
Modern Stochastics: Theory and Applications 0 (0) (2025) 1–37
https://doi.org/10.15559/25-VMSTA280

On the reducibility of affine models with dependent 

Lévy factors

Michał Barskia,*, Rafał Łochowskib

aFaculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
bDepartment of Mathematics and Mathematical Economics, Warsaw School of 

Economics, Poland

m.barski@mimuw.edu.pl (M. Barski), rlocho@sgh.waw.pl (R. Łochowski)

Received: 14 November 2024, Revised: 21 March 2025, Accepted: 19 May 2025, 
Published online: 17 June 2025

Abstract The paper is devoted to the study of the short rate equation of the form

d𝑅(𝑡) = 𝐹 (𝑅(𝑡))d𝑡 +
𝑑∑
𝑖=1 

𝐺𝑖 (𝑅(𝑡−))d𝑍𝑖 (𝑡), 𝑅(0) = 𝑅0 ≥ 0, 𝑡 > 0,

with deterministic functions 𝐹, 𝐺1, . . . , 𝐺𝑑 and a multivariate Lévy process 𝑍 = (𝑍1, . . . , 𝑍𝑑)
with possibly dependent coordinates. This equation is assumed to have a nonnegative solution 
which generates an affine term structure model. Under some mild assumptions on the Lévy 
measure of 𝑍 it is shown that the same term structure is generated by an equation with affine 
drift term and noise being a one-dimensional 𝛼-stable process with index of stability 𝛼 ∈ (1, 2). 
For this case the shape of possible simple forward curves is characterized. A precise description 
of normal, inverse and humped profiles in terms of the equation coefficients and the stability 
index 𝛼 is provided.

The paper generalizes the classical results on the Cox–Ingersoll–Ross (CIR) model [Econo-
metrica 53 (1985), 385–408], as well as on its extended version where 𝑍 is a one-dimensional 
Lévy process [SIAM J. Financ. Math. 11(1) (2020), 131–147, Bond Markets with Lévy Fac-
tors, Cambridge University Press, 2020]. It is the starting point for the classification of affine 
models with dependent Lévy processes, in the spirit of [J. Finance 5 (2000), 1943–1978] and 
[Classification and calibration of affine models driven by independent Lévy processes, https://
arxiv.org/abs/2303.08477].
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1 Introduction

Let us consider a bond market with a family of stochastic processes describing zero 
coupon bond prices 𝑃(𝑡, 𝑇), 𝑡 ∈ [0, 𝑇], parametrized by the maturity time 𝑇 > 0 and 
the short rate process 𝑅(𝑡), 𝑡 ≥ 0. The processes are defined on a probability space 
(Ω,F , P) with a filtration (F𝑡 ), 𝑡 ≥ 0. The bond maturing at 𝑇 pays its owner at time 
𝑇 a nominal value assumed here to be 1, i.e. 𝑃(𝑇,𝑇) = 1. The discounted value of 1
paid at time 𝑡 > 0 equals 𝐷 (𝑡) = 𝑒−

∫ 𝑡

0 𝑅 (𝑠)𝑑𝑠 . The short rate process 𝑅 is supposed to 
satisfy, for each 𝑇 > 0, the condition

E[𝑒−
∫ 𝑇

𝑡
𝑅 (𝑠)d𝑠 | F𝑡 ] = 𝑒−𝐴(𝑇−𝑡 )−𝐵(𝑇−𝑡 )𝑅 (𝑡 ) , 𝑡 ∈ [0, 𝑇], (1.1)

with some deterministic functions 𝐴(·), 𝐵(·). Interpreting P as a risk neutral measure, 
one recognizes in the left side of (1.1) the price at time 𝑡 of the bond with maturity 
𝑇 , that is 𝑃(𝑡, 𝑇). Thus (1.1) means that the short rate 𝑅 generates an affine term 
structure.

The concept of modeling bond prices in the affine fashion was introduced by 
Filipović [17] and Duffie, Filipović and Schachermeyer [14]. It was motivated by 
the results of Kawazu and Watanabe [19] on continuous state branching processes 
with immigration. Further developments on regularity of affine processes are due 
to Cuchiero, Filipović and Teichmann [11] and Cuchiero and Teichmann [12]. The 
aforementioned results are settled in the general Markovian setting and the description 
of affine processes is given in the form of their generators. A class of particular 
interest are short rates given by stochastic equations. An equation with a solution 
which generates an affine model is called a generating equation. The precursors of 
generating equations are two classical equations – one due to Cox, Ingersoll and Ross 
(CIR) [10]

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 𝑐
√
𝑅(𝑡)d𝑊 (𝑡), (1.2)

with 𝑎 ∈ R, 𝑏 ≥ 0, 𝑐 > 0, and another due to Vasiček [25]

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 𝑐 d𝑊 (𝑡), (1.3)

with 𝑎, 𝑏, 𝑐 ∈ R – both driven by a one-dimensional Wiener process 𝑊 . To make 
the behavior of the short rate process more realistic and to improve the accuracy of 
calibration to market data more involved equations are considered in the literature. Into 
account are taken multidimensional noises, including those with jumps, with possibly 
correlated variates. Passing to more general types of noise offers more flexibility to the 
arising bond market which is required from the pricing perspective. Dai and Singleton 
[13] consider factorial models perturbed by correlated Wiener processes and examine 
the influence of the correlation structure on the resulting affine model. In the case 
when 𝑊 is replaced by a Lévy process, it was shown in Barski and Zabczyk [5] that 

https://www.ams.org/msc/msc2020.html?s=91G30
https://www.ams.org/msc/msc2020.html?s=91B70
https://www.ams.org/msc/msc2020.html?s=60G52
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the generalization of (1.2) must be of the form

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 𝐶 · (𝑅(𝑡−))1/𝛼𝑑𝑍𝛼 (𝑡), (1.4)

with 𝑎 ∈ R, 𝑏 ≥ 0, 𝐶 > 0, where 𝑍𝛼 is an 𝛼-stable process with index 𝛼 ∈ (1, 2]. 
For a comprehensive study of 𝛼-stable processes we refer to Samorodnitsky and 
Taqqu [24]. It was also shown in [5] that the counterpart of (1.3) in the Lévy setting 
allows preserving the positivity of 𝑅, which clearly lacks in (1.3) like in each Gaussian 
model. Jiao, Ma and Scotti [18] modify the CIR model by adding an independent 𝛼-
stable component to the Wiener process. Their 𝛼-CIR model reveals better fitting to the 
European sovereign bond market than the CIR model and the stability index 𝛼 allows 
controlling the tail heaviness of the bond prices. Models driven by a multivariate Lévy 
process with independent coordinates appear, among others, in Duffie and Gârleanu 
[15], Barndorff-Nielsen and Shephard [3], Barski and Łochowski [4]. Similarly as in 
[13], it is noticed in [4] that different equations may generate identical affine models. 
This fact motivated a classification of all generating equations into several classes 
which are representable by the so-called canonical equations having tractable forms. 
The case when the coordinates of the multivariate Lévy process are dependent is an 
unexplored field entered by this paper.

We consider an equation of the form

d𝑅(𝑡) = 𝐹 (𝑅(𝑡))d𝑡 +
𝑑∑
𝑖=1 

𝐺𝑖 (𝑅(𝑡−))d𝑍𝑖 (𝑡), 𝑅(0) = 𝑥 ≥ 0, 𝑡 > 0, (1.5)

where 𝐹, 𝐺 := (𝐺1, . . . , 𝐺𝑑) are deterministic functions and 𝑍 = (𝑍1, . . . , 𝑍𝑑) is 
a multivariate Lévy process and a martingale. As the coordinates of 𝑍 may be de-
pendent, the Lévy measure 𝜈 of 𝑍 is not necessarily concentrated on axes. Its polar 
decomposition

𝜈(𝐴) =
∫
S𝑑−1

∫ +∞

0
1𝐴(𝑟𝜉)𝛾𝜉 (d𝑟) 𝜆(d𝜉), 𝐴 ∈ B(R𝑑), (1.6)

with a finite measure 𝜆 on a unit sphere S𝑑−1 := {𝑥 ∈ R𝑑 : |𝑥 | = 1} called a spherical 
component of 𝜈 and a family of measures {𝛾𝜉 ; 𝜉 ∈ S𝑑−1} on (0, +∞) called radial 
components of 𝜈, will play a central role in the sequel. The radial decomposition is 
known to exist and to be unique for any Lévy measure, see [2], Lemma 2.1 and [22], 
Proposition 4.2. Let us recall that any 𝛼-stable process in R𝑑 with index 𝛼 ∈ (1, 2)
admits radial decomposition with identical radial measures given by the density

𝛾𝜉 (d𝑟) = 𝛾(d𝑟) :=
1 

𝑟1+𝛼 d𝑟, 𝑟 > 0, 𝜉 ∈ S𝑑−1, (1.7)

and arbitrary spherical measure 𝜆. In fact, the radial decomposition can be explicitly 
determined in the case when 𝜈 has a density with respect to the Lebesgue measure, 
say 𝑔. Then the radial measures are of the form

𝛾𝜉 (d𝑟) = 𝑔(𝑟𝜉)𝑟𝑑−1
√

1 − 𝜉2
1 ·

√
1 − (𝜉2

1 + 𝜉2
2) · . . . ·

√
1 − (𝜉2

1 + · · · + 𝜉2
𝑑−2) d𝑟,

for 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ S𝑑−1, 𝑟 > 0, and the spherical measure 𝜆 is the image of 
the Lebesgue measure by the polar transformation, see Section 3.1.2 for details. We 
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examine the question which affine models can be generated by equation (1.5) and our 
analysis of this problem is based on the radial decomposition (1.6).

In Example 2.3 we show that if (1.5) is a generating equation and 𝑍 is an R𝑑-valued 
𝛼-stable process then the resulted affine model is identical with the model generated 
by (1.4). This means that (1.4) can replace the initial equation, which may be of a 
complicated form, preserving the bond prices unchanged. In this case we call the initial 
equation to have the reducibility property. This extends the observations from [13] 
and [4] to the case with dependent noise coordinates. The main result of this paper, 
Theorem 3.3, provides conditions for (1.5) to have the reducibility property. We prove 
that if 𝐺 is a continuous function for which the limit

lim 
𝑥→0+

𝐺 (𝑥) 
|𝐺 (𝑥) |

exists and the Laplace exponents associated with the radial measures

𝐽𝛾𝜉 (𝑏) :=
∫ +∞

0
(𝑒−𝑏𝑟 − 1 + 𝑏𝑟)𝛾𝜉 (d𝑟), 𝑏 ≥ 0, 𝜉 ∈ S𝑑−1,

satisfy the condition

sup 
𝜉 ∈supp(𝜆)

𝐽𝛾𝜉 (𝑏) ≤ 𝐾 · inf 
𝜉 ∈supp(𝜆)

𝐽𝛾𝜉 (𝑏), 𝑏 ≥ 0, (1.8)

with some 1 ≤ 𝐾 < +∞, then any equation with such 𝐺 and 𝑍 can generate only the 
same affine model as the one generated by (1.4) with some 𝛼 ∈ (1, 2). Condition (1.8)
is shown to be satisfied in the class of tempered stable distributions and in the case 
when 𝑍 is R2-valued and its jump measure has a density 𝑔 such that the functions

𝑔(𝑟) := inf 
|𝑥 |=𝑟

𝑔(𝑥), 𝑔(𝑟) := sup 
|𝑥 |=𝑟

𝑔(𝑥), 𝑟 ≥ 0,

satisfy the integrability conditions

0 <

∫ +∞

0
min{𝑟2, 𝑟3}𝑔(𝑟)d𝑟 ≤

∫ +∞

0
min{𝑟2, 𝑟3}𝑔(𝑟)d𝑟 < +∞,

and

lim
𝜀↓0 

∫ 1
𝜀

𝑟2𝑔(𝑟)d𝑟∫ 1
𝜀

𝑟2𝑔(𝑟)d𝑟
< +∞ and lim

𝜀↓0 

∫ 1/𝜀
1 𝑟3𝑔(𝑟)d𝑟∫ 1/𝜀
1 𝑟3𝑔(𝑟)d𝑟

< +∞.

For details and extensions in cases where 𝑑 > 2, see Section 3.1.2.
Remark 1.1. Condition (1.8) seems to be fundamental in this regard as there exist 
Lévy martingales 𝑍 for which (1.5) generates an affine short rate model but has no 
reducibility property; see [4, Theorems 3.1, 3.8] and Section 3.1.

The term structure models are calibrated to market data which may contain, for 
instance, swap or swaption prices or some spot rates. Empirical curves understood 
as functions of maturities representing market quotes should be well approximated 
by the resulting model curves. Therefore, understanding which curve shapes can be 
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generated by the model is of prime importance. We examine possible shapes of the 
simple spot curve defined by 

𝐹 (𝑥) =
1
𝑥

(
1 

𝑃(0, 𝑥)
− 1

)
, 𝑥 ≥ 0,

in the model (1.4) and provide a precise description of normal (increasing), inverse 
(decreasing) and humped (possesing one local maximum) shapes in terms of the model 
parameters. Characterization of yield curves

𝑥 ↦→ −
1
𝑥

ln 𝑃(0, 𝑥),

in affine models is known in the literature, see [20, 21], but it does not imply the 
shape of simple spot curves. Our characterization in Theorem 4.3 helps to decide if 
the model can be calibrated to market reference rates like LIBOR or other like SONIA, 
SOFR, SARON and ESTER. In particular, it helps to decide if the possible simple spot 
curves produced by the model, which are normal, inverse or humped, fit the shapes 
of empirical spot curves obtained from these reference rates. Also, comparing (1.4) to 
the CIR model with a Wiener driving process, we see that the stability index 𝛼 offers 
additional fit flexibility.

The paper is organized as follows. In Section 2 we present some basic facts on Lévy 
processes and the Markovian characterization of generating equations. Section 3 on the 
reducibility problem contains formulation of the main results including Theorem 3.1
and Theorem 3.3, examples and illustrative analysis of the case when 𝜈 has a density, 
resulting in Theorem 3.8. The proof of Theorem 3.1 and associated auxiliary results 
are postponed to Section 5. Section 4 is devoted to the description of shapes of simple 
spot curves.

