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Abstract In this article, we first obtain, for the Kolmogorov distance, an error bound between 
a tempered stable and a compound Poisson distribution (CPD) and also an error bound between 
a tempered stable and an 𝛼-stable distribution via Stein’s method. For the smooth Wasserstein 
distance, an error bound between two tempered stable distributions (TSDs) is also derived. As 
examples, we discuss the approximation of a TSD to normal and variance-gamma distributions 
(VGDs). As corollaries, the corresponding limit theorem follows.
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1 Introduction

Probability approximations is one of the fundamental topics in probability theory, due 
to its wide range of applications in limit theorems [6, 30, 35], runs [34], stochastic 
algorithms [37], and various other fields. They mainly provide estimates of the distance 

*Corresponding author.

© 2025 The Author(s). Published by VTeX. Open access article under the CC BY license. 

www.vmsta.org

https://doi.org/10.15559/25-VMSTA275
barmankalyan@math.iitb.ac.in
neelesh@iitm.ac.in
pvellais@ucsb.edu
https://www.ams.org/msc/msc2020.html?s=62E17
https://www.ams.org/msc/msc2020.html?s=62E20
https://www.ams.org/msc/msc2020.html?s=60E05
https://www.ams.org/msc/msc2020.html?s=60E07
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
https://www.vtex.lt/en/


326 K. Barman et al.

between the distributions of two random variables (rvs), which measure the closeness 
of the approximations. Hence, estimating the accuracy of the approximation is a 
crucial task. Recently, Chen et al. [9, 8], Jin et al. [18], Upadhye and Barman [30], 
Xu [38] have studied stable approximations via the Stein’s method. The distributional 
approximations for a family of stable distributions is not straightforward due to the 
lack of symmetry and heavy-tailed behavior of stable distributions. One of the major 
obstacles is that the moments of a stable distribution do not exist, whenever the 
stability parameter 𝛼 ∈ (0, 1]. To overcome these issues, different approaches and 
various assumptions are used.

Koponen [22] first introduced tempered stable distributions (TSDs) by tempering 
the tail of the stable (also called 𝛼-stable) distributions and making the distribu-
tion’s tail lighter. The tails of TSDs are heavier than those of the normal distribution 
and thinner than those of the 𝛼-stable distribution, see [21]. Therefore, quantifying 
the error in approximating 𝛼-stable and normal distributions to a TSD is of inter-
est. A TSD has mean, variance and exponential moments. Also, the class of TSDs 
includes many well-known subfamilies of probability distributions, such as CGMY, 
KoBol, bilateral-gamma, and variance-gamma distributions, which have applications 
in several disciplines including financial mathematics, see [4, 5, 29, 33].

In this article, we first obtain, for the Kolmogorov distance, an error bound be-
tween tempered stable and compound Poisson distributions (CPDs). This provides a 
convergence rate for the tempered stable approximation to a CPD. Next, we obtain 
the error bounds for the closeness between tempered stable and 𝛼-stable distributions 
via Stein’s method. We obtain also the error bounds for the closeness between two 
TSDs, for smooth Wasserstein distance. As a consequence, we discuss the normal and 
variance-gamma approximation and the corresponding limit theorems to a TSD.

The organization of this article is as follows. In Section 2, we discuss some no-
tations and preliminaries that will be useful later. First, we discuss some important 
properties of TSDs and some special and limiting distributions from the TSD family. 
A brief discussion of Stein’s method is also presented. In Section 3, we establish a 
Stein identity and a Stein equation for TSD and solve it via the semigroup approach. 
The properties of the solution to the Stein equation are discussed. In Section 4, we 
discuss bounds for tempered stable approximations of various probability distribu-
tions.

2 The preliminary results

2.1 Properties of tempered stable distributions

We first define the TSD and discuss some of their properties. Let I𝐵 (.) denote the 
indicator function of the set 𝐵. A rv 𝑋 is said to have TSD (see [24, p.2]) if its cf is 
given by

𝜙𝑡𝑠 (𝑧) = exp
(︃∫

R

(𝑒𝑖𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢)
)︃
, 𝑧 ∈ R, (1)

where the Lévy measure 𝜈𝑡𝑠 is

𝜈𝑡𝑠 (𝑑𝑢) =
(︃

𝑚1

𝑢1+𝛼1
𝑒−𝜆1𝑢I(0,∞) (𝑢) +

𝑚2

|𝑢 |1+𝛼2
𝑒−𝜆2 |𝑢 |I(−∞,0) (𝑢)

)︃
𝑑𝑢, (2)
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with parameters 𝑚𝑖 , 𝜆𝑖 ∈ (0,∞) and 𝛼𝑖 ∈ [0, 1), for 𝑖 = 1, 2, and we denote 
it by TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2). Note that TSDs are infinitely divisible and self-
decomposable, see [24]. Also, note that if 𝛼1 = 𝛼2 = 𝛼 ∈ (0, 1), then the Lévy 
measure in (2) can be seen as

𝜈𝑡𝑠 (𝑑𝑢) = 𝑞(𝑢)𝜈𝛼 (𝑑𝑢), (3)

where

𝜈𝛼 (𝑑𝑢) =
(︂ 𝑚1

𝑢1+𝛼 I(0,∞) +
𝑚2

𝑢1+𝛼 I(−∞,0)
)︂
𝑑𝑢 (4)

is the Lévy measure of a 𝛼-stable distribution (see [19]) and 𝑞 : R → R+ is a tempering 
function (see [24]), given by

𝑞(𝑢) = 𝑒−𝜆1𝑢I(0,∞) (𝑢) + 𝑒−𝜆2 |𝑢 |I(−∞,0) (𝑢). (5)

The following special and limiting cases of TSDs are well known, see [24]. Let 𝐿→
denote the convergence in distribution. Also let 𝑚𝑖, 𝜆𝑖 ∈ (0,∞) and 𝛼𝑖 ∈ [0, 1), for 
𝑖 = 1, 2.

(i) When 𝛼1 = 𝛼2 = 𝛼, then TSD(𝑚1, 𝛼, 𝜆1, 𝑚2, 𝛼, 𝜆2) is the KoBol distribution, 
see [3].

(ii) When 𝑚1 = 𝑚2 = 𝑚 and 𝛼1 = 𝛼2 = 𝛼, then TSD(𝑚, 𝛼, 𝜆1, 𝑚, 𝛼, 𝜆2) is the 
CGMY distribution, see [5].

(iii) When 𝛼1 = 𝛼2 = 0, then TSD(𝑚1, 0, 𝜆1, 𝑚2, 0, 𝜆2) is the bilateral-gamma 
distribution (BGD), denoted by BGD(𝑚1, 𝜆1, 𝑚2, 𝜆2), see [23].

(iv) When 𝑚1 = 𝑚2 = 𝑚 and 𝛼1 = 𝛼2 = 0, then TSD(𝑚, 0, 𝜆1, 𝑚, 0, 𝜆2) is the 
variance-gamma distribution (VGD), denoted by VGD(𝑚, 𝜆1, 𝜆2), see [23].

(v) When 𝑚1 = 𝑚2 = 𝑚, 𝜆1 = 𝜆2 = 𝜆 and 𝛼1 = 𝛼2 = 0, then TSD(𝑚, 0, 𝜆, 𝑚, 0,
𝜆) is the symmetric VGD, denoted by SVGD(𝑚, 𝜆), see [23].

(vi) When 𝜆1, 𝜆2 ↓ 0, then TSD(𝑚1, 𝛼, 𝜆1, 𝑚2, 𝛼, 𝜆2) converges to an 𝛼-stable dis-
tribution, denoted by 𝑆(𝑚1, 𝑚2, 𝛼), with cf

𝜙𝛼 (𝑧) = exp
(︃∫

R

(𝑒𝑖𝑧𝑢 − 1)𝜈𝛼 (𝑑𝑢)
)︃
, 𝑧 ∈ R, (6)

where 𝜈𝛼 is the Lévy measure given in (4), see [28].

(vii) The limiting case as 𝑚 → ∞ of the SVGD(𝑚,
√

2𝑚/𝜆) is the normal distribution 
𝒩 (0, 𝜆2), see [12].

