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Abstract The paper presents bounds for the distributions of suprema for a particular class 
of sub-Gaussian type random fields defined over spaces with anisotropic metrics. The results 
are applied to random fields related to stochastic heat equations with fractional noise: bounds 
for the tail distributions of suprema and estimates for the rate of growth are provided for such 
fields.
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1 Introduction and preliminaries

Aim and motivation. In this paper, we study sample paths properties of a class of sub-
Gaussian type random fields 𝑋 (𝑡), 𝑡 ∈ 𝑇 , focusing on the case where a parameter set 𝑇
is endowed with an anisotropic metric and imposing some kind of Hölder continuity 
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condition on the field 𝑋 . Our aim is to establish upper bounds for the distribution of the 
supremum 𝑃

{︁
sup𝑡∈𝑇 |𝑋 (𝑡) | > 𝑢}︁ for bounded 𝑇 and to evaluate a rate of growth of 𝑋

over an unbounded domain 𝑉 by considering upper bounds for 𝑃
{︁

sup𝑡∈𝑉
|𝑋 (𝑡 ) |
𝑓 (𝑡 ) > 𝑢

}︁
for a properly chosen continuous function 𝑓 . The study is motivated by applications 
to random fields related to stochastic heat equations. Extensive recent investigations 
of such equations resulted, in particular, in establishing the Hölder continuity of 
solutions in various settings. It is quite natural and appealing to make further steps 
towards consideration of different functionals of solutions. We evaluate the distribution 
of suprema of solutions and their asymptotic rate of growth.

Approach and tools. We present bounds for distributions of suprema assuming 𝑋
to belong to a particular class of 𝜑-sub-Gaussian random fields (to be defined below), 
which provides a generalization of Gaussian and sub-Gaussian fields. To derive the 
results we apply entropy methods. Recall that the entropy approach in studying sample 
paths of a stochastic process 𝑋 (𝑡), 𝑡 ∈ 𝑇 , requires to evaluate entropy characteristics of 
the set 𝑇 with respect to a particular metrics generated by the process 𝑋 . The origins 
of this approach are due to Dudley, who stated conditions for the boundedness of 
Gaussian processes in the form of convergence of metric entropy integrals (which we 
call now Dudley entropy integrals). We address for corresponding references, e.g., to 
[1] and [5], where in the latter one the entropy approach was extended to different 
classes of processes, more general than Gaussian ones.

Some facts from the general theory of 𝜑-sub-Gaussian random variables and 
fields. Note that it is important for applications to go beyond the Gaussianity assump-
tion in considered models, and possible extensions are provided by sub-Gaussian and 
𝜑-sub-Gaussian random processes and fields. Recall that a random variable 𝜉 is sub-
Gaussian if its moment generating function is majorized by that of a Gaussian centered 
random variable 𝜂 ∼ 𝑁 (0, 𝜎2):

E exp(𝜆𝜉) ≤ E exp(𝜆𝜂) = exp(𝜎2𝜆2/2).

The generalization of this notion to the classes of 𝜑-sub-Gaussian random variables 
is introduced as follows (see, [5, Ch.2], [9], [19], [25]).

Consider a continuous even convex function 𝜑 such that 𝜑(0) = 0, 𝜑(𝑥) > 0 as 
𝑥 ≠ 0 and lim 

𝑥→0
𝜑 (𝑥 )
𝑥 = 0, lim 

𝑥→∞
𝜑 (𝑥 )
𝑥 = ∞. Note that such functions are called Orlicz 

N-functions. Suppose that 𝜑 additionally satisfies lim inf 
𝑥→0

𝜑 (𝑥 )
𝑥2 = 𝑐 > 0, where the 

case 𝑐 = ∞ is possible.
Let 𝜑 be the function with the above properties and {Ω,ℱ ,P} be a standard 

probability space. The random variable 𝜁 is 𝜑-sub-Gaussian, or belongs to the space 
Sub𝜑 (Ω), if E𝜁 = 0, E exp{𝜆𝜁} exists for all 𝜆 ∈ R and there exists a constant 𝑎 > 0
such that the following inequality holds for all 𝜆 ∈ R:

E exp{𝜆𝜁} ≤ exp{𝜑(𝜆𝑎)}. (1)

The random field 𝑋 (𝑡), 𝑡 ∈ 𝑇 , is called 𝜑-sub-Gaussian if the random variables 
{𝑋 (𝑡), 𝑡 ∈ 𝑇} are 𝜑-sub-Gaussian.

The space Sub𝜑 (Ω) is a Banach space with respect to the norm (see [9, 19])

𝜏𝜑 (𝜁) = inf{𝑎 > 0 : E exp{𝜆𝜁} ≤ exp{𝜑(𝑎𝜆)}.
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For a 𝜑-sub-Gaussian random variable 𝜁 the following estimate for its tail proba-
bility holds:

𝑃{|𝜁 | > 𝑢} ≤ 2 exp
{︃
−𝜑∗

(︃
𝑢 

𝜏𝜑 (𝜁)

)︃}︃
, 𝑢 > 0, (2)

where the function 𝜑∗ defined by 𝜑∗(𝑥) = sup𝑦∈R (𝑥𝑦 − 𝜑(𝑦)) is called the Young–
Fenchel transform (or Legendre transform, or convex conjugate) of the function 𝜑. 
It was stated in [5] (Corollary 4.1, p. 68) that, moreover, a random variable 𝜁 is a 
𝜑-sub-Gaussian if and only if E𝜁 = 0 and there exist constants 𝐶 > 0, 𝐷 > 0 such 
that

𝑃{|𝜁 | > 𝑢} ≤ 𝐶 exp
{︂
−𝜑∗

(︂ 𝑢 
𝐷

)︂}︂
.

This second characterization of 𝜑-sub-Gaussian random variable by the tail be-
havior of its distribution is important for practical applications.

The class of 𝜑-sub-Gaussian random variables includes centered compactly sup-
ported distributions, reflected Weibull distributions, centered bounded distributions, 
Gaussian, Poisson distributions. In the case when 𝜑 = 𝑥2

2 , the notion of 𝜑-sub-
Gaussianity reduces to the classical sub-Gaussianity. The main theory for the spaces of 
𝜑-sub-Gaussian random variables and stochastic processes was presented in [5, 9, 19] 
followed by numerous further studies. Various classes of 𝜑-sub-Gaussian processes 
and fields were studied, in particular, in [4, 11, 16–18, 22].

The property of 𝜑-sub-Gaussianity allows to evaluate different functionals of the 
stochastic processes, in particular, the behavior of their suprema.

Estimates for distribution of supremum 𝑃{sup𝑡∈𝑇 |𝑋 (𝑡) | > 𝑢} of 𝜑-sub-Gaussian 
stochastic process 𝑋 were derived in various forms in the monograph [5] basing on 
entropy methods.

We will base our study on the following theorem (see [5], Theorems 4.1–4.2, pp. 
100, 105).

Theorem 1 ([5]). Let 𝑋 (𝑡), 𝑡 ∈ 𝑇 , be a 𝜑-sub-Gaussian process and 𝜌𝑋 be the 
pseudometrics generated by 𝑋 , that is, 𝜌𝑋 (𝑡, 𝑠) = 𝜏𝜑 (𝑋 (𝑡) − 𝑋 (𝑠)), 𝑡, 𝑠 ∈ 𝑇 . Suppose 
further that

(i) the pseudometric space (𝑇, 𝜌𝑋) is separable, the process 𝑋 is separable on 
(𝑇, 𝜌𝑋);

(ii) 𝜀0 := sup
𝑡∈𝑇 

𝜏𝜑 (𝑋 (𝑡)) < ∞;
(iii)

𝐼𝜑 (𝜀0) :=
𝜀0∫

0 

Ψ(ln(𝑁 (𝑣))) 𝑑𝑣 < ∞, (3)

where Ψ(𝑣) = 𝑣
𝜑 (−1) (𝑣) and 𝑁 (𝑣) = 𝑁𝜌𝑋 (𝑣), 𝑣 > 0, is the metric massiveness of 

the pseudometric space (𝑇, 𝜌𝑋), that is, the smallest number of elements in a 
𝑣-covering of 𝑇 by closed balls, w.r.t. the metric 𝜌𝑋, of a radius at most 𝑣.

Then for all 𝜆 > 0 and 0 < 𝜃 < 1,

E exp{𝜆 sup
𝑡∈𝑇 

|𝑋 (𝑡) |} ≤ 2𝑄(𝜆, 𝜃),
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where

𝑄(𝜆, 𝜃) = exp
{︂
𝜑
(︂ 𝜆𝜀0

1 − 𝜃
)︂
+ 2𝜆 
𝜃 (1 − 𝜃) 𝐼𝜑 (𝜃𝜀0)

}︂
,

and for 0 < 𝜃 < 1, 𝑢 > 2𝐼𝜑 (𝜃 𝜀0 )
𝜃 (1−𝜃 ) ,

𝑃
{︁

sup
𝑡∈𝑇 

|𝑋 (𝑡) | > 𝑢}︁ ≤ 2𝐴(𝑢, 𝜃),

where

𝐴(𝑢, 𝜃) = exp
{︂
− 𝜑∗

(︂ 1 
𝜀0

(︂
𝑢(1 − 𝜃) − 2 

𝜃
𝐼𝜑 (𝜃𝜀0)

)︂)︂}︂
.

In the above theorem and in what follows we denote by 𝑓 (−1) the inverse function 
for a function 𝑓 .

The integrals of the form (3) are called entropy integrals. Entropy characteristics 
of the parameter set 𝑇 with respect to the pseudometric 𝜌𝑋 generated by the process 
𝑋 and the rate of growth of the metric massiveness 𝑁 (𝑣) = 𝑁𝜌𝑋 (𝑣), 𝑣 > 0, or metric 
entropy 𝐻 (𝑣) := ln(𝑁 (𝑣) are important for the study of sample paths properties of 
the underlying process 𝑋 (see [5]).

