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Abstract In this article, we first obtain, for the Kolmogorov distance, an error bound between
a tempered stable and a compound Poisson distribution (CPD) and also an error bound between
a tempered stable and an α-stable distribution via Stein’s method. For the smooth Wasserstein
distance, an error bound between two tempered stable distributions (TSDs) is also derived. As
examples, we discuss the approximation of a TSD to normal and variance-gamma distributions
(VGDs). As corollaries, the corresponding limit theorem follows.
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1 Introduction

Probability approximations is one of the fundamental topics in probability theory, due
to its wide range of applications in limit theorems [6, 30, 35], runs [34], stochastic al-
gorithms [37], and various other fields. They mainly provide estimates of the distance

∗Corresponding author.

© 2025 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/25-VMSTA275
mailto:barmankalyan@math.iitb.ac.in
mailto:neelesh@iitm.ac.in
mailto:pvellais@ucsb.edu
http://www.ams.org/msc/msc2010.html?s=62E17
http://www.ams.org/msc/msc2010.html?s=62E20
http://www.ams.org/msc/msc2010.html?s=60E05
http://www.ams.org/msc/msc2010.html?s=60E07
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


2 K. Barman et al.

between the distributions of two random variables (rvs), which measure the close-
ness of the approximations. Hence, estimating the accuracy of the approximation is a
crucial task. Recently, Chen et al. [9, 8], Jin et al. [18], Upadhye and Barman [30],
Xu [38] have studied stable approximations via the Stein’s method. The distributional
approximations for a family of stable distributions is not straightforward due to the
lack of symmetry and heavy-tailed behavior of stable distributions. One of the major
obstacles is that the moments of a stable distribution do not exist, whenever the stabil-
ity parameter α ∈ (0, 1]. To overcome these issues, different approaches and various
assumptions are used.

Koponen [22] first introduced tempered stable distributions (TSDs) by temper-
ing the tail of the stable (also called α-stable) distributions and making the distribu-
tion’s tail lighter. The tails of TSDs are heavier than those of the normal distribution
and thinner than those of the α-stable distribution, see [21]. Therefore, quantifying
the error in approximating α-stable and normal distributions to a TSD is of inter-
est. A TSD has mean, variance and exponential moments. Also, the class of TSDs
includes many well-known subfamilies of probability distributions, such as CGMY,
KoBol, bilateral-gamma, and variance-gamma distributions, which have applications
in several disciplines including financial mathematics, see [4, 5, 29, 33].

In this article, we first obtain, for the Kolmogorov distance, an error bound be-
tween tempered stable and compound Poisson distributions (CPDs). This provides a
convergence rate for the tempered stable approximation to a CPD. Next, we obtain
the error bounds for the closeness between tempered stable and α-stable distributions
via Stein’s method. We obtain also the error bounds for the closeness between two
TSDs, for smooth Wasserstein distance. As a consequence, we discuss the normal
and variance-gamma approximation and the corresponding limit theorems to a TSD.

The organization of this article is as follows. In Section 2, we discuss some no-
tations and preliminaries that will be useful later. First, we discuss some important
properties of TSDs and some special and limiting distributions from the TSD family.
A brief discussion of Stein’s method is also presented. In Section 3, we establish a
Stein identity and a Stein equation for TSD and solve it via the semigroup approach.
The properties of the solution to the Stein equation are discussed. In Section 4, we
discuss bounds for tempered stable approximations of various probability distribu-
tions.

2 The preliminary results

2.1 Properties of tempered stable distributions

We first define the TSD and discuss some of their properties. Let IB(.) denote the
indicator function of the set B. A rv X is said to have TSD (see [24, p.2]) if its cf is
given by

φts(z) = exp

(∫
R

(eizu − 1)νts(du)

)
, z ∈ R, (1)

where the Lévy measure νts is

νts(du) =
(

m1

u1+α1
e−λ1uI(0,∞)(u) + m2

|u|1+α2
e−λ2|u|I(−∞,0)(u)

)
du, (2)
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with parameters mi, λi ∈ (0,∞) and αi ∈ [0, 1), for i = 1, 2, and we denote
it by TSD(m1, α1, λ1,m2, α2, λ2). Note that TSDs are infinitely divisible and self-
decomposable, see [24]. Also, note that if α1 = α2 = α ∈ (0, 1), then the Lévy
measure in (2) can be seen as

νts(du) = q(u)να(du), (3)

where

να(du) =
( m1

u1+α
I(0,∞) + m2

u1+α
I(−∞,0)

)
du (4)

is the Lévy measure of a α-stable distribution (see [19]) and q : R → R+ is a
tempering function (see [24]), given by

q(u) = e−λ1uI(0,∞)(u) + e−λ2|u|I(−∞,0)(u). (5)

The following special and limiting cases of TSDs are well known, see [24]. Let
L→

denote the convergence in distribution. Also let mi, λi ∈ (0,∞) and αi ∈ [0, 1), for
i = 1, 2.

(i) When α1 = α2 = α, then TSD(m1, α, λ1,m2, α, λ2) is the KoBol distribution,
see [3].

(ii) When m1 = m2 = m and α1 = α2 = α, then TSD(m, α, λ1,m, α, λ2) is the
CGMY distribution, see [5].

(iii) When α1 = α2 = 0, then TSD(m1, 0, λ1,m2, 0, λ2) is the bilateral-gamma
distribution (BGD), denoted by BGD(m1, λ1,m2, λ2), see [23].