Let 𝑋 ∼ TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2). Then from (1), for 𝑧 ∈ R, the cumulant gener-
ating function is given by

Ψ(𝑧) = logE[𝑒𝑖𝑧𝑋] = log 𝜙𝑡𝑠 (𝑧), (7)
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where 𝜙𝑡𝑠 (𝑧) is given in (1). Then the 𝑛-th cumulant of 𝑋 is

𝐶𝑛 (𝑋) := (−𝑖)𝑛
[︃
𝑑𝑛

𝑑𝑧𝑛
Ψ(𝑧)

]︃
𝑧=0

=
∫
R

𝑢𝑛𝜈𝑡𝑠 (𝑑𝑢) < ∞, 𝑛 ≥ 1. (8)

In particular (see [24]),

𝐶1(𝑋) = E[𝑋] = Γ(1 − 𝛼1) 𝑚1

𝜆1−𝛼1
1

− Γ(1 − 𝛼2) 𝑚2

𝜆1−𝛼2
2

, (9)

𝐶2(𝑋) = Var(𝑋) = Γ(2 − 𝛼1) 𝑚1

𝜆2−𝛼1
1

+ Γ(2 − 𝛼2) 𝑚2

𝜆2−𝛼2
2

, and (10)

𝐶3(𝑋) = Γ(3 − 𝛼1) 𝑚1

𝜆3−𝛼1
1

− Γ(3 − 𝛼2) 𝑚2

𝜆3−𝛼2
2

. (11)

2.2 Key steps of Stein’s method

Let 𝑓 (𝑛) henceforth denote the 𝑛-th derivative of 𝑓 with 𝑓 (0) = 𝑓 and 𝑓 ′ = 𝑓 (1) . Let 
𝒮 (R) be the Schwartz space defined by

𝒮 (R) :=
{︃
𝑓 ∈ 𝐶∞(R) : lim 

|𝑥 |→∞
|𝑥𝑚 𝑓 (𝑛) (𝑥) | = 0, for all 𝑚, 𝑛 ∈ N0

}︃
, (12)

where N0 = N ∪ {0} and 𝐶∞(R) is the class of infinitely differentiable functions on 
R. Note that the Fourier transform (FT) on 𝒮 (R) is an automorphism. In particular, 
if 𝑓 ∈ 𝒮 (R), and ˆ︁𝑓 (𝑢) :=

∫
R
𝑒−𝑖𝑢𝑥 𝑓 (𝑥)𝑑𝑥, 𝑢 ∈ R, then ˆ︁𝑓 (𝑢) ∈ 𝒮 (R). Similarly, if ˆ︁𝑓 (𝑢) ∈ 𝒮 (R), and 𝑓 (𝑥) := 1 

2𝜋
∫
R
𝑒𝑖𝑢𝑥 ˆ︁𝑓 (𝑢)𝑑𝑢, 𝑥 ∈ R, then 𝑓 (𝑥) ∈ 𝒮 (R), see [32].

Next, let

ℋ𝑟 = {ℎ : R → R|ℎ is 𝑟 times differentiable and ∥ℎ (𝑘 ) ∥ ≤ 1, 𝑘 = 0, 1, . . . , 𝑟}, 
(13)

where ∥ℎ∥ = sup𝑥∈R |ℎ(𝑥) |. Then, for any two rvs 𝑌 and 𝑍 , the smooth Wasserstein 
distance (see [14]) is given by

𝑑ℋ𝑟 (𝑌, 𝑍) := sup 
ℎ∈ℋ𝑟

|E[ℎ(𝑌 )] − E[ℎ(𝑍)] | , 𝑟 ≥ 1. (14)

Also, let

ℋ𝑊 = {ℎ : R → R|ℎ is 1-Lipschitz and ∥ℎ∥ ≤ 1}. (15)

Then, for any two rvs 𝑌 and 𝑍 , the classical Wasserstein distance (see [14]) is given 
by

𝑑𝑊 (𝑌, 𝑍) := sup 
ℎ∈ℋ𝑊

|E[ℎ(𝑌 )] − E[ℎ(𝑍)] | . (16)

Finally, let

ℋ𝐾 =
{︁
ℎ : R → R 

⃓⃓
ℎ = I(−∞,𝑥 ] for some 𝑥 ∈ R

}︁
. (17)
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Then, for any two rvs 𝑌 and 𝑍 , the Kolmogorov distance (see [14]) is given by

𝑑𝐾 (𝑌, 𝑍) := sup 
ℎ∈ℋ𝐾

|E[ℎ(𝑌 )] − E[ℎ(𝑍)] | . (18)

Next, we discuss the steps of Stein’s method. Let 𝑍 be a random variable (rv) with 
probability distribution 𝐹𝑍 (denote this by 𝑍 ∼ 𝐹𝑍 ). First, one identifies a suitable 
operator 𝒜 (called the Stein operator) and a class of suitable functions ℱ such that 
𝑍 ∼ 𝐹𝑍 , if and only if

E [𝒜 𝑓 (𝑍)] = 0, for all 𝑓 ∈ ℱ .

This equivalence is called the Stein characterization of 𝐹𝑍 . This characterization leads 
us to the Stein equation

𝒜 𝑓 (𝑥) = ℎ(𝑥) − E[ℎ(𝑍)], (19)

where ℎ is a real-valued test function. Replacing 𝑥 with a rv 𝑌 and taking expectations 
on both sides of (19) gives

E [𝒜 𝑓 (𝑌 )] = E[ℎ(𝑌 )] − E[ℎ(𝑍)] . (20)

This equality (20) plays a crucial role in Stein’s method. The probability distribution 
𝐹𝑍 is characterized by (19) so that the problem of bounding the quantity |E[ℎ(𝑌 )] −
E[ℎ(𝑍)] | depends on the smoothness of the solution to (19) and the behavior of 𝑌 . 
For more details on Stein’s method, we refer to [1, 7] and the references therein.

In particular, let 𝑍 have the normal distribution 𝒩 (0, 𝜎2). Then the Stein charac-
terization for 𝑍 (see [31]) is

E
[︁
𝜎2 𝑓 ′ (𝑍) − 𝑍 𝑓 (𝑍)]︁ = 0, (21)

where 𝑓 is any real-valued absolutely continuous function such that E| 𝑓 ′ (𝑍) | < ∞. 
This characterization leads us to the Stein equation

𝜎2 𝑓 ′ (𝑥) − 𝑥 𝑓 (𝑥) = ℎ(𝑥) − E[ℎ(𝑍)], (22)

where ℎ is a real-valued test function. Replacing 𝑥 with a rv 𝑍𝑛 ∼ 𝒩 (0, 𝜎2
𝑛) and taking 

expectations on both sides of (22) gives

E
[︁
𝜎2 𝑓 ′ (𝑍𝑛) − 𝑍𝑛 𝑓 (𝑍𝑛)

]︁
= E[ℎ(𝑍𝑛)] − E[ℎ(𝑍)] . (23)

Using the smoothness of solution to (22), it can be shown (see [27, Section 3.6]) that

𝑑𝑊 (𝑍𝑛, 𝑍) ≤
√︁

2/𝜋
𝜎2 ∨ 𝜎2

𝑛

|𝜎2
𝑛 − 𝜎2 |. (24)

From (24), if 𝜎𝑛 → 𝜎, then 𝑑𝑊 (𝑍𝑛, 𝑍) = 0, as expected, which implies that 𝑍𝑛
converges to the normal distribution 𝒩 (0, 𝜎2). We refer to [25] and [26] for a number 
of bounds similar to (24) for comparison of univariate probability distributions.
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3 Stein’s method for tempered stable distributions

3.1 The Stein identity for tempered stable distributions

In this section, we obtain the Stein identity for a TSD. First recall that 𝒮 (R) denotes 
the Schwartz space of functions, defined in (12).
Proposition 3.1. A rv 𝑋 ∼ TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2) if and only if

E

[︃
𝑋 𝑓 (𝑋) −

∫
R

𝑢 𝑓 (𝑋 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)
]︃
= 0, 𝑓 ∈ 𝒮 (R), (25)

where 𝜈𝑡𝑠 is the associated Lévy measure of TSD, defined in (2).

Proof. From Equations (2.7) and (2.8) of [24], the integral 
∫
R
(𝑒𝑖𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢) is 

convergent for all 𝑧 ∈ R. Also, the cf of 𝑋 ∼ TSD is given by (see (1))

𝜙𝑡𝑠 (𝑧) = exp(Ψ(𝑧)), 𝑧 ∈ R (26)

where Ψ(𝑧) =
∫
R
(𝑒𝑖𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢). Since | (𝑖𝑢)𝑒𝑖𝑧𝑢 | ≤ |𝑢 | and 

∫
R
|𝑢 |𝜈𝑡𝑠 (𝑑𝑢) < ∞

(see (8)), we have

Ψ′ (𝑧) = 𝑑

𝑑𝑧

∫
R

(𝑒𝑖𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢) =
∫
R

𝑖𝑢𝑒𝑖𝑧𝑢𝜈𝑡𝑠 (𝑑𝑢).