Consider now a metric space (𝑇, 𝑑), with an arbitrary metric 𝑑, and suppose that 
this metric space is separable. Suppose that we can evaluate the metric massiveness 
𝑁𝑑 of 𝑇 with respect to the metric 𝑑 and also have a bound for the function 𝜌𝑋 (𝑡, 𝑠) =
𝜏𝜑 (𝑋 (𝑡) − 𝑋 (𝑠)) in terms of 𝑑 (𝑡, 𝑠). Then Theorem 1 implies the following result.

Theorem 2. Let 𝑋 (𝑡), 𝑡 ∈ 𝑇 , be a 𝜑-sub-Gaussian process and 𝑇 be supplied with a 
metric 𝑑. Assume that

(i) the metric space (𝑇, 𝑑) is separable, the process 𝑋 is separable on (𝑇, 𝑑);
(ii) 𝜀0 := sup

𝑡∈𝑇 
𝜏𝜑 (𝑋 (𝑡)) < ∞;

(iii) there exists a monotonically increasing continuous function 𝜎(ℎ), 0 < ℎ ≤
sup𝑡 ,𝑠∈𝑇 𝑑 (𝑠, 𝑡), such that 𝜎(ℎ) → 0 as ℎ→ 0 and

sup 
𝑑 (𝑡 ,𝑠)≤ℎ,
𝑡 ,𝑠∈𝑇

𝜏𝜑 (𝑋 (𝑡) − 𝑋 (𝑠)) ≤ 𝜎(ℎ), (4)

and for 0 < 𝜀 ≤ 𝛾0,

˜︁𝐼𝜑 (𝜀) :=
𝜀∫

0 

Ψ(ln(𝑁𝑑 (𝜎 (−1) (𝑣))) 𝑑𝑣 < ∞, (5)

where Ψ(𝑣) = 𝑣
𝜑 (−1) (𝑣) , 𝑁𝑑 (𝑣), 𝑣 > 0, is the metric massiveness of the metric 

space (𝑇, 𝑑), 𝛾0 = 𝜎(sup𝑡 ,𝑠∈𝑇 𝑑 (𝑡, 𝑠)).
Then the statement of Theorem 1 holds for 𝜆 > 0 and 0 < 𝜃 < 1 such that 𝜃𝜀0 ≤ 𝛾0

with 𝑄(𝜆, 𝜃) and 𝐴(𝑢, 𝜃) replaced by ˜︁𝑄(𝜆, 𝜃) and ˜︁𝐴(𝑢, 𝜃) which correspond to the 
integral ˜︁𝐼𝜑:

E exp{𝜆 sup
𝑡∈𝑇 

|𝑋 (𝑡) |} ≤ 2˜︁𝑄(𝜆, 𝜃)
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and, for 𝑢 > 2˜︁𝐼𝜑 (𝜃 𝜀0 )
𝜃 (1−𝜃 ) , 

𝑃
{︁

sup
𝑡∈𝑇 

|𝑋 (𝑡) | > 𝑢}︁ ≤ 2˜︁𝐴(𝑢, 𝜃),
where 

˜︁𝑄(𝜆, 𝜃) = exp
{︂
𝜑
(︂ 𝜆𝜀0

1 − 𝜃
)︂
+ 2𝜆 
𝜃 (1 − 𝜃)

˜︁𝐼𝜑 (𝜃𝜀0)
}︂
,

˜︁𝐴(𝑢, 𝜃) = exp
{︂
− 𝜑∗

(︂ 1 
𝜀0

(︂
𝑢(1 − 𝜃) − 2 

𝜃
˜︁𝐼𝜑 (𝜃𝜀0)

)︂)︂}︂
.

Proof. Theorem 2 follows immediately from Theorem 1. We have from (4) that 
sup𝑑 (𝑡 ,𝑠)≤ℎ,

𝑡 ,𝑠∈𝑇
𝜌𝑋 (𝑡, 𝑠) ≤ 𝜎(ℎ), therefore, the smallest number of elements in an 𝜀-

covering of (𝑇, 𝜌𝑋) can be bounded by the smallest number of elements in a 𝜎 (−1) (𝜀)-
covering of (𝑇, 𝑑): 𝑁𝜌𝑋 (𝜀) ≤ 𝑁𝑑 (𝜎 (−1) (𝜀)). This implies the estimate 𝐼𝜑 (𝜀) ≤ ˜︁𝐼𝜑 (𝜀), 
as 𝜀 ≤ 𝛾0, and the statement of the theorem follows. □

Theorem 2 has been mainly used in the literature with a choice of the metric space 
(𝑇, 𝑑) of the form: 𝑇 = {𝑎𝑖 ≤ 𝑡𝑖 ≤ 𝑏𝑖 , 𝑖 = 1, 2} and 𝑑 (𝑡, 𝑠) = max

𝑖=1,2 
|𝑡𝑖 − 𝑠𝑖 |, 𝑡 = (𝑡1, 𝑡2), 

𝑠 = (𝑠1, 𝑠2) (see, for example, [4, 17, 12] for application to the analysis of solutions to 
the heat equation and higher order heat-type equations with random initial conditions).

In the paper we study a particular class of 𝜑-sub-Gaussian random fields with 
𝜑 = |𝑥 |𝛼

𝛼 , 𝛼 ∈ (1, 2], which is a natural generalization of Gaussian and sub-Gaussian 
random fields. Gaussian and sub-Gaussian cases are involved in our consideration, 
with the choice 𝛼 = 2. We study the sample paths of such fields for the case of the 
parameter set 𝑇 of the form 𝑇 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] or 𝑇 = [0, +∞) × [−𝐴, 𝐴] with 
the so-called anisotropic metric

𝑑 (𝑡, 𝑠) =
∑︂
𝑖=1,2

|𝑡𝑖 − 𝑠𝑖 |𝐻𝑖 , 𝐻𝑖 ∈ (0, 1], 𝑖 = 1, 2.

Theorem 2 will serve as the main tool in our study. Note that the above metric is 
useful for studying anisotropic random fields, which have different geometrical and 
statistical properties for different directions and also for space-time random fields, 
where one needs to treat spatial and temporal variables in a different way. This is 
the case, for example, for random fields arising as solutions to stochastic partial 
differential equations. We can refer to papers [20], [27] (among others), where the use 
of such metric was essential for investigating sample paths properties of some models 
of anisotropic Gaussian random fields.

Stochastic heat equations with fractional noises. Stochastic heat equations have 
been studied in various settings: with a time-space white noise, with generalizations 
of noise in space and/or in time, and also by considering differential operators more 
general than the Laplacian. The case of fractional noises was considered, e.g., in the 
recent papers [2], [10], among many others (see references therein). In the present 
paper we consider the stochastic heat equation:

𝜕𝑢

𝜕𝑡 
=
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑊 
𝜕𝑡𝜕𝑥

, (𝑡, 𝑥) ∈ (0, 𝑇] × R, (6)
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𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ R, (7)

where 𝑊 is a centered Gaussian process which is white in time and is fractional 
Brownian motion in space with index 𝐻 ≤ 1

2 . Namely, following [10] we consider the 
case of 𝑊 with the covariance functional

E𝑊 (𝜙)𝑊 (𝜓) =
∫ 𝑇

0

∫
R

𝐹𝜙(𝑡, ·) (𝑦)𝐹𝜓(𝑡, ·) (𝑦)𝜇(𝑑𝑦)𝑑𝑡

for any 𝜙, 𝜓 ∈ 𝐶∞
0 ([0, 𝑇],R) (𝐹 denotes the Fourier transform with respect to the 

space variable), where the spectral measure 𝜇 is of the form

𝜇(𝑑𝑦) = 𝐶𝐻 |𝑦 |1−2𝐻𝑑𝑦, 𝐶𝐻 =
Γ(2𝐻 + 1) sin(𝜋𝐻)

2𝜋 

(we give more details and references in Section 3). The problem (6)–(7) was con-
sidered, for example, in [10] and it was stated therein that under some continuity 
and boundedness conditions on 𝑢0(𝑥) there exists a unique mild solution 𝑢(𝑡, 𝑥), 
(𝑡, 𝑥) ∈ (0, 𝑇] × R, satisfying the Hölder condition

∥𝑢(𝑡, 𝑥) − 𝑢(𝑠, 𝑦)∥𝐿𝑝 ≤ 𝑐Δ((𝑡, 𝑥), (𝑠, 𝑦))𝜌∧𝐻 (8)

with some constant 𝑐 = 𝑐(𝑝, 𝑇, 𝐻), and where Δ((𝑡, 𝑥), (𝑠, 𝑦)) = |𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 | is a 

parabolic metric, 𝜌 is an index in the Hölder condition imposed on 𝑢0(𝑥).
For our consideration, the bounds for the increments 𝑢(𝑡, 𝑥) − 𝑢(𝑠, 𝑦) in 𝐿2 norm 

will be important. In view of this, we restate the bound (8) in another form for the 
case of 𝑝 = 2, with the constant 𝑐 given by a closed expression, and then we use this 
bound to derive the results on the distribution of suprema and on the rate of growth 
for random fields representing the solution.

Contents. The paper is organized as follows. In Section 2 we study 𝜑-sub-Gauss-
ian random fields with 𝜑 = |𝑥 |𝛼

𝛼 , 𝛼 ∈ (1, 2]. In Section 2.1 we present the estimates 
for the tail distribution of suprema on the bounded domain and in Section 2.2 we state 
the results on the rate of growth of random fields over unbounded domains. Section 3
presents applications of the results of Sections 2.1 and 2.2 to random fields related to 
stochastic heat equations with fractional noise.

2 Sub𝝋 (𝛀) processes with 𝝋 = |𝒙 |𝜶
𝜶 , 𝜶 ∈ (1, 2], defined on spaces with aniso-

tropic metrics

Consider the process 𝑋 (𝑡), 𝑡 ∈ 𝑇 , from the class of 𝜑-sub-Gaussian processes with 
𝜑 = |𝑥 |𝛼

𝛼 , 1 < 𝛼 ≤ 2. This class is a natural generalization of Gaussian and sub-
Gaussian processes, which correspond to 𝛼 = 2.

