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Abstract Multidimensional generalized backward stochastic differential equations (GBSDEs) 
are studied within a general filtration that supports a Brownian motion under weak assumptions 
on the associated data. The existence and uniqueness of solutions in 𝕃𝑝 for 𝑝 ∈ (1, 2) are 
established. The results apply to generators that are stochastic monotone in the 𝑦-variable, 
stochastic Lipschitz in the 𝑧-variable, and satisfy a general stochastic linear growth condition.
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1 Introduction

The theory of backward stochastic differential equations (BSDEs) has been thoroughly 
studied and shown to have a wide range of applications in various mathematical do
mains, including partial differential equations (PDEs) [43], stochastic control and 
differential games [29, 30], mathematical finance [17, 54], and other related fields. 
Bismut [5] originally introduced the concept as the adjoint equations related to stochas
tic Pontryagin maximum principles in stochastic control theory. Pardoux and Peng [46] 
were the first to study the general case of nonlinear multidimensional BSDEs. Roughly 
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speaking, for a finite horizon time 𝑇 ∈ (0, +∞), a solution of such equations, associ
ated with a terminal value 𝜉 and a generator (coefficient or driver) 𝑓 (𝜔, 𝑡, 𝑦, 𝑧), is a 
pair of stochastic processes (𝑌𝑡 , 𝑍𝑡 )𝑡≤𝑇 satisfying

𝑌𝑡 = 𝜉 +
∫ 𝑇

𝑡
𝑓 (𝑠,𝑌𝑠 , 𝑍𝑠)𝑑𝑠 −

∫ 𝑇

𝑡
𝑍𝑠𝑑𝑊𝑠 , 𝑡 ∈ [0, 𝑇], (1)

where 𝑊 = (𝑊𝑡 )𝑡≤𝑇 is a standard Brownian motion, and the solution process 
(𝑌𝑡 , 𝑍𝑡 )𝑡≤𝑇 is adapted to the natural filtration of 𝑊 . Under a uniform Lipschitz con
dition on the driver 𝑓 and a square integrability condition on 𝜉 and the process 
( 𝑓 (𝜔, 𝑡, 0, 0))𝑡≤𝑇 , the authors of [46] demonstrated the existence and uniqueness of a 
solution.

Following this work, many researchers have aimed to weaken the uniform Lips
chitz continuity constraint on the generator to address more interesting problems. In 
this context, significant research has been conducted on the existence, uniqueness, 
and comparison theorems for 𝕃2-solutions of the BSDE (1) with square-integrable 
parameters and a condition weaker than the Lipschitz one considered in [46]; see, 
e.g., [2, 26, 28], among others. However, in some practical applications, even when 
considering an appropriate condition on the generator 𝑓 weaker than the Lipschitz one, 
the terminal condition 𝜉 and the driver process ( 𝑓 (𝜔, 𝑡, 0, 0))𝑡≤𝑇 of the BSDE (1) are 
not necessarily assumed to be square-integrable. Consequently, considering BSDEs 
with 𝕃𝑝-integrable data and 𝕃𝑝-solutions for 𝑝 ≥ 1 has attracted significant interest 
over the last decade. Briand et al. [6] demonstrated the existence and uniqueness of 
𝕃
𝑝-solutions for 𝑝 ∈ (1, 2) of the BSDE (1) when the generator 𝑓 is monotonic in 𝑦

and Lipschitz continuous in 𝑧. For additional relevant works, see [10, 13, 24, 25, 53] 
and the references therein.

Using a new class of BSDEs that involves the integral with respect to a continu
ous nondecreasing process interpreted as the local time of a diffusion process on the 
boundary, Pardoux and Zhang [48] provided a probabilistic representation for a solu
tion of a system of parabolic and elliptic semilinear PDEs with the Neumann boundary 
conditions. This new type of BSDE is called Generalized BSDEs (GBSDEs). A so
lution of such equations is a pair of adapted processes (𝑌𝑡 , 𝑍𝑡 )𝑡≤𝑇 that satisfies the 
equation

𝑌𝑡 = 𝜉 +
∫ 𝑇

𝑡
𝑓 (𝑠,𝑌𝑠 , 𝑍𝑠)𝑑𝑠 +

∫ 𝑇

𝑡
𝑔(𝑠,𝑌𝑠)𝑑𝜅𝑠 −

∫ 𝑇

𝑡
𝑍𝑠𝑑𝑊𝑠 , 𝑡 ∈ [0, 𝑇] . (2)

Here:

• 𝜉 is an ℝ𝑑-valued ℱ𝑇 -measurable random variable,

• 𝑓 : Ω × [0, 𝑇] × ℝ
𝑑 × ℝ

𝑑×𝑘 → ℝ
𝑑 is an ℱ ⊗ ℬ([0, 𝑇]) ⊗ ℬ(ℝ𝑑) ⊗ ℬ(ℝ𝑑×𝑘)

measurable random function such that for any (𝑦, 𝑧) ∈ ℝ
𝑑 × ℝ

𝑑×𝑘 , the process 
(𝜔, 𝑡) ↦→ 𝑓 (𝜔, 𝑡, 𝑦, 𝑧) is progressively measurable,

• 𝑔 : Ω×[0, 𝑇]×ℝ𝑑 → ℝ
𝑑 is an ℱ⊗ℬ([0, 𝑇])⊗ℬ(ℝ𝑑)-measurable random func

tion such that for any 𝑦 ∈ ℝ
𝑑 , the process (𝜔, 𝑡) ↦→ 𝑔(𝜔, 𝑡, 𝑦) is progressively 

measurable,
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• 𝜅 = (𝜅𝑡 )𝑡≤𝑇 is an ℝ-valued adapted, continuous, nondecreasing process on 
[0, 𝑇].

Under a monotonicity assumption on the drivers 𝑓 and 𝑔, and appropriate 𝕃2-integ
rability conditions on the data, the authors established the existence and uniqueness 
of a solution using a convolution approximation. Extending this framework, Pardoux 
[45] addressed the discontinuous case by incorporating a jump term into (2), repre
sented by an independent Poisson random measure. More recently, Elmansouri and 
El Otmani [20, 21] demonstrated existence and uniqueness results for GBSDEs in 
a general filtration under similar or more general assumptions compared to those in 
[45, 48].

In contrast to the standard BSDE formulation (1), the introduction of the Stieltjes--
Lebesgue integral with respect to 𝜅 in (2) necessitates a refinement of the integrability 
conditions on the data (𝜉, 𝑓 , 𝑔). These conditions are stronger than those commonly 
considered in the literature for (1), which typically involve only (𝜉, 𝑓 ). This adjust
ment reflects the deeper connection between each class of BSDEs and their associated 
PDEs. For the classical BSDE (1), various authors have provided probabilistic repre
sentations of solutions to systems of semilinear PDEs, both parabolic and elliptic (see, 
e.g., [43, 44, 49]). Elliptic equations with Dirichlet boundary conditions based on (1) 
have been studied in [11], while homogeneous linear Neumann boundary conditions 
have been addressed in [31]. In all these works, the underlying Markovian process 
is either a classical diffusion driven by a Brownian motion, as in [11, 44, 49], or a 
reflecting Brownian motion involving its boundary local time, as in [31]. However, in 
the presence of a nonlinear Neumann boundary condition, a probabilistic interpreta
tion of the viscosity solution to a system of elliptic PDEs cannot be obtained via the 
standard BSDE (1). Instead, the generalized BSDE (5) must be employed, wherein the 
nonlinear term 𝑔 appears in the boundary condition, leading to the incorporation of 
the boundary local time process 𝜅. This change shifts the diffusion process from the 
classical to the reflected setting. Consequently, establishing a probabilistic represen
tation for solutions of parabolic PDEs with nonlinear Neumann boundary conditions 
requires the generalized BSDE (5), together with integrability assumptions on the data 
involving the process 𝜅, in order to ensure existence and uniqueness of a solution, as 
shown in [18, 45, 48], among others.

However, all the aforementioned works, concerning BSDE (1) or GBSDE (2), deal 
with square or 𝕃𝑝-integrable parameters and different weak conditions on the drivers 
only in a Brownian framework. In such a case, it is well known that the predictable 
representation property holds for every local martingale (see, e.g., Theorem 43 in [51, 
p. 186]). However, this is no longer valid for more general filtrations (see Section 
III.4 in [32]), and the description of a solution must include an extra martingale 
term orthogonal to 𝑊 . More precisely, for a filtration 𝔽 := (ℱ𝑡 )𝑡≤𝑇 carrying (or 
supporting) the Brownian motion 𝑊 , every right-continuous with left limits (RCLL) 
local martingale (𝒩𝑡 )𝑡≤𝑇 can be represented as (see, e.g., Lemma 4.24 in [32, p. 185])

𝒩𝑡 =
∫ 𝑡

0
𝑍𝑠𝑑𝑊𝑠 + 𝑀𝑡 , 𝑡 ∈ [0, 𝑇], (3)

for some predictable process (𝑍𝑡 )𝑡≤𝑇 such that 
∫ 𝑇

0 ∥𝑍𝑠 ∥2𝑑𝑠 < +∞ a.s. and an RCLL 
local martingale (𝑀𝑡 )𝑡≤𝑇 such that [𝑀,𝑊] = 0 a.s., where [𝑀,𝑊] denotes the co
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variation process of 𝑀 and 𝑊 . Therefore, in the general filtration setting 𝔽, the standard 
BSDE takes the form

𝑌𝑡 = 𝜉 +
∫ 𝑇

𝑡
𝑓 (𝑠,𝑌𝑠 , 𝑍𝑠)𝑑𝑠 −

∫ 𝑇

𝑡
𝑍𝑠𝑑𝑊𝑠 −

∫ 𝑇

𝑡
𝑑𝑀𝑠 , 𝑡 ∈ [0, 𝑇] . (4)

This type of BSDE (4) has been studied by Klimsiak and Rozkosz [35] in an arbi
trary complete probability space (Ω,ℱ , ℙ) equipped with a complete right-continuous 
filtration 𝔽, in the case where the driver 𝑓 depends only on the state variable 𝑦, and 
the noise source is given by a general RCLL martingale. Additionally, a probabilistic 
definition of solutions to semilinear elliptic equations with operators associated with 
regular Dirichlet forms is provided. In the case of a stochastic basis supporting a 
Brownian motion 𝑊 , Liang et al. [41] studied BSDEs of the form (4), where a con
nection with nonlinear PDEs involving integral operators is established. For RCLL 
martingales in a general filtration, this approach was developed in the groundbreaking 
works of Carbone et al. [7] and El Karoui and Huang [15] for classical BSDEs, and 
later by Elmansouri and El Otmani [21] for GBSDEs in a more general framework. In 
the same filtration context, but within the 𝕃𝑝-setup, Kruse and Popier [36, 37] studied 
the problem of 𝕃𝑝-solutions (𝑝 > 1) for BSDEs in a general filtration supporting a 
Brownian motion and an independent Poisson random measure. The authors proved 
the existence and uniqueness of a solution when the driver 𝑓 is monotone with respect 
to 𝑦 and uniformly Lipschitz with respect to 𝑧.

