵 =

[︃
0.02 0

0 0.03

]︃
, 𝐶1 =

[︃
1 0
0 0

]︃
, 𝐶2 =

[︃
0 0
0 1

]︃
.

(3.5)
Via MATLAB it was shown that for the parameters (3.4), (3.5) there exist the positive 
definite matrices

𝑃 =

[︃
301.6380 −23.3803
−23.3803 252.7107

]︃
, 𝑅 =

[︃
268.6902 4.3515

4.3515 281.0097

]︃
,

for which the LMI (3.3) holds. It means that the equilibrium (𝑥∗1, 𝑥∗2) = (0.6446,
0.3862) of the system (2.1) is stable in probability. In Fig. 1 100 trajectories of 
the solution of the system (2.1) are shown, with the initial conditions 𝑥1(𝑠) = 0.77, 
𝑥2(𝑠) = 0.27, 𝑠 ∈ [−ℎ, 0]. One can see that all trajectories converge to the equilibrium.
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Fig. 1. 100 trajectories of the solution of the system (2.1): 𝑥1 (𝑡) (blue) and 𝑥2 (𝑡) (red)

3.3 Zero equilibrium

Note that both equations of the system (2.5) have the form

𝑥(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − ℎ) + 𝜎𝑥(𝑡)�̇�(𝑡), (3.6)

where 𝑎 = 𝑐𝑖 − 𝑎𝑖 , 𝑏 = −𝑏𝑖 , 𝜎, ℎ ≥ 0 are known constants.

Lemma 3.1 ([32]). The necessary and sufficient condition for asymptotic mean 
square stability of the zero solution of the equation (3.6) is

𝑎 + 𝑏 < 0, 𝐺−1 >
1
2
𝜎2, (3.7)

where

𝐺 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑏𝑞−1 sin(𝑞ℎ)−1
𝑎+𝑏 cos(𝑞ℎ) , 𝑏 + |𝑎 | < 0, 𝑞 =

√
𝑏2 − 𝑎2,

1+|𝑎 |ℎ
2 |𝑎 | , 𝑏 = 𝑎 < 0,

𝑏𝑞−1 sinh(𝑞ℎ)−1
𝑎+𝑏 cosh(𝑞ℎ) , 𝑎 + |𝑏 | < 0, 𝑞 =

√
𝑎2 − 𝑏2.

(3.8)

If, in particular, 𝑏 = 0, then this necessary and sufficient stability condition takes the 
form 2𝑎 + 𝜎2 < 0.

Via Remark 3.1 and Lemma 3.1, we obtain

Theorem 3.3. Let the conditions

𝑐𝑖 < 𝑎𝑖 + 𝑏𝑖 , 𝐺−1
𝑖 >

1
2
𝜎2
𝑖 , 𝑖 = 1, 2, (3.9)
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Fig. 2. 100 trajectories of the solution of the system (2.1): 𝑥1 (𝑡) (blue) and 𝑥2 (𝑡) (red)

hold, where

𝐺𝑖 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+𝑏𝑖𝑞−1
𝑖 sin(𝑞𝑖ℎ) 

𝑎𝑖−𝑐𝑖+𝑏𝑖 cos(𝑞𝑖ℎ) , |𝑎𝑖 − 𝑐𝑖 | < 𝑏𝑖 , 𝑞𝑖 =
√︂
𝑏2
𝑖 − (𝑎𝑖 − 𝑐𝑖)2,

1+(𝑎𝑖−𝑐𝑖 )ℎ
2(𝑎𝑖−𝑐𝑖 ) , 𝑏𝑖 = 𝑎𝑖 − 𝑐𝑖 > 0,

1+𝑏𝑖𝑞−1
𝑖 sinh(𝑞𝑖ℎ) 

𝑎𝑖−𝑐𝑖+𝑏𝑖 cosh(𝑞𝑖ℎ) , 𝑏𝑖 < 𝑎𝑖 − 𝑐𝑖 , 𝑞𝑖 =
√︂
(𝑎𝑖 − 𝑐𝑖)2 − 𝑏2

𝑖 .

(3.10)

Then the zero equilibrium (𝑥∗1, 𝑥∗2) = (0, 0) of the system (2.1) is stable in probability.

Proof. Via the equation (3.6), for the proof it is enough to use Lemma 3.1, putting 
into (3.7) and (3.8)

𝑎 = 𝑐𝑖 − 𝑎𝑖 , 𝑏 = −𝑏𝑖 , 𝐺 = 𝐺𝑖 , 𝜎 = 𝜎𝑖 .

By that, (3.7) and (3.8) are transformed into (3.9) and (3.10). The proof is com-
pleted. □

Example 3.2. Consider the system (2.1) with the following values of the parameters:

𝑎1 = 2, 𝑏1 = 1, 𝑐1 = 1, 𝑝1 = 2, 𝑞1 = 0.2, 𝜎1 = 0.9, ℎ = 1,
𝑎2 = 3, 𝑏2 = 1, 𝑐2 = 2, 𝑝2 = 0.2, 𝑞2 = 2, 𝜎2 = 0.9.

(3.11)

It is easy to see, that for the values of the parameters (3.11) the conditions (3.9) hold. 
Therefore, the zero equilibrium of the system (2.1) is stable in probability. In Fig. 2 100 
trajectories of the solution of the system (2.1) are shown, with the initial conditions 
𝑥1(𝑠) = 0.55, 𝑥2(𝑠) = 0.35, 𝑠 ∈ [−ℎ, 0]. One can see that all trajectories converge to 
the zero.
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4 Conclusions

A system of two differential equations with exponential nonlinearity is considered. 
The nonlinearity in each equation depends on both variables of the system. It is 
supposed that this system is exposed to stochastic perturbations of the white noise 
type, which are directly proportional to the deviation of the system state from one of 
the system’s equilibria (the zero or nonzero). Some sufficient conditions for stability in 
probability of the both system equilibria are obtained by virtue of the general method 
of Lyapunov functionals construction and the method of linear matrix inequalities 
(LMIs). The obtained results are illustrated by numerical simulations of solutions of 
the considered system. The method of stability investigation described here can be 
applied to systems of higher dimension and with other types of nonlinearity.
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