For the function 𝜑(𝑥) = |𝑥 |𝛼
𝛼 , 1 < 𝛼 ≤ 2, we have 𝜑 (−1) (𝑥) = (𝛼𝑥)1/𝛼, 𝑥 > 0, and 

the Young–Fenchel transform 𝜑∗(𝑥) = |𝑥 |𝛽
𝛽 , where 𝛽 > 0 is such that 1 

𝛽 + 1 
𝛼 = 1, that 

is, 𝛽 = 𝛼
𝛼−1 .

The entropy integrals (3) and (5) take the form
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𝐼𝜑 (𝜀) =
𝜀∫

0 

(︂
ln(𝑁𝜌𝑋 (𝑢)))

)︂ 1 
𝛽
𝑑𝑢

and

˜︁𝐼𝜑 (𝜀) =
𝜀∫

0 

(︂
ln(𝑁𝑑 (𝜎 (−1) (𝑢)))

)︂ 1 
𝛽
𝑑𝑢, (9)

and the bounds in Theorems 1 and 2 will be based on these integrals.
As we can see, for such function 𝜑 the integrals appear in a quite simple form and 

can be evaluated for particular metrics 𝑑. Note that for more general 𝜑 sometimes it is 
more convenient to use entropy integrals of another form (see, e.g., [11, 16, 18]).

We next consider 𝜑-sub-Gaussian fields 𝑋 (𝑡), 𝑡 ∈ 𝑇 , with the parameter set 𝑇 =
[𝑎1, 𝑏1] × [𝑎2, 𝑏2] endowed with the anisotropic metric

𝑑 (𝑡, 𝑠) =
∑︂
𝑖=1,2

|𝑡𝑖 − 𝑠𝑖 |𝐻𝑖 , 𝐻𝑖 ∈ (0, 1], 𝑖 = 1, 2. (10)

2.1 Estimates for the distribution of suprema

Theorem 3. Let 𝑋 (𝑡), 𝑡 ∈ 𝑇 , be a 𝜑-sub-Gaussian field with 𝜑(𝑥) = |𝑥 |𝛼
𝛼 , 𝛼 ∈ (1, 2], 

𝑇 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] with the metric 𝑑 (𝑡, 𝑠) defined by (10), 𝛽 = 𝛼
𝛼−1 . Suppose 

that the field 𝑋 satisfies conditions (i)–(iii) of Theorem 2 with 𝜎(ℎ) = 𝑐ℎ𝛾 , 𝑐 > 0, 
𝛾 ∈ (0, 1] and 𝛾𝛽 ≠ 1.

Then for all 𝜆 > 0 and 𝜃 ∈ (0, 1)

E exp
{︃
𝜆 sup
𝑡∈𝑇 

|𝑋 (𝑡) |
}︃

≤ 2 exp
{︃

1 
𝛼

(︂ 𝜆𝜀0
1 − 𝜃

)︂𝛼
+ 2𝜆 
𝜃 (1 − 𝜃)

(︂
𝜃𝜀0

)︂1− 1 
𝛾𝛽
𝑐1

}︃
(11)

and for all 𝜃 ∈ (0, 1), 𝜃𝜀0 < 𝛾0 and 𝑢 > 2 
𝜃 (1−𝜃 )

(︁
𝜃𝜀0

)︁1− 1 
𝛾𝛽 𝑐1, we have

P{sup
𝑡∈𝑇 

|𝑋 (𝑡) | > 𝑢} ≤ 2 exp
{︂
− 1 
𝛽

(︂𝑢(1 − 𝜃)
𝜀0

− 2 
𝜃

(︁
𝜃𝜀0

)︁1− 1 
𝛾𝛽 𝑐1

)︂𝛽}︂
, (12)

where 𝑐1 = 2
1 
𝛽 𝑐

1 
𝛾𝛽

1− 1 
𝛾𝛽

∑︁
𝑖=1,2

1 
𝐻𝑖

(︁𝑇𝑖
2 
)︁𝐻𝑖

𝛽 , with 𝑇𝑖 = 𝑏𝑖 − 𝑎𝑖 , 𝑖 = 1, 2.

Proof. We apply Theorem 2. We need to estimate the entropy integral ˜︁𝐼𝜑 (𝜀) given 
by (5) for the particular 𝜑, 𝜎, 𝑑 under consideration. For the metric 𝑑 given by (10)
we can write the estimate for the metric massiveness

𝑁𝑑 (𝜀) ≤
∏︂
𝑖=1,2

(︂ 𝑇𝑖

2( 𝜀2 )
1 
𝐻𝑖

+ 1
)︂
=

∏︂
𝑖=1,2

(︂2
1 
𝐻𝑖 𝑇𝑖

2𝜀
1 
𝐻𝑖

+ 1
)︂
.

This estimate can be deduced from the observation that a rectangle

[︂
−
(︂𝜀

2 

)︂ 1 
𝐻1 ,

(︂𝜀
2 

)︂ 1 
𝐻1
]︂
×
[︂
−
(︂𝜀

2 

)︂ 1 
𝐻2 ,

(︂𝜀
2 

)︂ 1 
𝐻2
]︂
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is contained in the ball in metric 𝑑 with center (0, 0) and radius 𝜀, which is given as 
𝐵(𝜀) = {(𝑥1, 𝑥2) : |𝑥1 |𝐻1 + |𝑥2 |𝐻2 ≤ 𝜀}.

Now, for the given functions 𝜑 and 𝜎 (note that 𝜎 (−1) (𝑢) = ( 𝑢𝑐 )
1 
𝛾 ), we consider 

the entropy integral (9):

˜︁𝐼𝜑 (𝜀) =
𝜀∫

0 

(︂
ln(𝑁𝑑 (𝜎 (−1) (𝑢)))

)︂ 1 
𝛽
𝑑𝑢 ≤

𝜀∫
0 

(︂
ln

∏︂
𝑖=1,2

(︂ 2
1 
𝐻𝑖 𝑇𝑖

2(𝜎 (−1) (𝑢)) 1 
𝐻𝑖

+ 1
)︂)︂ 1 

𝛽
𝑑𝑢

=

𝜀∫
0 

(︂
ln

∏︂
𝑖=1,2

(︂𝑇𝑖2 1 
𝐻𝑖 𝑐

1 
𝛾𝐻𝑖

2𝑢
1 

𝛾𝐻𝑖

+ 1
)︂)︂ 1 

𝛽
𝑑𝑢.

For any 0 < 𝜘 ≤ 1, ln(1 + 𝑥) = 1 
𝜘 ln(1 + 𝑥)𝜘 ≤ 𝑥𝜘

𝜘 , we apply this inequality for each 
term in the product in the above formula choosing 𝜘 = 𝐻𝑖 , 𝑖 = 1, 2:

˜︁𝐼𝜑 (𝜀) ≤
𝜀∫

0 

∑︂
𝑖=1,2

1 
𝐻𝑖

(︂𝑇𝑖2 1 
𝐻𝑖 𝑐

1 
𝛾𝐻𝑖

2𝑢
1 

𝛾𝐻𝑖

)︂𝐻𝑖
𝛽
𝑑𝑢 =

∑︂
𝑖=1,2

𝜀∫
0 

1 
𝐻𝑖

(︂𝑇𝑖
2 

)︂𝐻𝑖
𝛽 2

1 
𝛽 𝑐

1 
𝛾𝛽

𝑑𝑢 

𝑢
1 
𝛾𝛽

=
𝜀1− 1 

𝛾𝛽

1 − 1 
𝛾𝛽

2
1 
𝛽 𝑐

1 
𝛾𝛽

∑︂
𝑖=1,2

1 
𝐻𝑖

(︂𝑇𝑖
2 

)︂𝐻𝑖
𝛽

= 𝜀1− 1 
𝛾𝛽 𝑐1.

□

2.2 Estimates for the rate of growth

Consider now the field 𝑋 (𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ 𝑉 , defined over the unbounded domain 
𝑉 = [0, +∞) × [−𝐴, 𝐴].

Let 𝑓 (𝑡) > 0, 𝑡 ≥ 0, be a continuous strictly increasing function such that 𝑓 (𝑡) →
∞ as 𝑡 → ∞.

Introduce the sequence 𝑏0 = 0, 𝑏𝑘+1 > 𝑏𝑘 , 𝑏𝑘 → ∞, 𝑘 → ∞.
We will use the following notations:

𝑙𝑘 = 𝑏𝑘+1 − 𝑏𝑘 , 𝑉𝑘 = [𝑏𝑘 , 𝑏𝑘+1] × [−𝐴, 𝐴], 𝑘 = 0, 1, . . . , 𝑓𝑘 = 𝑓 (𝑏𝑘),

𝜀𝑘 = sup(𝑡1 ,𝑡2 ) ∈𝑉𝑘
𝜏𝜑 (𝑋 (𝑡1, 𝑡2)), and suppose that 0 < 𝜀𝑘 < ∞;

𝜃 = inf𝑘 𝛾𝑘
𝜀𝑘

, where

𝛾𝑘 = 𝑐𝑘 max 
(𝑡1 ,𝑡2 ) , (𝑠1 ,𝑠2 ) ∈𝑉𝑘

(𝑑 ((𝑡1, 𝑡2), (𝑠1, 𝑠2)))𝛾 = 𝑐𝑘
(︁(𝑙𝑘)𝐻1 + (2𝐴)𝐻2

)︁𝛾 ,

with 𝑐𝑘 being from (13) below,

𝛽 = 𝛼
𝛼−1 .