Now, taking logarithms on both sides of (26), differentiating with respect to 𝑧, we have

𝜙′𝑡𝑠 (𝑧) = 𝑖𝜙𝑡𝑠 (𝑧)
∫
R

𝑢𝑒𝑖𝑧𝑢𝜈𝑡𝑠 (𝑑𝑢). (27)

Let 𝐹𝑋 be the cumulative distribution function (CDF) of 𝑋 . Then,

𝜙𝑡𝑠 (𝑧) =
∫
R

𝑒𝑖𝑧𝑥𝐹𝑋 (𝑑𝑥) =⇒ 𝜙′𝑡𝑠 (𝑧) = 𝑖
∫
R

𝑥𝑒𝑖𝑧𝑥𝐹𝑋 (𝑑𝑥). (28)

Using (28) in (27) and rearranging the integrals, we have

0 = 𝑖

(︃∫
R

𝑥𝑒𝑖𝑧𝑥𝐹𝑋 (𝑑𝑥) − 𝜙𝑡𝑠 (𝑧)
∫
R

𝑢𝑒𝑖𝑧𝑢𝜈𝑡𝑠 (𝑑𝑢)
)︃
. (29)

Multiplying both sides of (29) by −𝑖, we get

0 =
∫
R

𝑥𝑒𝑖𝑧𝑥𝐹𝑋 (𝑑𝑥) − 𝜙𝑡𝑠 (𝑧)
∫
R

𝑢𝑒𝑖𝑧𝑢𝜈𝑡𝑠 (𝑑𝑢). (30)

Note that 𝜙𝑡𝑠 (𝑧) and 𝜙′𝑡𝑠 (𝑧) exist and are finite for all 𝑧 ∈ R. Hence by Fubini’s 
theorem, the second integral of (30) can be written as

𝜙𝑡𝑠 (𝑧)
∫
R

𝑢𝑒𝑖𝑧𝑢𝜈𝑡𝑠 (𝑑𝑢) =
∫
R

∫
R

𝑢𝑒𝑖𝑧𝑢𝑒𝑖𝑧𝑥𝐹𝑋 (𝑑𝑥)𝜈𝑡𝑠 (𝑑𝑢)

=
∫
R

∫
R

𝑢𝑒𝑖𝑧 (𝑢+𝑥 )𝜈𝑡𝑠 (𝑑𝑢)𝐹𝑋 (𝑑𝑥)
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=
∫
R

∫
R

𝑢𝑒𝑖𝑧𝑦𝜈𝑡𝑠 (𝑑𝑢)𝐹𝑋 (𝑑 (𝑦 − 𝑢))

=
∫
R

∫
R

𝑢𝑒𝑖𝑧𝑥𝜈𝑡𝑠 (𝑑𝑢)𝐹𝑋 (𝑑 (𝑥 − 𝑢))

=
∫
R

𝑒𝑖𝑧𝑥
∫
R

𝑢𝐹𝑋 (𝑑 (𝑥 − 𝑢))𝜈𝑡𝑠 (𝑑𝑢). (31)

Substituting (31) in (30), we have

0 =
∫
R

𝑥𝑒𝑖𝑧𝑥𝐹𝑋 (𝑑𝑥) −
∫
R

𝑒𝑖𝑧𝑥
∫
R

𝑢𝐹𝑋 (𝑑 (𝑥 − 𝑢))𝜈𝑡𝑠 (𝑑𝑢)

=
∫
R

𝑒𝑖𝑧𝑥
(︃
𝑥𝐹𝑋 (𝑑𝑥) −

∫
R

𝑢𝐹𝑋 (𝑑 (𝑥 − 𝑢))𝜈𝑡𝑠 (𝑑𝑢)
)︃
. (32)

Applying the Fourier transform to (32), multiplying with 𝑓 ∈ 𝒮 (R), and integrating 
over R, we get

∫
R

𝑓 (𝑥)
(︃
𝑥𝐹𝑋 (𝑑𝑥) −

∫
R

𝑢𝐹𝑋 (𝑑 (𝑥 − 𝑢))𝜈𝑡𝑠 (𝑑𝑢)
)︃

= 0. (33)

The second integral of (33) can be seen as∫
R

∫
R

𝑢 𝑓 (𝑥)𝐹𝑋 (𝑑 (𝑥 − 𝑢))𝜈𝑡𝑠 (𝑑𝑢) =
∫
R

∫
R

𝑢 𝑓 (𝑦 + 𝑢)𝐹𝑋 (𝑑𝑦)𝜈𝑡𝑠 (𝑑𝑢)

=
∫
R

∫
R

𝑢 𝑓 (𝑥 + 𝑢)𝐹𝑋 (𝑑𝑥)𝜈𝑡𝑠 (𝑑𝑢)

= E

[︃∫
R

𝑢 𝑓 (𝑋 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)
]︃
. (34)

Substituting (34) in (33), we have

E

[︃
𝑋 𝑓 (𝑋) −

∫
R

𝑢 𝑓 (𝑋 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)
]︃
= 0,

which proves (25).
Assume, conversely, that (25) holds for 𝜈𝑡𝑠 defined in (2). For any 𝑠 ∈ R, let 

𝑓 (𝑥) = 𝑒𝑖𝑠𝑥 , 𝑥 ∈ R, then (25) becomes

E
[︁
𝑋𝑒𝑖𝑠𝑋

]︁
= E

[︃∫
R

𝑒𝑖𝑠 (𝑋+𝑢)𝑢𝜈𝑡𝑠 (𝑑𝑢)
]︃

= E

[︃
𝑒𝑖𝑠𝑋

∫
R

𝑒𝑖𝑠𝑢𝑢𝜈𝑡𝑠 (𝑑𝑢)
]︃
.

Setting 𝜙𝑡𝑠 (𝑠) = E[𝑒𝑖𝑠𝑋], we have

𝜙′𝑡𝑠 (𝑠) = 𝑖𝜙𝑡𝑠 (𝑠)
∫
R

𝑒𝑖𝑠𝑢𝑢𝜈𝑡𝑠 (𝑑𝑢). (35)
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Integrating the real and imaginary parts of (35) leads, for any 𝑧 ≥ 0, to

𝜙𝑡𝑠 (𝑧) = exp
(︃
𝑖

∫ 𝑧

0

∫
R

𝑒𝑖𝑠𝑢𝑢𝜈𝑡𝑠 (𝑑𝑢)𝑑𝑠
)︃

= exp
(︃
𝑖

∫
R

∫ 𝑧

0
𝑒𝑖𝑠𝑢𝑑𝑠𝑢𝜈𝑡𝑠 (𝑑𝑢)

)︃

= exp
(︃∫

R

(𝑒𝑖𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢)
)︃
.

A similar computation for 𝑧 ≤ 0 completes the derivation of the cf. □

We now have the following corollary for 𝛼-stable distributions.

Corollary 3.2. A rv 𝑋 ∼ 𝑆(𝑚1, 𝑚2, 𝛼) if and only if

E

[︃
𝑋 𝑓 (𝑋) −

∫
R

𝑢 𝑓 (𝑋 + 𝑢)𝜈𝛼 (𝑑𝑢)
]︃
= 0, 𝑓 ∈ 𝒮 (R), (36)

where 𝜈𝛼 is the associated Lévy measure of an 𝛼-stable distribution, given in (4).

Proof. Let 𝛼1 = 𝛼2 = 𝛼 in Theorem 3.1. Observe now that⃓⃓⃓
⃓𝑥 𝑓 (𝑥) −

∫
R

𝑢 𝑓 (𝑥 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)
⃓⃓⃓
⃓ < ∞, and 

lim 
𝜆1 ,𝜆2↓0

∫
R

𝑢 𝑓 (𝑥 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢) =
∫
R

𝑢 𝑓 (𝑥 + 𝑢)𝜈𝛼 (𝑑𝑢),

since 𝑓 ∈ 𝒮 (R). So, the dominated convergence theorem is applicable in (25). Next, 
taking limits as 𝜆1, 𝜆2 ↓ 0 in (25), and then applying the dominated convergence 
theorem, and noting that 𝜈𝑡𝑠 → 𝜈𝛼, we get (36). □

Remark 3.3. (i) Note that we derive the characterizing (Stein) identity (25) for TSD 
using the Lévy–Khinchine representation of the cf. Also, observe that several classes 
of distributions such as variance-gamma, bilateral-gamma, CGMY, and KoBol can 
be viewed as TSD. The Stein identities for these classes of distributions can be easily 
obtained using (25).

(ii) Recently Arras and Houdré ([1], Theorem 3.1 and Section 5) obtained the Stein 
identity for infinitely divisible distributions with first finite moment via the covariance 
representation given in [17]. Note that TSD is a subclass of IDD and TSD has finite 
mean. Hence, the Stein identity for TSD can also be derived using the approach given 
in [1].