(iv) When m1 = m2 = m and α1 = α2 = 0, then TSD(m, 0, λ1,m, 0, λ2) is the
variance-gamma distribution (VGD), denoted by VGD(m, λ1, λ2), see [23].

(v) When m1 = m2 = m, λ1 = λ2 = λ and α1 = α2 = 0, then TSD(m, 0, λ,m, 0,

λ) is the symmetric VGD, denoted by SVGD(m, λ), see [23].

(vi) When λ1, λ2 ↓ 0, then TSD(m1, α, λ1,m2, α, λ2) converges to an α-stable
distribution, denoted by S(m1,m2, α), with cf

φα(z) = exp

(∫
R

(eizu − 1)να(du)

)
, z ∈ R, (6)

where να is the Lévy measure given in (4), see [28].

(vii) The limiting case as m → ∞ of the SVGD(m,
√

2m/λ) is the normal distribu-
tion N (0, λ2), see [12].

Let X ∼ TSD(m1, α1, λ1,m2, α2, λ2). Then from (1), for z ∈ R, the cumulant gen-
erating function is given by

�(z) = logE[eizX] = log φts(z), (7)
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where φts(z) is given in (1). Then the n-th cumulant of X is

Cn(X) := (−i)n
[

dn

dzn
�(z)

]
z=0

=
∫
R

unνts(du) < ∞, n ≥ 1. (8)

In particular (see [24]),

C1(X) = E[X] = �(1 − α1)
m1

λ
1−α1
1

− �(1 − α2)
m2

λ
1−α2
2

, (9)

C2(X) = Var(X) = �(2 − α1)
m1

λ
2−α1
1

+ �(2 − α2)
m2

λ
2−α2
2

, and (10)

C3(X) = �(3 − α1)
m1

λ
3−α1
1

− �(3 − α2)
m2

λ
3−α2
2

. (11)

2.2 Key steps of Stein’s method

Let f (n) henceforth denote the n-th derivative of f with f (0) = f and f ′ = f (1). Let
S(R) be the Schwartz space defined by

S(R) :=
{
f ∈ C∞(R) : lim|x|→∞ |xmf (n)(x)| = 0, for all m, n ∈ N0

}
, (12)

where N0 = N ∪ {0} and C∞(R) is the class of infinitely differentiable functions on
R. Note that the Fourier transform (FT) on S(R) is an automorphism. In particular,
if f ∈ S(R), and f̂ (u) := ∫

R
e−iuxf (x)dx, u ∈ R, then f̂ (u) ∈ S(R). Similarly, if

f̂ (u) ∈ S(R), and f (x) := 1
2π

∫
R

eiuxf̂ (u)du, x ∈ R, then f (x) ∈ S(R), see [32].
Next, let

Hr = {h : R → R|h is r times differentiable and ‖h(k)‖ ≤ 1, k = 0, 1, . . . , r},
(13)

where ‖h‖ = supx∈R |h(x)|. Then, for any two rvs Y and Z, the smooth Wasserstein
distance (see [14]) is given by

dHr
(Y, Z) := sup

h∈Hr

|E[h(Y )] − E[h(Z)]| , r ≥ 1. (14)

Also, let

HW = {h : R → R|h is 1-Lipschitz and ‖h‖ ≤ 1}. (15)

Then, for any two rvs Y and Z, the classical Wasserstein distance (see [14]) is given
by

dW (Y,Z) := sup
h∈HW

|E[h(Y )] − E[h(Z)]| . (16)

Finally, let

HK = {
h : R → R

∣∣ h = I(−∞,x] for some x ∈ R
}
. (17)
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Then, for any two rvs Y and Z, the Kolmogorov distance (see [14]) is given by

dK(Y,Z) := sup
h∈HK

|E[h(Y )] − E[h(Z)]| . (18)

Next, we discuss the steps of Stein’s method. Let Z be a random variable (rv) with
probability distribution FZ (denote this by Z ∼ FZ). First, one identifies a suitable
operator A (called the Stein operator) and a class of suitable functions F such that
Z ∼ FZ , if and only if

E [Af (Z)] = 0, for all f ∈ F .

This equivalence is called the Stein characterization of FZ . This characterization leads
us to the Stein equation

Af (x) = h(x) − E[h(Z)], (19)

where h is a real-valued test function. Replacing x with a rv Y and taking expectations
on both sides of (19) gives

E [Af (Y )] = E[h(Y )] − E[h(Z)]. (20)

This equality (20) plays a crucial role in Stein’s method. The probability distribution
FZ is characterized by (19) so that the problem of bounding the quantity |E[h(Y )] −
E[h(Z)]| depends on the smoothness of the solution to (19) and the behavior of Y .
For more details on Stein’s method, we refer to [1, 7] and the references therein.