Theorem 4. Let 𝑋 (𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ 𝑉 , be a 𝜑-sub-Gaussian separable field with 
𝜑 = |𝑥 |𝛼

𝛼 , 𝛼 ∈ (1, 2]. Suppose further that
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(i)

sup 
𝑑 ( (𝑡1 ,𝑡2 ) , (𝑠1 ,𝑠2 ) )≤ℎ,
(𝑡1 ,𝑡2 ) , (𝑠1 ,𝑠2 ) ∈𝑉𝑘

𝜏𝜑 (𝑋 (𝑡1, 𝑡2) − 𝑋 (𝑠1, 𝑠2)) ≤ 𝑐𝑘ℎ𝛾 , 𝑐𝑘 > 0, 0 < 𝛾 ≤ 1; (13)

(ii) 𝐶 =
∑︁∞

𝑘=0
𝜀𝑘
𝑓𝑘
< ∞;

(iii) 𝑆 =
∑︁∞

𝑘=0
𝜀

1− 1 
𝛾𝛽

𝑘
𝑐1 (𝑘 )

𝑓𝑘
< ∞, where 𝑐1(𝑘) =

(︂
1 
𝐻1

(𝑙𝑘/2)
𝐻1
𝛽 + 1 

𝐻2
𝐴

𝐻2
𝛽

)︂ 2
1 
𝛽 𝑐

1 
𝛾𝛽
𝑘

1− 1 
𝛾𝛽

.

Then

(i) for any 𝜃 ∈ (0,min(1,˜︁𝜃)) and any 𝜆 > 0

E exp

{︄
𝜆 sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

}︄
≤ 2 exp

{︄
𝜆𝛼

𝛼

(︃
𝐶

1 − 𝜃

)︃𝛼

+ 2𝜆 

(1 − 𝜃)𝜃 1 
𝛾𝛽

𝑆

}︄
;

(14)

(ii) for any 𝜃 ∈ (0,min(1,˜︁𝜃)) and 𝑢 > 2𝑆 
(1−𝜃 ) 𝜃

1 
𝛾𝛽

P

{︄
sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

> 𝑢

}︄
≤ 2 exp

{︃
− 1 
𝛽𝐶𝛽

(︂
𝑢(1 − 𝜃) − 2𝑆𝜃−

1 
𝛾𝛽

)︂𝛽}︃
.

(15)

Proof. We use the scheme of the proof which is similar to that in [8] (Theorem 2.4), 
[11] (Theorem 4). Using (11) we can write the estimate

𝐼 (𝜆) = E exp

{︄
𝜆 sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

}︄
≤ E exp

{︄
𝜆

∞ ∑︂
𝑘=0 

sup 
(𝑡1 ,𝑡2 ) ∈𝑉𝑘

|𝑋 (𝑡1, 𝑡2) |
𝑓𝑘

}︄

≤
∞ ∏︂
𝑘=0 

(︂
E exp

{︄
𝜆
𝑟𝑘
𝑓𝑘

sup 
(𝑡1 ,𝑡2 ) ∈𝑉𝑘

|𝑋 (𝑡1, 𝑡2) |
}︄)︂ 1 

𝑟𝑘 ≤ 2
∞ ∏︂
𝑘=0 
𝑄𝑘 (𝜆, 𝜃)

1 
𝑟𝑘 ,

where

𝑄𝑘 (𝜆, 𝜃) = exp

{︄
1 
𝛼

(︂ 𝜆𝜀𝑘𝑟𝑘
(1 − 𝜃) 𝑓𝑘

)︂𝛼
+ 2𝜆

𝑟𝑘
𝑓𝑘

1 

(1 − 𝜃)𝜃 1 
𝛾𝛽

𝜀
1− 1 

𝛾𝛽

𝑘 𝑐1(𝑘)
}︄
,

𝑐1(𝑘) =
(︂ 1 
𝐻1

(𝑙𝑘/2)
𝐻1
𝛽 + 1 

𝐻2
𝐴

𝐻2
𝛽

)︂ 2
1 
𝛽 𝑐

1 
𝛾𝛽

𝑘

1 − 1 
𝛾𝛽

,

and let here 𝑟𝑘 , 𝑘 ≥ 0, be such that 
∑︁∞
𝑘=0

1 
𝑟𝑘

= 1. This implies that

𝐼 (𝜆) ≤ 2 exp

⎧⎨
⎩ 1 
𝛼

(︂ 𝜆

1 − 𝜃
)︂𝛼 ∞ ∑︂

𝑘=0 

(︂𝜀𝑘𝑟𝑘
𝑓𝑘

)︂𝛼
𝑟−1
𝑘 + 2𝜆 

(1 − 𝜃)𝜃 1 
𝛾𝛽

∞ ∑︂
𝑘=0 

𝜀
1− 1 

𝛾𝛽

𝑘 𝑐1(𝑘)
𝑓𝑘

⎫⎬
⎭ .
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Choose 𝑟𝑘 =
𝑓𝑘
𝜀𝑘
𝐶, where 𝐶 =

∑︁∞
𝑘=0

𝜀𝑘
𝑓𝑘

, then

𝐼 (𝜆) ≤ 2 exp

⎧⎨
⎩ 1 
𝛼

(︂ 𝜆

1 − 𝜃
)︂𝛼
𝐶𝛼 + 2𝜆 

(1 − 𝜃)𝜃 1 
𝛾𝛽

∞ ∑︂
𝑘=0 

𝜀
1− 1 

𝛾𝛽

𝑘 𝑐1(𝑘)
𝑓𝑘

⎫⎬
⎭ .

Therefore,

E exp

{︄
𝜆 sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

}︄
≤ 2 exp

{︄
𝜆𝛼

𝛼

(︂ 𝐶

1 − 𝜃
)︂𝛼

+ 2𝜆 

(1 − 𝜃)𝜃 1 
𝛾𝛽

𝑆

}︄
,

and for all 𝜆 > 0, 𝑢 > 0, 0 < 𝜃 < ˜︁𝜃,

𝑃

{︄
sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

> 𝑢

}︄
≤ exp{−𝜆𝑢}E exp

{︄
𝜆 sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

}︄

≤ 2 exp

{︄
𝜆𝛼

𝛼

(︂ 𝐶

1 − 𝜃
)︂𝛼

+ 2𝜆𝑆 

(1 − 𝜃)𝜃 1 
𝛾𝛽

− 𝜆𝑢
}︄
.

We minimize the right-hand side with respect to 𝜆 and obtain for 𝑢 > 2𝑆 
(1−𝜃 ) 𝜃

1 
𝛾𝛽

𝑃

{︄
sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

> 𝑢

}︄

≤ 2 exp

{︄
−
(︂
𝑢 − 2𝑆 

(1 − 𝜃)𝜃 1 
𝛾𝛽

)︂ 𝛼
𝛼−1

(︂ 𝐶

1 − 𝜃
)︂− 𝛼

𝛼−1 𝛼 − 1
𝛼

}︄

= 2 exp
{︃
−𝛼 − 1

𝛼
𝐶− 𝛼

𝛼−1

(︂
𝑢(1 − 𝜃) − 2𝑆𝜃−

1 
𝛾𝛽

)︂ 𝛼
𝛼−1

}︃
.

□

Theorem 5. Let 𝑋 (𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ 𝑉 , be a 𝜑-sub-Gaussian separable field with 
𝜑 = |𝑥 |𝛼

𝛼 , 𝛼 ∈ (1, 2]. Suppose further that

(i)

sup 
𝑑 ( (𝑡1 ,𝑡2 ) , (𝑠1 ,𝑠2 ) )≤ℎ,
(𝑡1 ,𝑡2 ) , (𝑠1 ,𝑠2 ) ∈𝑉𝑘

𝜏𝜑 (𝑋 (𝑡1, 𝑡2) − 𝑋 (𝑠1, 𝑠2)) ≤ 𝑐𝑘ℎ𝛾 , 𝑐𝑘 > 0, 0 < 𝛾 ≤ 1; (16)

(ii) there exist 𝛿 > 0 and a constant 𝑐(𝛿) such that for (𝑡1, 𝑡2) ∈ 𝑉

𝜏𝜑 (𝑋 (𝑡1, 𝑡2)) ≤ 𝑐(𝛿)𝑡 𝛿1 ; (17)

(iii) ˜︁𝐶 = 𝑐(𝛿)∑︁∞
𝑘=0

𝑏𝛿
𝑘+1
𝑓𝑘
< ∞;
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(iv) ˜︁𝑆 = (𝑐(𝛿))1− 1 
𝛾𝛽

∑︁∞
𝑘=0

𝑏
1− 1 

𝛾𝛽
𝑘+1 𝑐1 (𝑘 )

𝑓𝑘
< ∞,

where 𝑐1(𝑘) =
(︂

1 
𝐻1

(𝑙𝑘/2)
𝐻1
𝛽 + 1 

𝐻2
𝐴

𝐻2
𝛽

)︂ 2
1 
𝛽 𝑐

1 
𝛾𝛽
𝑘

1− 1 
𝛾𝛽

.

Then

(i) for any 𝜃 ∈ (0,min(1,˜︁𝜃)) and any 𝜆 > 0

E exp

{︄
𝜆 sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

}︄
≤ 2 exp

{︄
𝜆𝛼

𝛼

(︄ ˜︁𝐶
1 − 𝜃

)︄𝛼

+ 2𝜆 
(1 − 𝜃)𝜃

˜︁𝑆
}︄

;

(18)

(ii) for any 𝜃 ∈ (0,min(1,˜︁𝜃)) and 𝑢 > 2(𝑐 ( 𝛿 ) )1− 1 
𝛾𝛽 ˜︁𝑆

(1−𝜃 ) 𝜃
1 
𝛾𝛽

P

{︄
sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

> 𝑢

}︄
≤ 2 exp

{︄
− 1 

𝛽˜︁𝐶𝛽

(︂
𝑢(1 − 𝜃) − 2˜︁𝑆𝜃 1 

𝛾𝛽

)︂𝛽}︄
.

(19)

Proof. The theorem is a corollary of Theorem 4. □

Remark 1. The bound (15) can be rewritten in another form. We can choose 𝜃 =

𝑢−
𝛾𝛽 

𝛾𝛽+1 and then under conditions of Theorem 3 for 𝑢 > (1 + 2𝑆)
𝛾𝛽 

𝛾𝛽+1 the following 
bound holds:

P

{︄
sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

> 𝑢

}︄
≤ 2 exp

{︃
− 1 
𝛽𝐶𝛽

(︂
𝑢 − 𝑢 1 

𝛾𝛽+1 (1 + 2𝑆)
)︂𝛽}︃

.