3.1.1 A nonzero bias distribution
In Stein’s method literature, the zero bias distribution is a powerful tool to obtain 
bounds, which has been used in several situations. It has been used in conjunction 
with coupling techniques to produce quantitative results for normal and product normal 
approximations, see, e.g., [11]. The zero bias distribution due to Goldstein and Reinert 
[16] is as follows.
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Definition 3.4. Let X be a rv with E[𝑋] = 0, and Var(𝑋) = 𝜎2 < ∞. We say that 𝑋∗

has 𝑋-zero bias distribution if

E[𝑋 𝑓 (𝑋)] = 𝜎2
E[ 𝑓 ′ (𝑋∗)], (37)

for any differentiable function 𝑓 with E[𝑋 𝑓 (𝑋)] < ∞.
In the following lemma, we prove the existence of a nonzero (extended) bias 

distribution (see [1, Remark 3.9 (ii)]) associated with TSD. Before stating our result, 
let us define

𝜂+(𝑢) =
∫ ∞

𝑢
𝑦𝜈𝑡𝑠 (𝑑𝑦), 𝑢 > 0, and 𝜂− (𝑢) =

∫ 𝑢

−∞
(−𝑦)𝜈𝑡𝑠 (𝑑𝑦), 𝑢 < 0, (38)

where 𝜈𝑡𝑠 is the Lévy measure of TSD (see (2)). Let

𝜂(𝑢) := 𝜂+(𝑢) + 𝜂− (𝑢).

Also let 𝑌 be a random variable with the density

𝑓1(𝑢) = 𝜂(𝑢) ∫
R
𝑦2𝜈𝑡𝑠 (𝑑𝑦)

=
𝜂(𝑢) 

Var(𝑋) , 𝑢 ∈ R. (39)

Then, for 𝑛 ≥ 1, the 𝑛th moment of 𝑌 is

E[𝑌𝑛] = 1 
Var(𝑋)

∫
R

𝑢𝑛𝜂(𝑢)𝑑𝑢

=
1 

(𝑛 + 1)Var(𝑋)
∫
R

𝑢𝑛+2𝜈𝑡𝑠 (𝑢)𝑑𝑢

=
𝐶𝑛+2 (𝑋) 

(𝑛 + 1)𝐶2(𝑋)
. (40)

Lemma 3.5. Let 𝑋 ∼ TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2) and 𝑌 (independent of 𝑋) have the 
density given in (39). Then

Cov(𝑋, 𝑓 (𝑋)) = Var(𝑋)E [ 𝑓 ′ (𝑋 + 𝑌 )] , (41)

where 𝑓 is an absolutely continuous function with E [ 𝑓 ′ (𝑋 + 𝑌 )] < ∞.

Proof. Using (8) and (9), for the case 𝑛 = 1, in (25), and rearranging the terms, we 
get

Cov(𝑋, 𝑓 (𝑋)) = E

[︃∫
R

𝑢( 𝑓 (𝑋 + 𝑢) − 𝑓 (𝑋))𝜈𝑡𝑠 (𝑑𝑢)
]︃
.

Now

Cov(𝑋, 𝑓 (𝑋)) = E

[︃∫
R

𝑢( 𝑓 (𝑋 + 𝑢) − 𝑓 (𝑋))𝜈𝑡𝑠 (𝑑𝑢)
]︃

= E

[︃∫ ∞

0
𝑓 ′ (𝑋 + 𝑣)

∫ ∞

𝑣
𝑢𝜈𝑡𝑠 (𝑑𝑢)𝑑𝑣

]︃
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+ E

[︃∫ 0

−∞
𝑓 ′ (𝑋 + 𝑣)

∫ 𝑣

−∞
(−𝑢)𝜈𝑡𝑠 (𝑑𝑢)𝑑𝑣

]︃

= E

[︃∫
R

𝑓 ′ (𝑋 + 𝑣) (︁𝜂+(𝑣)I(0,∞) (𝑣) + 𝜂− (𝑣)I(−∞,0) (𝑣)
)︁
𝑑𝑣

]︃

=

(︃∫
R

𝑢2𝜈𝑡𝑠 (𝑑𝑢)
)︃
E

[︃∫
R

𝑓 ′ (𝑋 + 𝑣) 𝑓1(𝑣)𝑑𝑣
]︃

=

(︃∫
R

𝑢2𝜈𝑡𝑠 (𝑑𝑢)
)︃
E [ 𝑓 ′ (𝑋 + 𝑌 )]

= Var(𝑋)E [ 𝑓 ′ (𝑋 + 𝑌 )] .

This proves the result. □

Remark 3.6. Note that the covariance identity in (41) coincides with the one given in 
[1, Proposition 3.8]. However, the usefulness of the identity is shown in deriving the 
error bound of the limiting distributions of TSD (see the proof of Theorem 4.5).

3.2 The Stein equation for tempered stable distributions
In this section, we first derive the Stein equation for TSD and then solve it via the 
semigroup approach. From Proposition 3.1, for any 𝑓 ∈ 𝒮 (R),

𝒜 𝑓 (𝑥) := −𝑥 𝑓 (𝑥) +
∫
R

𝑢 𝑓 (𝑥 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢) (42)

is the Stein operator for TSD. Hence, the Stein equation for 𝑋 ∼TSD (𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 
𝜆2) is given by

𝒜 𝑓 (𝑥) = ℎ(𝑥) − E[ℎ(𝑋)], (43)

where ℎ ∈ ℋ, a class of test functions. The semigroup approach for solving the Stein 
equation (43) is developed by Barbour [2], and Arras and Houdré [1] generalized it for 
infinitely divisible distributions with the finite first moment. Consider the following 
family of operators (𝑃𝑡 )𝑡≥0, defined as, for all 𝑥 ∈ R,

𝑃𝑡 ( 𝑓 )(𝑥) = 1 
2𝜋

∫
R

𝑓 (𝑧)𝑒𝑖𝑧𝑥𝑒−𝑡 𝜙𝑡𝑠 (𝑧) 
𝜙𝑡𝑠 (𝑒−𝑡 𝑧)

𝑑𝑧, 𝑓 ∈ 𝒮 (R), (44)

where 𝑓 is FT of 𝑓 , and 𝜙𝑡𝑠 is the cf of TSD given in (1). Recall that the TSD family 
is self-decomposable, see [24], p. 4284. Hence, from Equations 5.8 and 5.15 of [1], 
one can define a cf, for all 𝑧 ∈ R, and 𝑡 ≥ 0, by

𝜙𝑡 (𝑧) :=
𝜙𝑡𝑠 (𝑧) 

𝜙𝑡𝑠 (𝑒−𝑡 𝑧)

=
exp

(︁∫
R
(𝑒𝑖𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢)

)︁
exp

(︁∫
R
(𝑒𝑖𝑒−𝑡 𝑧𝑢 − 1)𝜈𝑡𝑠 (𝑑𝑢)

)︁

= exp
(︃∫

R

𝑒𝑖𝑧𝑢 (1 − 𝑒𝑖 (𝑒−𝑡−1)𝑧𝑢)𝜈𝑡𝑠 (𝑑𝑢)
)︃

=
∫
R

𝑒𝑖𝑧𝑢𝐹𝑋(𝑡 ) (𝑑𝑢), (45)
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where 𝐹𝑋(𝑡 ) is CDF of a rv 𝑋(𝑡 ) , say. Also, for any 𝑡 ≥ 0, the rv 𝑋(𝑡 ) is related to 𝑋
(see Equation 2.11 of [1], Section 2.2) as

𝑋
𝑑
= 𝑒−𝑡𝑋 + 𝑋(𝑡 ) ,

where 𝑋 ∼TSD and 
𝑑
= denotes the equality in distribution. We refer to Section 15 of 

[19] for more details on self-decomposable distributions. Now using (45) in (44), we 
get

𝑃𝑡 ( 𝑓 )(𝑥) = 1 
2𝜋

∫
R

∫
R

ˆ︁𝑓 (𝑧)𝑒𝑖𝑧𝑥𝑒−𝑡 𝑒𝑖𝑧𝑢𝐹𝑋(𝑡 ) (𝑑𝑢)𝑑𝑧

=
1 

2𝜋

∫
R

∫
R

ˆ︁𝑓 (𝑧)𝑒𝑖𝑧 (𝑢+𝑥𝑒−𝑡 )𝐹𝑋(𝑡 ) (𝑑𝑢)𝑑𝑧

=
∫
R

𝑓 (𝑢 + 𝑥𝑒−𝑡 )𝐹𝑋(𝑡 ) (𝑑𝑢), (46)

where the last step follows by applying the inverse FT.

Proposition 3.7. Let (𝑃𝑡 )𝑡≥0 be a family of operators given in (44). Then

(i) (𝑃𝑡 )𝑡≥0 is a C0-semigroup on 𝒮 (R);

(ii) its generator 𝑇 is given by

𝑇 ( 𝑓 )(𝑥) = −𝑥 𝑓 ′ (𝑥) +
∫
R

𝑢 𝑓 ′ (𝑥 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢), 𝑓 ∈ 𝒮 (R). (47)

Following the steps similar to Proposition 3.8 and Lemma 3.10 of [30], the proof 
is derived.