The general representation (3) in the filtration 𝔽 arises in several important cases, 
particularly in financial applications. In this context, Kusuoka [38] showed that the 
representation (3) holds when 𝔽 is the progressive enlargement of a Brownian filtration 
𝔾 by a default time 𝜏, which is not necessarily a 𝔾-stopping time. More precisely, one 
has ℱ𝑡 =

⋂︁
𝜀>0 ℱ0

𝑡+𝜀 where ℱ0
𝑡 := 𝒢𝑡 ∨ 𝜎(min(𝜏, 𝑡)). In such cases, the orthogonal 

martingale 𝑀 is given explicitly by

𝑀𝑡 =
∫ 𝑡

0
𝑈𝑠 (𝑑𝐷𝑠 − 𝛾𝑠𝑑𝑠),

where 𝐷𝑡 := 1{𝜏≤𝑡} and (𝛾𝑡 )𝑡≤𝑇 is an 𝔽-predictable intensity of 𝜏, while (𝑈𝑡)𝑡≤𝑇
is an 𝔽-predictable process such that 

∫ 𝑇

0 |𝑈𝑠 |2𝛾𝑠𝑑𝑠 < +∞ a.s. These representations 
have been widely used in the BSDE literature (see, e.g., [12, 50]). For further studies, 
we refer to Section 3.3 in Bielecki et al. [4], Theorem 2.1 in Jeanblanc and Le Cam 
[34], and [33]. Besides Lemma 4.24 in [32, p. 185], this structure (3) is also known 
as the Kunita–Watanabe decomposition, explicitly developed in [1] and used in [16] 
for pricing contingent claims under general information flows (i.e., not necessarily 
generated by a Brownian motion). This type of decomposition has also been analyzed 
in the restricted information setting by Ceci et al. [9], and applied to risk minimization 
via BSDE techniques in [8].

Compared to the existing literature, and to the best of our knowledge, the study 
of 𝕃𝑝-solutions for 𝑝 > 1 in a filtration generated by a Brownian motion 𝑊 has been 
primarily addressed in [47, Chapter 5], which also explores applications to PDEs, while 
GBSDEs in a more general filtration have been studied in the 𝕃2-case by Elmansouri 
and El Otmani [20, 21]. However, for 𝑝 ∈ (1, 2), 𝕃𝑝-solutions for GBSDEs in a 
general filtration 𝔽 have not been extensively investigated. More precisely, we consider 
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the generalized formulation of the BSDE (4) given by the multidimensional GBSDE

𝑌𝑡 = 𝜉 +
∫ 𝑇

𝑡
𝑓 (𝑠,𝑌𝑠 , 𝑍𝑠)𝑑𝑠+

∫ 𝑇

𝑡
𝑔(𝑠,𝑌𝑠)𝑑𝜅𝑠 −

∫ 𝑇

𝑡
𝑍𝑠𝑑𝑊𝑠 −

∫ 𝑇

𝑡
𝑑𝑀𝑠 , 𝑡 ∈ [0, 𝑇] .

(5)
The main idea here for the existence results is to study 𝕃2-solution for GBSDE (5), 
using and extending the general result from [21].

Motivated by the works mentioned above, it is naturally interesting to investigate 
the existence and uniqueness results for 𝕃𝑝-solutions (𝑝 ∈ (1, 2)) of multidimensional 
GBSDEs (5) under suitable, more general conditions on the data. To this end, under 
a stochastic monotonicity condition on 𝑓 and 𝑔 with respect to the 𝑦-variable, a 
stochastic Lipschitz condition on 𝑓 with respect to the 𝑧-variable, a general stochastic 
linear growth condition, and an appropriate 𝕃𝑝-integrability condition on the data, 
we aim to establish a general existence and uniqueness result for 𝕃𝑝-solutions of the 
multidimensional GBSDEs (5) for 𝑝 ∈ (1, 2).

In the sequel, we present several publications that studied the uniqueness and 
existence of 𝕃𝑝-solutions for BSDEs (1) with time-varying or stochastic monotonic 
conditions on the coefficient 𝑓 , since results for the GBSDE (5) have not been examined 
previously. Xiao et al. [52] consider the case where the driver 𝑔 satisfies a time-varying 
monotonicity condition in 𝑦, meaning that there exists a deterministic integrable 
function [0, 𝑇] ∋ 𝑡 ↦→ 𝛼𝑡 ∈ ℝ+ such that for each 𝑦, 𝑦′ ∈ ℝ

𝑑 and 𝑧 ∈ ℝ
𝑑×𝑘 ,

(𝑦 − 𝑦′) ( 𝑓 (𝜔, 𝑡, 𝑦, 𝑧) − 𝑓 (𝜔, 𝑡, 𝑦′, 𝑧)) ≤ 𝛼𝑡 |𝑦 − 𝑦′ |2 , 𝑑ℙ ⊗ 𝑑𝑡-a.e.,

and a time-varying Lipschitz continuity condition on 𝑧, meaning that there exists a 
deterministic square-integrable function [0, 𝑇] ∋ 𝑡 ↦→ 𝜂𝑡 ∈ ℝ+ such that, for any 
𝑧, 𝑧′ ∈ ℝ

𝑑×𝑘 ,

| 𝑓 (𝜔, 𝑡, 𝑦, 𝑧) − 𝑓 (𝜔, 𝑡, 𝑦, 𝑧′) | ≤ 𝜂𝑡 ∥𝑧 − 𝑧′ ∥ , 𝑑ℙ ⊗ 𝑑𝑡-a.e.

Under these conditions and appropriate 𝕃𝑝-integrability conditions on the data 𝜉 and 
the process ( 𝑓 (𝑡, 0, 0))𝑡≤𝑇 , the authors in [52] prove the existence and uniqueness 
of 𝕃𝑝-solutions for 𝑝 > 1 using the method of convolution and weak convergence. 
Pardoux and Răs, canu [47] also study existence and uniqueness results for 𝕃𝑝-solutions 
(𝑝 > 1) for multidimensional BSDEs of the form (1) and (2) (see [47, Chapter 5]) 
under different growth conditions, including the case where (𝛼𝑡)𝑡≤𝑇 , (𝜂𝑡 )𝑡≤𝑇 are 
deterministic functions and where 𝛼 takes values in ℝ as stochastic processes. They also 
provide the connection with semilinear PDEs and parabolic variational inequalities 
with a mixed nonlinear multivalued Neumann–Dirichlet boundary condition. Very 
recently, Li et al. [39] established the existence and uniqueness of 𝕃𝑝-solutions for 
the BSDE (1) under a stochastic monotonicity condition on the driver 𝑓 with respect 
to (𝑦, 𝑧). Specifically, for two given positive progressively measurable processes Ω ×
[0, 𝑇] ∋ (𝜔, 𝑡) ↦→ (𝛼𝑡 (𝜔), 𝜂𝑡 (𝜔)) ∈ ℝ+ ×ℝ+, as a direct extension of the earlier work 
by Li et al. [40] in the 𝕃2 case, the following conditions are assumed:

(𝑦 − 𝑦′) ( 𝑓 (𝜔, 𝑡, 𝑦, 𝑧) − 𝑓 (𝜔, 𝑡, 𝑦′, 𝑧)) ≤ 𝛼𝑡 (𝜔) |𝑦 − 𝑦′ |2 , 𝑑ℙ ⊗ 𝑑𝑡-a.e.,

and
| 𝑓 (𝜔, 𝑡, 𝑦, 𝑧) − 𝑓 (𝜔, 𝑡, 𝑦, 𝑧′) | ≤ 𝜂𝑡 (𝜔) ∥𝑧 − 𝑧′ ∥ , 𝑑ℙ ⊗ 𝑑𝑡-a.e.,
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for each 𝑦, 𝑦′ ∈ ℝ
𝑑 and 𝑧, 𝑧′ ∈ ℝ

𝑑×𝑘 .
In this paper, under the above-mentioned stochastic monotonicity (where we drop 

the positivity assumption on the process (𝛼𝑡 )𝑡≤𝑡 ) and Lipschitz conditions on the 
drivers 𝑓 and 𝑔, we establish a general existence and uniqueness result for 𝕃𝑝-solutions 
(𝑝 ∈ (1, 2)) of multidimensional GBSDEs in a general filtration carrying a Brownian 
motion. The first part of this paper is devoted to establishing essential a priori 𝕃𝑝
estimates for the solutions to the GBSDE (5) for 𝑝 ∈ (1, 2). It is worth noting 
that, compared to the Brownian case with stochastic coefficients and 𝕃𝑝-solutions 
(𝑝 > 1) treated in [47], we work within a general filtration setup. Therefore, our 
state process (𝑌𝑡 )𝑡≤𝑇 is not necessarily continuous, but only RCLL, which introduces 
additional challenges in our work. Specifically, compared to (1) or (2), our GBSDE 
(5) includes a jump term represented by the orthogonal martingale 𝑀 , complicating 
the proof since the bracket process involving the quadratic jumps of 𝑀 (or the state 
process 𝑌 ) must be carefully handled. Afterwards, using these results, we study the 
existence and uniqueness of 𝕃𝑝-solutions for 𝑝 ∈ (1, 2) when the generators 𝑓 and 𝑔
are stochastically monotonic with respect to 𝑦, and 𝑓 is stochastically Lipschitz with 
respect to 𝑧, along with a general stochastic linear growth condition in 𝑦. By using the 
result from the 𝕃2 case (i.e., for 𝑝 = 2) established in the paper by Elmansouri and El 
Otmani [21], we derive the existence and uniqueness of 𝕃𝑝-solutions for 𝑝 ∈ (1, 2)
by constructing an appropriate sequence of GBSDEs of the form (5).