Correspondingly, under conditions of Theorem 5 for 𝑢 > (1 + 2˜︁𝑆) 𝛾𝛽 
𝛾𝛽+1 we can write 

the bound

P

{︄
sup 

(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1, 𝑡2) |
𝑓 (𝑡1) 

> 𝑢

}︄
≤ 2 exp

{︄
− 1 

𝛽˜︁𝐶𝛽

(︂
𝑢 − 𝑢 1 

𝛾𝛽+1 (1 + 2˜︁𝑆))︂𝛽
}︄
.

Theorem 6. Suppose that for the field 𝑋 (𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ 𝑉 , and function 𝑓 conditions 
of Theorem 5 are satisfied. Then there exists a random variable 𝜉 such that with 
probability one

|𝑋 (𝑡1, 𝑡2) | ≤ 𝑓 (𝑡1)𝜉, (20)

and 𝜉 satisfies the assumption

P {𝜉 > 𝑢} ≤ 2 exp

{︄
− 1 

𝛽˜︁𝐶𝛽

(︂
𝑢 − 𝑢 1 

𝛾𝛽+1 (1 + 2˜︁𝑆))︂𝛽
}︄

(21)

for 𝑢 > (1 + 2˜︁𝑆) 𝛾𝛽 
𝛾𝛽+1 .
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Proof. The theorem is a corollary of Theorem 5. Denote 𝜉 = sup 
(𝑡1 ,𝑡2 ) ∈𝑉

|𝑋 (𝑡1 ,𝑡2 ) |
𝑓 (𝑡1 ) , then 

𝜉 satisfies (21) and for all 𝜔 we have (20). □

Remark 2. Note that we introduced the condition (ii) in Theorem 5 having in mind the 
application of Theorems 5 and 6 to random fields arising as solutions to stochastic heat 
equations – see the field 𝑉 (𝑡, 𝑥) in (26) and the estimate for its norm (29). At the same 
time, Theorem 5 gives an example of the case where 𝜀𝑘 needed in the conditions (ii) and 
(iii) of Theorem 4 can be evaluated due to the additional assumption (17) on the norms 
of the field under consideration. As a result, we can check the validity of conditions for 
𝐶 and 𝑆 (see conditions (ii) and (iii) of Theorem 4) which in this particular case take the 
form of ˜︁𝐶 and ˜︁𝑆 (see conditions (iii) and (iv) of Theorem 5). This implies Theorem 9
for the field 𝑉 (𝑡, 𝑥). Therefore, one can see that to evaluate the rate of growth it is 
sufficient to have a kind of the Hölder condition (16) and some scaling for the norms 
like in (17), which gives the possibility to choose a particular 𝑓 and a partition 𝑏𝑘 so 
that ˜︁𝐶 and ˜︁𝑆 are finite as needed to write down the estimates (18) and (19). The choice 
of 𝑓 and 𝑏𝑘 is demonstrated in the proof of Theorem 9. Distributional properties of 
the field, which in the present paper appear as the assumption of 𝜑-sub-Gaussianity 
with a particular function 𝜑, lead to the exponential form of the bounds and are 
also taken into account in the functional form of the expression under the exponent 
(which depends on 𝜑) in (18) and (19). More detailed study of these topics, including 
particular models, deserves further investigation.

3 Application to stochastic heat equation with fractional noise

Consider the stochastic heat equation

𝜕𝑢

𝜕𝑡 
=
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑊 
𝜕𝑡𝜕𝑥

, (𝑡, 𝑥) ∈ (0, 𝑇] × R, (22)

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ R, (23)

with the following assumption about the noise:

A.1. 𝑊 is a centered Gaussian process which is white in time and is fractional 
Brownian motion in space with index 𝐻 ≤ 1

2 .

Namely, following [10] we consider the case of 𝑊 with the covariance functional

E𝑊 (𝜙)𝑊 (𝜓) =
∫ 𝑇

0

∫
R

𝐹𝜙(𝑡, ·) (𝑦)𝐹𝜓(𝑡, ·) (𝑦)𝜇(𝑑𝑦)𝑑𝑡

for any 𝜙, 𝜓 ∈ 𝐶∞
0 ([0, 𝑇],R) (𝐹 denotes the Fourier transform with respect to the 

space variable), where the spectral measure 𝜇 is of the form

𝜇(𝑑𝑦) = 𝐶𝐻 |𝑦 |1−2𝐻𝑑𝑦,

𝐶𝐻 =
Γ(2𝐻 + 1) sin(𝜋𝐻)

2𝜋 
. (24)
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Note that there exists extensive literature on SPDEs driven by Gaussian and more 
general noises, and involving various differential operators, see, for example, the 
monographs [6], [21], [26], among many others.

As for the stochastic heat equation, it has been studied in various settings: as 
that one driven by a time-space white noise, further with generalizations of noise in 
space or in time, and also by considering differential operators more general than the 
Laplacian.

Since we are going to apply the results of the previous section, we are interested 
in the results for solution to the problem (22)–(23), which allow to write down the 
bounds for E|𝑢(𝑡, 𝑥) − 𝑢(𝑠, 𝑦) |2.

We will base our study on the results from the recent papers [2, 10] on regularity 
properties of the solution to the stochastic heat equation.

We consider the problem (22)–(23) with assumption A.1 on the noise and imposing 
the following assumption on the initial condition 𝑢0.

A.2. The process 𝑢0(𝑥), 𝑥 ∈ R, is continuous, possesses uniformly bounded 𝑝-th 
moments for 𝑝 ≥ 2 and is stochastically Hölder continuous with 𝜌 ∈ (0, 1], i.e. 
for all 𝑝 ≥ 1

∥𝑢0(𝑥) − 𝑢0(𝑦)∥𝐿𝑝 ≤ 𝐿0(𝑝) |𝑥 − 𝑦 |𝜌, 𝑥, 𝑦 ∈ R,

where 𝐿0(𝑝) is a constant and ∥.∥𝐿𝑝 denotes the norm in 𝐿 𝑝 (Ω,R): ∥𝑢∥𝐿𝑝 =

(E|𝑢 |𝑝) 1 
𝑝 , 𝑝 ≥ 1.

From [10] (see Theorem 1.1) it follows that under assumptions A.1 and A.2 
equation (22) has a unique mild solution 𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇] × R, satisfying 

sup 
(𝑡 ,𝑥 ) ∈ (0,𝑇 ]×R

E|𝑢(𝑡, 𝑥) |𝑝 < ∞ and the Hölder condition

∥𝑢(𝑡, 𝑥) − 𝑢(𝑠, 𝑦)∥𝐿𝑝 ≤ 𝑐Δ((𝑡, 𝑥), (𝑠, 𝑦))𝜌∧𝐻 (25)

with some constant 𝑐 = 𝑐(𝑝, 𝑇, 𝐻) and where Δ((𝑡, 𝑥), (𝑠, 𝑦)) = |𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 | is 

the parabolic metric.
The mild solution is defined as the random field

𝑢(𝑡, 𝑥) =
∫
R

𝐺 𝑡 (𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 +
∫ 𝑡

0

∫
R

𝐺 𝑡−𝜃 (𝑥 − 𝜂)𝑊 (𝑑𝜃, 𝑑𝜂) = 𝜔(𝑡, 𝑥) +𝑉 (𝑡, 𝑥),
(26)

where 𝐺 𝑡 (𝑥) is the Green’s function (fundamental solution) of the equation ( 𝜕𝜕𝑡 −
𝜕2

𝜕𝑥2 )𝑢 = 0, that is,

𝐺 𝑡 (𝑥) = 1 √
4𝜋𝑡

exp
(︃
− |𝑥 |2

4𝑡 

)︃
.

We refer for the rigorous definitions of the integrals in (26), for example, to [2], [10] 
(see also [3], [14]). Note that the construction of the integral with respect to space-time 
fractional noise is rather subtle and involved, and all the details can be followed and 
consulted in the mentioned papers. Here we just recall some facts. The domain of the 
Wiener integral with respect to the fractional Brownian motion 𝐵 of index 𝐻 ∈ (0, 1)
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is the completion of the space 𝐶∞
0 of infinitely differentiable functions with compact 

support with respect to the inner product

(𝜙, 𝜓) = E𝐵(𝜙)𝐵(𝜓) =
∫
R

𝐹𝜙(𝑦)𝐹𝜓(𝑦)𝜇(𝑑𝑦), 𝜙, 𝜓 ∈ 𝐶∞
0 ,

and coincides with the space of distributions 𝑆 ∈ 𝒮 ′ (𝐶∞
0 ) whose Fourier transforms 𝐹𝑆

are locally integrable functions satisfying 
∫
R
|𝐹𝑆(𝑦) |2𝜇(𝑑𝑦) < ∞. The construction 

of the integral can be extended by adding one more variable. The integral with respect 
to the space-time fractional process 𝑊 is defined over 𝐻𝑇 which is the completion of 
the space 𝐶∞

0 ([0, 𝑇] × R) with respect to the inner product

(𝜙, 𝜓) = E𝑊 (𝜙)𝑊 (𝜓) =
∫ 𝑇

0

∫
R

𝐹𝜙(𝑡, ·) (𝑦)𝐹𝜓(𝑡, ·) (𝑦)𝜇(𝑑𝑦)𝑑𝑡,

𝜙, 𝜓 ∈ 𝐶∞
0 ([0, 𝑇] × R),

where the Fourier transforms 𝐹 is taken with respect to the space variable. The space 
𝐻𝑇 can be characterized, in particular, as follows (see, e.g., [10]):

𝐻𝑇 =
{︂
𝜙 ∈ 𝐶∞

0 ([0, 𝑇] × R) :
∫ 𝑇

0

∫ 2

R

|𝜙(𝑠, 𝑦) − 𝜙(𝑠, 𝑧) |2
|𝑦 − 𝑧 |2−2𝐻 𝑑𝑦 𝑑𝑧 𝑑𝑠

}︂
.