Remark 3.8. Note that the domain of the semigroup (𝑃𝑡)𝑡≥0 is 𝒮 (R). So, the semigroup 
(𝑃𝑡 )𝑡≥0 is a uniformly continuous semigroup. Also, for 1 ≤ 𝑝 < ∞, the Schwartz space 
𝒮 (R) is dense in 𝐿 𝑝 (𝐹𝑋) = { 𝑓 : R → R|

∫
R
| 𝑓 (𝑥) |𝑝𝐹𝑋 (𝑑𝑥) < ∞}, where 𝐹𝑋 is CDF 

of 𝑋 ∼ TSD (see [20, Remark 1.9.1]). Following the proof of Proposition 5.1 of [1], 
the domain of (𝑃𝑡 )𝑡≥0 can be extended to 𝐿 𝑝 (𝐹𝑋) and the topology on 𝐿 𝑝 (𝐹𝑋) can 
be derived from the 𝐿 𝑝-norm, which is a metric topology.

Next, we provide a solution to the Stein equation (43).

Theorem 3.9. Let 𝑋 ∼ TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2) and ℎ ∈ ℋ𝑟 . Then the function 
𝑓ℎ : R → R defined by

𝑓ℎ (𝑥) := −
∫ ∞

0

𝑑

𝑑𝑥
𝑃𝑡ℎ(𝑥)𝑑𝑡 (48)

solves (43).

Proof. Let

𝑔ℎ (𝑥) = −
∫ ∞

0

(︃
𝑃𝑡 (ℎ)(𝑥) − E[ℎ(𝑋)]

)︃
𝑑𝑡.
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Then 𝑔′ℎ (𝑥) = 𝑓ℎ (𝑥). Now from (44), we get

𝑃0(ℎ)(𝑥) = 1 
2𝜋

∫
R

ℎ̂(𝑧)𝑒𝑖𝑧𝑥𝑑𝑧 = ℎ(𝑥), (49)

and lim 
𝜖→∞ 𝑃𝜖 ℎ(𝑥) = lim 

𝜖→∞
1 

2𝜋

∫
R

ℎ̂(𝑧)𝑒𝑖𝑧𝑥𝑒−𝜖 𝜙𝑡𝑠 (𝑧) 
𝜙𝑡𝑠 (𝑒−𝜖 𝑧)

𝑑𝑧

=
1 

2𝜋

∫
R

ℎ̂(𝑧)𝜙𝑡𝑠 (𝑧)𝑑𝑧

= E[ℎ(𝑋)] . (50)

Also from (47), we get

𝒜 𝑓ℎ (𝑥) = −𝑥 𝑓ℎ (𝑥) +
∫
R

𝑢 𝑓ℎ (𝑥 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)

= 𝑇𝑔ℎ (𝑥)

= −
∫ ∞

0
𝑇𝑃𝑡 (ℎ)(𝑥)𝑑𝑡

= −
∫ ∞

0

𝑑

𝑑𝑡
𝑃𝑡ℎ(𝑥)𝑑𝑡 (see [27, p.68])

= − lim 
𝜖→∞

∫ 𝜖

0

𝑑

𝑑𝑡
𝑃𝑡ℎ(𝑥)𝑑𝑡

= 𝑃0ℎ(𝑥) − lim 
𝜖→∞ 𝑃𝜖 ℎ(𝑥)

= ℎ(𝑥) − E[ℎ(𝑋)] (using (49) and (50)).

Hence, 𝑓ℎ is the solution to (43). □

3.3 Properties of the solution of the Stein equation

The next step is to investigate the properties of 𝑓ℎ. In the following theorem, we 
establish estimates of 𝑓ℎ, which play a crucial role in the TSD approximation problems. 
Gaunt [12, 13] and Döbler et al. [10] propose various methods for bounding the 
solution to the Stein equations that allow them to derive properties of the solution to 
the Stein equation, in particular for a subfamily of TSD, namely the variance-gamma 
family.

Lemma 3.10. For ℎ ∈ ℋ𝑟+1, let 𝑓ℎ be defined in (48).

(i) For 𝑟 = 0, 1, 2, . . .,

∥ 𝑓 (𝑟 )ℎ ∥ ≤ 1 
𝑟 + 1

∥ℎ (𝑟+1) ∥. (51)

(ii) For any 𝑥, 𝑦 ∈ R,

∥ 𝑓 ′ℎ (𝑥) − 𝑓 ′ℎ (𝑦)∥ ≤ ∥ℎ (3) ∥
3 

|𝑥 − 𝑦 | . (52)
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Proof. (i) For ℎ ∈ ℋ𝑟+1,

∥ 𝑓ℎ∥ = sup 
𝑥∈R

⃓⃓⃓
⃓−

∫ ∞

0

𝑑

𝑑𝑥
𝑃𝑡ℎ(𝑥)𝑑𝑡

⃓⃓⃓
⃓

= sup 
𝑥∈R

⃓⃓⃓
⃓−

∫ ∞

0

𝑑

𝑑𝑥

∫
R

ℎ(𝑥𝑒−𝑡 + 𝑦)𝐹𝑋(𝑡 ) (𝑑𝑦)𝑑𝑡
⃓⃓⃓
⃓ (using (46))

= sup 
𝑥∈R

⃓⃓⃓
⃓−

∫ ∞

0
𝑒−𝑡

∫
R

ℎ (1) (𝑥𝑒−𝑡 + 𝑦)𝐹𝑋(𝑡 ) (𝑑𝑦)𝑑𝑡
⃓⃓⃓
⃓

≤ ∥ℎ (1) ∥
⃓⃓⃓
⃓
∫ ∞

0
𝑒−𝑡𝑑𝑡

⃓⃓⃓
⃓

= ∥ℎ (1) ∥.

It can be easily seen that 𝑓ℎ is 𝑟-times differentiable. Let 𝑟 = 1, then

∥ 𝑓 (1)ℎ ∥ = sup 
𝑥∈R

⃓⃓⃓
⃓−

∫ ∞

0
𝑒−2𝑡

∫
R

ℎ (2) (𝑥𝑒−𝑡 + 𝑦)𝐹𝑋(𝑡 ) (𝑑𝑦)𝑑𝑡
⃓⃓⃓
⃓

≤ ∥ℎ (2) ∥
⃓⃓⃓
⃓
∫ ∞

0
𝑒−2𝑡𝑑𝑡

⃓⃓⃓
⃓

=
∥ℎ (2) ∥

2 
.

Also, by induction, we get

∥ 𝑓 (𝑟 )ℎ ∥ ≤ 1 
𝑟 + 1

∥ℎ (𝑟+1) ∥, 𝑟 = 0, 1, 2, . . . .

(ii) For any 𝑥, 𝑦 ∈ R and ℎ ∈ ℋ3,

⃓⃓
𝑓 ′ℎ (𝑥) − 𝑓 ′ℎ (𝑦)

⃓⃓
≤
∫ ∞

0
𝑒−2𝑡

∫
R

⃓⃓⃓
ℎ (2) (𝑥𝑒−𝑡 + 𝑧) − ℎ (3) (𝑦𝑒−𝑡 + 𝑧)

⃓⃓⃓
𝐹𝑋(𝑡 ) (𝑑𝑧)𝑑𝑡

≤
∫ ∞

0
𝑒−2𝑡

∫
R

∥ℎ (3) ∥ |𝑥 − 𝑦 | 𝑒−𝑡𝐹𝑋(𝑡 ) (𝑑𝑧)𝑑𝑡

= ∥ℎ (3) ∥ |𝑥 − 𝑦 |
∫ ∞

0
𝑒−3𝑡𝑑𝑡

=
∥ℎ (3) ∥

3 
|𝑥 − 𝑦 | .

This proves the result. □

4 Bounds for tempered stable approximation

In this section, we present bounds for the tempered stable approximations to various 
probability distributions. First, we obtain, for the Kolmogorov distance 𝑑𝐾 , the error 
bounds for a sequence of CPD that converges to a TSD.
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Theorem 4.1. Let 𝑋 ∼ TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2) and 𝑋𝑛, 𝑛 ≥ 1, be compound 
Poisson rvs with cf

𝜙𝑛 (𝑧) := exp
(︃
𝑛

(︃
𝜙

1 
𝑛
𝑡𝑠 (𝑧) − 1

)︃)︃
, 𝑧 ∈ R, (53)

where 𝜙𝑡𝑠 (𝑡) is given in (1). Then

𝑑𝐾 (𝑋𝑛, 𝑋) ≤ 𝑐

(︃ 2 ∑︂
𝑗=1 

|𝐶 𝑗 (𝑋) |
)︃ 2

5
(︃

1 
𝑛

)︃ 1
5

, (54)

where 𝑐 > 0 is independent of 𝑛 and 𝐶 𝑗 denotes the 𝑗 th cumulant of 𝑋 .