2 Preliminaries

2.1 Basic facts on Lévy processes
Let 𝑍 := (𝑍1, 𝑍2, . . . , 𝑍𝑑) be a Lévy process in R𝑑 , 𝑑 ≥ 1, on some probability space 
(Ω,F , P) with a filtration {F𝑡 , 𝑡 ≥ 0}. If 𝑍 is a martingale, then it admits the following 
unique representation

𝑍 (𝑡) = 𝑊 (𝑡) + 𝑋 (𝑡), 𝑡 ≥ 0,
where 𝑊 is a Wiener process in R𝑑 with a covariance matrix 𝑄 and 𝑋 is the so-called 
jump martingale part of 𝑍 . It is independent of 𝑊 and can be described in terms of 
the jump measure of 𝑍 defined by

𝜋(𝑡, 𝐴) := ♯{𝑠 ∈ (0, 𝑡] : �𝑍 (𝑠) ∈ 𝐴}, 𝑡 ≥ 0, (2.1)

where �𝑍 (𝑠) := 𝑍 (𝑠) − 𝑍 (𝑠−) and 𝐴 ⊂ R𝑑 is a set separated from zero, i.e. 0 does 
not belong to the closure of 𝐴. With (2.1) at hand one defines the Lévy measure of 𝑍
by

𝜈(𝐴) := E
[
𝜋(1, 𝐴)

]
.

Then 𝑋 can be written as

𝑋 (𝑡) :=
∫ 𝑡

0

∫
R𝑑

𝑦 (𝜋(d𝑠, d𝑦) − d𝑠 𝜈(d𝑦)), 𝑡 ≥ 0,
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and its properties can be formulated in terms of the measure 𝜈. The integrability of 𝑋
is equivalent to the condition∫

R𝑑
(|𝑦 |2 ∧ |𝑦 |)𝜈(d𝑦) < +∞, (2.2)

while the variation of paths of 𝑋 is almost surely locally finite if and only if∫
|𝑦 |<1

|𝑦 | 𝜈(d𝑦) < +∞. (2.3)

In our notation |·| stands for the standard norm in R𝑑 and 〈·, ·〉 for the standard scalar 
product.

By the independence of 𝑋 and 𝑊 we see that, for 𝜆 ∈ R𝑑 ,

E

[
𝑒−〈𝜆,𝑍 (𝑡 ) 〉

]
= E

[
𝑒−〈𝜆,𝑊 (𝑡 ) 〉

]
· E

[
𝑒−〈𝜆,𝑋 (𝑡 ) 〉

]
,

so the Laplace exponent 𝐽𝑍 of 𝑍 defined by

E

[
𝑒−〈𝜆,𝑍 (𝑡 ) 〉

]
= 𝑒𝑡 𝐽𝑍 (𝜆)

exists at 𝜆 if and only if 𝐽𝑋 (𝜆) is finite. The latter property is equivalent to the condition∫
|𝑦 |>1

𝑒−〈𝜆,𝑦〉𝜈(d𝑦) < +∞. (2.4)

If (2.4) holds, then

𝐽𝑋 (𝜆) =
∫
R𝑑

(𝑒−〈𝜆,𝑦〉 − 1 + 〈𝜆, 𝑦〉)𝜈(d𝑦), (2.5)

and, consequently,

𝐽𝑍 (𝜆) = 𝐽𝑊 (𝜆) + 𝐽𝑋 (𝜆)

=
1
2
〈𝑄𝜆, 𝜆〉 +

∫
R𝑑

(𝑒−〈𝜆,𝑦〉 − 1 + 〈𝜆, 𝑦〉)𝜈(d𝑦). (2.6)

It follows, in particular, that the process 𝑍 is uniquely determined by the pair (𝑄, 𝜈).

2.2 Markovian characterization of generating equations
It was shown in [17, Theorem 5.3] that the generator of a general nonnegative Marko-
vian short rate generating an affine model is of the form

A 𝑓 (𝑥) = 𝑐𝑥 𝑓 ′′ (𝑥) + (𝛽𝑥 + 𝛾) 𝑓 ′ (𝑥) (2.7)

+

∫
(0,+∞)

(
𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥) − 𝑓 ′ (𝑥)(1 ∧ 𝑣)

)
(𝑚(d𝑣) + 𝑥𝜇(d𝑣)), 𝑥 ≥ 0,

for 𝑓 ∈ L(Λ) ∪ 𝐶2
𝑐 (R+), where L(Λ) is the linear hull of Λ := { 𝑓𝜆 := 𝑒−𝜆𝑥 , 𝜆 ∈

(0, +∞)} and 𝐶2
𝑐 (R+) stands for the set of twice continuously differentiable functions 
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with compact support in [0,+∞). In the equation above 𝑐, 𝛾 ≥ 0, 𝛽 ∈ R and 𝑚(d𝑣), 
𝜇(d𝑣) are nonnegative Borel measures on (0,+∞) satisfying∫

(0,+∞)

(1 ∧ 𝑣)𝑚(d𝑣) +
∫
(0,+∞)

(1 ∧ 𝑣2)𝜇(d𝑣) < +∞. (2.8)

Moreover, the functions 𝐴(·), 𝐵(·) in (1.1) are uniquely determined by the form of the 
generator (2.7), for details see [17].

The application of the above given characterization to the case when 𝑅 is given 
by (1.5) leads to necessary and sufficient conditions making (1.5) a generating equation, 
for the proof see Proposition 2.2 in [4]. To formulate these conditions we need to 
introduce a family of measures related to the pair (𝐺, 𝑍). For 𝑥 ≥ 0 we define the 
measure

𝜈𝐺 (𝑥 ) (𝐴) := 𝜈{𝑦 ∈ R𝑑 : 〈𝐺 (𝑥), 𝑦〉 ∈ 𝐴}, 𝐴 ∈ B(R),
which is the image of the Lévy measure 𝜈 under the linear transformation 𝑦 ↦→

〈𝐺 (𝑥), 𝑦〉. This measure may have an atom at zero and therefore its restriction 
𝜈𝐺 (𝑥 ) (d𝑣) |𝑣≠0 is used below. The aforementioned conditions are as follows.

• The drift is affine

𝐹 (𝑥) = 𝑎𝑥 + 𝑏, where 𝑎 ∈ R, 𝑏 ≥

∫
(1,+∞)

(𝑣 − 1)𝜈𝐺 (0) (d𝑣). (2.9)

• The covariance matrix of the Wiener part of 𝑍 satisfies
1
2
〈𝑄𝐺 (𝑥), 𝐺 (𝑥)〉 = 𝑐𝑥, 𝑥 ≥ 0, (2.10)

with some 𝑐 ≥ 0.

• The jumps of 𝑍 and the function 𝐺 are such that

〈𝐺 (𝑥), �𝑍 (𝑡)〉 ≥ 0, 𝑥 ≥ 0, 𝑡 ≥ 0, (2.11)

𝜈𝐺 (0) (d𝑣) = 𝑚(d𝑣) and
∫
(0,+∞)

𝑣 𝜈𝐺 (0) (d𝑣) < +∞, (2.12)∫
(0,+∞)

(𝑣 ∧ 𝑣2)𝜇(d𝑣) < +∞, (2.13)

𝜈𝐺 (𝑥 ) (d𝑣) | (0,+∞)= 𝜈𝐺 (0) (d𝑣) | (0,+∞) +𝑥𝜇(d𝑣), 𝑥 ≥ 0. (2.14)

Moreover, (2.7) reads

A 𝑓 (𝑥) = 𝑐𝑥 𝑓 ′′ (𝑥) +
[
𝑎𝑥 + 𝑏 +

∫
(1,+∞)

(1 − 𝑣){𝜈𝐺 (0) (d𝑣) + 𝑥𝜇(d𝑣)}
]
𝑓 ′ (𝑥)

+

∫
(0,+∞)

[ 𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥) − 𝑓 ′ (𝑥)(1 ∧ 𝑣)]{𝜈𝐺 (0) (d𝑣) + 𝑥𝜇(d𝑣)}.

(2.15)

In particular, with the parameters 𝑎, 𝑏, 𝑐 and the measures 𝜈𝐺 (0) (d𝑣), 𝜇(d𝑣) from 
(2.15) at hand one can determine the zero coupon bond prices, for details see [17].

Note that the integrability requirements (2.12), (2.13) for the measures 𝑚(d𝑣), 
𝜇(d𝑣) are stronger than in (2.8). They appear due to the fact that 𝑍 is a martingale.
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Remark 2.1. Conditions (2.10)–(2.14) describe the law of the family of one-dimen-
sional Lévy processes 𝑍𝐺 (𝑥 ) (𝑡) := 〈𝐺 (𝑥), 𝑍 (𝑡)〉, 𝑥 ≥ 0. Conditions (2.10) and (2.14)
can be reformulated in terms of their Laplace exponents

𝐽𝑍𝐺 (𝑥) (𝑏) = 𝐽𝑍 (𝑏𝐺 (𝑥)) = 𝑐𝑏2 + 𝐽𝜈𝐺 (0) (𝑏) + 𝑥𝐽𝜇 (𝑏), 𝑏 ≥ 0, (2.16)

where 𝐽𝜇 (𝑏) :=
∫ +∞

0 (𝑒−𝑏𝑣 − 1 + 𝑏𝑣)𝜇(d𝑣) and 𝐽𝜈𝐺 (0) is defined analogously.
Remark 2.2. For the equation (1.4) with 𝛼 ∈ (1, 2) one can show that

𝑐 = 0, 𝜈𝐺 (0) = 0, 𝜇(d𝑣) = 1{𝑣>0}
1 

𝑣1+𝛼 d𝑣,

hence 𝜇(d𝑣) is an 𝛼-stable measure, for details see [5] or [6].
We start with an example of (1.5) where 𝑍 is an 𝛼-stable martingale in R𝑑, 𝑑 > 1, 

with 𝛼 ∈ (1, 2). Recall that its radial measure is given by (1.7). Since 𝑍 has no Wiener 
part, the Laplace exponent of the jump part 𝑋 of 𝑍 is identical with the Laplace 
exponent of 𝑍 and admits the following representation:

𝐽𝑋 (𝑧) =
∫
S𝑑−1

𝜆(d𝜉)
∫ +∞

0

(
𝑒−〈𝑧,𝑟 𝜉 〉 − 1 + 〈𝑧, 𝑟𝜉〉

) 1 
𝑟1+𝛼 d𝑟

=
∫
S𝑑−1

𝜆(d𝜉)
∫ +∞

0

(
𝑒−𝑟 〈𝑧, 𝜉 〉 − 1 + 𝑟 〈𝑧, 𝜉〉

) 1 
𝑟1+𝛼 d𝑟

= 𝑐𝛼

∫
S𝑑−1

〈𝑧, 𝜉〉𝛼𝜆(d𝜉), (2.17)

where 𝑐𝛼 := Γ(2− 𝛼)/(𝛼(𝛼 − 1)) and Γ stands for the Gamma function. In the above 
equation, we used the formula∫ +∞

0

(
𝑒−𝑢𝑣 − 1 + 𝑢𝑣

) 1 
𝑣1+𝛼 d𝑣 = 𝑐𝛼𝑢

𝛼 .

In the following example, assuming that 𝑍 is an 𝛼-stable martingale in R𝑑, we compute 
the condition ((2.19)) for the function 𝐺 in (1.5) so that this equation generates an 
affine model. This condition is sufficient and necessary when we assume that 𝑍 is 
𝛼-stable and 𝐺 (0) = 0.
Example 2.3. Let 𝑍 be an 𝛼-stable martingale in R𝑑 with the Laplace exponent (2.17)
and 𝐺 : [0, +∞) → [0, +∞)𝑑 , 𝐺 (0) = 0. Then the equation

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 〈𝐺 (𝑅(𝑡−)), d𝑍 (𝑡)〉, (2.18)

with 𝑎 ∈ R, 𝑏 ≥ 0, generates an affine model if and only if the function 𝐺 satisfies∫
S𝑑−1

〈𝐺 (𝑥), 𝜉〉𝛼𝜆(d𝜉) =
𝐶

𝑐𝛼
𝑥, 𝑥 ≥ 0, (2.19)

with 𝐶 ≥ 0. To prove this fact we need to show that (2.19) is equivalent to (2.16)
with some measure 𝜇(d𝑣). Since 𝑍 has no Wiener part and 𝜈𝐺 (0) (d𝑣) ≡ 0, we see 
that (2.16) takes the form

𝐽𝑍 (𝑏𝐺 (𝑥)) = 𝐽𝑋 (𝑏𝐺 (𝑥)) = 𝑥𝐽𝜇 (𝑏), 𝑥, 𝑏 ≥ 0.
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By (2.17)

𝐽𝑋 (𝑏𝐺 (𝑥)) = 𝑐𝛼

∫
S𝑑−1

〈𝑏𝐺 (𝑥), 𝜉〉𝛼𝜆(d𝜉) = 𝑐𝛼𝑏
𝛼

∫
S𝑑−1

〈𝐺 (𝑥), 𝜉〉𝛼𝜆(d𝜉).

Consequently,

𝑐𝛼𝑏
𝛼

∫
S𝑑−1

〈𝐺 (𝑥), 𝜉〉𝛼𝜆(d𝜉) = 𝑥𝐽𝜇 (𝑏),

holds if and only if

𝐽𝜇 (𝑏) = 𝐶𝑏𝛼, 
∫
S𝑑−1

〈𝐺 (𝑥), 𝜉〉𝛼𝜆(d𝜉) =
𝐶

𝑐𝛼
𝑥,

for some 𝐶 ≥ 0. Hence, 𝜇 is an 𝛼-stable measure and 𝐺 can be any function satisfy-
ing (2.19). It follows from Remark 2.2 and (2.15) that the generators of equations (2.18)
and (1.4) are identical, so are the related bond markets.

To see that already for 𝑑 = 2 there are many possibile forms of the function 
𝐺 = (𝐺1, 𝐺2), let us take 𝜆 = 𝛿 (1,0) + 𝛿 (0,1) (𝛿𝑎 denotes Dirac’s delta measure 
concentrated at the point 𝑎). Then condition (2.19) reads

𝐺1(𝑥)
𝛼 + 𝐺2(𝑥)

𝛼 =
𝐶

𝑐𝛼
𝑥

and is satisfied, for example, for

𝐺1(𝑥) =

(
𝐶

2𝑐𝛼
(1 + sin(𝑥))𝑥

)1/𝛼
, 𝐺2(𝑥) =

(
𝐶

2𝑐𝛼
(1 − sin(𝑥))𝑥

)1/𝛼
.