In particular, let Z have the normal distribution N (0, σ 2). Then the Stein charac-
terization for Z (see [31]) is

E

[
σ 2f ′(Z) − Zf (Z)

]
= 0, (21)

where f is any real-valued absolutely continuous function such that E|f ′(Z)| < ∞.
This characterization leads us to the Stein equation

σ 2f ′(x) − xf (x) = h(x) − E[h(Z)], (22)

where h is a real-valued test function. Replacing x with a rv Zn ∼ N (0, σ 2
n ) and

taking expectations on both sides of (22) gives

E

[
σ 2f ′(Zn) − Znf (Zn)

]
= E[h(Zn)] − E[h(Z)]. (23)

Using the smoothness of solution to (22), it can be shown (see [27, Section 3.6]) that

dW (Zn,Z) ≤
√

2/π

σ 2 ∨ σ 2
n

|σ 2
n − σ 2|. (24)

From (24), if σn → σ , then dW (Zn,Z) = 0, as expected, which implies that Zn

converges to the normal distribution N (0, σ 2). We refer to [25] and [26] for a number
of bounds similar to (24) for comparison of univariate probability distributions.
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3 Stein’s method for tempered stable distributions

3.1 The Stein identity for tempered stable distributions

In this section, we obtain the Stein identity for a TSD. First recall that S(R) denotes
the Schwartz space of functions, defined in (12).

Proposition 3.1. A rv X ∼ TSD(m1, α1, λ1,m2, α2, λ2) if and only if

E

[
Xf (X) −

∫
R

uf (X + u)νts(du)

]
= 0, f ∈ S(R), (25)

where νts is the associated Lévy measure of TSD, defined in (2).

Proof. From Equations (2.7) and (2.8) of [24], the integral
∫
R
(eizu − 1)νts(du) is

convergent for all z ∈ R. Also, the cf of X ∼ TSD is given by (see (1))

φts(z) = exp(�(z)), z ∈ R (26)

where �(z) = ∫
R
(eizu − 1)νts(du). Since |(iu)eizu| ≤ |u| and

∫
R

|u|νts(du) < ∞
(see (8)), we have

� ′(z) = d

dz

∫
R

(eizu − 1)νts(du) =
∫
R

iueizuνts(du).

Now, taking logarithms on both sides of (26), differentiating with respect to z, we
have

φ′
ts (z) = iφts(z)

∫
R

ueizuνts(du). (27)

Let FX be the cumulative distribution function (CDF) of X. Then,

φts(z) =
∫
R

eizxFX(dx) =⇒ φ′
ts (z) = i

∫
R

xeizxFX(dx). (28)

Using (28) in (27) and rearranging the integrals, we have

0 = i

(∫
R

xeizxFX(dx) − φts(z)

∫
R

ueizuνts(du)

)
. (29)

Multiplying both sides of (29) by −i, we get

0 =
∫
R

xeizxFX(dx) − φts(z)

∫
R

ueizuνts(du). (30)

Note that φts(z) and φ′
ts (z) exist and are finite for all z ∈ R. Hence by Fubini’s

theorem, the second integral of (30) can be written as

φts(z)

∫
R

ueizuνts(du) =
∫
R

∫
R

ueizueizxFX(dx)νts(du)

=
∫
R

∫
R

ueiz(u+x)νts(du)FX(dx)
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=
∫
R

∫
R

ueizyνts(du)FX(d(y − u))

=
∫
R

∫
R

ueizxνts(du)FX(d(x − u))

=
∫
R

eizx

∫
R

uFX(d(x − u))νts(du). (31)

Substituting (31) in (30), we have

0 =
∫
R

xeizxFX(dx) −
∫
R

eizx

∫
R

uFX(d(x − u))νts(du)

=
∫
R

eizx

(
xFX(dx) −

∫
R

uFX(d(x − u))νts(du)

)
. (32)

Applying the Fourier transform to (32), multiplying with f ∈ S(R), and integrating
over R, we get∫

R

f (x)

(
xFX(dx) −

∫
R

uFX(d(x − u))νts(du)

)
= 0. (33)

The second integral of (33) can be seen as∫
R

∫
R

uf (x)FX(d(x − u))νts(du) =
∫
R

∫
R

uf (y + u)FX(dy)νts(du)

=
∫
R

∫
R

uf (x + u)FX(dx)νts(du)

= E

[∫
R

uf (X + u)νts(du)

]
. (34)

Substituting (34) in (33), we have

E

[
Xf (X) −

∫
R

uf (X + u)νts(du)

]
= 0,

which proves (25).
Assume, conversely, that (25) holds for νts defined in (2). For any s ∈ R, let

f (x) = eisx , x ∈ R, then (25) becomes

E

[
XeisX

]
= E

[∫
R

eis(X+u)uνts(du)

]

= E

[
eisX

∫
R

eisuuνts(du)

]
.

Setting φts(s) = E[eisX], we have

φ′
ts (s) = iφts(s)

∫
R

eisuuνts(du). (35)
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Integrating the real and imaginary parts of (35) leads, for any z ≥ 0, to

φts(z) = exp

(
i

∫ z

0

∫
R

eisuuνts(du)ds

)

= exp

(
i

∫
R

∫ z

0
eisudsuνts(du)

)

= exp

(∫
R

(eizu − 1)νts(du)

)
.

A similar computation for z ≤ 0 completes the derivation of the cf.

We now have the following corollary for α-stable distributions.

Corollary 3.2. A rv X ∼ S(m1,m2, α) if and only if

E

[
Xf (X) −

∫
R

uf (X + u)να(du)

]
= 0, f ∈ S(R), (36)

where να is the associated Lévy measure of an α-stable distribution, given in (4).

Proof. Let α1 = α2 = α in Theorem 3.1. Observe now that∣∣∣∣xf (x) −
∫
R

uf (x + u)νts(du)

∣∣∣∣ < ∞, and

lim
λ1,λ2↓0

∫
R

uf (x + u)νts(du) =
∫
R

uf (x + u)να(du),

since f ∈ S(R). So, the dominated convergence theorem is applicable in (25). Next,
taking limits as λ1, λ2 ↓ 0 in (25), and then applying the dominated convergence
theorem, and noting that νts → να , we get (36).