Finally, it is worth mentioning that the case 𝑝 ∈ (2, +∞) can also be treated within 
our framework without additional complexity compared to the case 𝑝 ∈ (1, 2). This 
is due to the fact that for 𝑝 > 2, the function ℝ𝑑 ∋ 𝑥 ↦→ |𝑥 |𝑝 is sufficiently smooth, 
which allows for the direct application of Itô’s formula and other classical arguments 
(see [13] for a related study). On the other hand, the case 𝑝 ∈ (1, 2) is less regular and 
requires alternative representation formulas. In view of this, our results extend and 
improve upon the works of Briand et al. [6], Pardoux and Zhang [48], Xiao [52], the 
aforementioned contributions [2, 3, 10, 24--26, 46--48], and the recent studies [39, 40], 
among others.

The rest of this paper is organized as follows. Section 2 introduces some notations, 
definitions, and results used in the paper. Section 3 establishes some important a priori 
𝕃
𝑝-estimates (𝑝 ∈ (1, 2)) for solutions of the GBSDE (5). In Section 4, we prove the 

existence and uniqueness result for the 𝕃𝑝-solutions for 𝑝 ∈ (1, 2).

2 Preliminaries

Let 𝑇 > 0 be a fixed deterministic horizon time, and let (Ω,ℱ , ℙ) be a complete 
probability space equipped with a filtration 𝔽 := (ℱ𝑡 )𝑡≤𝑇 , carrying a 𝑘-dimensional 
Brownian motion (𝑊𝑡 )𝑡≤𝑇 . The filtration 𝔽 is assumed to satisfy the usual conditions 
of right-continuity and completeness. The initial 𝜎field ℱ0 is assumed to be trivial, 
and ℱ is assumed to be ℱ𝑇 . Unless explicitly stated, all stochastic processes are 
considered on the time interval [0, 𝑇], and the measurability properties of stochastic 
processes (such as adaptedness, predictability, progressive measurability) are taken 
with respect to 𝔽.

The bracket process (or quadratic variation) of any given ℝ𝑑-valued RCLL local 
martingale 𝑀 is defined by [𝑀]. The notation [𝑀]𝑐 denotes the continuous part of 
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the quadratic variation [𝑀]. Specifically, the bracket process [𝑀] of 𝑀 is defined for 
every 𝑡 ∈ [0, 𝑇] as follows:

[𝑀]𝑡 =
𝑑∑︂
𝑖=1 

[︁
𝑀 𝑖

]︁
𝑡
,

where 𝑀 𝑖 is the 𝑖th component of the vector 𝑀 =
(︁
𝑀1, 𝑀2, . . . , 𝑀𝑑

)︁
.

For another given RCLL local martingale 𝑁 , [𝑀, 𝑁] denotes the matrix-valued 
quadratic covariation process of 𝑀 and 𝑁 , defined for every 𝑡 ∈ [0, 𝑇] as

[𝑀, 𝑁]𝑡 =
(︁[𝑀 𝑖 , 𝑁 𝑗 ]𝑡

)︁
1≤𝑖, 𝑗≤𝑑 .

Note that our notation [𝑀]𝑡 represents the trace of the matrix-valued process [𝑀, 𝑀]𝑡=(︁[𝑀 𝑖 , 𝑀 𝑗 ]𝑡
)︁

1≤𝑖, 𝑗≤𝑑 and should not be confused with the full matrix-valued quadratic 
covariation.

The Euclidean norm of a vector 𝑦 ∈ ℝ
𝑑 is defined by |𝑦 |2 =

∑︁𝑑
𝑖=1 |𝑦𝑖 |2, and for 

a given matrix 𝑧 ∈ ℝ
𝑘×𝑑 , we set ∥𝑧∥2 = Trace(𝑧𝑧∗), where 𝑧∗ denotes the transpose 

of 𝑧.
For an RCLL process (𝒳𝑡 )𝑡≤𝑇 , 𝒳𝑡− := lim 

𝑠↗𝑡
𝒳𝑠 denotes the left limit of 𝒳 at 𝑡. We 

set 𝒳0− = 𝒳0 by convention. The process 𝒳− = (𝒳𝑡−)𝑡∈[0,𝑇 ] is called the left-limited 
process, and Δ𝒳 = 𝒳 − 𝒳− is the jump process associated with 𝒳 . More precisely, 
for any 𝑡 ∈ [0, 𝑇], we have Δ𝒳𝑡 = 𝒳𝑡 − 𝒳𝑡− , which is the jump of 𝒳 at time 𝑡.

For an adapted process with finite variation 𝒱 = (𝒱𝑡 )𝑡≤𝑇 , we denote by ∥𝒱 ∥ =
(∥𝒱 ∥𝑡 )𝑡≤𝑇 the total variation process on [0, 𝑇].

To simplify the notation, we omit any dependence on 𝜔 of a given process or 
random function. By convention, all brackets and stochastic integrals are assumed to 
be zero at time zero.

Let 𝛽, 𝜇 ≥ 0, 𝑝 > 1 and (𝑎𝑡 )𝑡≤𝑇 be a progressively measurable positive process. 
We consider the nondecreasing continuous process 𝐴𝑡 :=

∫ 𝑡

0 𝑎2
𝑠𝑑𝑠 for 𝑡 ∈ [0, 𝑇].

To define the 𝕃𝑝-solution of our GBSDE (5) for 𝑝 > 1, we need to introduce the 
following spaces.

• 𝒟𝑝
𝛽,𝜇 is the space of ℝ𝑑-valued and 𝔽-adapted RCLL processes (𝑌𝑡 )𝑡≤𝑇 such 

that

∥𝑌 ∥𝒟𝑝
𝛽,𝜇

=

(︄
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡 |𝑌𝑡 |𝑝
]︄)︄ 1 

𝑝

< +∞.

• 𝒮 𝑝,𝐴
𝛽,𝜇 is the space of ℝ𝑑-valued and 𝔽-adapted RCLL processes (𝑌𝑡 )𝑡≤𝑇 such 

that

∥𝑌 ∥𝒮 𝑝,𝐴
𝛽,𝜇

=

(︃
𝔼

[︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠 |𝑌𝑠 |𝑝𝑑𝐴𝑠
]︃)︃ 1 

𝑝

< +∞.

• 𝒮 𝑝,𝜅
𝛽,𝜇 is the space of ℝ𝑑-valued and 𝔽-adapted RCLL processes (𝑌𝑡 )𝑡≤𝑇 such 

that

∥𝑌 ∥𝒮 𝑝,𝜅
𝛽,𝜇

=

(︃
𝔼

[︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠 |𝑌𝑠 |𝑝𝑑𝜅𝑠
]︃)︃ 1 

𝑝

< +∞.
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• ℋ𝑝
𝛽,𝜇 is the space of ℝ𝑑×𝑘-valued and 𝔽-predictable processes (𝑍𝑡)𝑡≤𝑇 such that

∥𝑍 ∥ℋ𝑝
𝛽,𝜇

=

(︄
𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ∥𝑍𝑠 ∥2𝑑𝑠

)︃ 𝑝
2 
]︄)︄ 1 

𝑝

< +∞.

• ℳ𝑝
𝛽,𝜇 is the space of all 𝔽-martingales (𝑀𝑡)𝑡≤𝑇 orthogonal to 𝑊 such that

∥𝑀 ∥ℳ𝑝
𝛽,𝜇

=

(︄
𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠𝑑

[︁
𝑀
]︁
𝑠

)︃ 𝑝
2 
]︄)︄ 1 

𝑝

< +∞.

Finally, we define the spaces:

• 𝔅𝑝
𝛽,𝜇 := 𝒟𝑝

𝛽,𝜇 ∩ 𝒮 𝑝,𝐴
𝛽,𝜇 ∩ 𝒮 𝑝,𝜅

𝛽,𝜇 endowed with the norm ∥𝑌 ∥𝔅𝑝
𝛽,𝜇

= ∥𝑌 ∥𝑝𝒟𝑝
𝛽,𝜇

+
∥𝑌 ∥𝑝𝒮 𝑝,𝐴

𝛽,𝜇

+ ∥𝑌 ∥𝑝𝒮 𝑝,𝜅
𝛽,𝜇

,

• ℰ 𝑝
𝛽,𝜇 := 𝔅𝑝

𝛽,𝜇 × ℋ𝑝
𝛽,𝜇 × ℳ𝑝

𝛽,𝜇 endowed with the norm ∥(𝑌, 𝑍, 𝑀)∥𝑝ℰ 𝑝
𝛽,𝜇

:=

∥𝑌 ∥𝑝
𝔅𝑝

𝛽,𝜇

+ ∥𝑍 ∥𝑝ℋ𝑝
𝛽,𝜇

+ ∥𝑀 ∥𝑝ℳ𝑝
𝛽,𝜇

.