3 Reducibility of equations with multivariate noise

In this section we specify conditions for the equation (1.5), written now for convenience 
in the form

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 〈𝐺 (𝑅(𝑡−)), d𝑍 (𝑡)〉, 𝑅(0) = 𝑥 ≥ 0, 𝑡 > 0, (3.1)

to have the reducibility property. The affine form of the above drift is justified by (2.9). 
This means that (3.1) is supposed to generate the same bond prices as the equation

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 𝐶 · 𝑅(𝑡−)1/𝛼d𝑍𝛼 (𝑡), (3.2)

with 𝑎 ∈ R, 𝑏 ≥ 0, 𝐶 > 0 and an 𝛼-stable real-valued Lévy process 𝑍𝛼 with some 
𝛼 ∈ (1, 2). Recall that from Example 2.3 we know that each generating equation (3.1)
with 𝑍 being an 𝛼-stable process in R𝑑 has the reducibility property.

In (3.1), 𝐺 : R+ −→ R𝑑 and 𝑍 is a Lévy process and martingale in R𝑑, called a 
Lévy martingale for short. It is characterized by a covariance matrix 𝑄 of the Wiener 
part and a Lévy measure 𝜈 with polar decomposition

𝜈(𝐴) =
∫
S𝑑−1

∫ +∞

0
1𝐴(𝑟𝜉)𝛾𝜉 (d𝑟) 𝜆(d𝜉), 𝐴 ∈ B(R𝑑), (3.3)
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with a finite spherical measure 𝜆 on the unit sphere S𝑑−1 and some radial measures 
{𝛾𝜉 ; 𝜉 ∈ S𝑑−1}. To avoid technical complications we can assume, and we do, the 
nondegeneracy condition for the radial measures, i.e.

𝜉 ∈ supp(𝜆) =⇒ 𝛾𝜉 ≠ 0. (3.4)

If (3.4) is not satisfied, one can modify 𝜆 by cutting off the part of its support where 
the radial measures disappear. This operation clearly does not affect (3.3). Since 𝑍 is 
a martingale, it follows from (2.2) that∫

R𝑑
(|𝑦 |2 ∧ |𝑦 |)𝜈(d𝑦) =

∫
S𝑑−1

∫ +∞

0
(|𝑟𝜉 |2 ∧ |𝑟𝜉 |)𝛾𝜉 (d𝑟)𝜆(d𝜉) < +∞,

which means that ∫ +∞

0
(𝑟2 ∧ 𝑟)𝛾𝜉 (d𝑟) < +∞, 𝜉 ∈ supp(𝜆). (3.5)

If the jump part of 𝑍 has infinite variation, then it follows from (2.3) that∫
|𝑦 | ≤1

|𝑦 | 𝜈(𝑑𝑦) =
∫
S𝑑−1

∫ 1

0
𝑟 𝛾𝜉 (d𝑟) 𝜆(d𝜉) = +∞. (3.6)

We consider a condition stronger than (3.6), namely, that

𝜆(Γ𝜆) > 0, where Γ𝜆 :=
{
𝜉 ∈ supp(𝜆) :

∫ 1

0
𝑟𝛾𝜉 (𝑑𝑟) = +∞

}
. (3.7)

Consequently, if we assume that Γ𝜆 is not contained in any proper linear subspace of 
R𝑑 , i.e.

Linear span (Γ𝜆) = R𝑑 , (3.8)

then we obtain that

𝐺 (0) = 0. (3.9)

To see this, let us notice that, by (2.11) and (3.3), 𝜆
{
𝜉 ∈ S𝑑−1 : 〈𝐺 (0), 𝜉〉 < 0

}
= 0

which implies that
〈𝐺 (0), 𝜉〉 ≥ 0 for any 𝜉 ∈ supp (𝜆). (3.10)

By (2.12) we have∫ +∞

0
𝑣 𝜈𝐺 (0) (d𝑣) =

∫
R𝑑

〈𝐺 (0), 𝑦〉𝜈(d𝑦)

=
∫
S𝑑−1

〈𝐺 (0), 𝜉〉
∫ +∞

0
𝑟 𝛾𝜉 (d𝑟)𝜆(d𝜉) < +∞,

which, in view of (3.7), (3.8) and (3.10) implies (3.9). Obviously, (3.8) also implies 
that

Linear span (supp (𝜆)) = Linear span (supp (𝜈)) = R𝑑 . (3.11)

Notice that, for example, the measure 𝜆 = 𝛿 (1,0) + 𝛿 (0,1) from Example 2.3 with 
𝛾(1,0) (d𝑟) = 𝛾(0,1) (d𝑟) = 𝑟−1−𝛼d𝑟 , 𝛼 ∈ (1, 2), satisfies (3.7) as well as conditions 
(3.8) and (3.11).
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3.1 Main results
For 𝜉 ∈ supp(𝜆) let us consider the Laplace exponent related to the measure 𝛾𝜉 , i.e.

𝐽𝛾𝜉 (𝑏) =
∫ +∞

0
(𝑒−𝑏𝑟 − 1 + 𝑏𝑟) 𝛾𝜉 (d𝑟), 𝑏 ≥ 0.

We need the condition that there exists 𝐾 ≥ 1 such that

sup 
𝜉 ∈supp(𝜆)

𝐽𝛾𝜉 (𝑏) ≤ 𝐾 · inf 
𝜉 ∈supp(𝜆)

𝐽𝛾𝜉 (𝑏), 𝑏 ≥ 0. (3.12)

In Section 3.1.1 we show that (3.12) is satisfied in the class of tempered stable 
distributions, which is of great importance in finance, and formulate some more 
general sufficient conditions for (3.12) to hold, see Proposition 3.6 and the resulting 
Example 3.7. Condition (3.12) seems to be fundamental in this regard as there exist 
Lévy martingales 𝑍 for which (3.1) generates an affine short rate model without the 
reducibility property. Clearly, for such martingales (3.12) is not satisfied. An example 
of such a martingale and an equation (3.1) is the following:

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + (𝑅(𝑡−))1/𝛼1 d𝑍1(𝑡) + (𝑅(𝑡−))1/𝛼2 d𝑍2(𝑡),

𝑅(0) = 𝑥 ≥ 0, 𝑡 > 0,

where 𝑎 ∈ R, 𝑏 ≥ 0, 1 < 𝛼1 < 𝛼2 < 2 and 𝑍1(𝑡), 𝑍2 (𝑡) are independent, real 
stable martingales, with stability indices 𝛼1 and 𝛼2, and the Lévy measures 𝜈1(d𝑥) =
1{𝑥>0}𝑥

−1−𝛼1 d𝑥, 𝜈2(d𝑥) = 1{𝑥>0}𝑥
−1−𝛼2 d𝑥, respectively; see [4, Theorems 3.1, 3.8].

The main result of the paper is the following theorem.
Theorem 3.1. Let 𝑍 be a Lévy martingale with a covariance matrix 𝑄 of the Wiener 
part and a Lévy measure 𝜈 admitting the decomposition (3.3) with a spherical measure 
𝜆 satisfying (3.11) and radial measures {𝛾𝜉 ; 𝜉 ∈ S𝑑−1} satisfying (3.5) and (3.12). 
Let us also assume that (3.7) and (3.8) are satisfied or that (3.9) holds. Moreover, let 
𝐺 : [0, +∞) → R𝑑 be a continuous function such that

𝐺0 := lim 
𝑥→0+

𝐺 (𝑥) 
|𝐺 (𝑥) |

, (3.13)

exists.
Then if (3.1) generates an affine model, then for any 𝑥 ≥ 0 the Laplace exponent 

of the process 𝑍𝐺 (𝑥 ) = 〈𝐺 (𝑥), 𝑍〉 has the form

𝐽𝑍𝐺 (𝑥) (𝑏) = 𝐽𝑍 (𝑏𝐺 (𝑥)) = 𝐽𝑍𝐺 (0) (𝑏) + 𝑐𝑥𝑏2 + 𝛾𝑥𝑏𝛼, 𝑏 ≥ 0,

with 𝑐, 𝛾 ≥ 0, 𝛼 ∈ (1, 2).
The proof of Theorem 3.1 is presented in Subsection 5.2 and is preceded by some 

auxiliary results presented in Subsection 5.1.
From Theorem 3.1 the following corollaries and theorem follow.

Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied. If (3.1) is a generating 
equation, then for any 𝑥 ≥ 0 the Laplace exponent of the process 𝑍𝐺 (𝑥 ) = 〈𝐺 (𝑥), 𝑍〉
has the form

𝐽𝑍𝐺 (𝑥) (𝑏) = 𝐽𝑍 (𝑏𝐺 (𝑥)) = 𝛾𝑥𝑏𝛼, 𝑏 ≥ 0,
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with 𝛾 > 0, 𝛼 ∈ (1, 2). This means that the continuous (Wiener) part of the process 
𝑍𝐺 (𝑥 ) vanishes for all 𝑥 ≥ 0.

Proof. It follows from (2.10) that the Wiener part of 𝑍𝐺 (𝑥 ) satisfies

1
2
〈𝑄𝐺 (𝑥), 𝐺 (𝑥)〉 = 𝑐𝑥, 𝑥 ≥ 0 for some 𝑐 ≥ 0. (3.14)

Either directly by assumption (3.9) or by the assumptions (3.7) and (3.8) we get that 
𝐺 (0) = 0. By this and Theorem 3.1, the Laplace transform of the jump part of 𝑍
satisfies

𝐽𝑋 (𝑏𝐺 (𝑥)) = 𝛾𝑥𝑏𝛼, 𝑥 ≥ 0 for some 𝛾 ≥ 0, 𝛼 ∈ (1, 2). (3.15)

By (3.11) it follows that 𝛾 > 0. Condition (2.11) guarantees that for 𝐺0 defined 
by (3.13), 〈𝐺0, 𝑦〉 ≥ 0 for any 𝑦 ∈ supp 𝜈 and condition (3.11) guarantees that 𝑦 ↦→

〈𝐺0, 𝑦〉, 𝑦 ∈ supp 𝜈, does not vanish, hence 𝐽𝑋 (𝐺0) > 0. Consequently, from (3.15)
we obtain

lim 
𝑥→0+

𝛾𝑥 
|𝐺 (𝑥) |𝛼

= lim 
𝑥→0+

𝐽𝑋

(
𝐺 (𝑥) 
|𝐺 (𝑥) |

)
= 𝐽𝑋 (𝐺0) ∈ (0, +∞).

From this, lim𝑥→0+ |𝐺 (𝑥) | = 0 and from (3.14) we further have

〈𝑄𝐺0, 𝐺0〉 = lim 
𝑥→0+

〈𝑄𝐺 (𝑥), 𝐺 (𝑥)〉

|𝐺 (𝑥) |2
= lim 
𝑥→0+

𝛾𝑥 
|𝐺 (𝑥) |𝛼

2𝑐/𝛾 
|𝐺 (𝑥) |2−𝛼

=

{
0 if 𝑐 = 0,
+∞ if 𝑐 > 0.

Since 〈𝑄𝐺0, 𝐺0〉 ≠ +∞, we necessarily have 𝑐 = 0 which, in view of (3.14), means 
that the continuous (Wiener) part of 𝑍𝐺 (𝑥 ) vanishes. �

Theorem 3.3. For each generating equation (3.1) satisfying the assumptions of The-
orem 3.1 the generators of (3.1) and of (3.2) are identical for some 𝐶 > 0, so (3.1)
has the reducibility property.

Proof. It follows from Theorem 3.1, Corollary 3.2 and Remark 2.1 that each generating 
equation (3.1) satisfying assumptions of Theorem 3.1 satisfies conditions (2.10)–(2.14)
with

𝑐 = 0, 𝜈𝐺 (0) = 0, 𝜇(d𝑣) = 1{𝑣>0}
1 

𝑣1+𝛼 d𝑣, 𝛼 ∈ (1, 2).

�

Remark 3.4. In the formulation of Theorem 3.1 the assumption (3.13) can be replaced 
by the existence of the limit lim𝑥→+∞

𝐺 (𝑥 ) 
|𝐺 (𝑥 ) | . Under the latter condition, however, we 

were unable to prove Corollary 3.2.

3.1.1 Examples
Here we present some examples concerned with Theorem 3.1 and, in particular, with 
condition (3.12). We start with a class of tempered stable distributions. Recall that the 
Lévy measure of a tempered stable distribution has the form

𝜈(𝐴) =
∫
S𝑑−1

∫ +∞

0
1𝐴(𝑟𝜉)

𝑒−ℎ( 𝜉 )𝑟

𝑟1+𝛼 𝜆(d𝜉), 𝐴 ∈ B(R𝑑), (3.16)



On the reducibility of affine models with dependent Lévy factors 13

where ℎ : S𝑑−1 −→ (0, +∞) is a Borel function called a tempering exponent and 
𝛼 ∈ (1, 2) is the stability index. In fact, the range of values for 𝛼 can be extended to 
(−∞, 2) if one relaxes the requirement for the corresponding process to be a martingale. 
Tempered stable distributions were introduced in [23], but special cases were known 
earlier in finance. Of particular interest were one-dimensional processes, for instance, 
Variance Gamma Process [7] or the CGMY process of Carr, Geman, Madan and Yor, 
see [8]. The tempering function allows to flexibly control the tail heaviness, with the 
use of the value ℎ(𝜉), passing from light tails of the Gaussian case to the case of 
heavy-tailed 𝛼-stable distribution. The multivariate tempered stable distributions also 
appear in finance by exponential Lévy models and by pricing basket options, see [27] 
and [1].
Example 3.5 (Tempered stable distributions). Let 𝜈(d𝑦) be given by (3.16) with a 
bounded tempering function, i.e.