Remark 3.3. (i) Note that we derive the characterizing (Stein) identity (25) for TSD
using the Lévy–Khinchine representation of the cf. Also, observe that several classes
of distributions such as variance-gamma, bilateral-gamma, CGMY, and KoBol can
be viewed as TSD. The Stein identities for these classes of distributions can be easily
obtained using (25).

(ii) Recently Arras and Houdré ([1], Theorem 3.1 and Section 5) obtained the
Stein identity for infinitely divisible distributions with first finite moment via the co-
variance representation given in [17]. Note that TSD is a subclass of IDD and TSD
has finite mean. Hence, the Stein identity for TSD can also be derived using the ap-
proach given in [1].

3.1.1 A nonzero bias distribution
In Stein’s method literature, the zero bias distribution is a powerful tool to obtain
bounds, which has been used in several situations. It has been used in conjunction
with coupling techniques to produce quantitative results for normal and product nor-
mal approximations, see, e.g., [11]. The zero bias distribution due to Goldstein and
Reinert [16] is as follows.



Approximations related to tempered stable distributions 9

Definition 3.4. Let X be a rv with E[X] = 0, and Var(X) = σ 2 < ∞. We say that
X∗ has X-zero bias distribution if

E[Xf (X)] = σ 2
E[f ′(X∗)], (37)

for any differentiable function f with E[Xf (X)] < ∞.

In the following lemma, we prove the existence of a nonzero (extended) bias
distribution (see [1, Remark 3.9 (ii)]) associated with TSD. Before stating our result,
let us define

η+(u) =
∫ ∞

u

yνts(dy), u > 0, and η−(u) =
∫ u

−∞
(−y)νts(dy), u < 0, (38)

where νts is the Lévy measure of TSD (see (2)). Let

η(u) := η+(u) + η−(u).

Also let Y be a random variable with the density

f1(u) = η(u)∫
R

y2νts(dy)
= η(u)

Var(X)
, u ∈ R. (39)

Then, for n ≥ 1, the nth moment of Y is

E[Yn] = 1

Var(X)

∫
R

unη(u)du

= 1

(n + 1)Var(X)

∫
R

un+2νts(u)du

= Cn+2(X)

(n + 1)C2(X)
. (40)

Lemma 3.5. Let X ∼ TSD(m1, α1, λ1,m2, α2, λ2) and Y (independent of X) have
the density given in (39). Then

Cov(X, f (X)) = Var(X)E
[
f ′(X + Y)

]
, (41)

where f is an absolutely continuous function with E
[
f ′(X + Y)

]
< ∞.

Proof. Using (8) and (9), for the case n = 1, in (25), and rearranging the terms, we
get

Cov(X, f (X)) = E

[∫
R

u(f (X + u) − f (X))νts(du)

]
.

Now

Cov(X, f (X)) = E

[∫
R

u(f (X + u) − f (X))νts(du)

]

= E

[∫ ∞

0
f ′(X + v)

∫ ∞

v

uνts(du)dv

]
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+ E

[∫ 0

−∞
f ′(X + v)

∫ v

−∞
(−u)νts(du)dv

]

= E

[∫
R

f ′(X + v)
(
η+(v)I(0,∞)(v) + η−(v)I(−∞,0)(v)

)
dv

]

=
(∫

R

u2νts(du)

)
E

[∫
R

f ′(X + v)f1(v)dv

]

=
(∫

R

u2νts(du)

)
E

[
f ′(X + Y)

]
= Var(X)E

[
f ′(X + Y)

]
.

This proves the result.

Remark 3.6. Note that the covariance identity in (41) coincides with the one given
in [1, Proposition 3.8]. However, the usefulness of the identity is shown in deriving
the error bound of the limiting distributions of TSD (see the proof of Theorem 4.5).

3.2 The Stein equation for tempered stable distributions

In this section, we first derive the Stein equation for TSD and then solve it via the
semigroup approach. From Proposition 3.1, for any f ∈ S(R),

Af (x) := −xf (x) +
∫
R

uf (x + u)νts(du) (42)

is the Stein operator for TSD. Hence, the Stein equation for X ∼TSD (m1, α1, λ1,m2, α2,
λ2) is given by

Af (x) = h(x) − E[h(X)], (43)

where h ∈ H, a class of test functions. The semigroup approach for solving the Stein
equation (43) is developed by Barbour [2], and Arras and Houdré [1] generalized it for
infinitely divisible distributions with the finite first moment. Consider the following
family of operators (Pt )t≥0, defined as, for all x ∈ R,

Pt (f )(x) = 1

2π

∫
R

f̂ (z)eizxe−t φts(z)

φts(e−t z)
dz, f ∈ S(R), (44)

where f̂ is FT of f , and φts is the cf of TSD given in (1). Recall that the TSD family
is self-decomposable, see [24], p. 4284. Hence, from Equations 5.8 and 5.15 of [1],
one can define a cf, for all z ∈ R, and t ≥ 0, by

φt (z) := φts(z)

φts(e−t z)

= exp
(∫

R
(eizu − 1)νts(du)

)
exp

(∫
R
(eie−t zu − 1)νts(du)

)
= exp

(∫
R

eizu(1 − ei(e−t−1)zu)νts(du)

)

=
∫
R

eizuFX(t)
(du), (45)
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where FX(t)
is CDF of a rv X(t), say. Also, for any t ≥ 0, the rv X(t) is related to X

(see Equation 2.11 of [1], Section 2.2) as

X
d= e−tX + X(t),

where X ∼TSD and
d= denotes the equality in distribution. We refer to Section 15 of

[19] for more details on self-decomposable distributions. Now using (45) in (44), we
get

Pt(f )(x) = 1

2π

∫
R

∫
R

f̂ (z)eizxe−t

eizuFX(t)
(du)dz

= 1

2π

∫
R

∫
R

f̂ (z)eiz(u+xe−t )FX(t)
(du)dz

=
∫
R

f (u + xe−t )FX(t)
(du), (46)

where the last step follows by applying the inverse FT.