Let 𝑝 > 1. Throughout the rest of this paper, the following conditions on the 
terminal value 𝜉 and the generator 𝑓 are denoted by (H-M)p.

Conditions on the data (𝜉, 𝑓 , 𝑔, 𝜅). For some 𝛽, 𝜇 > 0, we assume the following.

(H1) For all (𝑡, 𝑧) ∈ [0, 𝑇] ×ℝ
𝑑×𝑘 , the mappings 𝑦 ↦→ 𝑓 (𝑡, 𝑦, 𝑧) and 𝑦 ↦→ 𝑔(𝑡, 𝑦) are 

continuous, 𝑑ℙ ⊗ 𝑑𝑡-a.e. and 𝑑ℙ ⊗ 𝑑𝜅𝑡 -a.e., respectively.

(H2) There exists an 𝔽-progressively measurable process 𝛼 : Ω × [0, 𝑇] → ℝ such 
that for all 𝑡 ∈ [0, 𝑇], 𝑦, 𝑦′ ∈ ℝ

𝑑 , 𝑧 ∈ ℝ
𝑑×𝑘 , 𝑑ℙ ⊗ 𝑑𝑡-a.e.,

(𝑦 − 𝑦′) ( 𝑓 (𝑡, 𝑦, 𝑧) − 𝑓 (𝑡, 𝑦′, 𝑧)) ≤ 𝛼𝑡 |𝑦 − 𝑦′ |2 .

(H3) There exists an 𝔽-progressively measurable process 𝜃 : Ω × [0, 𝑇] → ℝ
∗
− such 

that for all 𝑡 ∈ [0, 𝑇], 𝑦, 𝑦′ ∈ ℝ
𝑑 , 𝑧 ∈ ℝ

𝑑×𝑘 , 𝑑ℙ ⊗ 𝑑𝑡-a.e.,

(𝑦 − 𝑦′) (𝑔(𝑡, 𝑦) − 𝑔(𝑡, 𝑦′)) ≤ 𝜃𝑡 |𝑦 − 𝑦′ |2 .

(H4) There exists an 𝔽-progressively measurable process 𝜂 : Ω × [0, 𝑇] → ℝ
∗
+ such 

that for all 𝑡 ∈ [0, 𝑇], 𝑦, ∈ ℝ
𝑑 , 𝑧, 𝑧′ ∈ ℝ

𝑑×𝑘 , 𝑑ℙ ⊗ 𝑑𝑡-a.e.,

| 𝑓 (𝑡, 𝑦, 𝑧) − 𝑓 (𝑡, 𝑦, 𝑧′) | ≤ 𝜂𝑡 ∥𝑧 − 𝑧′ ∥ .

(H5) There exists a constant 𝜖 > 0 such that 𝑎2
𝑠 := 𝜙2

𝑠 + 𝜂2
𝑠 ≥ 𝜖 for any 𝑠 ∈ [0, 𝑇].1

1Note that the choice of 𝜂𝑠 is not unique. In particular, if the condition 𝑎2
𝑠 ≥ 𝜖 is not satisfied, one can 

replace 𝜂𝑠 by 𝜂𝑠 + 𝜖 for some constant 𝜖 > 0.
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(H6) The process 𝜅 = (𝜅𝑡 )𝑡≤𝑇 is a real-valued, 𝔽-adapted, continuous, and nonde
creasing process, and the terminal condition 𝜉 is an ℱ𝑇 -measurable random 
variable satisfying

𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇 |𝜉 |𝑝
]︂
< +∞.

(H7) There exist three progressively measurable processes 𝜑, 𝜓 : Ω × [0, 𝑇] →
[1, +∞), 𝜙 : Ω × [0, 𝑇] → (0, +∞), 𝜁 : Ω × [0, 𝑇] → (0, Γ] for some Γ > 0
such that | 𝑓 (𝑡, 𝑦, 0) | ≤ 𝜑𝑡 + 𝜙𝑡 |𝑦 |, |𝑔(𝑡, 𝑦) | ≤ 𝜓𝑡 + 𝜁𝑡 |𝑦 | and

𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 (|𝜑𝑠 |𝑝 𝑑𝑠 + |𝜓𝑠 |𝑝 𝑑𝜅𝑠) < +∞.

We now provide the definition of an 𝕃𝑝-solution for the GBSDE (5).
Definition 1. Let 𝑝 ∈ (1, 2]. A triplet (𝑌𝑡 , 𝑍𝑡 , 𝑀𝑡 )𝑡≤𝑇 is called an 𝕃𝑝-solution of the 
GBSDE (5) if the following conditions are satisfied:

• (𝑌, 𝑍, 𝑀) satisfies (5),

• (𝑌, 𝑍, 𝑀) belongs to ℰ 𝑝
𝛽,𝜇 for some 𝛽, 𝜇 > 0.

Sometimes, we shall refer to the triplet (𝑌𝑡 , 𝑍𝑡 , 𝑀𝑡 )𝑡≤𝑇 as a solution in ℰ 𝑝
𝛽,𝜇 if 

(𝑌, 𝑍, 𝑀) satisfies (5) and belongs to ℰ 𝑝
𝛽,𝜇 for some 𝛽, 𝜇 ≥ 0.

Let us point out that compared to the existing literature on 𝕃𝑝-solutions (𝑝 > 1) for 
classical BSDEs with monotonic drivers and deterministic parameters, the standard 
integrability condition on the terminal condition 𝜉 as in [6, 22, 36, 37], given by 
𝔼 [|𝜉 |𝑝] < +∞, suffices to derive the desired a priori estimates and, consequently, the 
existence and uniqueness results using approximation techniques.

For BSDEs with stochastic Lipschitz drivers in the case 𝑝 = 2, as in [15], the 
condition 𝔼

[︁
𝑒𝛽𝐴𝑇 |𝜉 |2]︁ < +∞ is imposed to derive analogous results. In the same 𝕃2

setting, but for the class of generalized BSDEs involving the local time of a diffusion 
process on the boundary 𝜅, the assumption 𝔼

[︁
𝑒𝜇𝜅𝑇 |𝜉 |2]︁ < +∞ is used in [45, 48] to 

establish existence and uniqueness.
Thus, in our work which combines both stochastic monotonicity (in 𝑦) and stochas

tic Lipschitz continuity (in 𝑧), the integrability condition (H6) is a natural continuation 
and extension of this framework. In particular, in the case where the stochastic pro
cesses (𝐴𝑡 )𝑡≤𝑇 and (𝜅𝑡 )𝑡≤𝑇 are bounded by a constant 𝔠 > 0, i.e., 𝐴𝑇 + 𝜅𝑇 ≤ 𝔠, 
the weighted integrability condition (H6) and the standard one 𝔼 [|𝜉 |𝑝] < +∞ are 
equivalent. Indeed, using the monotonicity of 𝐴 and 𝜅, we have

𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇 |𝜉 |𝑝
]︂
≤ 𝑒

𝑝
2 𝔠 (𝛽+𝜇)𝔼 [|𝜉 |𝑝] ≤ 𝑒

𝑝
2 𝔠 (𝛽+𝜇)𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇 |𝜉 |𝑝
]︂
.

Therefore, in this particular situation, the weighted integrability condition (H6) and 
the standard 𝕃𝑝 condition are equivalent. A similar analysis holds when 𝐴 is a de
terministic function and 𝜅 is bounded. Furthermore, when 𝐴 is bounded (e.g., when 
𝜙𝑡 = 𝜙 and 𝜂𝑡 = 𝜂 with 𝜙, 𝜂 > 0 constants) and 𝑝 = 2, we recover the classical 
integrability setting for GBSDEs [18, 45, 48].
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Following this discussion on the terminal condition 𝜉 and assumption (H6), a 
similar rationale applies to the integrability conditions on the drivers 𝑓 and 𝑔 given 
in (H7), which are naturally imposed in the 𝕃𝑝-setting for GBSDEs with stochastic 
monotonicity and stochastic Lipschitz continuity.

Finally, even in the context of generalized BSDEs where 𝐴 is bounded or deter
ministic, the equivalence between the two norms may not always hold. Indeed, it is 
possible for the standard integrability condition 𝔼 [|𝜉 |𝑝] < +∞ to be satisfied while 
(H6) fails, which illustrates the necessity of our assumption, as supported by the 
literature on GBSDEs with continuous or jump frameworks [45, 48].

To illustrate such a case, we consider a filtered probability space 𝔾 generated by 
a Brownian motion 𝑊 , completed and made right-continuous. Let (𝑋𝑡)𝑡∈[0,𝑇 ] be a 
reflected Brownian motion (see, e.g., [42]) satisfying the Skorokhod SDE on [0, 1], 
i.e.,

𝑋𝑡 = 𝑥 +𝑊𝑡 + ℒ0
𝑡 − ℒ1

𝑡 , 𝑡 ∈ [0, 𝑇],
where:

• 𝑥 ∈ [0, 1] is the initial condition,

• ℒ0 = (ℒ0
𝑡 )𝑡≤𝑇 and ℒ1 = (ℒ1

𝑡 )𝑡≤𝑇 are the local times of 𝑋 at 0 and 1, respectively. 
That is, ℒ0 and ℒ1 are 𝔾-adapted, continuous, nondecreasing processes that 
increase only when 𝑋𝑡 = 0 and 𝑋𝑡 = 1, respectively. Equivalently, we have 
ℒ0
𝑡 =

∫ 𝑡

0 1{𝑋𝑠=0} 𝑑ℒ0
𝑠 and ℒ1

𝑡 =
∫ 𝑡

0 1{𝑋𝑠=1} 𝑑ℒ1
𝑠 for all 𝑡 ∈ [0, 𝑇].