0 < 𝐴 ≤ ℎ(𝜉) ≤ 𝐵 < +∞, 𝜉 ∈ S𝑑−1. (3.17)

We show that then condition (3.12) is satisfied.
By (3.16) we see that for 𝜉 ∈ S𝑑−1 the radial measure has the form

𝛾𝜉 (d𝑟) =
𝑒−ℎ( 𝜉 )𝑟

𝑟1+𝛼 d𝑟, 𝑟 > 0,

and its Laplace exponent equals

𝐽𝛾𝜉 (𝑏) =
∫ +∞

0
(𝑒−𝑏𝑟 − 1 + 𝑏𝑟) ·

𝑒−ℎ( 𝜉 )𝑟

𝑟1+𝛼 d𝑟

= Γ(−𝛼)
[(

ℎ(𝜉) + 𝑏
)𝛼

− ℎ(𝜉)𝛼 − 𝛼𝑏ℎ(𝜉)𝛼−1
]
, 𝑏 ≥ 0,

see [9], p.121. By (3.17) we clearly have

𝐹 (𝐵, 𝑏) ≤ 𝐽𝛾𝜉 (𝑏) ≤ 𝐹 (𝐴, 𝑏), 𝑏 ≥ 0, 𝜉 ∈ S𝑑−1, (3.18)

with 𝐹 (𝐴, 𝑏) := Γ(−𝛼)
[(

𝐴 + 𝑏
)𝛼

− 𝐴𝛼 − 𝛼𝑏𝐴𝛼−1
]
, 𝐹 (𝐵, 𝑏) := Γ(−𝛼)

[(
𝐵 + 𝑏

)𝛼
−

𝐵𝛼 − 𝛼𝑏𝐵𝛼−1
]
. It follows from (3.18) that

sup𝜉 ∈supp(𝜆) 𝐽𝛾𝜉 (𝑏)

inf 𝜉 ∈supp(𝜆) 𝐽𝛾𝜉 (𝑏) 
≤ sup
𝑏≥0 

𝐹 (𝐴, 𝑏)

𝐹 (𝐵, 𝑏) 
,

so to show (3.12), it is sufficient to show that the quotient 𝐹 (𝐴, 𝑏)/𝐹 (𝐵, 𝑏) is bounded. 
It is however continuous, so we need to show that it has finite positive limits at zero 
and at infinity. But

lim 
𝑏→0

𝐹 (𝐴, 𝑏)

𝐹 (𝐵, 𝑏) 
= lim 
𝑏→0

(
𝐴 + 𝑏

)𝛼
− 𝐴𝛼 − 𝛼𝑏𝐴𝛼−1(

𝐵 + 𝑏
)𝛼

− 𝐵𝛼 − 𝛼𝑏𝐵𝛼−1
=

(
𝐴

𝐵

)𝛼−2
,

and

lim 
𝑏→∞

𝐹 (𝐴, 𝑏)

𝐹 (𝐵, 𝑏) 
= lim 
𝑏→+∞

(
𝐴 + 𝑏

)𝛼
− 𝐴𝛼 − 𝛼𝑏𝐴𝛼−1(

𝐵 + 𝑏
)𝛼

− 𝐵𝛼 − 𝛼𝑏𝐵𝛼−1
= 1,

so the conclusion follows.
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The following result provides some sufficient conditions for the condition (3.12)
to hold.
Proposition 3.6. Let 𝛾(d𝑟) and Γ(d𝑟) be two measures on (0,+∞) such that for any 
𝜉 ∈ supp(𝜆)

𝛾(𝐴) ≤ 𝛾𝜉 (𝐴) ≤ Γ(𝐴), 𝐴 ∈ B((0, +∞)), (3.19)

and

0 <

∫ +∞

0
(𝑟2 ∧ 𝑟) 𝛾(d𝑟) ≤

∫ +∞

0
(𝑟2 ∧ 𝑟) Γ(d𝑟) < +∞. (3.20)

If 
(∫ 1
𝜀

𝑟𝛾(d𝑟)
)
∧
(∫ 1/𝜀

1 𝑟2𝛾(d𝑟)
)

> 0 for all 𝜀 > 0 sufficiently close to 0 and there 
exist the limits

𝑞0 := lim sup
𝜀→0+ 

∫ 1
𝜀

𝑟Γ(d𝑟)∫ 1
𝜀

𝑟𝛾(d𝑟) 
, 𝑞∞ := lim sup

𝜀→0+ 

∫ 1/𝜀
1 𝑟2Γ(d𝑟)∫ 1/𝜀
1 𝑟2𝛾(d𝑟) 

,

and both are finite, then (3.12) is satisfied.

Proof. Under (3.19) we clearly have

𝐽𝛾 (𝑏) ≤ inf 
𝜉 ∈supp(𝜆)

𝐽𝛾𝜉 (𝑏) ≤ sup 
𝜉 ∈supp(𝜆)

𝐽𝛾𝜉 (𝑏) ≤ 𝐽Γ (𝑏), 𝑏 ≥ 0,

where

𝐽𝛾 (𝑏) :=
∫ +∞

0
(𝑒−𝑏𝑟 − 1 + 𝑏𝑟) 𝛾(d𝑟),

𝐽Γ (𝑏) :=
∫ +∞

0
(𝑒−𝑏𝑟 − 1 + 𝑏𝑟) Γ(d𝑟), 𝑏 ≥ 0.

Therefore (3.12) is implied by the condition

𝐽Γ (𝑏) ≤ 𝐾 · 𝐽𝛾 (𝑏), 𝑏 ≥ 0. (3.21)

Since the functions 𝐽𝛾 (·), 𝐽Γ (·) are continuous, hence bounded on compacts, (3.21) is 
satisfied with some 𝐾 ≥ 1 if and only if

𝑝∞ := lim sup
𝑏→+∞ 

𝐽Γ (𝑏) 
𝐽𝛾 (𝑏)

< +∞, (3.22)

and
𝑝0 := lim sup

𝑏→0+ 

𝐽Γ (𝑏) 
𝐽𝛾 (𝑏)

< +∞. (3.23)

In what follows we show that (3.22) and (3.23) indeed hold.
Let us notice that for 𝑥 ≥ 0

𝑒−𝑥 − 1 + 𝑥 ∼ 𝑥 ∧ 𝑥2,
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where the relation ∼ means that there exist universal positive numbers 𝑘 and 𝐾 such 
that

𝑘 · 𝑥 ∧ 𝑥2 ≤ 𝑒−𝑥 − 1 + 𝑥 ≤ 𝐾 · 𝑥 ∧ 𝑥2.

Thus, to prove (3.22) it is sufficient to prove that

lim sup
𝑏→+∞ 

∫ +∞

0 min(𝑏𝑟, 𝑏2𝑟2)Γ(d𝑟)∫ +∞

0 min(𝑏𝑟, 𝑏2𝑟2)𝛾(d𝑟) 

= lim sup
𝑏→+∞ 

∫ 1/𝑏
0 𝑏2𝑟2Γ(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟Γ(d𝑟)∫ 1/𝑏
0 𝑏2𝑟2𝛾(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟𝛾(d𝑟) 
< +∞.

Let us define the functions

𝐺 (𝑦) :=
∫
(𝑦,+∞)

𝑟Γ(d𝑟), 𝑔(𝑦) :=
∫
(𝑦,+∞)

𝑟𝛾(d𝑟), 𝑦 > 0.

By integration by parts,∫ 1/𝑏

0
𝑟2Γ(d𝑟) =

∫ 1/𝑏

0
𝑟 (−d𝐺 (𝑟)) = −𝑟 · 𝐺 (𝑟) |1/𝑏0 +

∫ 1/𝑏

0
𝐺 (𝑟)d𝑟. (3.24)

We fix 𝜀 > 0 and for 𝑦 ∈ (0, 𝜀) estimate

𝑦 · 𝐺 (𝑦) = 𝑦

∫ +∞

𝑦
𝑟Γ(d𝑟) =

∫ 𝜀

𝑦
𝑦𝑟Γ(d𝑟) + 𝑦 · 𝐺 (𝜀)

≤

∫ 𝜀

0
𝑟2Γ(d𝑟) + 𝑦 · 𝐺 (𝜀).

From this it follows
lim sup
𝑦→0+ 

𝑦 · 𝐺 (𝑦) ≤

∫ 𝜀

0
𝑟2Γ(d𝑟)

and by the finiteness of 
∫ 1

0 𝑟2Γ(d𝑟) and arbitrary choice of 𝜀, we get

lim sup
𝑦→0+ 

𝑦𝐺 (𝑦) = 0.

Thus, (3.24) takes the form∫ 1/𝑏

0
𝑟2Γ(d𝑟) =

∫ 1/𝑏

0
𝑟 (−d𝐺 (𝑟)) = −

1 
𝑏
· 𝐺

(
1 
𝑏

)
+

∫ 1/𝑏

0
𝐺 (𝑟)d𝑟.

Similarly, ∫ 1/𝑏

0
𝑟2𝛾(d𝑟) = −

1 
𝑏
· 𝑔

(
1 
𝑏

)
+

∫ 1/𝑏

0
𝑔(𝑟)d𝑟.

Now we calculate

lim sup
𝑏→+∞ 

∫ 1/𝑏
0 𝑏2𝑟2Γ(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟Γ(d𝑟)∫ 1/𝑏
0 𝑏2𝑟2𝛾(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟𝛾(d𝑟) 
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= lim sup
𝑏→+∞ 

𝑏2
(
− 1 
𝑏 · 𝐺

( 1 
𝑏

)
+
∫ 1/𝑏

0 𝐺 (𝑟)d𝑟
)
+ 𝑏 · 𝐺

( 1 
𝑏

)
𝑏2

(
− 1 
𝑏 · 𝑔

( 1 
𝑏

)
+
∫ 1/𝑏

0 𝑔(𝑟)d𝑟
)
+ 𝑏 · 𝑔

( 1 
𝑏

)

= lim sup
𝑏→+∞ 

∫ 1/𝑏
0 𝐺 (𝑟)d𝑟∫ 1/𝑏
0 𝑔(𝑟)d𝑟 

< +∞,

where the last estimate follows from the assumption

𝑞0 = lim sup
𝑦→0+ 

∫ 1
𝑦

𝑟Γ(d𝑟)∫ 1
𝑦

𝑟Γ(d𝑟)
< +∞

and the finiteness of 
∫ +∞

1 𝑟Γ(d𝑟), which yields that the ratio 𝐺 (𝑟)/𝑔(𝑟) is separated 
from +∞ for 𝑟 sufficiently close to 0.

To prove (3.23) it is sufficient to show that

lim sup
𝑏→0+ 

∫ +∞

0 min(𝑏𝑟, 𝑏2𝑟2)Γ(d𝑟)∫ +∞

0 min(𝑏𝑟, 𝑏2𝑟2)𝛾(d𝑟) 

= lim sup
𝑏→0+ 

∫ 1/𝑏
0 𝑏2𝑟2Γ(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟Γ(d𝑟)∫ 1/𝑏
0 𝑏2𝑟2𝛾(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟𝛾(d𝑟) 
< +∞.

We define

𝑄(𝑦) :=
∫
(0,𝑦 ]

𝑟2Γ(d𝑟), 𝑞(𝑦) :=
∫
(0,𝑦 ]

𝑟2𝛾(d𝑟), 𝑦 > 0.

By integration by parts,∫ +∞

1/𝑏
𝑟Γ(d𝑟) =

∫ +∞

1/𝑏

1
𝑟

d𝑄(𝑟) =
1
𝑟
𝑄(𝑟) |+∞1/𝑏 +

∫ +∞

1/𝑏

𝑄(𝑟)

𝑟2 d𝑟. (3.25)

We fix 𝑀 > 0 and for 𝑦 ∈ (𝑀, +∞) estimate

1 
𝑦
𝑄(𝑦) =

1 
𝑦

∫ 𝑦

0
𝑟2Γ(d𝑟) =

1 
𝑦

∫ 𝑀

0
𝑟2Γ(d𝑟) +

∫ 𝑦

𝑀

𝑟

𝑦
𝑟Γ(d𝑟)

≤
1 
𝑦
𝑄(𝑀) +

∫ +∞

𝑀
𝑟Γ(d𝑟).

From this it follows
lim sup
𝑦→+∞ 

1 
𝑦
𝑄(𝑦) ≤

∫ +∞

𝑀
𝑟Γ(d𝑟)

and by the finiteness of 
∫ +∞

1 𝑟Γ(d𝑟) and arbitrary choice of 𝑀 , we get

lim sup
𝑦→+∞ 

1 
𝑦
𝑄(𝑦) = 0.
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Thus, (3.25) takes the form∫ +∞

1/𝑏
𝑟Γ(d𝑟) = −𝑏𝑄

(
1 
𝑏

)
+

∫ +∞

1/𝑏

𝑄(𝑟)

𝑟2 d𝑟.

Similarly, ∫ 1/𝑏

0
𝑟2𝛾(d𝑟) = −𝑏𝑞

(
1 
𝑏

)
+

∫ +∞

1/𝑏

𝑞(𝑟)

𝑟2 d𝑟.

Now we calculate

lim sup
𝑏→0+ 

∫ 1/𝑏
0 𝑏2𝑟2Γ(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟Γ(d𝑟)∫ 1/𝑏
0 𝑏2𝑟2𝛾(d𝑥) +

∫ +∞

1/𝑏 𝑏𝑟𝛾(d𝑟) 

= lim sup
𝑏→0+ 

𝑏2𝑄
( 1 
𝑏

)
+ 𝑏

(
−𝑏𝑄

( 1 
𝑏

)
+
∫ +∞

1/𝑏 𝑄(𝑟) d𝑟
𝑟2

)
𝑏2𝑞

( 1 
𝑏

)
+ 𝑏

(
−𝑏𝑞

( 1 
𝑏

)
+
∫ +∞

1/𝑏 𝑞(𝑟) d𝑟
𝑟2

)

= lim sup
𝑏→0+ 

∫ +∞

1/𝑏 𝑄(𝑟) d𝑟
𝑟2∫ +∞

1/𝑏 𝑞(𝑟) d𝑟
𝑟2

< +∞,

where the last estimate follows from the assumption

𝑞∞ = lim sup
𝑦→0+ 

∫ 1/𝑦
1 𝑟2Γ(d𝑟)∫ 1/𝑦
1 𝑟2Γ(d𝑟)

< +∞

and the finiteness of 
∫ 1

0 𝑟2Γ(d𝑟), which yields that the ratio 𝑄(𝑟)/𝑞(𝑟) is separated 
from +∞ for sufficiently large 𝑟 . �

Example 3.7 (Spherically balanced Lévy measure). Let us consider the case when 
the radial measures satisfy

𝛾(𝐴) ≤ 𝛾𝜉 (𝐴) ≤ 𝐾 · 𝛾(𝐴), 𝐴 ∈ B((0, +∞)),

with some finite constant 𝐾 ≥ 1 and a measure 𝛾 such that

0 <

∫ +∞

0
(𝑟2 ∧ 𝑟) 𝛾(d𝑟) < +∞

and 
(∫ 1
𝜀

𝑟𝛾(d𝑟)
)
∧
(∫ 1/𝜀

1 𝑟2𝛾(d𝑟)
)

> 0 for all 𝜀 > 0 sufficiently close to 0. Then 
𝑞0 ≤ 𝐾 and 𝑞∞ ≤ 𝐾 , so by Proposition 3.6 condition (3.12) is satisfied.