The following Îto isometry holds.
Proposition 1 ([10], Theorem 2.1, [2], Theorem 2.7). Let 𝜙 ∈ 𝐻𝑇 . Then for any 
𝑡 ∈ [0, 𝑇]

E
⃓⃓⃓
⃓
∫ 𝑡

0

∫
R

𝜑(𝑠, 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦)
⃓⃓⃓
⃓
2
=
∫ 𝑡

0

∫
R

|𝐹𝜑(𝑠, ·) (𝑦) |2 𝜇(𝑑𝑦)𝑑𝑠. (27)

In the next theorem we state the Hölder continuity of the fields 𝜔(𝑡, 𝑥) and 𝑉 (𝑡, 𝑥)
in the form, where explicit expressions for the constants are given.
Theorem 7. Let assumptions A.1 and A.2 hold. Then the following bounds hold:

∥𝜔(𝑡, 𝑥)∥𝐿2 ≤ sup 
𝑥∈R

∥𝑢0 (𝑥)∥𝐿2 ≤ 𝑐0; (28)

∥𝑉 (𝑡, 𝑥)∥𝐿2 ≤ 𝐴(𝐻)𝑡 𝐻2 ; (29)

∥𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑦)∥𝐿2 ≤ 𝑐𝜔
(︂
|𝑡 − 𝑠 | 𝜌2 + |𝑥 − 𝑦 |𝜌

)︂
; (30)

∥𝑉 (𝑡, 𝑥) −𝑉 (𝑠, 𝑦)∥𝐿2 ≤ 𝑐𝑉
(︂
|𝑡 − 𝑠 | 𝐻2 + |𝑥 − 𝑦 |𝐻

)︂
, (31)

where the constants 𝑐𝜔, 𝑐𝑉 , 𝐴(𝐻) are calculated as follows:

𝑐𝜔 = (2𝐿max(𝐶1, 𝐿))1/2, 𝑐𝑉 = (3𝐶𝐻 max((𝑐1,𝐻 + 𝑐2,𝐻 ), 𝑐3,𝐻 ))1/2,

𝐴(𝐻) = (𝐶𝐻𝑐1,𝐻 )1/2

with



Investigation of sample paths properties of sub-Gaussian type random fields 303

𝐶1 = 4𝜌√
𝜋
Γ(𝜌 + 1

2 ), 𝐿 = 𝐿0(2), 𝑐1,𝐻 = 2−(𝐻+1) Γ(𝐻+1)
𝐻 ,

𝑐2,𝐻 = 1
2
∫
R

(︁
1−exp(−𝑢2 )

)︁2

𝑢1+2𝐻 𝑑𝑢,

𝑐3,𝐻 = (2𝐻)−1Γ(1 − 2𝐻) cos(𝐻𝜋) for 𝐻 < 1
2 and 𝑐3,𝐻 = 𝜋

2 for 𝐻 = 1
2 ,

𝐶𝐻 is given by (24).

Proof. For the proof we use the reasoning similar to that applied for a more general 
case in [10] (Theorem 1.1) (see also [2]). Therefore, we present only the main steps, 
our interest is in keeping the values of constants involved in each step through the 
entire chain of bounds.

We have

E|𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑥) |2 = E
⃓⃓⃓
⃓
∫
R

(𝐺 𝑡 (𝑥 − 𝑦) − 𝐺𝑠 (𝑥 − 𝑦)) 𝑢0(𝑦) 𝑑𝑦
⃓⃓⃓
⃓
2

= E
⃓⃓⃓
⃓
∫
R

𝐺 𝑡−𝑠 (𝑦)
∫
R

𝐺𝑠 (𝑥 − 𝑧)(𝑢0 (𝑧 − 𝑦) − 𝑢0(𝑧)) 𝑑𝑧 𝑑𝑦
⃓⃓⃓
⃓
2

≤
∫
R

𝐺 𝑡−𝑠 (𝑦)
∫
R

𝐺𝑠 (𝑥 − 𝑧)E |𝑢0(𝑧 − 𝑦) − 𝑢0(𝑧) |2 𝑑𝑧𝑑𝑦

≤ 𝐿
∫
R

𝐺 𝑡−𝑠 (𝑦) |𝑦 |2𝜌 𝑑𝑦 = 𝐿𝐶1 |𝑡 − 𝑠 |𝜌,

since ∫
R

𝐺ℎ (𝑦) |𝑦 |2𝜌 𝑑𝑦 =
∫
R

1 √
4𝜋ℎ

exp
(︃
− 𝑦

2

4ℎ

)︃
|𝑦 |2𝜌 𝑑𝑦

=
1 √
4𝜋ℎ

2
∫ ∞

0
exp

(︃
− 𝑦

2

4ℎ

)︃
𝑦2𝜌 𝑑𝑦

=
4𝜌√
𝜋
Γ(𝜌 + 1

2
)ℎ𝜌 = 𝐶1ℎ

𝜌,

where 𝐶1 = 4𝜌√
𝜋
Γ(𝜌 + 1

2 ), 𝐿 = 𝐿0(2), and we have used above the property ∫
R
𝐺 𝑡 (𝑦) 𝑑𝑦 = 1 and assumption A.2.
We now consider the more general increment:

E|𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑦) |2
≤ 2

(︁
E|𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑥) |2 + E|𝜔(𝑠, 𝑥) − 𝜔(𝑠, 𝑦) |2)︁

≤ 2𝐿𝐶1 |𝑡 − 𝑠 |𝜌 + 2E
⃓⃓⃓
⃓
∫
R

(𝐺𝑠 (𝑥 − 𝑧) − 𝐺𝑠 (𝑦 − 𝑧)) 𝑢0(𝑧) 𝑑𝑧
⃓⃓⃓
⃓
2

= 2𝐿𝐶1 |𝑡 − 𝑠 |𝜌 + 2E
⃓⃓⃓
⃓
∫
R

𝐺𝑠 (𝑧) (𝑢0(𝑥 − 𝑧) − 𝑢0(𝑦 − 𝑧)) 𝑑𝑧
⃓⃓⃓
⃓
2

≤ 2𝐿𝐶1 |𝑡 − 𝑠 |𝜌 + 2𝐿2 |𝑥 − 𝑦 |2𝜌 ≤ 𝑐 (︁|𝑡 − 𝑠 |𝜌 + |𝑥 − 𝑦 |2𝜌)︁ ,
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where 𝑐 = 2𝐿max(𝐶1, 𝐿), and assumption A.2 is used again. Therefore,

(︁
E|𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑦) |2)︁ 1

2 ≤ 𝑐𝜔
(︂
|𝑡 − 𝑠 | 𝜌2 + |𝑥 − 𝑦 |𝜌

)︂
, 𝑐𝜔 =

√
𝑐. (32)

Considering 𝑉 (𝑡, 𝑥), we follow again the similar lines as those in [10] keeping 
track of constants.

We can write:

E |𝑉 (𝑡, 𝑥) −𝑉 (𝑠, 𝑦) |2

= E
⃓⃓⃓
⃓
∫ 𝑡

0

∫
R

𝐺 𝑡−𝜃 (𝑥 − 𝜂)𝑊 (𝑑𝜃, 𝑑𝜂) −
∫ 𝑠

0

∫
R

𝐺𝑠−𝜃 (𝑦 − 𝜂)𝑊 (𝑑𝜃, 𝑑𝜂)
⃓⃓⃓
⃓
2

= E
⃓⃓⃓
⃓
∫ 𝑡

0

∫
R

𝐺 𝑡−𝜃 (𝑥 − 𝜂)𝑊 (𝑑𝜃, 𝑑𝜂)

+
∫ 𝑠

0

∫
R

(𝐺 𝑡−𝜃 (𝑥 − 𝜂) − 𝐺𝑠−𝜃 (𝑥 − 𝜂))𝑊 (𝑑𝜃, 𝑑𝜂)

+
∫ 𝑠

0

∫
R

(𝐺𝑠−𝜃 (𝑥 − 𝜂) − 𝐺𝑠−𝜃 (𝑦 − 𝜂))𝑊 (𝑑𝜃, 𝑑𝜂)
⃓⃓⃓
⃓
2

≤ 3𝐶𝐻
(︃∫ 𝑡−𝑠

0

∫
R

|𝐹𝐺 𝜃 (𝜉) |2 |𝜉 |1−2𝐻 𝑑𝜉𝑑𝜃

+
∫ 𝑠

0

∫
R

|𝐹𝐺 𝑡−𝑠+𝜃 (𝜉) − 𝐹𝐺 𝜃 (𝜉) |2 |𝜉 |1−2𝐻 𝑑𝜉𝑑𝜃

+
∫ 𝑠

0

∫
R

(1 − cos(𝜉 (𝑥 − 𝑦))) |𝐹𝐺 𝜃 (𝜉) |2 |𝜉 |1−2𝐻 𝑑𝜉𝑑𝜃

)︃
= 3𝐶𝐻 (𝐼1 + 𝐼2 + 𝐼3),

where by 𝐹 we mean the Fourier transform and use the fact that 𝐹𝐺 𝑡 (𝜉) = exp(−𝑡𝜉2)
and also the isometry relation (27).

Evaluate now the integrals 𝐼1, 𝐼2, 𝐼3.