Let 𝑋 be a version of the sticky reflected Brownian motion (see, e.g., [23, 27]) 
with local times defined by

ℒ0
𝑡 =

∫ 𝑡

0

1 
(𝑇 − 𝑠)ℓ 1{𝑋𝑠=0}𝑑𝑠, ℒ1

𝑡 =
∫ 𝑡

0

1 
(𝑇 − 𝑠)ℓ 1{𝑋𝑠=1}𝑑𝑠, ℓ > 0.

Define 𝜅𝑡 := ℒ0
𝑡 + ℒ1

𝑡 , which is continuous, 𝔾-adapted, and nondecreasing, that 
represents the total time the process 𝑋 has reflected at the boundary. For ℓ < 1, the 
integral 

∫ 𝑡

0 (𝑇 − 𝑠)−ℓ𝑑𝑠 converges for all 𝑡 ∈ [0, 𝑇], so 𝜅𝑇 is finite, bounded and 
assumption (H6) holds. However, for ℓ ≥ 1, 𝜅𝑡 is finite for 𝑡 < 𝑇 since 𝜅𝑡 ≤ 2𝑡 

(𝑇−𝑡 )ℓ <
+∞ but diverges at 𝑇 , i.e., 𝜅𝑇 = +∞. Since 𝜉 := 𝑋𝑇 ∈ [0, 1], we have 𝔼 [|𝜉 |𝑝] < +∞, 
but

𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇 |𝜉 |𝑝
]︂
≥ 𝔼

[︂
𝑒

𝑝
2 𝜇𝜅𝑇 |𝜉 |𝑝

]︂
= +∞.

Therefore, the a priori estimates in the paper, which rely on assumption (H6), may 
not hold and the existence result would not be valid. This highlights the necessity of 
assumptions (H6) and (H7). Accordingly, the conditions we impose extend rather than 
restrict the existing results for 𝕃𝑝-solutions of GBSDEs.

Remark 1. Throughout this paper, 𝔠 denotes a positive constant that may change from 
one line to another. Additionally, the notation 𝔠𝛾 is used to emphasize the dependence 
of the constant 𝔠 on a specific set of parameters 𝛾.

To derive the optimal constants in the a priori estimates of the solutions, we use 
the following remark.
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Remark 2. Let (𝑌, 𝑍, 𝑀) be a solution of the GBSDE (5) associated with (𝜉, 𝑓 , 𝑔, 𝜅). 
Let 𝜀 ≥ 0, 𝜚 ∈ ℝ and (𝜆 (𝛼) , 𝜀, 𝜚

𝑡 )𝑡≤𝑇 be a progressively measurable nondecreas
ing continuous process defined by 𝜆 (𝛼) , 𝜀, 𝜚

𝑡 = exp
{︂∫ 𝑡

0 𝛼𝑠𝑑𝑠 + 𝜀𝐴𝑡 + 𝜚𝜅𝑡
}︂

. Then we 
define

𝑌𝑡 := 𝜆 (𝛼) , 𝜀, 𝜚
𝑡 𝑌𝑡 , 𝑍̂𝑡 := 𝜆 (𝛼) , 𝜀, 𝜚

𝑡 𝑍𝑡 , 𝑑𝑀̂𝑡 := 𝜆 (𝛼) , 𝜀, 𝜚
𝑡 𝑑𝑀𝑡 .

By applying the integration-by-parts formula, we obtain

𝑌𝑡 = 𝜉 +
∫ 𝑇

𝑡
𝑓
(︁
𝑠,𝑌𝑠 , 𝑍̂𝑠

)︁
𝑑𝑠 +

∫ 𝑇

𝑡
𝑔̂
(︁
𝑠,𝑌𝑠

)︁
𝑑𝜅𝑠 −

∫ 𝑇

𝑡
𝑍̂𝑠𝑑𝑊𝑠 −

∫ 𝑇

𝑡
𝑑𝑀̂𝑠 ,

with 𝜉 = 𝜆 (𝛼) , 𝜀, 𝜚
𝑇 𝜉 and drivers

𝑓 (𝑡, 𝑦, 𝑧) = 𝜆 (𝛼) , 𝜀, 𝜚
𝑡 𝑓

(︂
𝑡, 𝜆

(−𝛼) ,−𝜀,− 𝜚
𝑡 𝑦, 𝜆

(−𝛼) ,−𝜀,−𝜚
𝑡 𝑧

)︂
− (𝛼𝑠 + 𝜀𝑎2

𝑠)𝑦,

𝑔̂(𝑡, 𝑦) = 𝜆 (𝛼) , 𝜀, 𝜚
𝑡 𝑔

(︂
𝑡, 𝜆

(−𝛼) ,−𝜀,−𝜚
𝑡 𝑦

)︂
− 𝜚𝑦.

Thus, if (𝑌, 𝑍, 𝑀) is a solution of the GBSDE (5) associated with (𝜉, 𝑓 , 𝑔, 𝜅), then 
the process (𝑌̂ , 𝑍̂ , 𝑀̂) satisfies a similar GBSDE associated with (𝜉, 𝑓 , 𝑔̂, 𝜅). The 
driver 𝑓 satisfies the stochastic Lipschitz condition described in (H3) with the same 
stochastic process (𝜂𝑡 )𝑡≤𝑇 . Moreover, the coefficient 𝑓 satisfies an analogous mono
tonicity condition (H2) with a modified real-valued stochastic process (𝛼̂𝜀

𝑡 ) given by 
𝛼̂𝜀
𝑡 = 𝛼𝑡 − (𝛼𝑡 + 𝜀𝑎2

𝑡 ) = −𝜀𝑎2
𝑡 ≤ 0. Consequently, for any 𝑡 ∈ [0, 𝑇] and each 𝜀 ≥ 0, 

we have 𝛼̂𝜀
𝑡 + 𝜀𝑎2

𝑡 = 0. On the other hand, we can see that 𝜃𝑡 < 0 is not a severe 
restriction. Indeed, if 𝑔 satisfies (H3), it follows that the coefficient 𝑔̂ also satisfies a 
similar monotonicity condition with the real-valued stochastic process (ˆ︁𝛿𝑡) given by ˆ︁𝛿𝑡 = 𝜃𝑡 − 𝜚. By choosing 𝜚 large enough so that 𝜃𝑡 < 𝜚, we can always reduce the 
case where ˆ︁𝑔 satisfies (H3) with 𝜃 negative.

Finally, let 𝜀 ≥ 0 and (𝑌 𝜀 , 𝑍 𝜀 , 𝑀 𝜀) be a solution of the GBSDE (5) associated 
with (𝜉, 𝑓𝜀 , 𝑔, 𝜅), where 𝑓𝜀 satisfies (H2) with (𝛼𝑡 ) replaced by (−𝜀𝑎2

𝑡 ) and also 

verifies (H4). Set 𝜆 (𝛼) , 𝜀
𝑡 = exp

{︂
−
∫ 𝑡

0 𝛼𝑠𝑑𝑠 − 𝜀𝐴𝑡
}︂

and define

𝑌 𝜀
𝑡 := 𝜆 (𝛼) , 𝜀

𝑡 𝑌 𝜀
𝑡 , 𝑍̂ 𝜀

𝑡 := 𝜆 (𝛼) , 𝜀
𝑡 𝑍 𝜀

𝑡 , 𝑑𝑀̂ 𝜀
𝑡 := 𝜆 (𝛼) , 𝜀

𝑡 𝑑𝑀 𝜀
𝑡 .

Using the integration-by-parts formula, we obtain

𝑌̂ 𝜀
𝑡 = 𝜉 𝜀 +

∫ 𝑇

𝑡
𝑓𝜀
(︁
𝑠,𝑌 𝜀

𝑠 , 𝑍̂
𝜀
𝑠

)︁
𝑑𝑠 +

∫ 𝑇

𝑡
𝑔̂𝜀

(︁
𝑠,𝑌 𝜀

𝑠

)︁
𝑑𝜅𝑠 −

∫ 𝑇

𝑡
𝑍̂ 𝜀
𝑠 𝑑𝑊𝑠 −

∫ 𝑇

𝑡
𝑑𝑀̂ 𝜀

𝑠

with 𝜉 𝜀 = 𝜆 (𝛼) , 𝜀
𝑇 𝜉 and drivers

𝑓𝜀 (𝑡, 𝑦, 𝑧) = 𝜆 (𝛼) , 𝜀
𝑡 𝑓𝜀

(︂
𝑡, 𝜆 (−𝛼) ,−𝜀

𝑡 𝑦, 𝜆 (−𝛼) ,−𝜀
𝑡 𝑧

)︂
+ (𝛼𝑡 + 𝜀𝑎2

𝑡 ) 𝑦,

𝑔̂𝜀 (𝑡, 𝑦) = 𝜆 (𝛼) , 𝜀
𝑡 𝑔

(︂
𝑡, 𝜆 (−𝛼) ,−𝜀

𝑡 𝑦
)︂
.

Then, ˆ︁𝑔𝜀 satisfies (H3) with the negative process (𝜃𝑡 ), and ˆ︁𝑓𝜀 satisfies (H2) and (H4) 
with respect to the processes (𝛼𝑡) and (𝜂𝑡 ), respectively.
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To facilitate the calculations, we shall assume, for the remainder of this paper, that 
condition (H2) is satisfied with a process (𝛼𝑡 )𝑡≤𝑇 such that 𝛼𝑡 +𝜀𝑎2

𝑡 = 0 for each given 
𝜀 ≥ 0 and for all 𝑡 ∈ [0, 𝑇], and that (H3) holds with 𝜃𝑡 < 0 for all 𝑡 ∈ [0, 𝑇]. If this 
is not the case, the same change of variables as described in Remark 2 can be applied 
to reduce the situation to this case, while condition (H4) remains valid with the same 
process (𝜂𝑡 )𝑡≤𝑇 . Moreover, in order to avoid any ambiguity regarding integrability, we 
shall also assume that conditions (H6)--(H7) hold for the transformed data introduced 
in Remark 2. For simplicity of notation, all these requirements, for both the original 
and, when relevant, the transformed data, will be collectively referred to as (H-M)p.
Remark 3. In particular, when 𝐴 and 𝜅 are bounded, the exponential weight is 
finite, and one recovers the equivalence of the conditions on 𝜉 and 𝜉. In the general 
case, this equivalence may break down, as illustrated in the example with the sticky 
reflected Brownian motion. This shows that, contrary to the classical setting with 
deterministic monotonicity and Lipschitz conditions, such an equivalence can no 
longer be expected under stochastic monotonicity and stochastic Lipschitz coefficients. 
Therefore, assumptions (H6) and (H7) must also be imposed for the transformed data.