3.1.2 Jump measures with densities
In this subsection we formulate conditions required for the reducibility of (3.1) in the 
important case when the Lévy measure of 𝑍 has a density, i.e. 𝜈(d𝑥) = 𝑔(𝑥)d𝑥. Let 
us consider the polar transformation 𝜉 : 𝑃 := [0, 𝜋]𝑑−2 × [0, 2𝜋] → S𝑑−1 given by

𝜉1 = cos 𝛼1,
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𝜉2 = sin 𝛼1 · cos 𝛼2,

𝜉3 = sin 𝛼1 · sin 𝛼2 · cos 𝛼3,

...

𝜉𝑑−1 = sin 𝛼1 · sin 𝛼2 · . . . · sin 𝛼𝑑−2 · cos 𝛼𝑑−1,

𝜉𝑑 = sin 𝛼1 · sin 𝛼2 · . . . · sin 𝛼𝑑−2 · sin 𝛼𝑑−1.

The change of variables for polar coordinates 𝑥 = 𝑟𝜉 yields∫
R𝑑

𝑓 (𝑥)𝜈(d𝑥) =
∫
R𝑑

𝑓 (𝑥)𝑔(𝑥)d𝑥

=
∫
𝑃

∫ +∞

0

(
𝑓 (𝑟𝜉)𝑔(𝑟𝜉) · 𝑟𝑑−1 sin𝑑−2 𝛼1 · sin𝑑−3 𝛼2

· sin𝑑−4 𝛼3 · . . . · sin 𝛼𝑑−2
)

d𝑟 d𝛼1 · · · d𝛼𝑑−1, (3.26)

for a 𝜈-integrable function 𝑓 . Noting that

sin𝑑−2 𝛼1 · sin𝑑−3 𝛼2 · sin𝑑−4 𝛼3 · . . . · sin 𝛼𝑑−2

=
√

1 − 𝜉2
1 ·

√
1 − (𝜉2

1 + 𝜉2
2) · . . . ·

√
1 − (𝜉2

1 + · · · + 𝜉2
𝑑−2)

we write (3.26) in the form∫
S𝑑−1

∫ +∞

0
𝑓 (𝑟𝜉)𝑔(𝑟𝜉)𝑟𝑑−1

√
1 − 𝜉2

1

·

√
1 − (𝜉2

1 + 𝜉2
2) · . . . ·

√
1 − (𝜉2

1 + · · · + 𝜉2
𝑑−2) d𝑟 𝜆(d𝜉). (3.27)

In the above equation, 𝜆 stands for the image of the Lebesgue measure on 𝑃 under the 
transformation 𝜉 : 𝑃 → S𝑑−1 restricted to the set

G := {𝜉 ∈ S𝑑−1 : 𝑔(𝑟𝜉) � 0, 𝑟 ≥ 0}. (3.28)

This definition of 𝜆 is consistent with (3.4) and implies that

supp(𝜆) = G .

Theorem 3.8. Let 𝑍 be a Lévy martingale with a covariance matrix 𝑄 of the Wiener 
part and a Lévy measure with density 𝜈(d𝑥) = 𝑔(𝑥)d𝑥 satisfying the following condi-
tions:

a)
∫
R𝑑 (|𝑥 |

2 ∧ |𝑥 |) 𝑔(𝑥)d𝑥 < +∞,

b) Linear span(G) = R𝑑 with G given by (3.28),

c) 𝜆
(
𝜉 ∈ G :

∫ 1
0 𝑟𝑑𝑔(𝑟𝜉)d𝑟 = +∞

)
> 0.

Let us define the functions

𝑔(𝑟) := inf 
|𝑥 |=𝑟

𝑔(𝑥)

√
1 −

𝑥2
1

|𝑥 |2
·

√
1 −

𝑥2
1 + 𝑥2

2

|𝑥 |2
· . . . ·

√
1 −

𝑥2
1 + 𝑥2

2 + · · · + 𝑥2
𝑑−2

|𝑥 |2
, 𝑟 ≥ 0,

(3.29)
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𝑔(𝑟) := sup 
|𝑥 |=𝑟

𝑔(𝑥)

√
1 −

𝑥2
1

|𝑥 |2
·

√
1 −

𝑥2
1 + 𝑥2

2

|𝑥 |2
· . . . ·

√
1 −

𝑥2
1 + 𝑥2

2 + · · · + 𝑥2
𝑑−2

|𝑥 |2
, 𝑟 ≥ 0,

(3.30)

and assume that they satisfy

0 <

∫ +∞

0
(𝑟𝑑 ∧ 𝑟𝑑+1) 𝑔(𝑟)d𝑟 ≤

∫ +∞

0
(𝑟𝑑 ∧ 𝑟𝑑+1) 𝑔(𝑟)d𝑟 < +∞, (3.31)

and

lim sup
𝜀→0+ 

∫ 1
𝜀

𝑟𝑑𝑔(𝑟)d𝑟∫ 1
𝜀

𝑟𝑑𝑔(𝑟)d𝑟
< +∞ and lim sup

𝜀→0+ 

∫ 1/𝜀
1 𝑟𝑑+1𝑔(𝑟)d𝑟∫ 1/𝜀
1 𝑟𝑑+1𝑔(𝑟)d𝑟

< +∞, (3.32)

and the denominators in (3.32) are positive for all 𝜀 > 0 sufficiently close to 0. Let us 
also assume that 𝐺 : [0, +∞) −→ R𝑑 is a continuous function such that

𝐺0 := lim 
𝑥→0+

𝐺 (𝑥) 
|𝐺 (𝑥) |

,

exists.
Then, if (3.1) generates an affine model, then it has the reducibility property.

Proof. The proof is based on Theorem 3.1, so we check the required assumptions. 
By (𝑎) we see that (3.5) holds while the assumption (𝑏) on the spherical measure 𝜆 is 
equivalent to (3.11). In view of (3.27) the radial measures have the form

𝛾𝜉 (d𝑟) = 𝑔(𝑟𝜉)𝑟𝑑−1
√

1 − 𝜉2
1 ·

√
1 − (𝜉2

1 + 𝜉2
2) · . . . ·

√
1 − (𝜉2

1 + · · · + 𝜉2
𝑑−2) d𝑟,

(3.33)

which implies the following equivalence, for 𝜉 ∈ G,∫ 1

0
𝑟𝛾𝜉 (d𝑟) = +∞ ⇐⇒ 

∫ 1

0
𝑟𝑑𝑔(𝑟𝜉)d𝑟 = +∞.

This means that (𝑐) implies (3.7). Now, with the use of Proposition 3.6, we argue 
that (3.12) is also satisfied. In view of (3.33), (3.29) and (3.30) we have

𝑔(𝑟)𝑟𝑑−1d𝑟 ≤ 𝛾𝜉 (d𝑟) ≤ 𝑔(𝑟)𝑟𝑑−1d𝑟,

so we see that the radial measures are bounded from below by the measure 𝛾(d𝑟) :=
𝑔(𝑟)𝑟𝑑−1d𝑟 and from above by the measure and Γ(d𝑟) := 𝑔(𝑟)𝑟𝑑−1d𝑟 as required in 
Proposition 3.6. Moreover, by (3.31), these measures satisfy (3.20) and the assump-
tion (3.32) implies that the limits

𝑞0 := lim sup
𝜀→0+ 

∫ 1
𝜀

𝑟Γ(d𝑟)∫ 1
𝜀

𝑟𝛾(d𝑟) 
, 𝑞∞ := lim sup

𝜀→0+ 

∫ 1/𝜀
1 𝑟2Γ(d𝑟)∫ 1/𝜀
1 𝑟2𝛾(d𝑟) 

,

are finite. It follows from Proposition 3.6 that condition (3.12) is satisfied. �
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Remark 3.9. In the case 𝑑 = 2 the functions 𝑔(𝑟), 𝑔(𝑟) take a simple form, i.e.

𝑔(𝑟) := inf 
|𝑥 |=𝑟

𝑔(𝑥), 𝑔(𝑟) := sup 
|𝑥 |=𝑟

𝑔(𝑥), (3.34)

and therefore (3.31) and (3.32) in Theorem 3.8 provide simple conditions for the 
reducibility of (3.1).
Example 3.10. Let us consider the following density on the plane

𝑔(𝑥, 𝑦) := 𝑓 (𝑥2) · ℎ(𝑥2 + 𝑦2), with 𝑓 (𝑥) := 1 + 𝑒−𝑥
2
, ℎ(𝑧) :=

1 
𝑧𝛽

, 𝛽 ∈

(
3
2
, 2
)

.

We show that this density meets the assumptions of Theorem 3.8. Denoting 𝑥 := (𝑥, 𝑦)
and using the fact that 𝑓 is bounded by 2 we obtain∫

R2
(| 𝑥 |2 ∧ | 𝑥 |)𝑔(𝑥)d𝑥 ≤ 2

(∫
| �̃� | ≤1

| 𝑥 |2 ·
1 

| 𝑥 |2𝛽
d𝑥 +

∫
| �̃� |>1

| 𝑥 | ·
1 

| 𝑥 |2𝛽
d𝑥
)

= 2
(∫

| �̃� | ≤1

1 
| 𝑥 |2𝛽−2 d𝑥 +

∫
| �̃� |>1

1 
| 𝑥 |2𝛽−1 d𝑥

)
< +∞,

because 𝛽 ∈
( 3

2 , 2
)
. Hence (𝑎) is satisfied. Since 𝑔 is strictly positive, we see that 

G = S1 and that (𝑏) is satisfied. For any 𝜉 = (𝜉1, 𝜉2) ∈ G we have
∫ 1

0
𝑟2𝑔(𝑟𝜉)d𝑟 =

∫ 1

0
𝑟2 𝑓 (𝑟𝜉1)ℎ(𝑟

2)d𝑟 =
∫ 1

0
(1 + 𝑒−𝑟 𝜉1)

1 
𝑟2𝛽−2 d𝑟 = +∞,

so condition (𝑐) is satisfied as well. Since 𝑓 is decreasing we obtain, for 𝑟 > 0,

𝑔(𝑟) = inf 
𝑥2+𝑦2=𝑟2

𝑓 (𝑥2)ℎ(𝑥2+𝑦2) = inf 
𝑥2∈[0,𝑟2 ]

𝑓 (𝑥2)ℎ(𝑟2) = 𝑓 (𝑟2)ℎ(𝑟2) = (1+𝑒−𝑟
2
)

1 
𝑟2𝛽 ,

and
𝑔(𝑟) = sup 

𝑥2+𝑦2=𝑟2
𝑓 (𝑥2)ℎ(𝑥2 + 𝑦2) = 𝑓 (0)ℎ(𝑟2) =

2 
𝑟2𝛽 .

Condition (3.31) follows from the estimations∫ 1

0
𝑟3𝑔(𝑟)d𝑟 =

∫ 1

0
𝑟3 2 

𝑟2𝛽 d𝑟 =
∫ 1

0

2 
𝑟2𝛽−3 d𝑟 < +∞,∫ +∞

1
𝑟2𝑔(𝑟)d𝑟 =

∫ 1

0

2 
𝑟2𝛽−2 d𝑟 < +∞,

which are true because 𝛽 ∈ ( 3
2 , 2). From the inequality

𝑔(𝑟) ≤ 2 · 𝑔(𝑟), 𝑟 > 0,

we deduce (3.32).
It is clear from the above analysis that 𝑓 can be replaced by any function separated 

from 0 and +∞.
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4 Shapes of simple forward curves

We would like to characterize the shape of a simple yield curve at time zero defined 
by

𝐹 (𝑥) =
1
𝑥

(
1 

𝑃(0, 𝑥)
− 1

)
, 𝑥 ≥ 0,

where
𝑃(0, 𝑥) = 𝑒−𝐴(𝑥 )−𝑅 (0)𝐵(𝑥 )

stands for the price at time 0 of a zero-coupon bond maturing at 𝑥 in the affine model. 
The short rate 𝑅(·) starting from 𝑅(0) > 0 is a process given by a generalized CIR 
equation

d𝑅(𝑡) = (𝑎𝑅(𝑡) + 𝑏)d𝑡 + 𝐶 · 𝑅(𝑡−)1/𝛼d𝑍𝛼 (𝑡), (4.1)

driven by a one-dimensional stable process with index 𝛼 ∈ (1, 2]. As we already 
mentioned, the functions 𝐴(·), 𝐵(·) are uniquely determined by the form of the 
generator of (4.1) and in our case it follows from [17] that they solve the following 
differential equations:

𝐴′ (𝑥) = F (𝐵(𝑥)), 𝐴(0) = 0, (4.2)
𝐵′ (𝑥) = R(𝐵(𝑥)), 𝐵(0) = 0, (4.3)

where

F (𝜆) := 𝑏𝜆, (4.4)
R(𝜆) := 1 + 𝑎𝜆 − 𝜂𝜆𝛼, (4.5)

with 𝑎 ∈ R, 𝑏 ≥ 0, 𝛼 ∈ (1, 2] and 0 < 𝜂 := 1
2𝐶

2 if 𝛼 ∈ (1, 2) while 𝜂 := 𝐶𝛼 · Γ(2−𝛼) 
𝛼(𝛼−1)

for 𝛼 = 2. Note that the function R(·) starts from 1 and has only one root 𝜆0 > 0. Its 
monotonicity depends on the sign of the parameter 𝑎. We have two cases.

• If 𝑎 ≤ 0 then

R is positive on [0, 𝜆0) and decreasing with R(0) = 1, (4.6)
R′ is negative and decreasing with R′ (0) = 𝑎. (4.7)

• If 𝑎 > 0 then

R is positive on [0, 𝜆0), increasing on [0, 𝜆0] and decreasing on
[𝜆0, 𝜆0),R(0) = 1, (4.8)

R′ is decreasing on [0, 𝜆0], positive on [0, 𝜆0) and negative on
[𝜆0, 𝜆0),R′ (0) = 𝑎, (4.9)

with some point 𝜆0 ∈ (0, 𝜆0).