Proof. Let 𝑏 =
∫ 1
−1 𝑢𝜈𝑡𝑠 (𝑑𝑢), where 𝜈𝑡𝑠 is defined in (2). Then by Equation (2.6) 

of [1], TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2) 𝑑
= ID(𝑏, 0, 𝜈𝑡𝑠). That is, TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2,

𝜆2) is an infinitely divisible distribution with the triplet 𝑏, 0 and 𝜈𝑡𝑠. Note that TSD 
are absolutely continuous with respect to the Lévy measure with a bounded density 
and E|𝑋 |2 < ∞ (see [24, Section 7]). Recall from Proposition 4.11 of [1] that, if 
𝑋 ∼ ID(𝑏, 0, 𝜈) with cf 𝜙𝑋 (say), and 𝑋𝑛, 𝑛 ≥ 1, are compound Poisson rvs each with 
cf as (53), then

𝑑𝐾 (𝑋𝑛, 𝑋) ≤ 𝑐

(︃
|E[𝑋] | +

∫
R

𝑢2𝜈𝑡𝑠 (𝑑𝑢)
)︃ 2 
𝑝+4

(︃
1 
𝑛

)︃ 1 
𝑝+4

, (55)

where |𝜙𝑋 (𝑧) |
∫ |𝑧 |

0

𝑑𝑠 
|𝜙𝑋 (𝑠) |

≤ 𝑐0 |𝑧 |𝑝, 𝑝 ≥ 1. Now observe that

|𝜙𝑡𝑠 (𝑧) |
∫ |𝑧 |

0

𝑑𝑠 
|𝜙𝑡𝑠 (𝑠) |

≤
∫ |𝑧 |

0

𝑑𝑠 
|E[cos 𝑠𝑋] + 𝑖E[sin 𝑠𝑋] |

=
∫ |𝑧 |

0

|E[𝑒 (−𝑖𝑠𝑋) ] | 
E2 [cos 𝑠𝑋] + E2 [sin 𝑠𝑋] 𝑑𝑠

≤ 𝑐0

∫ |𝑧 |

0
|E[𝑒 (−𝑖𝑠𝑋) ] |𝑑𝑠
(︃

1 
E2 [cos 𝑠𝑋] + E2 [sin 𝑠𝑋] < 𝑐0 (say)

)︃

= 𝑐0

∫ |𝑧 |

0
|E[cos 𝑠𝑋 − 𝑖 sin 𝑠𝑋] |𝑑𝑠

≤ 𝑐0

∫ |𝑧 |

0
𝑑𝑠

= 𝑐0 |𝑧 |.
Hence by (55), for 𝑝 = 1, we get

𝑑𝐾 (𝑋𝑛, 𝑋) ≤ 𝑐

(︃
|E[𝑋] | +

∫
R

𝑢2𝜈𝑡𝑠 (𝑑𝑢)
)︃ 2

5
(︃

1 
𝑛

)︃ 1
5
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= 𝑐

(︃ 2 ∑︂
𝑗=1 

|𝐶 𝑗 (𝑋) |
)︃ 2

5
(︃

1 
𝑛

)︃ 1
5

,

since 
∫
R
𝑢2𝜈𝑡𝑠 (𝑑𝑢) = 𝐶2 (𝑋). This proves the result. □

Remark 4.2. Note that if 𝑛 → ∞, 𝑑𝐾 (𝑋𝑛, 𝑋) → 0, as expected, and TSD is the limit 
of CPD.

Our next result yields an error bound for the closeness of tempered stable distri-
butions to 𝛼-stable distributions.
Theorem 4.3. Let 𝛼 ∈ (0, 1). Let 𝑋 ∼TSD (𝑚1, 𝛼, 𝜆1, 𝑚2, 𝛼, 𝜆2) and 𝑋𝛼 ∼ 𝑆(𝑚1,
𝑚2, 𝛼). Then

𝑑𝐾 (𝑋𝛼, 𝑋) ≤ 𝐶1𝜆
𝛼+ 1

2
1 + 𝐶2𝜆

𝛼+ 1
2

2 , (56)

where 𝐶1, 𝐶2 > 0 are independent of 𝜆1 and 𝜆2.

Proof. For ℎ ∈ ℋ𝐾 , from (43), we get

E[ℎ(𝑋𝛼)] − E[ℎ(𝑋)] = E[𝒜 𝑓 (𝑋𝛼)] = E [𝒜 𝑓 (𝑋𝛼) −𝒜𝛼 𝑓 (𝑋𝛼)] , (57)

since

E[𝒜𝛼 𝑓 (𝑋𝛼)] = E

[︃
−𝑋𝛼 𝑓 (𝑋𝛼) +

∫
R

𝑢 𝑓 (𝑋𝛼 + 𝑢)𝜈𝛼 (𝑑𝑢)
]︃
= 0, 𝑓 ∈ 𝒮 (R),

where 𝜈𝛼 is the Lévy measure given in (4) (see (36)).
Then, from (57), we have⃓⃓⃓

⃓E[ℎ(𝑋𝛼)] − E[ℎ(𝑋)]
⃓⃓⃓
⃓ =

⃓⃓⃓
⃓E
[︃(︃

−𝑋𝛼 𝑓 (𝑋𝛼) +
∫
R

𝑢 𝑓 (𝑋𝛼 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)
)︃

−
(︃
−𝑋𝛼 𝑓 (𝑋𝛼) +

∫
R

𝑢 𝑓 (𝑋𝛼 + 𝑢)𝜈𝛼 (𝑑𝑢)
)︃]︃⃓⃓⃓

⃓
=

⃓⃓⃓
⃓E
[︃∫

R

𝑢 𝑓 (𝑋𝛼 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢) −
∫
R

𝑢 𝑓 (𝑋𝛼 + 𝑢)𝜈𝛼 (𝑑𝑢)
]︃⃓⃓⃓
⃓

=

⃓⃓⃓
⃓E
[︃(︃

𝑚1

∫ ∞

0
𝑢 𝑓 (𝑋𝛼 + 𝑢) 𝑒

−𝜆1𝑢

𝑢1+𝛼 𝑑𝑢

+ 𝑚2

∫ 0

−∞
𝑢 𝑓 (𝑋𝛼 + 𝑢) 𝑒

−𝜆2 |𝑢 |

|𝑢 |1+𝛼 𝑑𝑢
)︃

−
(︃
𝑚1

∫ ∞

0
𝑢 𝑓 (𝑋𝛼 + 𝑢) 𝑑𝑢 

𝑢1+𝛼

+ 𝑚2

∫ 0

−∞
𝑢 𝑓 (𝑋𝛼 + 𝑢) 𝑑𝑢 

|𝑢 |1+𝛼
)︃]︃⃓⃓⃓

⃓
So, we write⃓⃓⃓

⃓E[ℎ(𝑋𝛼)] − E[ℎ(𝑋)]
⃓⃓⃓
⃓ =

⃓⃓⃓
⃓E
[︃
𝑚1

∫ ∞

0

(𝑒−𝜆1𝑢 − 1)
𝑢1+𝛼 𝑢 𝑓 (𝑋𝛼 + 𝑢)𝑑𝑢
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− 𝑚2

∫ ∞

0

(𝑒−𝜆2𝑢 − 1)
𝑢1+𝛼 𝑢 𝑓 (𝑋𝛼 − 𝑢)𝑑𝑢

]︃⃓⃓⃓
⃓. (58)