Since the function 𝑥 ↦→ |𝑥 |𝑝 is not sufficiently smooth for 𝑝 < 2, Itô’s formula 
cannot be applied directly. Therefore, we need a generalization of Tanaka’s formula 
for the multidimensional case. To this end, we introduce the notation 𝑥 = 𝑥

|𝑥 |1𝑥≠0

for 𝑥 ∈ ℝ
𝑑 . The following lemma extends the Meyer–Itô formula as referenced in 

[6]. Although this result likely appears in earlier works, its proof is provided in 
[36, Lemma 7] (see also [6, Lemma 2.2] for the Brownian case). In the context of 
the BSDE in a general filtration considered in [36], the additional generator term 
associated with (𝜅𝑡 )𝑡≤𝑇 in our formulation (5) is a continuous stochastic process, and 
our filtration supports a Brownian motion without requiring an independent jump 
measure. Consequently, the proof remains unchanged. The same observation applies 
if 
∫ ·

0 𝑔(𝑠,𝑌𝑠) 𝑑𝜅𝑠 is replaced by an ℝ-valued, continuous, adapted process with locally 
integrable variation on [0, 𝑇], denoted by (𝐺 𝑡 )𝑡≤𝑇 with 𝐺0 = 0. Therefore, we omit 
the proof for brevity.
Lemma 1. Let (𝐹𝑡 )𝑡≤𝑇 and (𝑍𝑡 )𝑡≤𝑇 be two progressively measurable processes with 
values respectively in ℝ𝑑 and ℝ𝑑×𝑘 such that ℙ-a.s.

∫ 𝑇

0

{︁(︁|𝐹𝑠 | + ∥𝑍𝑠 ∥2)︁ 𝑑𝑠 + 𝑑 [𝑀]𝑠
}︁
< +∞.

We consider the ℝ𝑑-valued semimartingale (𝑋𝑡 )𝑡≤𝑇 defined by

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝐹𝑠𝑑𝑠 +

∫ 𝑡

0
𝑑𝐺𝑠 +

∫ 𝑡

0
𝑍𝑠𝑑𝑊𝑠 +

∫ 𝑡

0
𝑑𝑀𝑠 . (6)

Then, for any 𝑝 ≥ 1, the process (
⃓⃓
𝑋𝑡
⃓⃓𝑝)𝑡≤𝑇 is an ℝ-semimartingale with the decom

position

|𝑋𝑡 |𝑝

= |𝑋0 |𝑝 + 1
2
1𝑝=1𝐿𝑡 + 𝑝

∫ 𝑡

0
|𝑋𝑠 |𝑝−1 𝑋̌𝑠𝐹𝑠𝑑𝑠 + 𝑝

∫ 𝑡

0
|𝑋𝑠 |𝑝−1 𝑋̌𝑠𝑑𝐺𝑠
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+ 𝑝
∫ 𝑡

0
|𝑋𝑠 |𝑝−1 𝑋̌𝑠𝑍𝑠𝑑𝑊𝑠 + 𝑝

∫ 𝑡

0
|𝑋𝑠− |𝑝−1 𝑋̌𝑠−𝑑𝑀𝑠

+
∑︂

0<𝑠≤𝑡

{︁|𝑋𝑠− + Δ𝑀𝑠 |𝑝 − |𝑋𝑠− |𝑝 − 𝑝 |𝑋𝑠− |𝑝−1 𝑋̌𝑠−Δ𝑀𝑠

}︁

+ 𝑝

2 

∫ 𝑡

0
|𝑋𝑠 |𝑝−2 1𝑋𝑠≠0

{︁(2 − 𝑝) (︁∥𝑍𝑠 ∥2 − ( 𝑋̌𝑠)∗𝑍𝑠𝑍∗
𝑠 𝑋̌𝑠

)︁ + (𝑝 − 1) ∥𝑍𝑠 ∥2}︁ 𝑑𝑠
+ 𝑝

2 

∫ 𝑡

0
|𝑋𝑠 |𝑝−2 1𝑋𝑠≠0

{︁(2 − 𝑝) (︁𝑑 [𝑀]𝑐𝑠 − ( 𝑋̌𝑠)∗𝑑 [𝑀, 𝑀]𝑐𝑠 𝑋̌𝑠
)︁+ (𝑝 − 1)𝑑 [𝑀]𝑐𝑠

}︁
,

where (𝐿𝑡 )𝑡≤𝑇 is a continuous, nondecreasing process with 𝐿0 = 0, which increases 
only on the boundary of the random set {𝑡 ∈ [0, 𝑇] : 𝑋𝑡− = 𝑋𝑡 = 0}.

From this point forward, throughout the remainder of the paper, we assume 𝑝 ∈
(1, 2) and set 𝑐(𝑝) = 𝑝 (𝑝−1)

2 .

3 A priori estimates and uniqueness

Let (𝑌1
𝑡 , 𝑍

1
𝑡 , 𝑀

1
𝑡 )𝑡≤𝑇 and (𝑌2

𝑡 , 𝑍
2
𝑡 , 𝑀

2
𝑡 )𝑡≤𝑇 be two 𝕃𝑝-solutions of the GBSDE (5) 

associated with the data (𝜉1, 𝑓 1, 𝑔1, 𝜅1) and (𝜉2, 𝑓 2, 𝑔2, 𝜅2), respectively, satisfying 
condition (H-M)p. Define ˆ︁ℛ = ℛ1 − ℛ2 with ℛ ∈ {𝑌, 𝑍, 𝑀, 𝜉, 𝑓 , 𝑔, 𝜅}, and set 
𝜅𝑡 := ∥ˆ︁𝜅∥𝑡 + 𝜅2

𝑡 for 𝑡 ∈ [0, 𝑇]. Then we have the following proposition.

Proposition 1. For any 𝛽, 𝜇 > 2(𝑝−1)
𝑝 , there exists a constant 𝔠𝛽,𝜇, 𝑝,𝜖 such that

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝 (𝑑𝐴𝑠 + 𝑑∥ˆ︁𝜅∥𝑠 + 𝑑𝜅2

𝑠)

+ 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

)︃ 𝑝
2 
]︄
+ 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠𝑑

[︁ ˆ︁𝑀]︁
𝑠

)︃ 𝑝
2 
]︄

≤ 𝔠𝛽,𝜇, 𝑝,𝜖

(︃
𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝]︂ + ∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑑𝑠

+ 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑∥ˆ︁𝜅∥𝑠 + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑𝜅2

𝑠

)︃
.

Proof. As in [21, Proposition 1], it suffices to prove the result in the case where 
∥ˆ︁𝜅∥𝑇 + 𝜅2

𝑇 is a bounded random variable, and then apply Fatou’s lemma.
Using assumptions (H2)--(H4) on the drivers 𝑓 and 𝑔, along with the basic in

equality 𝑎𝑏 ≤ 𝑎2

2𝜀 + 𝜀𝑏2

2 for all 𝜀 > 0 and Remark 2, we derive the following:

ˆ︁𝑌𝑠 (︁ 𝑓 1(𝑠,𝑌1
𝑠 , 𝑍

1
𝑠 ) − 𝑓 2(𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
)︁ ≤ 𝑐(𝑝)

2 

⃦⃦ˆ︁𝑍𝑠 ⃦⃦2 +
⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓

(7)

and

ˆ︁𝑌𝑠 (︁𝑔1(𝑠,𝑌1
𝑠 ) − 𝑔1(𝑠,𝑌2

𝑠 )
)︁
𝑑𝜅1

𝑠 + ˆ︁𝑌𝑠𝑔1(𝑠,𝑌2
𝑠 )𝑑ˆ︁𝜅𝑠 + ˆ︁𝑌𝑠(︁𝑔1(𝑠,𝑌2

𝑠 ) − 𝑔2(𝑠,𝑌2
𝑠 )
)︁
𝑑𝜅2

𝑠

≤
⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓
𝑑∥ˆ︁𝜅∥𝑠 + ⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓
𝑑𝜅2

𝑠 (8)
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Next, using (7)--(8) along with Lemma 1, and the integration-by-parts formula [51, 
Corollary 2, p. 68] for the product of semimartingales 

(︁
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡 |ˆ︁𝑌𝑡 |𝑝)︁, and the 

fact that 
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠 =

⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2
1𝑌𝑠≠0ˆ︁𝑌𝑠 , we obtain

𝑒
𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝 + 𝑝

2 
𝛽

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠 + 𝑝

2 
𝜇

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑∥ˆ︁𝜅∥𝑠

+ 𝑝

2 
𝜇

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝜅2

𝑠 +
𝑐(𝑝)

2 

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0
⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

+ 𝑐(𝑝)
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

≤ 𝑒
𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝 + 𝑝 ∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓
𝑑𝑠

+ 𝑝
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1 {︁⃓⃓

𝑔1(𝑠,𝑌2
𝑠 )
⃓⃓
𝑑∥ˆ︁𝜅∥𝑠 + ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓
𝑑𝜅2

𝑠

}︁
− 𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠ˆ︁𝑍𝑠𝑑𝑊𝑠 − 𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−𝑑 ˆ︁𝑀𝑠