It follows from the above and (4.3) that the function 𝐵 is increasing and
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lim 
𝑥→+∞

𝐵(𝑥) = 𝜆0. (4.10)

Our aim is to characterize the shape of the function

𝐹 (𝑥) =
𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 ) − 1

𝑥
,

where 𝑅 := 𝑅(0) in terms of the parameters 𝑅 > 0, 𝑎 ∈ R, 𝑏 ≥ 0, 𝜂 > 0, 𝛼 ∈ (1, 2].
First, by direct computations, one can characterize the behavior of 𝐹 (·) at zero and 

at infinity.
Proposition 4.1. The function 𝐹 (·) satisfies

lim 
𝑥→0+

𝐹 (𝑥) = 𝑅, (4.11)

lim 
𝑥→0+

𝐹′ (𝑥) =
1
2

[
𝑅2 + 𝑎𝑅 + 𝑏

]
(4.12)

and

lim 
𝑥→+∞

𝐹 (𝑥) =

{
0 if 𝑏 = 0,
+∞ if 𝑏 > 0.

(4.13)

Proof. By L’Hôpital’s rule, (4.2) and (4.3) we have

lim 
𝑥→0+

𝐹 (𝑥) = lim 
𝑥→0+

𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 ) (𝑏𝐵(𝑥) + 𝑅 ·R(𝐵(𝑥))) = 𝑅. (4.14)

For the case 𝑏 > 0, by (4.10), we have

𝐴(𝑥) = 𝐴(0) +
∫ 𝑥

0
𝐴′ (𝑣)d𝑣 = 𝑏 ·

∫ 𝑥

0
𝐵(𝑣)d𝑣 −→ 

𝑥→+∞
+∞,

and therefore

lim 
𝑥→+∞

𝐹 (𝑥) = lim 
𝑥→+∞

𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 ) (𝑏𝐵(𝑥) + 𝑅 ·R(𝐵(𝑥))) = +∞.

If 𝑏 = 0 then (4.10) implies that

lim 
𝑥→+∞

𝐹 (𝑥) = lim 
𝑥→+∞

𝑒𝑅·𝐵(𝑥 ) − 1
𝑥

= 0.

Since

𝐹′ (𝑥) =
1 
𝑥2

(
𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 ) [𝑥(𝐴′ (𝑥) + 𝑅 · 𝐵′ (𝑥)) − 1] + 1

)
, 𝑥 > 0, (4.15)

the application of L’Hôpital’s rule yields

lim 
𝑥→0+

𝐹′ (𝑥) = lim 
𝑥→0+

𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 )

2𝑥 

[
𝑥
(
𝐴′ (𝑥) + 𝑅𝐵′ (𝑥)

)2
+ 𝑥

(
𝐴′′ (𝑥) + 𝑅𝐵′′ (𝑥)

)]

= lim 
𝑥→0+

𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 )

2 

[(
𝐴′ (𝑥) + 𝑅𝐵′ (𝑥)

)2
+
(
𝐴′′ (𝑥) + 𝑅𝐵′′ (𝑥)

)]
.
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By (4.2)–(4.5) we obtain

𝐴′′ (𝑥) = 𝑏𝐵′ (𝑥) = 𝑏R(𝐵(𝑥)), 𝐵′′ (𝑥) = R′ (𝐵(𝑥)) ·R(𝐵(𝑥)),

and, consequently,

lim 
𝑥→0+

𝐹′ (𝑥) = lim 
𝑥→0+

𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 )

2 

[(
𝑏𝐵(𝑥) + 𝑅 ·R(𝐵(𝑥))

)2

+ 𝑏 ·R(𝐵(𝑥)) + 𝑅 ·R′ (𝐵(𝑥)) ·R(𝐵(𝑥))

]

=
1
2
[𝑅2 + 𝑏 + 𝑅𝑎] .

�

The monotonicity of 𝐹 (·) will be studied with the use of the auxiliary function 
defined by

𝐻 (𝑥) := 𝑒−𝑏
∫ 𝑥

0 𝐵(𝑣)d𝑣−𝑅𝐵(𝑥 ) − 1 + 𝑥
(
𝑏𝐵(𝑥) + 𝑅 ·R(𝐵(𝑥))

)
, 𝑥 > 0. (4.16)

with the following properties.
Proposition 4.2. (𝑎) For 𝑥 > 0 the functions 𝐹′ (·) and 𝐻 (·) have the same roots and

𝐹′ (𝑥) > 0 ⇐⇒ 𝐻 (𝑥) > 0. (4.17)

(𝑏) If 𝐻 (𝑥) = 0, 𝑥 > 0, then

𝐻′ (𝑥) = 𝑥 · 𝐺 (𝐵(𝑥)), (4.18)

where

𝐺 (𝜆) :=
(
𝑏𝜆 + 𝑅 ·R(𝜆)

)2
+R(𝜆)

(
𝑏 + 𝑅 ·R′ (𝜆)

)
, 𝜆 ∈ (0, 𝜆0). (4.19)

Proof. (𝑎) By (4.15) the condition 𝐹′ (𝑥) = 0, 𝑥 > 0, is equivalent to

𝑒𝐴(𝑥 )+𝑅·𝐵(𝑥 )
(
𝑥(𝐴′ (𝑥) + 𝑅𝐵′ (𝑥)) − 1

)
= −1,

which, in view of (4.2), (4.3) and (4.4), yields 𝐻 (𝑥) = 0. In the same way one 
proves (4.17).

(𝑏) It follows from (4.16) that

𝐻′ (𝑥) = − 𝑒−𝑏
∫ 𝑥

0 𝐵(𝑣)d𝑣−𝑅·𝐵(𝑥 )
(
𝑏𝐵(𝑥) + 𝑅 · 𝐵′ (𝑥)

)
+ 𝑏

(
𝐵(𝑥) + 𝑥𝐵′ (𝑥)

)
+ 𝑅

(
R(𝐵(𝑥)) + 𝑥R′ (𝐵(𝑥))𝐵′ (𝑥)

)
= −

[
𝐻 (𝑥) + 1 − 𝑥

(
𝑏𝐵(𝑥) + 𝑅 ·R(𝐵(𝑥))

)]
·
(
𝑏𝐵(𝑥) + 𝑅𝐵′ (𝑥)

)
+ 𝑏

(
𝐵(𝑥) + 𝑥𝐵′ (𝑥)

)
+ 𝑅

(
R(𝐵(𝑥)) + 𝑥R′ (𝐵(𝑥))𝐵′ (𝑥)

)
, 𝑥 > 0.
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If 𝑥 is a root of 𝐻 (·), then we obtain

𝐻′ (𝑥) = − 𝑏𝐵(𝑥) − 𝑅𝐵′ (𝑥) + 𝑥
(
𝑏𝐵(𝑥) + 𝑅𝐵′ (𝑥)

)2

+ 𝑏𝐵(𝑥) + 𝑥𝑏𝐵′ (𝑥) + 𝑅𝐵′ (𝑥) + 𝑥𝑅 ·R′ (𝐵(𝑥))𝐵′ (𝑥)

= 𝑥
(
𝑏𝐵(𝑥) + 𝑅𝐵′ (𝑥)

)2
+ 𝑥𝐵′ (𝑥)

(
𝑏 + 𝑅 ·R′ (𝐵(𝑥))

)
= 𝑥 · 𝐺 (𝐵(𝑥)).

�

Motivated by the asymptotic behavior of 𝐹, which depends on the parameter 𝑏, 
see (4.13), we distinguish two cases: 𝑏 = 0 and 𝑏 > 0.

Theorem 4.3. I) Let 𝑏 = 0.

(a) If 𝑎 ≤ 0 and 𝑅 + 𝑎 ≤ 0 then the curve 𝐹 (·) is inverse, i.e. decreases in 
(0, +∞).

(b) If 𝑎 ≤ 0 and 𝑅 + 𝑎 > 0 then the curve 𝐹 (·) is humped, i.e. increases in 
(0, 𝑥1) and decreases in (𝑥1, +∞) with some 𝑥1 > 0.

(c) If 𝑎 > 0 then the curve 𝐹 (·) is humped, i.e. increases in (0, 𝑥1) and 
decreases in (𝑥1, +∞) with some 𝑥1 > 0.

II) Let 𝑏 > 0. If

𝑏 + 𝑅 ·R′ (𝜆0) > 0, (4.20)

then 𝐹 (·) increases in (0, +∞). In particular, for any fixed model parameters 
𝑎 ∈ R, 𝑏 > 0, 𝜂 > 0, 𝛼 ∈ (1, 2] the curve is normal for small initial values 
𝐹 (0) = 𝑅, i.e. such that 𝑅 < − 𝑏

R′ (𝜆0 )
.

In view of the result above, we see how the curve shapes depend on the parameters 
𝑎, 𝑏, 𝐶 in the equation (4.1). They also depend on the initial value of the short rate 𝑅
and on the noise characteristics, which are hidden in the function R.

Proof. (𝐼) For 𝑏 = 0 the function 𝐺 (·) given by (4.19) simplifies to

𝐺 (𝜆) = 𝑅 ·R(𝜆)
[
𝑅 ·R(𝜆) +R′ (𝜆)

]
, 𝜆 ∈ (0, 𝜆0),

so it follows that the sign of 𝐺 (𝜆) is the same as the sign of the factor 𝑅 ·R(𝜆) +R′ (𝜆). 
By (4.6), (4.7), (4.8) and (4.9) we see that the function 𝜆 −→ 𝑅 ·R(𝜆) +R′ (𝜆) is

• decreasing in (0, 𝜆0) if 𝑎 ≤ 0,

• positive in (0, 𝜆0] and decreasing in (𝜆0, 𝜆0) if 𝑎 > 0.

Consequently, the function 𝐺 (·) may change the sign at most once. Since

𝐺 (0) = 𝑅(𝑅 + 𝑎),
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we obtain the following.

If 𝑎 ≤ 0 and 𝑅 + 𝑎 ≤ 0, then 𝐺 (𝜆) < 0, 𝜆 ∈ (0, 𝜆0). (4.21)
If 𝑎 ≤ 0 and 𝑅 + 𝑎 > 0, then 𝐺 (𝜆) > 0, 𝜆 ∈ (0, 𝜆∗), and 𝐺 (𝜆) < 0, 𝜆 ∈ (𝜆∗, 𝜆0),

(4.22)
where 𝜆∗ is the unique solution of the equation 𝑅 ·R(𝜆) = −R′ (𝜆).

If 𝑎 > 0 then 𝐺 (𝜆) > 0, 𝜆 ∈ (0, 𝜆∗), and 𝐺 (𝜆) < 0, 𝜆 ∈ (𝜆∗, 𝜆0), (4.23)
where 𝜆∗ > 𝜆0 is the unique solution of the equation 𝑅 ·R(𝜆) = −R′ (𝜆).

By (4.11), (4.13) and (4.12) we have

lim 
𝑥→0+

𝐹 (𝑥) = 𝑅 > 0, lim 
𝑥→0+

𝐹′ (𝑥) =
1
2
[𝑅(𝑅 + 𝑎)], and lim 

𝑥→+∞
𝐹 (𝑥) = 0. (4.24)

(𝑎) If 𝑅+𝑎 < 0, then 𝐹 (·) is decreasing close to zero. If 𝑥0 > 0 were a point where 
the monotonicity of 𝐹 changes then 𝐹′ (𝑥0) = 0. By Proposition 4.2, 𝐻 (𝑥0) = 0. But, 
by (4.18) we have that then

𝐻′ (𝑥0) = 𝑥0 · 𝐺 (𝐵(𝑥0)).

However, (4.21) implies that 𝐻′ (𝑥0) < 0, so 𝐻 (𝑥) < 0 for 𝑥 > 𝑥0 close to 𝑥0. Again, 
by Proposition 4.2, we obtain that 𝐹′ (𝑥) < 0, which means that 𝐹 (·) does not change 
its monotonicity.

(𝑏) Since 𝑅 + 𝑎 > 0, by (4.24), 𝐹 starts to increase from the value 𝑅 at zero. 
The monotonicity of 𝐹 must change at some point 𝑥0 as 𝐹 disappears at infinity, due 
to (4.24). If 𝑥0 is such that 𝐵(𝑥0) < 𝜆∗ then

𝐹′ (𝑥0) = 0 =⇒ 𝐻 (𝑥0) = 0 =⇒ 𝐻′ (𝑥0) = 𝑥0 · 𝐺 (𝐵(𝑥0)) > 0.

Consequently, 𝐻 (𝑥) > 0 for 𝑥 > 𝑥0 close to 𝑥0 and thus 𝐹′ (𝑥) > 0, so 𝐹 does not 
change the monotonicity at 𝑥0. So we conclude that 𝑥0 is such that 𝐵(𝑥0) ≥ 𝜆∗. Using 
similar arguments as above but based now on the negativity of 𝐺 in (𝜆∗, 𝜆0) it can be 
shown that there is no point where 𝐹 changes the monotonicity again.

(𝑐) One repeats the arguments from (𝑏).

(𝐼 𝐼) By (4.7) and (4.9) the function 𝜆 −→ 𝑏 + 𝑅 ·R′ (𝜆) is decreasing, so (4.20)
implies that

𝑏 + 𝑅𝑎 = 𝑏 + 𝑅 ·R′ (0) > 0 (4.25)

and

𝐺 (𝜆) =
(
𝑏𝜆 + 𝑅 ·R(𝜆)

)2
+R(𝜆)

(
𝑏 + 𝑅 ·R′ (𝜆)

)
> 0, 𝜆 ∈ (0, 𝜆0). (4.26)

By (4.12) and (4.25) we see that

lim 
𝑥→0

𝐹′ (𝑥) =
1
2
[𝑅2 + 𝑎𝑅 + 𝑏] > 0,
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so the function 𝐹 is increasing in the vicinity of zero. The monotonicity of 𝐹 cannot 
change at any point. Assume to the contrary that 𝐹′(𝑥0) = 0 for some 𝑥0 > 0. Then 
by Proposition 4.2 and (4.18) we have

𝐹′ (𝑥0) = 0 =⇒ 𝐻 (𝑥0) = 0 =⇒ 𝐻′ (𝑥0) = 𝑥0 · 𝐺 (𝐵(𝑥0)) > 0,

where the last inequality is a consequence of (4.26). This means that 𝐹 increases close 
to 𝑥0. �

5 Proofs of the main results

5.1 Auxiliary results
Let us consider the generating equation (3.1) with some function 𝐺 and a Lévy 
martingale 𝑍 with the Laplace exponent of its jump part 𝐽𝑋 (·), see (2.5) for definition. 
Our first aim is to estimate the function 𝐽𝑋 (𝑏𝐺 (𝑥)), 𝑏, 𝑥 ≥ 0, with the use of the 
function 𝐽𝑋 (𝑏𝐺0), 𝑏 ≥ 0, for 𝑥 such that 𝐺 (𝑥)/|𝐺 (𝑥) | is close to 𝐺0. The solution of 
this problem is presented in Lemma 5.1, Proposition 5.3 and Proposition 5.4.