Proposition 3.7. Let (Pt )t≥0 be a family of operators given in (44). Then

(i) (Pt )t≥0 is a C0-semigroup on S(R);

(ii) its generator T is given by

T (f )(x) = −xf ′(x) +
∫
R

uf ′(x + u)νts(du), f ∈ S(R). (47)

Following the steps similar to Proposition 3.8 and Lemma 3.10 of [30], the proof
is derived.

Remark 3.8. Note that the domain of the semigroup (Pt )t≥0 is S(R). So, the semi-
group (Pt )t≥0 is a uniformly continuous semigroup. Also, for 1 ≤ p < ∞, the
Schwartz space S(R) is dense in Lp(FX) = {f : R → R| ∫

R
|f (x)|pFX(dx) < ∞},

where FX is CDF of X ∼ TSD (see [20, Remark 1.9.1]). Following the proof of
Proposition 5.1 of [1], the domain of (Pt )t≥0 can be extended to Lp(FX) and the
topology on Lp(FX) can be derived from the Lp-norm, which is a metric topology.

Next, we provide a solution to the Stein equation (43).

Theorem 3.9. Let X ∼ TSD(m1, α1, λ1,m2, α2, λ2) and h ∈ Hr . Then the function
fh : R → R defined by

fh(x) := −
∫ ∞

0

d

dx
Pth(x)dt (48)

solves (43).

Proof. Let

gh(x) = −
∫ ∞

0

(
Pt (h)(x) − E[h(X)]

)
dt.
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Then g′
h(x) = fh(x). Now from (44), we get

P0(h)(x) = 1

2π

∫
R

ĥ(z)eizxdz = h(x), (49)

and lim
ε→∞ Pεh(x) = lim

ε→∞
1

2π

∫
R

ĥ(z)eizxe−ε φts(z)

φts(e−εz)
dz

= 1

2π

∫
R

ĥ(z)φts(z)dz

= E[h(X)]. (50)

Also from (47), we get

Afh(x) = −xfh(x) +
∫
R

ufh(x + u)νts(du)

= T gh(x)

= −
∫ ∞

0
T Pt (h)(x)dt

= −
∫ ∞

0

d

dt
Pth(x)dt (see [27, p.68])

= − lim
ε→∞

∫ ε

0

d

dt
Pth(x)dt

= P0h(x) − lim
ε→∞ Pεh(x)

= h(x) − E[h(X)] (using (49) and (50)).

Hence, fh is the solution to (43).

3.3 Properties of the solution of the Stein equation

The next step is to investigate the properties of fh. In the following theorem, we es-
tablish estimates of fh, which play a crucial role in the TSD approximation problems.
Gaunt [12, 13] and Döbler et al. [10] propose various methods for bounding the so-
lution to the Stein equations that allow them to derive properties of the solution to
the Stein equation, in particular for a subfamily of TSD, namely the variance-gamma
family.

Lemma 3.10. For h ∈ Hr+1, let fh be defined in (48).

(i) For r = 0, 1, 2, . . .,

‖f (r)
h ‖ ≤ 1

r + 1
‖h(r+1)‖. (51)

(ii) For any x, y ∈ R,

‖f ′
h(x) − f ′

h(y)‖ ≤ ‖h(3)‖
3

|x − y| . (52)
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Proof. (i) For h ∈ Hr+1,

‖fh‖ = sup
x∈R

∣∣∣∣−
∫ ∞

0

d

dx
Pth(x)dt

∣∣∣∣
= sup

x∈R

∣∣∣∣−
∫ ∞

0

d

dx

∫
R

h(xe−t + y)FX(t)
(dy)dt

∣∣∣∣ (using (46))

= sup
x∈R

∣∣∣∣−
∫ ∞

0
e−t

∫
R

h(1)(xe−t + y)FX(t)
(dy)dt

∣∣∣∣
≤ ‖h(1)‖

∣∣∣∣
∫ ∞

0
e−t dt

∣∣∣∣
= ‖h(1)‖.

It can be easily seen that fh is r-times differentiable. Let r = 1, then

‖f (1)
h ‖ = sup

x∈R

∣∣∣∣−
∫ ∞

0
e−2t

∫
R

h(2)(xe−t + y)FX(t)
(dy)dt

∣∣∣∣
≤ ‖h(2)‖

∣∣∣∣
∫ ∞

0
e−2t dt

∣∣∣∣
= ‖h(2)‖

2
.

Also, by induction, we get

‖f (r)
h ‖ ≤ 1

r + 1
‖h(r+1)‖, r = 0, 1, 2, . . . .