𝐼1 =
∫ 𝑡

0

∫
R

exp(−2𝑠𝜉2) |𝜉 |1−2𝐻 𝑑𝜉𝑑𝑠 = 2−(𝐻+1) Γ(𝐻 + 1)
𝐻

𝑡𝐻 = 𝑐1,𝐻 𝑡
𝐻 ,

where 𝑐1,𝐻 = 2−(𝐻+1) Γ(𝐻+1)
𝐻 ;

𝐼2 =
∫ 𝑠

0

∫
R

|𝐹𝐺 𝑡−𝑠+𝜃 (𝜉) − 𝐹𝐺 𝜃 (𝜉) |2 |𝜉 |1−2𝐻 𝑑𝜉𝑑𝜃

=
∫ 𝑠

0

∫
R

exp(−2𝜃𝜉2) (︁1 − exp(−(𝑡 − 𝑠)𝜉2))︁2 × |𝜉 |1−2𝐻 𝑑𝜉𝑑𝜃

=
∫
R

1 − exp(−2𝑠𝜉2)
2|𝜉 |2

(︁
1 − exp(−(𝑡 − 𝑠)𝜉2))︁2 |𝜉 |1−2𝐻 𝑑𝜉

≤ 1
2

∫
R

(︁
1 − exp(−(𝑡 − 𝑠)𝜉2))︁2

|𝜉 |2−1+2𝐻 𝑑𝜉
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= (𝑡 − 𝑠)𝐻 1
2

∫
R

(︁
1 − exp(−𝑢2))︁2

𝑢1+2𝐻 𝑑𝑢 = 𝑐2,𝐻 (𝑡 − 𝑠)𝐻 ,

where 𝑐2,𝐻 = 1
2
∫
R

(︁
1−exp(−𝑢2 )

)︁2

𝑢1+2𝐻 𝑑𝑢;

𝐼3 =
∫ 𝑠

0

∫
R

(1 − cos(𝜉 (𝑥 − 𝑦))) exp(−2𝜃𝜉2) |𝜉 |1−2𝐻 𝑑𝜉𝑑𝜃

=
∫
R

1 − exp(−2𝑠𝜉2)
2|𝜉 |2 (1 − cos(𝜉 (𝑥 − 𝑦))) |𝜉 |1−2𝐻 𝑑𝜉

≤
∫
R

(1 − cos(𝜉 (𝑥 − 𝑦))) 1
2
|𝜉 |−1−2𝐻 𝑑𝜉 = 𝑐3,𝐻 (𝑥 − 𝑦)2𝐻 ,

where

for 𝐻 < 1
2 : 𝑐3,𝐻 =

∫ ∞
0 (1 − cos 𝑥) 𝑥−1−2𝐻 𝑑𝑥 = (2𝐻)−1Γ(1 − 2𝐻) cos(𝐻𝜋),

for 𝐻 = 1
2 : 𝑐3,𝐻 = 𝜋

2 .

(We used here Lemma D.1 from [2]).
Therefore,

E |𝑉 (𝑡, 𝑥) −𝑉 (𝑠, 𝑦) |2 ≤ 3𝐶𝐻 ((𝑐1,𝐻 + 𝑐2,𝐻 ) |𝑡 − 𝑠 |𝐻 + 𝑐3,𝐻 |𝑥 − 𝑦 |2𝐻 )

and (︁
E |𝑉 (𝑡, 𝑥) −𝑉 (𝑠, 𝑦) |2)︁ 1

2 ≤ 𝑐𝑉
(︂
|𝑡 − 𝑠 | 𝐻2 + |𝑥 − 𝑦 |𝐻

)︂
,

where 𝑐𝑉 = (3𝐶𝐻 max((𝑐1,𝐻 + 𝑐2,𝐻 ), 𝑐3,𝐻 ))1/2.
We also have the bound

(︁
E |𝑉 (𝑡, 𝑥) |2)︁ 1

2 ≤ 𝐴(𝐻)𝑡 𝐻2 ,

where 𝐴(𝐻) = (𝐶𝐻𝑐1,𝐻 )1/2. □

Remark 3. To derive further results for the fields 𝜔 and 𝑉 , basing on the approach of 
the previous section, it is essential that we deal with space-time random fields having 
different behavior with respect to space and time arguments as reflected, in particular, 
in the different indices of the Hölder regularity in space and time in (30), (31). Note that 
the estimates of the norms of increments of random fields (like those in (30), (31)) 
are important for the study of sample path properties of anisotropic fields, and in 
particular, the fields related to stochastic heat equation (see, e.g., [27] and references 
therein). Here we present the bounds for the distributions of suprema for 𝑤, 𝑉 in 
Theorem 8 and the estimate for the rate of growth of 𝑉 in Theorem 9 which have not 
been presented in the literature before.

For the next results we will use an additional assumption on the initial condition 
𝑢0 and will need the following definition ([15]).
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A family Δ of 𝜑-sub-Gaussian random variables is called strictly 𝜑-sub-Gaussian 
if there exists a constant 𝐶Δ (called determining constant) such that for all count-
able sets 𝐼 of random variables 𝜁𝑖 ∈ Δ, 𝑖 ∈ 𝐼, the inequality 𝜏𝜑

(︁∑︁
𝑖∈𝐼 𝜆𝑖𝜁𝑖

)︁ ≤
𝐶Δ

(︁
E (∑︁𝑖∈𝐼 𝜆𝑖𝜁𝑖)2 )︁1/2 holds. A random field 𝜁 (𝑡), 𝑡 ∈ 𝑇 , is called strictly 𝜑-sub-

Gaussian if the family of random variables {𝜁 (𝑡), 𝑡 ∈ 𝑇} is strictly 𝜑-sub-Gaussian.
Let 𝐾 be a deterministic kernel and 𝜂(𝑥) =

∫
𝑇
𝐾 (𝑥, 𝑦)𝑑𝜉 (𝑦), 𝑥 ∈ 𝑋 , where 𝜉 (𝑦), 

𝑦 ∈ 𝑌 , is a strictly 𝜑-sub-Gaussian field and the integral is defined in the mean-square 
sense. Then 𝜂(𝑥), 𝑥 ∈ 𝑋 , is strictly 𝜑-sub-Gaussian field with the same determining 
constant (see [15]).

A.3. The field 𝑢0(𝑥) is strictly 𝜑-sub-Gaussian random field.

Theorem 8. Let assumptions A.1 and A.2 hold, 𝑢0(𝑥) satisfy assumption A.3 with 
𝜑(𝑥) = |𝑥 |𝛼

𝛼 , 𝛼 ∈ (1, 2], and let 𝑐𝜑 be the determining constant. Then for fields 𝜔(𝑡, 𝑥)
and 𝑉 (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐷𝑎𝑏 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2], the following estimates hold:

(i)

P

{︄
sup 

(𝑡 ,𝑥 ) ∈𝐷𝑎𝑏

|𝜔(𝑡, 𝑥) | > 𝑢
}︄

≤ 2 exp

{︄
− 1 
𝛽

(︃
𝑢(1 − 𝜃)
𝑐0𝑐𝜑

+ 2(𝜃𝑐0𝑐𝜑)−
1 
𝛽˜︁𝑐1

)︃𝛽
}︄

(33)

for 𝑢 > 2 
(1−𝜃 ) 𝜃 (𝜃𝑐0𝑐𝜑)1− 1 

𝛽˜︁𝑐1, where ˜︁𝑐1 =
2

1 
𝛽 (𝑐𝜔𝑐𝜑 )

1 
𝛽

1− 1 
𝛽

(︂
2 
𝜌

(︁𝑇1
2 
)︁ 𝜌

2𝛽 + 1 
𝜌

(︁𝑇2
2 
)︁ 𝜌

𝛽

)︂
, 

𝑇𝑖 = 𝑏𝑖 − 𝑎𝑖 , 𝑖 = 1, 2, 𝛽 = 𝛼
𝛼−1 .

(ii)

P

{︄
sup 

(𝑡 ,𝑥 ) ∈𝐷𝑎𝑏

|𝑉 (𝑡, 𝑥) | > 𝑢
}︄

≤ 2 exp

{︄
−1

2

(︃
𝑢(1 − 𝜃)
𝜀𝑉

+ 2(𝜃𝜀𝑉 )−
1
2 ˜︁˜︁𝑐1

)︃2
}︄

for 𝑢 > 2 
(1−𝜃 ) 𝜃 (𝜃𝜀𝑉 )

1
2 ˜︁˜︁𝑐1, where 𝜀𝑉 = 𝐴(𝐻)𝑏𝐻/2

1 ,

˜︁˜︁𝑐1 = 2
√

2𝑐𝑉
(︂

2 
𝐻

(︁𝑇1
2 
)︁𝐻

4 + 1 
𝐻

(︁𝑇2
2 
)︁𝐻

2 
)︂

, 𝑇𝑖 = 𝑏𝑖 − 𝑎𝑖 , 𝑖 = 1, 2.

Proof. Statement (i) follows from Theorem 3 and the estimates (28), (30), and we use 
that 𝜏𝜑 (𝜔(𝑡, 𝑥)) ≤ 𝑐𝜑 ∥𝜔(𝑡, 𝑥)∥𝐿2 . Statement (ii) follows from Theorem 3 with 𝛼 = 2
(since the field 𝑉 (𝑡, 𝑥) is Gaussian) and the estimate (31). □

Remark 4. Under the assumption of Gaussianity of the initial condition 𝑢0 we can 
present a similar result for the original solution 𝑢(𝑡, 𝑥) in the following form:

P

{︄
sup 

(𝑡 ,𝑥 ) ∈𝐷𝑎𝑏

|𝑢(𝑡, 𝑥) | > 𝑦
}︄

≤ 2 exp

{︄
−1

2

(︃
𝑦(1 − 𝜃)
𝜀𝑢

+ 2(𝜃𝜀𝑢)−
1
2 𝑐1

)︃2
}︄

for 𝑦 > 2 
(1−𝜃 ) 𝜃 (𝜃𝜀𝑢)

1
2 𝑐1, where 𝜀𝑢 = 𝑐0 + 𝐴(𝐻)𝑏𝐻/2

1 , 

𝑐1 = 2
√︁

2 max{𝑐𝜔 , 𝑐𝑉}
(︃

2 
𝐻′

(︁𝑇1
2 
)︁𝐻′

4 + 1 
𝐻′

(︁𝑇2
2 
)︁𝐻′

2 
)︃

, 𝐻′ = 𝐻∧𝜌, 𝑇𝑖 = 𝑏𝑖−𝑎𝑖 , 𝑖 = 1, 2. 

Otherwise, combining two parts will lead to a rather complicated expression for the 
bound within this approach.
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The next theorem presents the power upper bound for the asymptotic growth of 
the trajectories of the field 𝑉 (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐷 = [0, +∞) × [−𝐴, 𝐴].
Theorem 9. Let assumptions A.1 and A.2 hold. Then for any 𝑝 > 1 there exists a 
random variable 𝜉 (𝑝) such that for any (𝑡, 𝑥) ∈ 𝐷, with probability one,

|𝑉 (𝑡, 𝑥) | ≤ ((𝑡 𝐻2 (log 𝑡)𝑝) ∨ 1)𝜉 (𝑝),

where 𝜉 (𝑝) satisfies assumption (21) with 𝛾 = 1, 𝛽 = 2 and some constants ˜︁𝐶 and ˜︁𝑆.