Let 𝜌(d𝑣) be an auxiliary Lévy measure on (0,+∞) satisfying∫ +∞

0
(𝑣2 ∧ 𝑣)𝜌(d𝑣) < +∞, (5.1)

and

𝐽𝜌 (𝑧) :=
∫
(0,+∞)

(𝑒−𝑧𝑣 − 1 + 𝑧𝑣)𝜌(d𝑣), 𝑧 ≥ 0, (5.2)

The second aim of this section is to provide sufficient conditions for 𝐽𝜌 to be a power 
function. This problem is solved in Lemma 5.5 and Lemma 5.6.
Lemma 5.1. The function 𝐻 : [0, +∞) −→ R given by

𝐻 (𝑧) = 𝑒−𝑧 − 1 + 𝑧,

is convex, strictly increasing and

min{1, 𝑡2} · 𝐻 (𝑧) ≤ 𝐻 (𝑡𝑧) ≤ max{1, 𝑡2} · 𝐻 (𝑧), 𝑧 ≥ 0, 𝑡 > 0. (5.3)

Proof. Since 𝐻′ (𝑧) = 1− 𝑒−𝑧 the monotonicity and convexity of 𝐻 follows. For 𝑡 ≥ 1
it follows from the monotonicity of 𝐻 that

𝐻 (𝑡𝑧) ≥ 𝐻 (𝑧) = min{1, 𝑡2}𝐻 (𝑧).

Let us notice that the function

𝑡 ↦→
(1 − 𝑒−𝑡 )𝑡 
𝑒−𝑡 − 1 + 𝑡

, 𝑡 ≥ 0,

is strictly decreasing, with limit 2 at zero and 1 at infinity. This implies that

(𝑒−𝑡 − 1 + 𝑡) < (1 − 𝑒−𝑡 )𝑡 < 2(𝑒−𝑡 − 1 + 𝑡), 𝑡 ∈ (0, +∞). (5.4)
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From (5.4) we obtain

d
d𝑠

ln 𝐻 (𝑠) =
𝐻′ (𝑠)

𝐻 (𝑠) 
=

1 − 𝑒−𝑠

𝑒−𝑠 − 1 + 𝑠
≤

2
𝑠
, 𝑠 > 0,

and, consequently, we obtain that for 𝑡 ≥ 1

ln 𝐻 (𝑡𝑧) − ln 𝐻 (𝑧) ≤

∫ 𝑡 𝑧

𝑧

2
𝑠

d𝑠 = ln 𝑡2.

Thus

min{1, 𝑡2}𝐻 (𝑧) = 𝐻 (𝑧) ≤ 𝐻 (𝑡𝑧) ≤ 𝑡2𝐻 (𝑧) = max{1, 𝑡2}𝐻 (𝑧). (5.5)

Using the monotonicity of 𝐻 and (5.5) we see that for 𝑡 ∈ (0, 1)

𝐻 (𝑡𝑧) ≤ 𝐻 (𝑧) = 𝐻

(
1
𝑡
𝑡𝑧

)
≤

1 
𝑡2 𝐻 (𝑡𝑧),

so also for 𝑡 ∈ (0, 1)

min{1, 𝑡2}𝐻 (𝑧) = 𝑡2𝐻 (𝑧) ≤ 𝐻 (𝑡𝑧) ≤ 𝐻 (𝑧) = max{1, 𝑡2}𝐻 (𝑧).

�

Corollary 5.2. It follows from (5.3) and the formula

𝐽𝜌 (𝑧) :=
∫
(0,+∞)

𝐻 (𝑧𝑣)𝜌(d𝑣) < +∞

that the function 𝐽𝜌 satisfies

min
{

1, 𝑡2} · 𝐽𝜌 (𝑧) ≤ 𝐽𝜌 (𝑡𝑧) ≤ max
{

1, 𝑡2} · 𝐽𝜌 (𝑧), 𝑧 ≥ 0, 𝑡 > 0. (5.6)

Proposition 5.3. If (3.1) generates an affine model and 𝐺∞ is an arbitraty limit point 
of the set {

𝐺 (𝑥) 
|𝐺 (𝑥) |

: 𝑥 > 0
}

then
𝜈
{
𝑦 ∈ R𝑑 : 〈𝐺∞, 𝑦〉 < 0

}
= 0.

Proof. Assume that

𝜈
{
𝑦 ∈ R𝑑 : 〈𝐺∞, 𝑦〉 < 0

}
= 𝜈

{
𝑦 ∈ R𝑑 \ {0} :

〈
𝐺∞,

𝑦

|𝑦 |

〉
< 0

}
> 0.

Then there exists a natural 𝑛 such that for

𝑉𝑛 :=
{
𝑦 ∈ R𝑑 \ {0} :

〈
𝐺∞,

𝑦

|𝑦 |

〉
< −

1 
𝑛

}

one has 𝜈 (𝑉𝑛) > 0.
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Let 𝑥 be such that 



 𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞





 ≤ 1 
2𝑛

.

It follows from the Schwarz inequality that, for any 𝑦 ∈ R𝑑 ,




〈

𝐺 (𝑥) 
|𝐺 (𝑥) |

, 𝑦

〉
− 〈𝐺∞, 𝑦〉





 ≤




 𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞





 |𝑦 | ≤ 1 
2𝑛

|𝑦 | . (5.7)

Let 𝑦 ∈ 𝑉𝑛. From (5.7) and the definition of 𝑉𝑛 we estimate〈
𝐺 (𝑥) 
|𝐺 (𝑥) |

, 𝑦

〉
≤ 〈𝐺∞, 𝑦〉 +

1 
2𝑛

|𝑦 | < −
1 
𝑛
|𝑦 | +

1 
2𝑛

|𝑦 | = −
1 

2𝑛
|𝑦 | < 0.

Hence
𝜈

{
𝑦 ∈ R𝑑 :

〈
𝐺 (𝑥) 
|𝐺 (𝑥) |

, 𝑦

〉
< 0

}
≥ 𝜈 (𝑉𝑛) > 0

which is a contradiction to (2.11). �

Proposition 5.4. Let us assume that (3.1) is a generating equation and that 𝜈 has the 
form (3.3) where 𝜆 satisfies (3.11) and 𝛾𝜉 (d𝑟) satisfies (3.12). Let 𝐺∞ be any limit 
point of the set {

𝐺 (𝑥) 
|𝐺 (𝑥) |

: 𝑥 > 0
}

.

Define

𝑀𝐺∞
(𝑏) := 𝐽𝑋 (𝑏 · 𝐺∞) =

∫
S𝑑−1

∫ +∞

0
𝐻 (𝑏 〈𝐺∞, 𝑟 · 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉),

where 𝐻 (𝑧) := 𝑒−𝑧 − 1 + 𝑧. There exists a function 𝛿 : (0, 1) → (0, +∞) such that for 
any 𝜀0 > 0, any 𝑏 ≥ 0 and 𝑥 > 0 such that 




 𝐺 (𝑥 ) 
|𝐺 (𝑥 ) | − 𝐺∞




 ≤ 𝛿 (𝜀0) we have

(1 − 𝜀0) 𝑀𝐺∞
(𝑏 |𝐺 (𝑥) |) ≤ 𝐽𝑋 (𝑏𝐺 (𝑥)) ≤ (1 + 𝜀0) 𝑀𝐺∞

(𝑏 |𝐺 (𝑥) |). (5.8)

Proof. Let 𝜀 ∈ (0, 1) be such that

(1 + 𝜀)2
(

1 +
4𝐾𝜀 

(1 − 𝜀)3

)
≤ 1 + 𝜀0, 

(1 − 𝜀)2(
1 + 𝐾𝜀 

1−𝜀
) ≥ 1 − 𝜀0. (5.9)

Let us assume that

𝜆
{
𝜉 ∈ S𝑑−1 : 〈𝐺∞, 𝜉〉 > 0

}
= 𝜆

(
S𝑑−1) − 𝜆

{
𝜉 ∈ S𝑑−1 : 〈𝐺∞, 𝜉〉 = 0

}
= 1, (5.10)

(we can assume this, multiplying 𝜆 by a positive constant, provided that

𝜆
{
𝜉 ∈ S𝑑−1 : 〈𝐺∞, 𝜉〉 > 0

}
> 0,

otherwise it follows from Proposition 5.3 that we get a degenerated case

𝜆
(
S𝑑−1) = 𝜆

{
𝜉 ∈ S𝑑−1 : 〈𝐺∞, 𝜉〉 = 0

}
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where (3.11) is broken). Let 𝜂 ∈ (0, 1) be such that

𝜆
{
𝜉 ∈ S𝑑−1 : 0 < 〈𝐺∞, 𝜉〉 < 𝜂

}
≤ 𝜀. (5.11)

Moreover, by Proposition 5.3,

0 = 𝜈
{
𝑦 ∈ R𝑑 : 〈𝐺∞, 𝑦〉 < 0

}
=
∫
S𝑑−1

∫ +∞

0
𝑟 〈𝐺∞, 𝜉〉𝛾𝜉 (d𝑟)𝜆(d𝜉)

≥ 𝜆
{
𝜉 ∈ S𝑑−1 : 〈𝐺∞, 𝜉〉 < 0

}
· sup 
𝜉 ∈S𝑑−1

𝛾𝜉 (R+) ,

so it follows that
𝜆
{
𝜉 ∈ S𝑑−1 : 〈𝐺∞, 𝜉〉 < 0

}
= 0.

Let us define
V𝜂 =

{
𝜉 ∈ S𝑑−1 : 0 < 〈𝐺∞, 𝜉〉 < 𝜂

}
.

Let 𝑥 be such that 



 𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞





 ≤ 𝛿 (𝜀0) := 𝜂 · 𝜀.

From Lemma 5.1, for 𝑏, 𝑟 ≥ 0 and 𝜉 ∈ S𝑑−1 such that 〈𝐺∞, 𝜉〉 ∈ [0, 𝜂) we get 
estimates

𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) ≤ 𝐻

(
𝑏 · 𝑟 |𝐺 (𝑥) |

(
〈𝐺∞, 𝜉〉 +






〈

𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞, 𝜉

〉




))

≤ max
{
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 2 〈𝐺∞, 𝜉〉) , 𝐻

(
𝑏 · 𝑟 · |𝐺 (𝑥) | 2






〈

𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞, 𝜉

〉




)}

≤ max {𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 2𝜂) , 𝐻 (𝑏 · 𝑟 · |𝐺 (𝑥) | 2𝜂 · 𝜀)}

= 𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 2𝜂)
≤ 4𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) . (5.12)

It follows from (5.12), (5.11) and (3.12) that∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤ 4
∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤ 4𝜀 sup 
𝜉 ∈V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟)

≤ 4𝐾𝜀 inf 
𝜉 ∈S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) . (5.13)

From Lemma 5.1, for 𝑏, 𝑟 ≥ 0 and 𝜉 ∈ S𝑑−1 such that 〈𝐺∞, 𝜉〉 ∈ [𝜂, 1], we get further 
estimates

𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) ≤ 𝐻

(
𝑏 · 𝑟 |𝐺 (𝑥) |

(
〈𝐺∞, 𝜉〉 +






〈

𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞, 𝜉

〉




))
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≤ 𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | (〈𝐺∞, 𝜉〉 + 〈𝐺∞, 𝜉〉 𝜀))

≤ (1 + 𝜀)2 𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) , (5.14)

and

𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) ≥ 𝐻

(
𝑏 · 𝑟 |𝐺 (𝑥) |

(
〈𝐺∞, 𝜉〉 −






〈

𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺∞, 𝜉

〉




))

≥ 𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | (〈𝐺∞, 𝜉〉 − 〈𝐺∞, 𝜉〉 𝜀))

≥ (1 − 𝜀)2 𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) . (5.15)

Notice that by (5.10) and (5.11), 𝜆
(
S𝑑−1 \ V𝜂

)
≥ 1 − 𝜀. From (5.15) and then from 

𝜆
(
S𝑑−1 \ V𝜂

)
≥ 1 − 𝜀 and (5.13) we obtain∫

S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥

∫
S𝑑−1\V𝜂

∫ +∞

0
(1 − 𝜀)2 𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥ (1 − 𝜀)2
∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥ (1 − 𝜀)2 (1 − 𝜀) inf 
𝜉 ∈S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟)

≥
(1 − 𝜀)3

4𝐾𝜀 

∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉). (5.16)

From (5.16) and (5.14) we obtain

𝐽𝑋 (𝑏𝐺 (𝑥)) =
∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

+

∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤

∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

+
4𝐾𝜀 

(1 − 𝜀)3

∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤ (1 + 𝜀)2
(

1 +
4𝐾𝜀 

(1 − 𝜀)3

)∫
S𝑑−1

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉)

× 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

= (1 + 𝜀)2
(

1 +
4𝐾𝜀 

(1 − 𝜀)3

)
𝑀𝐺∞

(𝑏 · 𝑟 |𝐺 (𝑥) |) .

Hence
𝐽𝑋 (𝑏𝐺 (𝑥)) ≤ (1 + 𝜀)2

(
1 +

4𝐾𝜀 

(1 − 𝜀)3

)
𝑀𝐺∞

(𝑏 · 𝑟 |𝐺 (𝑥) |) . (5.17)
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In order to get the lower bound, let us notice that∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥

∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥ (1 − 𝜀) inf 
𝜉 ∈S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) ,

and ∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤

∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤ 𝜀 sup 
𝜉 ∈V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟)

≤ 𝐾𝜀 inf 
𝜉 ∈S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 𝜂) 𝛾𝜉 (d𝑟) .

Hence ∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥
1 − 𝜀

𝐾𝜀 

∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉), (5.18)

and from this we obtain∫
S𝑑−1

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

=
∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

+

∫
V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≤

(
1 +

𝐾𝜀 
1 − 𝜀

)∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉). (5.19)

From (5.15) and (5.19) we get

𝐽𝑋 (𝑏𝐺 (𝑥)) ≥

∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 〈𝐺 (𝑥), 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

≥ (1 − 𝜀)2
∫
S𝑑−1\V𝜂

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)
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≥
(1 − 𝜀)2(
1 + 𝐾𝜀 

1−𝜀
) ∫

S𝑑−1

∫ +∞

0
𝐻 (𝑏 · 𝑟 |𝐺 (𝑥) | 〈𝐺∞, 𝜉〉) 𝛾𝜉 (d𝑟) 𝜆(d𝜉)

=
(1 − 𝜀)2(
1 + 𝐾𝜀 

1−𝜀
)𝑀𝐺∞

(𝑏 · 𝑟 |𝐺 (𝑥) |) .