Now applying the triangle and Cauchy–Schwartz inequalities in (58), we get

𝑑𝐾 (𝑋𝛼, 𝑋) ≤ 𝑚1

{︃∫ ∞

0

(︃ (𝑒−𝜆1𝑢 − 1)
𝑢1+𝛼

)︃2
𝑑𝑢

}︃ 1
2

E

(︃∫ ∞

0
𝑢2 𝑓 2 (𝑋𝛼 + 𝑢)𝑑𝑢

)︃ 1
2

+ 𝑚2

{︃∫ ∞

0

(︃ (𝑒−𝜆2𝑢 − 1)
𝑢1+𝛼

)︃2
𝑑𝑢

}︃ 1
2

E

(︃∫ ∞

0
𝑢2 𝑓 2 (𝑋𝛼 − 𝑢)𝑑𝑢

)︃ 1
2

= 𝜆
𝛼+ 1

2
1 𝑚1𝑀

1
2 (𝛼)E

[︃∫ ∞

0
𝑢2 𝑓 2 (𝑋𝛼 + 𝑢)𝑑𝑢

]︃ 1
2

+ 𝜆𝛼+
1
2

2 𝑚2𝑀
1
2 (𝛼)E

[︃∫ ∞

0
𝑢2 𝑓 2(𝑋𝛼 − 𝑢)𝑑𝑢

]︃ 1
2

, (59)

where 𝑀 (𝛼) =
∫ ∞

0

(︃
(𝑒−𝑢−1)
𝑢1+𝛼

)︃2
𝑑𝑢 < ∞ (see [15, p.169]). Also, E[

∫ ∞
0 𝑢2 𝑓 2 (𝑋𝛼 +

𝑢)𝑑𝑢] 1
2 and E[

∫ ∞
0 𝑢2 𝑓 2 (𝑋𝛼 − 𝑢)𝑑𝑢] 1

2 are finite, since 𝑓 ∈ 𝒮 (R). Now setting

𝐶1 = 𝑚1𝑀
1
2 (𝛼)E

[︃∫ ∞

0
𝑢2 𝑓 2 (𝑋𝛼 + 𝑢)𝑑𝑢

]︃ 1
2

< ∞, and

𝐶2 = 𝑚2𝑀
1
2 (𝛼)E

[︃∫ ∞

0
𝑢2 𝑓 2 (𝑋𝛼 − 𝑢)𝑑𝑢

]︃ 1
2

< ∞,

in (59), we get

𝑑𝐾 (𝑋𝛼, 𝑋) ≤ 𝐶1𝜆
𝛼+ 1

2
1 + 𝐶2𝜆

𝛼+ 1
2

2 ,

where 𝐶1, 𝐶2 > 0 are independent of 𝜆1 and 𝜆2. This proves the result. □

Next, we state a result that gives the limiting distribution of a sequence of tempered 
stable random variables.
Lemma 4.4. ([24, Proposition 3.1]) Let 𝑚1, 𝑚2, 𝑚𝑖,𝑛, 𝜆𝑖,𝑛 ∈ (0,∞) and 𝛼1, 𝛼2, 𝛼𝑖,𝑛
∈ [0, 1), for 𝑖 = 1, 2. Also, let 𝑋𝑛 ∼ TSD(𝑚1,𝑛, 𝛼1,𝑛, 𝜆1,𝑛, 𝑚2,𝑛, 𝛼2,𝑛, 𝜆2,𝑛) and 
𝑋 ∼ TSD(𝑚1, 𝛼1, 𝜆1, 𝑚2, 𝛼2, 𝜆2). If (𝑚1,𝑛, 𝛼1,𝑛, 𝜆1,𝑛, 𝑚2,𝑛, 𝛼2,𝑛, 𝜆2,𝑛) → (𝑚1, 𝛼1, 𝜆1,

𝑚2, 𝛼2, 𝜆2) as 𝑛 → ∞, then 𝑋𝑛
𝐿→ 𝑋 .

The following theorem gives the error in the closeness of 𝑋𝑛 to 𝑋 .
Theorem 4.5. Let 𝑋𝑛 and 𝑋 be defined as in Lemma 4.4. Then

𝑑ℋ3 (𝑋𝑛, 𝑋) ≤ |𝐶1 (𝑋𝑛) − 𝐶1 (𝑋) | + 1
2
|𝐶2 (𝑋𝑛) − 𝐶2(𝑋) |

+ 1
6
𝐶2(𝑋)

⃓⃓⃓
⃓ |𝐶3 (𝑋𝑛) |
𝐶2 (𝑋𝑛) 

− |𝐶3(𝑋) |
𝐶2 (𝑋) 

⃓⃓⃓
⃓ , (60)

where 𝐶 𝑗 (𝑋), 𝑗 = 1, 2, 3, denotes the 𝑗-th cumulant of 𝑋 and 𝑑ℋ3 is defined in (14).
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Proof. Let ℎ ∈ ℋ3 and 𝑓 be the solution to the Stein equation (42). Then

E[ℎ(𝑋𝑛)] − E[ℎ(𝑋)] = E[𝒜 𝑓 (𝑋𝑛)]

= E

[︃
− 𝑋𝑛 𝑓 (𝑋𝑛) +

∫
R

𝑢 𝑓 (𝑋𝑛 + 𝑢)𝜈𝑡𝑠 (𝑑𝑢)
]︃

= E

[︃(︃
− 𝑋𝑛 + 𝐶1 (𝑋)

)︃
𝑓 (𝑋𝑛) + 𝐶2 (𝑋) 𝑓 ′ (𝑋𝑛 + 𝑌 )

]︃
, (61)

where the last equality follows by (41), and 𝑌 has the density given in (39).
Since 𝑋𝑛 ∼ TSD(𝑚1,𝑛, 𝛼1,𝑛, 𝜆1,𝑛, 𝑚2,𝑛, 𝛼2,𝑛, 𝜆2,𝑛), by Proposition 3.1, we have

E

[︃
− 𝑋𝑛 𝑓 (𝑋𝑛) +

∫
R

𝑢 𝑓 (𝑋𝑛 + 𝑢)𝜈𝑛𝑡𝑠 (𝑑𝑢)
]︃
= 0, (62)

where 𝜈𝑛𝑡𝑠 is the Lévy measure given by

𝜈𝑛𝑡𝑠 (𝑑𝑢) =
(︃

𝑚1,𝑛

𝑢1+𝛼1,𝑛
𝑒−𝜆1,𝑛𝑢I(0,∞) (𝑢) +

𝑚2,𝑛

|𝑢 |1+𝛼2,𝑛
𝑒−𝜆2,𝑛 |𝑢 |I(−∞,0) (𝑢)

)︃
𝑑𝑢.

Also, by Lemma 3.5, the identity in (62) can be seen as

E

[︃(︃
− 𝑋𝑛 + 𝐶1 (𝑋𝑛)

)︃
𝑓 (𝑋𝑛) + 𝐶2 (𝑋𝑛) 𝑓 ′ (𝑋𝑛 + 𝑌𝑛)

]︃
= 0, (63)

where 𝑌𝑛 has the density

𝑓𝑛 (𝑢) =
[
∫ ∞
𝑢
𝑦𝜈𝑛𝑡𝑠 (𝑑𝑦)]I(0,∞) (𝑢) − [

∫ 𝑢
−∞ 𝑦𝜈𝑛𝑡𝑠 (𝑑𝑦)]I(−∞,0) (𝑢)

𝐶2 (𝑋𝑛) 
, 𝑢 ∈ R. (64)

Using (63) in (61), we get

⃓⃓⃓
⃓E[ℎ(𝑋𝑛)] − E[ℎ(𝑋)]

⃓⃓⃓
⃓ =

⃓⃓⃓
⃓E
[︃(︃

(−𝑋𝑛 + 𝐶1(𝑋)) 𝑓 (𝑋𝑛) + 𝐶2 (𝑋) 𝑓 ′ (𝑋𝑛 + 𝑌 )
)︃

−
(︃
(−𝑋𝑛 + 𝐶1 (𝑋𝑛)) 𝑓 (𝑋𝑛) + 𝐶2 (𝑋𝑛) 𝑓 ′ (𝑋𝑛 + 𝑌𝑛)

)︃]︃⃓⃓⃓
⃓

≤ |𝐶1 (𝑋𝑛) − 𝐶1 (𝑋) | ∥ 𝑓 ∥
+ E |𝐶2(𝑋𝑛) 𝑓 ′ (𝑋𝑛 + 𝑌𝑛) − 𝐶2(𝑋) 𝑓 ′ (𝑋𝑛 + 𝑌 ) |

≤ |𝐶1 (𝑋𝑛) − 𝐶1 (𝑋) | ∥ 𝑓 ∥

+ E

⃓⃓⃓
⃓(𝐶2 (𝑋𝑛) − 𝐶2(𝑋)) 𝑓 ′ (𝑋𝑛 + 𝑌𝑛)

⃓⃓⃓
⃓

+ 𝐶2 (𝑋)E
⃓⃓⃓
⃓ 𝑓 ′ (𝑋𝑛 + 𝑌𝑛) − 𝑓 ′ (𝑋𝑛 + 𝑌 )

⃓⃓⃓
⃓

≤ ∥ℎ (1) ∥ |𝐶1 (𝑋𝑛) − 𝐶1 (𝑋) | + ∥ℎ (2) ∥
2 

|𝐶2 (𝑋𝑛) − 𝐶2(𝑋) |

+ 𝐶2 (𝑋) ∥ℎ
(3) ∥
3 

⃓⃓⃓
⃓E|𝑌𝑛 | − E|𝑌 |

⃓⃓⃓
⃓, (65)
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where the last inequality follows by applying the estimates given in Lemma 3.10. 
From (64) and (39), it can be verified that (see (40))

E|𝑌𝑛 | = |𝐶3(𝑋𝑛) |
2𝐶2(𝑋𝑛) 

and E|𝑌 | = |𝐶3 (𝑋) |
2𝐶2(𝑋) 

. (66)

Using (66) in (65), we get the desired result. □

Remark 4.6. (i) Note that if (𝑚1,𝑛, 𝛼1,𝑛, 𝜆1,𝑛, 𝑚2,𝑛, 𝛼2,𝑛, 𝜆2,𝑛) → (𝑚1, 𝛼1, 𝜆1, 𝑚2, 
𝛼2, 𝜆2) as 𝑛 → ∞, then 𝐶 𝑗 (𝑋𝑛) → 𝐶 𝑗 (𝑋), 𝑗 = 1, 2, 3, and 𝑑ℋ3 (𝑋𝑛, 𝑋) = 0, as 
expected.