Proof. We apply Theorem 6 and Theorem 5. Condition (i) holds since 𝑉 (𝑡, 𝑥) is 
continuous, condition (ii) holds in view of (29).

Consider conditions (iii) and (iv). Let 𝑓 (𝑡) = (𝑡 𝐻2 | log 𝑡 |𝑝) ∨ 1 for 𝑡 > 0 and some 
𝑝 > 1. Let us choose 𝑏𝑘 = 𝑒𝑘 , 𝑘 ≥ 0.

Then 𝑓𝑘 = 𝑏
𝐻
2 
𝑘 (log 𝑏𝑘)𝑝 = 𝑒𝑘

𝐻
2 (log 𝑒𝑘)𝑝 = 𝑒𝑘

𝐻
2 𝑘 𝑝 and we have

˜︁𝐶 = 𝐴(𝐻)
∞ ∑︂
𝑘=0 

𝑏
𝐻
2 
𝑘+1
𝑓𝑘

= 𝐴(𝐻)
(︄
𝑒

𝐻
2 +

∞ ∑︂
𝑘=1 

𝑒
𝐻
2 

𝑘 𝑝

)︄
= 𝐴(𝐻)𝑒 𝐻

2 

(︄
1 +

∞ ∑︂
𝑘=1 

1 
𝑘 𝑝

)︄
< ∞.

Consider

˜︁𝑆 = (𝐴(𝐻)) 1
2

∞ ∑︂
𝑘=0 

𝑏
𝐻
4 
𝑘+1𝑐1(𝑘)
𝑓𝑘

= (𝐴(𝐻)) 1
2

∞ ∑︂
𝑘=0 

𝑒 (𝑘+1) 𝐻
4 𝑐1(𝑘)

𝑒𝑘
𝐻
2 𝑘 𝑝

,

where 𝑐1(𝑘) = 2 
𝐻 𝑒

𝑘 𝐻
4 ( 𝑒−1

2 )
𝐻
4 + 𝐴 𝐻

2 , and we can see that ˜︁𝑆 < ∞.
Therefore, conditions of Theorem 6 hold true, and applying this theorem with 

𝑓 (𝑡) = (𝑡 𝐻2 | log 𝑡 |𝑝) ∨ 1 we obtain the statement of Theorem 9. □

We consider now an assumption on the initial condition which can be used instead 
of assumption A.2.

A.2′. The process 𝑢0(𝑥), 𝑥 ∈ R, is a real, measurable, mean-square continuous sta-
tionary stochastic process.

Let 𝐵(𝑥), 𝑥 ∈ R, is a covariance function of the process 𝑢0(𝑥), 𝑥 ∈ R, with the 
representation

𝐵(𝑥) =
∫
R

cos(𝜆𝑥)𝑑𝐹 (𝜆), (34)

where 𝐹 (𝜆) is a spectral measure, and for the process itself we can write the spectral 
representation

𝑢0(𝑥) =
∫
R

𝑒𝑖𝜆𝑥𝑍 (𝑑𝜆). (35)

The stochastic integral is considered as 𝐿2(Ω) integral. Orthogonal random mea-
sure 𝑍 is such that E|𝑍 (𝑑𝜆) |2 = 𝐹 (𝑑𝜆).

Then the field 𝜔 can be writen in the form

𝜔(𝑡, 𝑥) =
∫
R

exp
{︂
𝑖𝜆𝑥 − 𝜇𝑡𝜆2

}︂
𝑍 (𝑑𝜆) (36)



308 O. Hopkalo, L. Sakhno

and its covariance function has the representation (see [11])

Cov
(︂
𝜔(𝑡, 𝑥), 𝜔(𝑠, 𝑦)

)︂
=
∫
R

exp
{︂
𝑖𝜆(𝑥 − 𝑦) − 𝜇𝜆2 (𝑡 − 𝑠)

}︂
𝐹 (𝑑𝜆). (37)

Theorem 10. Let assumption A.3 hold. Then

∥𝜔(𝑡, 𝑥)∥𝐿2 ≤
(︂∫

R

𝐹 (𝑑𝜆)
)︂ 1

2
, (38)

and if for some 𝜀 ∈ (0, 1
2 ]

𝑐2(𝜀) :=
∫
R

𝜆2𝜀𝐹 (𝑑𝜆) < ∞, (39)

then the following estimate holds:

∥𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑦)∥𝐿2 ≤ 𝑐(𝜀)(︁41−𝜀 |𝑥 − 𝑦 |2𝜀 + |𝑡 − 𝑠 |𝜀)︁1/2
. (40)

Proof. We have
E
(︁
𝜔(𝑡, 𝑥) − 𝜔(𝑠, 𝑦))︁2

=
∫
R

|𝑏(𝜆) |2𝐹 (𝑑𝜆),

where
𝑏(𝜆) = exp{𝑖𝜆𝑥} exp{−𝜇𝜆2𝑡} − exp{𝑖𝜆𝑦} exp{−𝜇𝜆2𝑠},

and we can estimate

|𝑏(𝜆) |2 ≤
(︂

1 − exp
{︂
− 𝜇𝜆2 |𝑡 − 𝑠 |

}︂)︂2
+ 4 sin2

(︂1
2
𝜆(𝑥 − 𝑦)

)︂
≤
(︂

min(𝜆2 |𝑡 − 𝑠 |, 1)
)︂2

+ 4 min
(︂1

2
|𝜆 | |𝑥 − 𝑦 |, 1

)︂2

≤
(︂
𝜆2 |𝑡 − 𝑠 |

)︂2𝜀1 + 4
(︂1

2
|𝜆 | |𝑥 − 𝑦 |

)︂2𝜀2

for any 𝜀1, 𝜀2 ∈ (0, 1]. Let us choose 𝜀 := 𝜀1 = 𝜀2/2, 𝜀 ∈ (0, 1/2], and suppose ∫
R
𝜆2𝜀𝐹 (𝑑𝜆) < ∞. Then we can write the bound

∫
R

|𝑏(𝜆) |2𝐹 (𝑑𝜆) ≤
(︂∫

R

𝜆2𝜀𝐹 (𝑑𝜆)
)︂(︁

41−𝜀 |𝑥 − 𝑦 |2𝜀 + |𝑡 − 𝑠 |𝜀)︁,
which implies (40). The estimate (38) follows from (37). □

In view of Theorem 10, under assumption A.3 and assuming 𝑢0 to be strictly 
𝜑-sub-Gaussian, we can write the estimate for the tail distribution of supremum of 
𝜔(𝑡, 𝑥) which is analogous to (33), where the constants 𝑐0 and 𝑐𝜔 will come now 
from (38), (39).

In the example below we present the process which can be used as initial condition, 
for which (39) is satisfied.
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Example 1. Let the initial condition 𝑢0(𝑥), 𝑥 ∈ R, be a Gaussian stationary process 
with the spectral density

𝑓 (𝜆) = 𝜎2

(1 + 𝜆2)2𝛼 , 𝜆 ∈ R. (41)

The corresponding covariance function is of the form

𝐵𝜂 (𝑥) = 𝜎2
√
𝜋Γ(2𝛼)

(︂ |𝑥 |
2 

)︂2𝛼−1/2
𝐾2𝛼−1/2 (|𝑥 |), 𝑥 ∈ R, (42)

where 𝐾𝜈 is the modified Bessel function of the second kind, in particular, 𝐾1/2(𝑥) =√︁
𝜋

2𝑥 𝑒
−𝑥 . Covariances (42) constitute the so-called Matérn class, a parameter 𝜈 =

2𝛼 − 1/2 > 0 controls the level of smoothness of the stochastic process.
Note that the Gaussian stochastic process with the above covariance and spectral 

density can be obtained as solution to the fractional partial differential equation

(︂
1 − 𝑑2

𝑑𝑥2

)︂𝛼
𝜂(𝑥) = 𝑤(𝑥), 𝑥 ∈ R,

with 𝑤 being a white noise: E𝑤(𝑥) = 0 and E𝑤(𝑥)𝑤(𝑦) = 𝜎2𝛿(𝑥 − 𝑦) (see, e.g., [7, 
Thm. 3.1]).

The Matérn model is popular in spatial statistics and modeling random fields 
(with corresponding adjustment of (42) for 𝑛-dimensional case). The relation between 
the spatial Matérn covariance model and stochastic partial differential equation (𝜇 −
Δ)𝛼𝜂(𝑥) = 𝑤(𝑥), 𝑥 ∈ R

𝑛, was established by Whittle in 1963 and since then has been 
widely used in various applied and theoretical contexts.

For the stationary initial condition 𝑢0 with spectral density (41) the condition (39)
holds and we are able to calculate the constant 𝑐(𝜀) defined in (39). We have

∫
R

𝜆2𝜀

(1 + 𝜆2)2𝛼 =
∫ ∞

0

𝑡 𝜀+1/2−1

(1 + 𝑡)𝜀+1/2+2𝛼−𝜀−1/2 𝑑𝑡 = ℬ(𝜀 + 1/2, 2𝛼 − 𝜀 − 1/2),

where ℬ is the Beta-function, 𝜀 ∈ (0, 1/2], 2𝛼 − 𝜀 − 1/2 > 0, and the formula ∫ ∞
0

𝑡𝜇−1

(1+𝑡 )𝜇+𝜈 𝑑𝑡 = ℬ(𝜇, 𝜈) is used.
Therefore, in this case we obtain 𝑐2(𝜀) = 𝜎2ℬ(𝜀+1/2, 2𝛼−𝜀−1/2). In particular, 

having in (41) 𝛼 > 1 and choosing 𝜀 = 1/2, we get 𝑐(1/2) = 𝜎2 1 
𝛼−1 .
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