Hence

𝐽𝑋 (𝑏𝐺 (𝑥)) ≥
(1 − 𝜀)2(
1 + 𝐾𝜀 

1−𝜀
)𝑀𝐺∞

(𝑏 · 𝑟 |𝐺 (𝑥) |) . (5.20)

Now (5.8) follows from (5.17), (5.20) and (5.9). �

Lemma 5.5. Let 𝐽𝜌 be given by (5.2) with 𝜌(d𝑣) satisfying (5.1). Assume that

𝐽𝜌 (𝛽𝑏) = 𝜂𝐽𝜌 (𝑏), 𝑏 ≥ 0, (5.21)

and

𝐽𝜌 (𝛾𝑏) = 𝜃𝐽𝜌 (𝑏), 𝑏 ≥ 0, (5.22)

for some 𝛽 > 1, 𝛾 > 1 such that ln 𝛽/ln 𝛾 ∉ Q and 𝜂 > 1, 𝜃 > 1. Then

𝐽𝜌 (𝑏) = 𝐶𝑏𝛼, 𝑏 ≥ 0, (5.23)

for some 𝐶 > 0 and 𝛼 ∈ (1, 2).

Proof. By iterative application of (5.21) and (5.22) we see that for any 𝑚, 𝑛 ∈ N

𝐽𝜌 (𝛽
𝑚𝛾𝑛𝑏) = 𝜂𝑚𝜃𝑛𝐽𝜌 (𝑏), 𝑏 ≥ 0,

which can be written as

𝐽𝜌 (𝑏𝑒
𝑚 ln 𝛽+𝑛 ln 𝛾) = 𝑒𝑚 ln 𝜂+𝑛 ln 𝜃 𝐽𝜌 (𝑏), 𝑏 ≥ 0. (5.24)

In Lemma 5.6 below we prove that the set

𝐷 := {𝑚 ln 𝛽 − 𝑛 ln 𝛾; 𝑚, 𝑛 ∈ Z}

is dense in R. So, for any 𝛿 > 0 there exist 𝑚, 𝑛 ∈ Z, 𝑚 ≠ 0, such that

|𝑚 ln 𝛽 − 𝑛 ln 𝛾 | < 𝛿, (5.25)

and then, by (5.6) and (5.24), we obtain that

𝑒−2𝛿 ≤
𝑒𝑚 ln 𝜂

𝑒𝑛 ln 𝜃 =
𝐽𝜌 (𝑒

𝑚 ln 𝛽)

𝐽𝜌 (𝑒𝑛 ln 𝛾) 
≤ 𝑒2𝛿 . (5.26)

It follows from (5.25) that 



 ln 𝛽

ln 𝛾 
−

𝑛 
𝑚





 ≤ 𝛿

|𝑚 | ln 𝛾
,

and from (5.26) that 



 ln 𝜂

ln 𝜃 
−

𝑛 
𝑚





 ≤ 2𝛿 
|𝑚 | ln 𝜃

.
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Consequently, 



 ln 𝛽

ln 𝛾 
−

ln 𝜂

ln 𝜃 





 ≤ 𝛿

|𝑚 | ln 𝛾
+

2𝛿 
|𝑚 | ln 𝜃

≤
𝛿

ln 𝛾
+

2𝛿 
ln 𝜃

.

Letting 𝛿 −→ 0 yields
ln 𝛽

ln 𝛾 
=

ln 𝜂

ln 𝜃 
.

Let us define
𝛼 :=

ln 𝜂 
ln 𝛽

=
ln 𝜃 
ln 𝛾

> 0,

and put 𝑏 = 1 in (5.24). This gives

𝐽𝜌 (𝑒
𝑚 ln 𝛽+𝑛 ln 𝛾) = 𝐽𝜌 (1)

(
𝑒𝑚 ln 𝛽+𝑛 ln 𝛾)𝛼 ,

which means that 𝐽𝜌 (𝑏) = 𝐽𝜌 (1)𝑏𝛼 for 𝑏 from the set 𝑒𝐷 which is dense in [0, +∞). 
As 𝐽𝜌 is continuous, (5.23) follows. Finally, by Proposition 3.4 in [4] it follows 
that the function (0, +∞) � 𝑏 ↦→ 𝐽𝜌/𝑏 is strictly increasing, while the function 
(0, +∞) � 𝑏 ↦→ 𝐽𝜌/𝑏

2 is strictly decreasing on (0,+∞), hence 𝛼 ∈ (1, 2). �

The following result is strictly related to Weyl’s equidistribution theorem, see [26].
Lemma 5.6. Let 𝑝, 𝑞 > 0 be such that 𝑝/𝑞 ∉ Q. Let us define the set

𝐺 := {𝑚𝑝 + 𝑛𝑞; 𝑚, 𝑛, = 1, 2, . . .}.

Then for each 𝛿 > 0 there exists a number 𝑀 (𝛿) > 0 such that

∀𝑥 ≥ 𝑀 (𝛿) ∃ 𝑔 ∈ 𝐺 such that |𝑥 − 𝑔 | ≤ 𝛿.

Moreover, the set
𝐷 := {𝑚𝑝 + 𝑛𝑞; 𝑚, 𝑛 ∈ Z},

is dense in R.

Proof. Since 𝑝/𝑞 ∉ Q, at least one of 𝑝, 𝑞, say 𝑞, is irrational. For simplicity assume 
that 𝑝 = 1 and consider the sequence

𝑟 ( 𝑗𝑞), 𝑗 = 1, 2, . . . where 𝑟 (𝑥) := 𝑥 mod 1,

of fractional parts of the numbers 𝑗𝑞, 𝑗 = 1, 2, . . . . Recall that Weyl’s equidistribution 
theorem states that

lim 
𝑁−→+∞

♯{ 𝑗 ≤ 𝑁 : 𝑟 ( 𝑗𝑞) ∈ [𝑎, 𝑏]}

𝑁
= 𝑏 − 𝑎 (5.27)

for any [𝑎, 𝑏] ⊆ [0, 1) if and only if 𝑞 is irrational.
For fixed 𝛿 > 0 and 𝑛 such that 1/𝑛 < 𝛿, let us consider a partition of [0, 1) of the 

form

[0, 1) =
𝑛−1⋃
𝑘=0 

𝐴𝑘 , 𝐴𝑘 := [𝑘/𝑛, (𝑘 + 1)/𝑛).
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For a natural number 𝑁 , let us consider the set 𝑅𝑁 := {𝑟 ( 𝑗𝑞) : 𝑗 = 1, 2, . . . , 𝑁}. 
By (5.27), for each 𝑘 = 0, 1, . . . , 𝑛 − 1, there exists 𝑁𝑘 such that

𝑅𝑁𝑘 ∩ 𝐴𝑘 ≠ ∅.

Then for 𝑁 := max{𝑁0, 𝑁1, . . . , 𝑁𝑛−1} we have

𝑅𝑁 ∩ 𝐴𝑘 ≠ ∅, 𝑘 = 0, 1, . . . , 𝑛 − 1.

Let 𝑀 = 𝑀 (𝛿) := 𝑁𝑞. Then, for 𝑥 ≥ 𝑀 , there exists a number 𝑁𝑥 ≤ 𝑁 such that

|𝑟 (𝑁𝑥𝑞) − 𝑟 (𝑥) | ≤
1 
𝑛
. (5.28)

Then for the number
𝑔 := �𝑥� − �𝑁𝑥𝑞� + 𝑁𝑥𝑔 ∈ 𝐺

the following holds

|𝑥 − 𝑔 | = |𝑥 − (�𝑥� − �𝑁𝑥𝑞� + 𝑁𝑥𝑞) |

= | �𝑥� + 𝑟 (𝑥) − �𝑥� + �𝑁𝑥𝑞� − 𝑁𝑥𝑞 |

= |𝑟 (𝑥) − 𝑟 (𝑁𝑥𝑞) | ≤ 1/𝑛 < 𝛿,

where the last inequality follows from (5.28).
The density of 𝐷 is an immediate consequence of the first part of the Lemma. 

Indeed, for 𝑥 < 𝑀 (𝛿) and 𝑔 ∈ 𝐺 such that 𝑥 + 𝑔 > 𝑀 (𝛿) there exists �̃� ∈ 𝐺 such that 
|𝑥 + 𝑔 − �̃� | < 𝛿.

The general case with 𝑝 ≠ 1 can be proven in the same way but requires a 
generalized version of Weyl’s theorem, which says that the numbers 𝑟𝑝 (𝑛𝑞), 𝑛 =
1, 2, . . ., where 𝑟𝑝 (𝑥) := 𝑥 mod 𝑝, are equidistributed on [0, 𝑝) if and only if 𝑞/𝑝 ∉ Q. 
This can be proven by a straightforward modification of (5.27), noticing that

𝑥 mod 𝑝 = 𝑝 ·

(
𝑥

𝑝
mod 1

)
.

�

5.2 Proof of Theorem 3.1

By Remark 2.1 and Remark 2.2 the Laplace transform 𝐽𝑋 satisfies

𝐽𝑋 (𝑏𝐺 (𝑥)) = 𝐽𝜈𝐺 (0) (𝑏) + 𝑥𝐽𝜇 (𝑏), 𝑏, 𝑥 ≥ 0, (5.29)

where 𝜇(d𝑣) is the measure satisfying (2.13)–(2.14). By discussion preceding the 
formulation of Theorem 3.1 we have 𝐺 (0) = 0, hence (5.29) simpilfes to

𝐽𝑋 (𝑏𝐺 (𝑥)) = 𝑥𝐽𝜇 (𝑏), 𝑥 ≥ 0. (5.30)

Assumption (3.11) and (5.30) imply that 𝐽𝑋 (𝑦), 𝐽𝜇 (𝑏) > 0, 𝐺 (𝑥) ≠ 0, for 𝑦 ∈

R𝑑 \ {0}, 𝑏 > 0, 𝑥 > 0.
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Let 𝐺0 = lim𝑥→0+
𝐺 (𝑥 ) 
|𝐺 (𝑥 ) | . It follows from Proposition 5.4 that there exists a 

function 𝛿 : (0, +∞) → (0, +∞), such that for any 𝜀 > 0 from the inequality



 𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺0





 ≤ 𝛿(𝜀)

follows that for any 𝑏 ≥ 0

1 − 𝜀 ≤
𝐽𝑋

(
𝑏 𝐺 (𝑥 ) 
|𝐺 (𝑥 ) |

)
𝐽𝑋 (𝑏𝐺0)

≤ 1 + 𝜀.

Thus for any 𝜀 > 0 there exists 𝑚(𝜀) > 0, such that for 𝑥 ∈ (0, 𝑚(𝜀))



 𝐺 (𝑥) 
|𝐺 (𝑥) |

− 𝐺0





 ≤ 𝛿(𝜀),

and hence for any 𝑏 > 0

1 − 𝜀 ≤
𝐽𝑋

(
𝑏 𝐺 (𝑥 ) 
|𝐺 (𝑥 ) |

)
𝐽𝑋 (𝑏𝐺0)

≤ 1 + 𝜀.

Let us fix 𝛽 > 1 and take 𝑥1, 𝑥2 satisfying 0 < 𝑥1 ≤ 𝑥2 < 𝑚(𝜀), 𝛽 |𝐺 (𝑥1) | = |𝐺 (𝑥2) | >
0 (from the continuity of 𝐺 it follows that such 𝑥1 and 𝑥2 exist). Then for any 𝑏 > 0
and 𝑖 = 1, 2, by (5.30),

1 − 𝜀 ≤
𝐽𝑋

(
𝑏 𝐺 (𝑥𝑖 ) 
|𝐺 (𝑥𝑖 ) |

)
𝐽𝑋 (𝑏𝐺0)

=
𝑥𝑖𝐽𝜇

(
𝑏

|𝐺 (𝑥𝑖 ) |

)
𝐽𝑋 (𝑏𝐺0)

≤ 1 + 𝜀.

Hence for any 𝑏 > 0, taking �̃� = 𝛽 |𝐺 (𝑥1) | 𝑏 we get

1 − 𝜀

1 + 𝜀 
·
𝑥2
𝑥1

≤
𝐽𝜇

(
�̃�

|𝐺 (𝑥1 ) |

)
𝐽𝜇

(
�̃�

|𝐺 (𝑥2 ) |

) =
𝐽𝜇 (𝛽𝑏)

𝐽𝜇 (𝑏)
≤

1 + 𝜀 
1 − 𝜀

·
𝑥2
𝑥1

which yields
1 − 𝜀

1 + 𝜀 
·
𝐽𝜇 (𝛽𝑏)

𝐽𝜇 (𝑏)
≤

𝑥2
𝑥1

≤
1 + 𝜀 
1 − 𝜀

·
𝐽𝜇 (𝛽𝑏)

𝐽𝜇 (𝑏)
.

Since 𝜀 > 0 is arbitrary, taking 𝜀 → 0 and 𝑥1, 𝑥2 satisfying 0 < 𝑥1 ≤ 𝑥2 < 𝑚(𝜀), 
𝛽 |𝐺 (𝑥1) | = |𝐺 (𝑥2) | we obtain that

lim 
𝜀→0

𝑥2
𝑥1

= 𝜂,

where 𝜂 = 𝐽𝜇 (𝛽𝑏) /𝐽𝜇 (𝑏) > 1 is independent of 𝑏 > 0. Hence, for all 𝑏 ≥ 0 we have

𝐽𝜇 (𝛽𝑏) = 𝜂𝐽𝜇 (𝑏) .

Similarly, take 𝛾 > 1 such that ln 𝛽/ln 𝛾 ∉ Q. Reasoning similarly as before we 
get that there exists 𝜃 > 1, such that for all 𝑏 ≥ 0 we have

𝐽𝜇 (𝛾𝑏) = 𝜃𝐽𝜇 (𝑏) .

Now the thesis follows from Lemma 5.5 and the one to one correspondence between 
Laplace transforms and measures on [0,+∞), see [16], p. 233. �
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