(ii) For any x, y ∈ R and h ∈ H3,

∣∣f ′
h(x) − f ′

h(y)
∣∣ ≤

∫ ∞

0
e−2t

∫
R

∣∣∣h(2)(xe−t + z) − h(3)(ye−t + z)

∣∣∣ FX(t)
(dz)dt

≤
∫ ∞

0
e−2t

∫
R

‖h(3)‖ |x − y| e−tFX(t)
(dz)dt

= ‖h(3)‖ |x − y|
∫ ∞

0
e−3t dt

= ‖h(3)‖
3

|x − y| .

This proves the result.

4 Bounds for tempered stable approximation

In this section, we present bounds for the tempered stable approximations to various
probability distributions. First, we obtain, for the Kolmogorov distance dK , the error
bounds for a sequence of CPD that converges to a TSD.
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Theorem 4.1. Let X ∼ TSD(m1, α1, λ1,m2, α2, λ2) and Xn, n ≥ 1, be compound
Poisson rvs with cf

φn(z) := exp

(
n

(
φ

1
n
ts(z) − 1

) )
, z ∈ R, (53)

where φts(t) is given in (1). Then

dK(Xn,X) ≤ c

( 2∑
j=1

|Cj (X)|
) 2

5
(

1

n

) 1
5

, (54)

where c > 0 is independent of n and Cj denotes the j th cumulant of X.

Proof. Let b = ∫ 1
−1 uνts(du), where νts is defined in (2). Then by Equation (2.6) of

[1], TSD(m1, α1, λ1,m2, α2, λ2)
d= ID(b, 0, νts). That is, TSD(m1, α1, λ1,m2, α2,

λ2) is an infinitely divisible distribution with the triplet b, 0 and νts . Note that TSD
are absolutely continuous with respect to the Lévy measure with a bounded density
and E|X|2 < ∞ (see [24, Section 7]). Recall from Proposition 4.11 of [1] that, if
X ∼ ID(b, 0, ν) with cf φX (say), and Xn, n ≥ 1, are compound Poisson rvs each
with cf as (53), then

dK(Xn,X) ≤ c

(
|E[X]| +

∫
R

u2νts(du)

) 2
p+4

(
1

n

) 1
p+4

, (55)

where |φX(z)|
∫ |z|

0

ds

|φX(s)| ≤ c0|z|p , p ≥ 1. Now observe that

|φts(z)|
∫ |z|

0

ds

|φts(s)| ≤
∫ |z|

0

ds

|E[cos sX] + iE[sin sX]|
=

∫ |z|

0

|E[e(−isX)]|
E2[cos sX] + E2[sin sX]ds

≤ c0

∫ |z|

0
|E[e(−isX)]|ds(

1

E2[cos sX] + E2[sin sX] < c0 (say)

)

= c0

∫ |z|

0
|E[cos sX − i sin sX]|ds

≤ c0

∫ |z|

0
ds

= c0|z|.
Hence by (55), for p = 1, we get

dK(Xn,X) ≤ c

(
|E[X]| +

∫
R

u2νts(du)

) 2
5
(

1

n

) 1
5
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= c

( 2∑
j=1

|Cj (X)|
) 2

5
(

1

n

) 1
5

,

since
∫
R

u2νts(du) = C2(X). This proves the result.

Remark 4.2. Note that if n → ∞, dK(Xn,X) → 0, as expected, and TSD is the
limit of CPD.

Our next result yields an error bound for the closeness of tempered stable distri-
butions to α-stable distributions.

Theorem 4.3. Let α ∈ (0, 1). Let X ∼TSD (m1, α, λ1,m2, α, λ2) and Xα ∼ S(m1,

m2, α). Then

dK(Xα,X) ≤ C1λ
α+ 1

2
1 + C2λ

α+ 1
2

2 , (56)

where C1, C2 > 0 are independent of λ1 and λ2.

Proof. For h ∈ HK , from (43), we get

E[h(Xα)] − E[h(X)] = E[Af (Xα)] = E [Af (Xα) − Aαf (Xα)] , (57)

since

E[Aαf (Xα)] = E

[
−Xαf (Xα) +

∫
R

uf (Xα + u)να(du)

]
= 0, f ∈ S(R),

where να is the Lévy measure given in (4) (see (36)).
Then, from (57), we have∣∣∣∣E[h(Xα)] − E[h(X)]

∣∣∣∣ =
∣∣∣∣E

[(
−Xαf (Xα) +

∫
R

uf (Xα + u)νts(du)

)

−
(

−Xαf (Xα) +
∫
R

uf (Xα + u)να(du)

)]∣∣∣∣
=

∣∣∣∣E
[ ∫

R

uf (Xα + u)νts(du) −
∫
R

uf (Xα + u)να(du)

]∣∣∣∣
=

∣∣∣∣E
[(

m1

∫ ∞

0
uf (Xα + u)

e−λ1u

u1+α
du

+ m2

∫ 0

−∞
uf (Xα + u)

e−λ2|u|

|u|1+α
du

)

−
(

m1

∫ ∞

0
uf (Xα + u)

du

u1+α

+ m2

∫ 0

−∞
uf (Xα + u)

du

|u|1+α

)]∣∣∣∣
So, we write∣∣∣∣E[h(Xα)] − E[h(X)]

∣∣∣∣ =
∣∣∣∣E

[
m1

∫ ∞

0

(e−λ1u − 1)

u1+α
uf (Xα + u)du
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− m2

∫ ∞

0

(e−λ2u − 1)

u1+α
uf (Xα − u)du

]∣∣∣∣. (58)