−
∑︂

𝑡<𝑠≤𝑇
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
{︂⃓⃓ˆ︁𝑌𝑠− + Δ ˆ︁𝑀𝑠

⃓⃓𝑝 − ⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝 − 𝑝
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−Δ ˆ︁𝑀𝑠

}︂
. (9)

By applying Hölder’s inequality 
∫ ⃓⃓
ℎ
⃓⃓𝑝−1 ⃓⃓

ℓ
⃓⃓
𝑑𝜗 ≤ (︁∫ ⃓⃓

ℎ
⃓⃓𝑝
𝑑𝜗

)︁ 𝑝−1
𝑝

(︁∫ ⃓⃓
ℓ
⃓⃓𝑝
𝑑𝜗

)︁ 1 
𝑝 , 

Young’s inequality 𝑎
𝑝−1
𝑝 𝑏

1 
𝑝 ≤ 𝑝−1

𝑝 𝑎 + 1 
𝑝 𝑏, and assumption (H5), we derive

𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓
𝑑𝑠

= 𝑝

∫ 𝑇

𝑡

(︃
𝑒

𝑝−1
2 𝛽𝐴𝑠+ 𝑝−1

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1

𝑎
2(𝑝−1)

𝑝
𝑠

)︃(︃
𝑒

𝛽
2 𝐴𝑠+ 𝜇

2 ̄𝜅𝑠
⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓
𝑎

2(1−𝑝)
𝑝

𝑠

)︃
𝑑𝑠

≤ (𝑝 − 1)
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠 +

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑎2(1−𝑝)
𝑠 𝑑𝑠

≤ (𝑝 − 1)
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠 + 1 

𝜖2(𝑝−1)

∫ 𝑇

𝑡
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑑𝑠.

(10)

Using a similar argument, we obtain

𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1 {︁⃓⃓

𝑔1(𝑠,𝑌2
𝑠 )
⃓⃓
𝑑∥ˆ︁𝜅∥𝑠 + ⃓⃓

𝑔1(𝑠,𝑌2
𝑠 ) − 𝑔2(𝑠,𝑌2

𝑠 )
⃓⃓
𝑑𝜅2

𝑠

}︁
≤ (𝑝 − 1)

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝 {︁𝑑∥ˆ︁𝜅∥𝑠 + 𝑑𝜅2

𝑠

}︁
+
∫ 𝑇

𝑡
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑∥ˆ︁𝜅∥𝑠 +

∫ 𝑇

𝑡
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑𝜅2

𝑠 (11)

Next, from [36, Lemma 9], the jump part of the quadratic variation is controlled by a 
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nondecreasing process involving the jumps of 𝑌 , as described below:

∑︂
𝑡<𝑠≤𝑇

𝑒
𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
{︄⃓⃓ˆ︁𝑌𝑠− + Δ ˆ︁𝑀𝑠

⃓⃓𝑝 − ⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝 − 𝑝
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−Δ ˆ︁𝑀𝑠

}︄

≥ 𝑐(𝑝)
∑︂

𝑡<𝑠≤𝑇
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2 (︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠− + Δ ˆ︁𝑀𝑠

⃓⃓2)︂ 𝑝−2
2 

1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠−+Δˆ︂𝑀𝑠

⃓⃓⃓
≠0
.

(12)
Additionally, from the dynamics of the process ˆ︁𝑌 , we know that Δˆ︁𝑌𝑠 = Δ ˆ︁𝑀𝑠 . Therefore, ˆ︁𝑌𝑠 = ˆ︁𝑌𝑠− + Δ ˆ︁𝑀𝑠 for any 𝑠 ∈ [0, 𝑇].

Returning to (9) and using (10), (11), and (12), we have

𝑒
𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝 + (︂ 𝑝

2 
𝛽 − (𝑝 − 1)

)︂∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠

+
(︂ 𝑝

2 
𝛽 − (𝑝 − 1)

)︂∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝 (𝑑∥ˆ︁𝜅∥𝑠 + 𝑑𝜅2

𝑠)

+ 𝑐(𝑝)
2 

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0
⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

+ 𝑐(𝑝)
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

+ 𝑐(𝑝)
∑︂

𝑡<𝑠≤𝑇
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2 (︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂ 𝑝−2
2 

1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

≤ 𝑒
𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝 + ∫ 𝑇

𝑡
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑑𝑠

+
∫ 𝑇

𝑡
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓
𝑑∥ˆ︁𝜅∥𝑠 +

∫ 𝑇

𝑡
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑𝜅2

𝑠

− 𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠ˆ︁𝑍𝑠𝑑𝑊𝑠 − 𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−𝑑 ˆ︁𝑀𝑠 .

(13)

Let us set
Λ :=

∫ ·

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠ˆ︁𝑍𝑠𝑑𝑊𝑠

and 

Ξ :=
∫ ·

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−𝑑 ˆ︁𝑀𝑠 .

It follows from the Burkholder–Davis--Gundy inequality (BDG; see, e.g, Theorem 48 
in [51, p. 193]) that the local martingales Λ and Ξ are uniformly integrable martingales 
with zero expectation.

Indeed, for the continuous local martingale part Λ, we have, by Young’s inequality,

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]

⃓⃓
Λ𝑡

⃓⃓]︄
≤ 𝔠𝔼

⎡
⎣(︃∫ 𝑇

0
𝑒𝑝𝛽𝐴𝑠+𝑝𝜇𝜅𝑠 ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2(𝑝−1) ∥ˆ︁𝑍𝑠 ∥2𝑑𝑠

)︃ 1
2

⎤
⎦
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≤ 𝔠𝔼

⎡
⎣(︄ sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝−1
2 𝛽𝐴𝑡+ 𝑝−1

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝−1

)︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ∥ˆ︁𝑍𝑠 ∥2𝑑𝑠

)︃ 1
2

⎤
⎦

≤ (𝑝 − 1)𝔠
𝑝 

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
+ 𝔠 
𝑝
𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ∥ˆ︁𝑍𝑠 ∥2𝑑𝑠

)︃ 𝑝
2 
]︄

< +∞. (14)

A similar argument holds for the RCLL local martingale part Ξ, where we have

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]

⃓⃓
Ξ𝑡

⃓⃓]︄
≤ 𝔠𝔼

⎡
⎣(︃∫ 𝑇

0
𝑒𝑝𝛽𝐴𝑠+𝑝𝜇𝜅𝑠 ⃓⃓ˆ︁𝑌𝑠− ⃓⃓2(𝑝−1)

𝑑
[︁ ˆ︁𝑀]︁

𝑠

)︃ 1
2

⎤
⎦

≤ (𝑝 − 1)𝔠
𝑝 

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
+ 𝔠 
𝑝
𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠𝑑

[︁ ˆ︁𝑀]︁
𝑠

)︃ 𝑝
2 
]︄

< +∞. (15)

Then, taking the expectation on both sides and setting 𝑡 = 0, and 𝛽, 𝜇 > 0 such that 
𝛽, 𝜇 > 2(𝑝−1)

𝑝 , we deduce the existence of a constant 𝔠𝛽,𝜇, 𝑝,𝜖 such that

𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠 + 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝 (𝑑∥ˆ︁𝜅∥𝑠 + 𝑑𝜅2

𝑠)

+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0
⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

+ 𝔼

[︄ ∑︂
0<𝑠≤𝑇

𝑒
𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2 (︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂ 𝑝−2
2 

1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

]︄

≤ 𝔠𝛽,𝜇, 𝑝,𝜖

(︃
𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝]︂ + ∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑑𝑠

+ 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑∥ˆ︁𝜅∥𝑠 + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑𝜅2

𝑠

)︃
. (16)

Let

𝒳 = 𝑒
𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝 + ∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑑𝑠

+
∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓
𝑑∥ˆ︁𝜅∥𝑠 +

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑𝜅2

𝑠 .

Then, using (13) with 𝛽, 𝜇 > 2(𝑝−1)
𝑝 , we have, a.s., for each 𝑡 ∈ [0, 𝑇]

𝑒
𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝 + 𝑐(𝑝)

2 

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0
⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠
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+ 𝑐(𝑝)
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

+ 𝑐(𝑝)
∑︂

𝑡<𝑠≤𝑇
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2 (︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠− + Δ ˆ︁𝑀𝑠

⃓⃓2)︂ 𝑝−2
2 

1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠−+Δˆ︂𝑀𝑠

⃓⃓⃓
≠0

≤ 𝒳 − 𝑝 (Λ𝑇 − Λ𝑡 ) − 𝑝 (Ξ𝑇 − Ξ𝑡 ) . (17)

Using again the BDG inequality, we derive

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
≤ 𝔼 [𝒳 ] + 𝔠𝑝

(︂
𝔼 [Λ]1/2

𝑇 + 𝔼 [Ξ]1/2
𝑇

)︂
. (18)

The term [Λ]1/2
𝑇 can be controlled as in [6]:

𝔠𝑝𝔼 [Λ]1/2
𝑇

≤ 𝔠𝑝𝔼

⎡
⎣(︄ sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
4 𝛽𝐴𝑡+ 𝑝

4 𝜇𝜅𝑡
⃓⃓
𝑌𝑡
⃓⃓ 𝑝

2 
)︄(︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0∥ˆ︁𝑍𝑠 ∥2𝑑𝑠

)︃ 1
2

⎤
⎦

≤ 1
4
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
+ 𝔠2

𝑝𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0
⃓⃓ˆ︁𝑍𝑠 ⃓⃓2𝑑𝑠.