(ii) Note also that if 𝑚1,𝑛 = 𝑚2,𝑛, 𝛼1,𝑛 = 𝛼2,𝑛, 𝜆1,𝑛 = 𝜆2,𝑛, 𝑚1 = 𝑚2, 𝛼1 = 𝛼2, 
and 𝜆1 = 𝜆2, then 𝐶 𝑗 (𝑋𝑛) = 𝐶 𝑗 (𝑋) = 0, 𝑗 = 1, 3. Under these conditions, from (60), 
we get

𝑑ℋ3 (𝑋𝑛, 𝑋) ≤
1
2
|𝐶2 (𝑋𝑛) − 𝐶2(𝑋) |

=

⃓⃓⃓
⃓Γ(2 − 𝛼1,𝑛)

𝑚1,𝑛

𝜆
2−𝛼1,𝑛
1

− Γ(2 − 𝛼1) 𝑚1

𝜆2−𝛼1
1

⃓⃓⃓
⃓.

If in addition 𝐶2(𝑋𝑛) → 𝐶2 (𝑋), then 𝑋𝑛
𝐿→ 𝑋 , as 𝑛 → ∞.

Next, we discuss two examples. Our first example yields the error in approximating 
a TSD by a normal distribution.
Example 4.7 (Normal approximation to a TSD). Let 𝑋𝑛 ∼ TSD(𝑚1,𝑛, 𝛼1,𝑛, 𝜆1,𝑛, 
𝑚2,𝑛, 𝛼2,𝑛, 𝜆2,𝑛), 𝑋𝑚 ∼ SVGD(𝑚,

√
2𝑚/𝜆) and 𝑋𝜆 ∼ 𝒩 (0, 𝜆2). Recall from Sec-

tion 2.1 that, SVGD(𝑚,
√

2𝑚/𝜆) 𝑑= TSD(𝑚, 0,
√

2𝑚/𝜆, 𝑚, 0,
√

2𝑚/𝜆). Then, the cf of 
SVGD(𝑚,

√
2𝑚/𝜆) is

𝜙𝑠𝑣 (𝑧) =
(︃

1 + 𝑧2𝜆2

2𝑚 

)︃−𝑚
(67)

= exp
(︃∫

R

(𝑒𝑖𝑧𝑢 − 1)𝜈𝑠𝑣 (𝑑𝑢)
)︃
, 𝑧 ∈ R, (68)

where the Lévy measure 𝜈𝑠𝑣 is

𝜈𝑠𝑣 (𝑑𝑢) =
(︃
𝑚

𝑢 
𝑒−

√
2𝑚
𝜆 𝑢I(0,∞) (𝑢) +

𝑚

|𝑢 | 𝑒
−

√
2𝑚
𝜆 |𝑢 |I(−∞,0) (𝑢)

)︃
.

Note from (67) that

lim 
𝑚→∞ 𝜙𝑠𝑣 (𝑧) = 𝑒

− 𝜆2𝑧2
2 .

That is, 𝑋𝑚
𝐿→ 𝑋𝜆 ∼ 𝒩 (0, 𝜆2), as 𝑚 → ∞. Also, it follows from [36, Theorem 7.12] 

that, if 𝑋𝑚
𝐿→ 𝑋𝜆, as 𝑚 → ∞, then

𝑑ℋ3 (𝑋𝑛, 𝑋𝜆) = lim 
𝑚→∞ 𝑑ℋ3 (𝑋𝑛, 𝑋𝑚). (69)
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Applying Theorem 4.5 to 𝑋 = 𝑋𝑚, and taking the limit as 𝑚 → ∞, we get from (69)

𝑑ℋ3 (𝑋𝑛, 𝑋𝜆) ≤ lim 
𝑚→∞

(︃
|𝐶1 (𝑋𝑛) − 𝐶1(𝑋𝑚) | + 1

2
|𝐶2(𝑋𝑛) − 𝐶2 (𝑋𝑚) |

+ 1
6
𝐶2 (𝑋𝑚)

⃓⃓⃓
⃓ |𝐶3(𝑋𝑛) |
𝐶2(𝑋𝑛) 

− |𝐶3 (𝑋𝑚) |
𝐶2 (𝑋𝑚) 

⃓⃓⃓
⃓
)︃

= |𝐶1 (𝑋𝑛) | + 1
2
|𝐶2 (𝑋𝑛) − 𝜆2 | + 1

6
𝜆2 |𝐶3(𝑋𝑛) |

𝐶2(𝑋𝑛) 
, (70)

which gives the error in the closeness between 𝑋𝑛 and 𝑋𝜆. Note that

𝐶1(𝑋𝑛) = E[𝑋𝑛] = Γ(1 − 𝛼1,𝑛)
𝑚1,𝑛

𝜆
1−𝛼1,𝑛
1,𝑛

− Γ(1 − 𝛼2,𝑛)
𝑚2,𝑛

𝜆
1−𝛼2,𝑛
2,𝑛

,

𝐶2(𝑋𝑛) = Var(𝑋𝑛) = Γ(2 − 𝛼1,𝑛)
𝑚1,𝑛

𝜆
2−𝛼1,𝑛
1,𝑛

+ Γ(2 − 𝛼2,𝑛)
𝑚2,𝑛

𝜆
1−𝛼2,𝑛
2,𝑛

, and

𝐶3(𝑋𝑛) = Γ(3 − 𝛼1,𝑛)
𝑚1,𝑛

𝜆
3−𝛼1,𝑛
1,𝑛

− Γ(3 − 𝛼2,𝑛)
𝑚2,𝑛

𝜆
3−𝛼2,𝑛
2,𝑛

.

When 𝐶 𝑗 (𝑋𝑛) → 0, for 𝑗 = 1, 3 and 𝐶2(𝑋𝑛) → 𝜆2, from (70), we have 𝑋𝑛
𝐿→ 𝑋𝜆, as 

𝑛 → ∞.

Example 4.8 (Variance-gamma approximation to a TSD). Let 𝑋𝑛 ∼ TSD(𝑚1,𝑛, 𝛼1,𝑛,
𝜆1,𝑛, 𝑚2,𝑛, 𝛼2,𝑛, 𝜆2,𝑛) and 𝑋𝑣 ∼ VGD(𝑚, 𝜆1, 𝜆2). Then

𝐶1(𝑋𝑣) = 𝑚
(︃

1 
𝜆1

− 1 
𝜆2

)︃
, 𝐶2 (𝑋𝑣) = 𝑚

(︃
1 

𝜆2
1
+ 1 

𝜆2
2

)︃
, and

𝐶3(𝑋𝑣) = 2𝑚
(︃

1 

𝜆3
1
− 1 

𝜆3
2

)︃
.

Now applying Theorem 4.5 to 𝑋 = 𝑋𝑣 , we get

𝑑ℋ3 (𝑋𝑛, 𝑋𝑣) ≤
⃓⃓⃓
⃓𝐶1 (𝑋𝑛) − 𝑚(𝜆2 − 𝜆1)

𝜆1𝜆2

⃓⃓⃓
⃓ + 1

2

⃓⃓⃓
⃓⃓𝐶2 (𝑋𝑛) −

𝑚(𝜆2
1 + 𝜆2

2)
𝜆2

1𝜆
2
2

⃓⃓⃓
⃓⃓

+ 1
6
𝑚
𝜆2

1 + 𝜆2
2

𝜆2
1𝜆

2
2

⃓⃓⃓
⃓⃓ |𝐶3 (𝑋𝑛) |
𝐶2 (𝑋𝑛) 

− 2|𝜆3
2 − 𝜆3

1 | 
𝜆1𝜆2(𝜆2

1 + 𝜆2
2)

⃓⃓⃓
⃓⃓ ,

which gives the error in the closeness between 𝑋𝑛 and 𝑋𝑣 . When 𝐶 𝑗 (𝑋𝑛) → 𝐶 𝑗 (𝑋𝑣), 
for 𝑗 = 1, 2, 3, we have 𝑋𝑛

𝐿→ 𝑋𝑣 , as 𝑛 → ∞.
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