Now applying the triangle and Cauchy–Schwartz inequalities in (58), we get

dK(Xα,X) ≤ m1

{∫ ∞

0

(
(e−λ1u − 1)

u1+α

)2

du

} 1
2

E

( ∫ ∞

0
u2f 2(Xα + u)du

) 1
2

+ m2

{ ∫ ∞

0

(
(e−λ2u − 1)

u1+α

)2

du

} 1
2

E

( ∫ ∞

0
u2f 2(Xα − u)du

) 1
2

= λ
α+ 1

2
1 m1M

1
2 (α)E

[ ∫ ∞

0
u2f 2(Xα + u)du

] 1
2

+ λ
α+ 1

2
2 m2M

1
2 (α)E

[ ∫ ∞

0
u2f 2(Xα − u)du

] 1
2

, (59)

where M(α) = ∫ ∞
0

(
(e−u−1)

u1+α

)2

du < ∞ (see [15, p.169]). Also, E[∫ ∞
0 u2f 2(Xα +

u)du] 1
2 and E[∫ ∞

0 u2f 2(Xα − u)du] 1
2 are finite, since f ∈ S(R). Now setting

C1 = m1M
1
2 (α)E

[ ∫ ∞

0
u2f 2(Xα + u)du

] 1
2

< ∞, and

C2 = m2M
1
2 (α)E

[ ∫ ∞

0
u2f 2(Xα − u)du

] 1
2

< ∞,

in (59), we get

dK(Xα,X) ≤ C1λ
α+ 1

2
1 + C2λ

α+ 1
2

2 ,

where C1, C2 > 0 are independent of λ1 and λ2. This proves the result.

Next, we state a result that gives the limiting distribution of a sequence of tem-
pered stable random variables.

Lemma 4.4. ([24, Proposition 3.1]) Let m1,m2,mi,n, λi,n ∈ (0,∞) and α1, α2, αi,n

∈ [0, 1), for i = 1, 2. Also, let Xn ∼ TSD(m1,n, α1,n, λ1,n,m2,n, α2,n, λ2,n) and X ∼
TSD(m1, α1, λ1,m2, α2, λ2). If (m1,n, α1,n, λ1,n,m2,n, α2,n, λ2,n) → (m1, α1, λ1,

m2, α2, λ2) as n → ∞, then Xn
L→ X.

The following theorem gives the error in the closeness of Xn to X.

Theorem 4.5. Let Xn and X be defined as in Lemma 4.4. Then

dH3(Xn,X) ≤ |C1(Xn) − C1(X)| + 1

2
|C2(Xn) − C2(X)|

+ 1

6
C2(X)

∣∣∣∣ |C3(Xn)|
C2(Xn)

− |C3(X)|
C2(X)

∣∣∣∣ , (60)

where Cj(X), j = 1, 2, 3, denotes the j -th cumulant of X and dH3 is defined in (14).
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Proof. Let h ∈ H3 and f be the solution to the Stein equation (42). Then

E[h(Xn)] − E[h(X)] = E[Af (Xn)]
= E

[
− Xnf (Xn) +

∫
R

uf (Xn + u)νts(du)

]

= E

[(
− Xn + C1(X)

)
f (Xn) + C2(X)f ′(Xn + Y)

]
, (61)

where the last equality follows by (41), and Y has the density given in (39).
Since Xn ∼ TSD(m1,n, α1,n, λ1,n,m2,n, α2,n, λ2,n), by Proposition 3.1, we have

E

[
− Xnf (Xn) +

∫
R

uf (Xn + u)νn
ts(du)

]
= 0, (62)

where νn
ts is the Lévy measure given by

νn
ts(du) =

(
m1,n

u1+α1,n
e−λ1,nuI(0,∞)(u) + m2,n

|u|1+α2,n
e−λ2,n|u|I(−∞,0)(u)

)
du.

Also, by Lemma 3.5, the identity in (62) can be seen as

E

[(
− Xn + C1(Xn)

)
f (Xn) + C2(Xn)f

′(Xn + Yn)

]
= 0, (63)

where Yn has the density

fn(u) = [∫ ∞
u

yνn
ts(dy)]I(0,∞)(u) − [∫ u

−∞ yνn
ts(dy)]I(−∞,0)(u)

C2(Xn)
, u ∈ R. (64)

Using (63) in (61), we get

∣∣∣∣E[h(Xn)] − E[h(X)]
∣∣∣∣ =

∣∣∣∣E
[(

(−Xn + C1(X))f (Xn) + C2(X)f ′(Xn + Y)

)

−
(

(−Xn + C1(Xn))f (Xn) + C2(Xn)f
′(Xn + Yn)

)]∣∣∣∣
≤ |C1(Xn) − C1(X)| ‖f ‖

+ E
∣∣C2(Xn)f

′(Xn + Yn) − C2(X)f ′(Xn + Y)
∣∣

≤ |C1(Xn) − C1(X)| ‖f ‖
+ E

∣∣∣∣(C2(Xn) − C2(X))f ′(Xn + Yn)

∣∣∣∣
+ C2(X)E

∣∣∣∣f ′(Xn + Yn) − f ′(Xn + Y)

∣∣∣∣
≤ ‖h(1)‖|C1(Xn) − C1(X)| + ‖h(2)‖

2
|C2(Xn) − C2(X)|

+ C2(X)
‖h(3)‖

3

∣∣∣∣E|Yn| − E|Y |
∣∣∣∣, (65)
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where the last inequality follows by applying the estimates given in Lemma 3.10.
From (64) and (39), it can be verified that (see (40))

E|Yn| = |C3(Xn)|
2C2(Xn)

and E|Y | = |C3(X)|
2C2(X)

. (66)

Using (66) in (65), we get the desired result.

Remark 4.6. (i) Note that if (m1,n, α1,n, λ1,n,m2,n, α2,n, λ2,n) → (m1, α1, λ1,m2,
α2, λ2) as n → ∞, then Cj (Xn) → Cj (X), j = 1, 2, 3, and dH3(Xn,X) = 0, as
expected.

(ii) Note also that if m1,n = m2,n, α1,n = α2,n, λ1,n = λ2,n, m1 = m2, α1 =
α2, and λ1 = λ2, then Cj (Xn) = Cj (X) = 0, j = 1, 3. Under these conditions,
from (60), we get

dH3(Xn,X) ≤ 1

2
|C2(Xn) − C2(X)|

=
∣∣∣∣�(2 − α1,n)

m1,n

λ
2−α1,n

1

− �(2 − α1)
m1

λ
2−α1
1

∣∣∣∣.
If in addition C2(Xn) → C2(X), then Xn

L→ X, as n → ∞.

Next, we discuss two examples. Our first example yields the error in approximat-
ing a TSD by a normal distribution.

Example 4.7 (Normal approximation to a TSD). Let Xn ∼ TSD(m1,n, α1,n, λ1,n,
m2,n, α2,n, λ2,n), Xm ∼ SVGD(m,

√
2m/λ) and Xλ ∼ N (0, λ2). Recall from Sec-

tion 2.1 that, SVGD(m,
√

2m/λ)
d= TSD(m, 0,

√
2m/λ,m, 0,

√
2m/λ). Then, the cf

of SVGD(m,
√

2m/λ) is

φsv(z) =
(

1 + z2λ2

2m

)−m

(67)

= exp

( ∫
R

(eizu − 1)νsv(du)

)
, z ∈ R, (68)

where the Lévy measure νsv is

νsv(du) =
(

m

u
e−

√
2m
λ

uI(0,∞)(u) + m

|u|e
−

√
2m
λ

|u|I(−∞,0)(u)

)
.

Note from (67) that

lim
m→∞ φsv(z) = e− λ2z2

2 .

That is, Xm
L→ Xλ ∼ N (0, λ2), as m → ∞. Also, it follows from [36, Theorem

7.12] that, if Xm
L→ Xλ, as m → ∞, then

dH3(Xn,Xλ) = lim
m→∞ dH3(Xn,Xm). (69)
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Applying Theorem 4.5 to X = Xm, and taking the limit as m → ∞, we get from (69)

dH3(Xn,Xλ) ≤ lim
m→∞

(
|C1(Xn) − C1(Xm)| + 1

2
|C2(Xn) − C2(Xm)|

+ 1

6
C2(Xm)

∣∣∣∣ |C3(Xn)|
C2(Xn)

− |C3(Xm)|
C2(Xm)

∣∣∣∣
)

= |C1(Xn)| + 1

2
|C2(Xn) − λ2| + 1

6
λ2 |C3(Xn)|

C2(Xn)
, (70)

which gives the error in the closeness between Xn and Xλ. Note that

C1(Xn) = E[Xn] = �(1 − α1,n)
m1,n

λ
1−α1,n

1,n

− �(1 − α2,n)
m2,n

λ
1−α2,n

2,n

,

C2(Xn) = Var(Xn) = �(2 − α1,n)
m1,n

λ
2−α1,n

1,n

+ �(2 − α2,n)
m2,n

λ
1−α2,n

2,n

, and

C3(Xn) = �(3 − α1,n)
m1,n

λ
3−α1,n

1,n

− �(3 − α2,n)
m2,n

λ
3−α2,n

2,n

.

When Cj(Xn) → 0, for j = 1, 3 and C2(Xn) → λ2, from (70), we have Xn
L→ Xλ,

as n → ∞.

Example 4.8 (Variance-gamma approximation to a TSD). Let Xn ∼ TSD(m1,n,

α1,n, λ1,n,m2,n, α2,n, λ2,n) and Xv ∼ VGD(m, λ1, λ2). Then

C1(Xv) = m

(
1

λ1
− 1

λ2

)
, C2(Xv) = m

(
1

λ2
1

+ 1

λ2
2

)
, and

C3(Xv) = 2m

(
1

λ3
1

− 1

λ3
2

)
.

Now applying Theorem 4.5 to X = Xv , we get

dH3(Xn,Xv) ≤
∣∣∣∣C1(Xn) − m(λ2 − λ1)

λ1λ2

∣∣∣∣ + 1

2

∣∣∣∣∣C2(Xn) − m(λ2
1 + λ2

2)

λ2
1λ

2
2

∣∣∣∣∣
+ 1

6
m

λ2
1 + λ2

2

λ2
1λ

2
2

∣∣∣∣∣ |C3(Xn)|
C2(Xn)

− 2|λ3
2 − λ3

1|
λ1λ2(λ

2
1 + λ2

2)

∣∣∣∣∣ ,
which gives the error in the closeness between Xn and Xv . When Cj (Xn) → Cj (Xv),

for j = 1, 2, 3, we have Xn
L→ Xv , as n → ∞.
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