(19)

For the term [Ξ]1/2
𝑇 , which is more complicated to handle, we follow [36] to obtain a 

bound in terms of the estimation (16):

𝔠𝑝𝔼 [Ξ]1/2
𝑇

= 𝔠𝑝𝔼

⎡
⎣(︃∫ 𝑇

0
𝑒𝑝𝛽𝐴𝑠+𝑝𝜇𝜅𝑠 ⃓⃓ˆ︁𝑌𝑠− ⃓⃓2(𝑝−1)

𝑑
[︁ ˆ︁𝑀]︁

𝑠

)︃ 1
2

⎤
⎦

≤ 𝔠𝑝𝔼

⎡
⎣(︃∫ 𝑇

0
𝑒𝑝𝛽𝐴𝑠+𝑝𝜇𝜅𝑠

(︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂𝑝−1
1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

𝑑
[︁ ˆ︁𝑀]︁

𝑠

)︃ 1
2

⎤
⎦

≤ 𝔠𝑝𝔼

⎡
⎣(︄ sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
(︂⃓⃓ˆ︁𝑌𝑡− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑡 ⃓⃓2)︂ 𝑝

2 
)︄ 1

2

×
(︄∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂ 𝑝−2

2 
1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

𝑑
[︁ ˆ︁𝑀]︁

𝑠

)︄ 1
2
⎤
⎦

≤ 1
4
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
+ 𝔠2

𝑝𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0
𝑑
[︁ ˆ︁𝑀]︁

𝑠
.

Using the pathwise decomposition of the bracket process 
[︁ ˆ︁𝑀]︁

(see, e.g., [51, p. 70]), 
we have

𝑑
[︁ ˆ︁𝑀]︁

𝑡
= 𝑑

[︁ ˆ︁𝑀]︁𝑐
𝑡
+
⃓⃓
Δ ˆ︁𝑀𝑡

⃓⃓2
, 𝑡 ∈ [0, 𝑇], (20)
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Therefore,∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂ 𝑝−2

2 
1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

𝑑
[︁ ˆ︁𝑀]︁

𝑠

=
∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0
𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

+
∑︂

0<𝑠≤𝑇
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂ 𝑝−2

2 ⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2
1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

.

Injecting this into the above estimation and using the basic inequality 
√
𝑎𝑏 ≤ 1

4𝑎 + 𝑏
for any 𝑎, 𝑏 ≥ 0, we obtain

𝔠𝑝𝔼 [Ξ]1/2
𝑇 ≤ 1

4
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄

+ 𝔠𝑝𝔼
∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0
𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

+ 𝔠2
𝑝𝔼

∑︂
0<𝑠≤𝑇

𝑒
𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓2 ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓2)︂ 𝑝−2

2 ⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2
1⃓⃓⃓ˆ︁𝑌𝑠− ⃓⃓⃓∨⃓⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓≠0

. (21)

Plugging (19) and (21) into (18), along with (16), we derive

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄

≤ 𝔠𝛽,𝜇, 𝑝,𝜖

(︃
𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝]︂ + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ ˆ︁𝑓 (𝑠,𝑌2

𝑠 , 𝑍
2
𝑠 )
⃓⃓𝑝
𝑑𝑠

+ 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔1(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑∥ˆ︁𝜅∥𝑠 + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓ˆ︁𝑔(𝑠,𝑌2

𝑠 )
⃓⃓𝑝
𝑑𝜅2

𝑠

)︃
. (22)

Showing the estimation for the remaining term

𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

)︃ 𝑝
2 
]︄
+ 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 𝑑

[︁ ˆ︁𝑀]︁
𝑠

)︃ 𝑝
2 
]︄

is the last step in proving the assertion. To this end, since 𝑝 ∈ (1, 2), we apply the 

equality 1ˆ︁𝑌𝑠=0

{︂⃦⃦ˆ︁𝑍𝑠 ⃦⃦2
𝑑𝑠 + 𝑑[︁ ˆ︁𝑀]︁

𝑠

}︂
= 0 on [0, 𝑇] (we refer to [36, Lemma 8] for a 

detailed proof). Using this result, along with Young’s inequality, we obtain

𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

)︃ 𝑝
2 
]︄

= 𝔼

[︄(︃∫ 𝑇

0
𝑒

2−𝑝
2 𝛽𝐴𝑠+ 2−𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓2−𝑝(︁𝑒 𝑝

2 𝛽𝐴𝑠+ 𝑝
2 𝜇𝜅𝑠

⃦⃦ˆ︁𝑍𝑠 ⃦⃦2 ⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2
1{ˆ︁𝑌𝑠≠0}

)︁
𝑑𝑠

)︃ 𝑝
2 
]︄

≤ 2 − 𝑝

2 
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
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+ 𝑝

2 
𝔼

[︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

1{ˆ︁𝑌𝑠≠0}𝑑𝑠
]︃
.

Similarly, we can show that

𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠𝑑

[︁ ˆ︁𝑀]︁𝑐
𝑠

)︃ 𝑝
2 
]︄

≤ 2 − 𝑝

2 
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄

+ 𝑝

2 
𝔼

[︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1⃓⃓ˆ︁𝑌𝑠 ⃓⃓≠0
𝑑
[︁ ˆ︁𝑀]︁𝑐

𝑠

]︃
.

By virtue of (20), it remains to show a similar estimation for the quadratic jump part 
of the state process ˆ︁𝑌 given by 

⃓⃓
Δ ˆ︁𝑀 ⃓⃓2. To this end, we will use an approximating 

procedure via a smooth function that is widely considered in the literature (see, e.g., 
[6, Lemma 2.2], [36, Lemma 7], or [14, Lemma 2.2]).

Let 𝜀 > 0, and consider the function 𝜈𝜀 : ℝ → ℝ+ defined by 𝜈𝜀 (𝑦) =
√︂
|𝑦 |2 + 𝜀2. 

Then, for any 𝑞 > 0, we have

𝑒
2−𝑝

2 𝛽𝐴𝑠+ 2−𝑝
2 𝜇𝜅𝑠 (𝜈𝜀 (𝑦))𝑞 =

(︃(︂
𝑒

2−𝑝
𝑞 𝛽𝐴𝑠+ 2−𝑝

𝑞 𝜇𝜅𝑠
(︂⃓⃓
𝑦
⃓⃓2 + 𝜀2

)︂)︂ 1
2
)︃𝑞

≤
(︂
𝜈ˆ︁𝜀𝑝,𝑞

𝑠

(︂
𝑒

2−𝑝
2𝑞 𝛽𝐴𝑠+ 2−𝑝

2𝑞 𝜇𝜅𝑠 𝑦
)︂)︂𝑞

,

where ˆ︁𝜀𝑝,𝑞 = 𝜀𝒞∗
𝑝,𝑞 with 𝒞∗

𝑝,𝑞 := ess sup𝜔∈Ω 𝑒
𝑝
2 𝛽𝐴𝑇 (𝜔)+ 𝑝

2 𝜇𝜅𝑇 (𝜔) . Without loss of 
generality, instead of replacing 𝐴 with 𝐴 ∧ 𝑘 and then passing to the limit using the 
monotone convergence theorem, we may assume that 𝐴 is bounded. Therefore, we 
have 𝒞∗

𝑝,𝑞 < +∞, and consequently, lim
𝜀↓0 

ˆ︁𝜀𝑝,𝑞 = 0. Furthermore,

lim
𝜀↓0 

𝜈ˆ︁𝜀𝑝,𝑞

(︂
𝑒

2−𝑝
2𝑞 𝛽𝐴𝑠+ 2−𝑝

2𝑞 𝜇𝜅𝑠 𝑦
)︂
= 𝑒

2−𝑝
2𝑞 𝛽𝐴𝑠+ 2−𝑝

2𝑞 𝜇𝜅𝑠 |𝑦 | 1𝑦≠0 a.s., 𝑞 > 0.

To simplify notation, we denote 𝒳∗ = sup𝑡∈[0,𝑇 ]
⃓⃓𝒳𝑡

⃓⃓
for any RCLL process 𝒳 =

(𝒳𝑡 )𝑡≤𝑇 . Then, using Hölder’s and Young’s inequalities

𝔼

[︂
𝐴𝑝 (2−𝑝)/2 𝐵𝑝/2

]︂
≤ (𝔼 [𝐴𝑝]) (2−𝑝)/2 (𝔼 [𝐵])𝑝/2 ≤ 2 − 𝑝

2 
𝔼 [𝐴𝑝] + 𝑝

2 
𝔼 [𝐵]

for some random variables 𝐴, 𝐵 ≥ 0, we have

𝔼

⎡
⎣(︄ ∑︂

0<𝑠≤𝑇
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓Δ ˆ︁𝑀𝑠

⃓⃓2)︄ 𝑝
2 
⎤
⎦

= 𝔼

⎡
⎣(︄ ∑︂

0<𝑠≤𝑇
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 (︁𝜈𝜀 (︁⃓⃓𝑌𝑠− ⃓⃓ ∨ ⃓⃓

𝑌𝑠
⃓⃓)︁)︁2−𝑝 (︁

𝜈𝜀
(︁⃓⃓
𝑌𝑠−

⃓⃓
∨
⃓⃓
𝑌𝑠
⃓⃓)︁)︁𝑝−2 ⃓⃓

Δ ˆ︁𝑀𝑠

⃓⃓2)︄ 𝑝
2 
⎤
⎦



20 B. Elmansouri, M. El Otmani

≤
(︂
𝔼

[︂(︂
𝜈ˆ︁𝜀𝑝,2−𝑝

𝑠

(︂(︂
𝑒

𝛽
2 𝐴+

𝜇
2 ̄𝜅ˆ︁𝑌)︂

∗

)︂)︂𝑝]︂)︂ 2−𝑝
2 

×
(︄
𝔼

[︄ ∑︂
0<𝑠≤𝑇

𝑒
𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︁
𝜈𝜀

(︁⃓⃓
𝑌𝑠−

⃓⃓
∨
⃓⃓
𝑌𝑠
⃓⃓)︁)︁𝑝−2 ⃓⃓

Δ ˆ︁𝑀𝑠

⃓⃓2]︄)︄ 𝑝
2 

≤ 2 − 𝑝

2 
𝔼

[︂(︂
𝜈ˆ︁𝜀𝑝,2−𝑝

𝑠

(︂(︂
𝑒

𝛽
2 𝐴+

𝜇
2 ̄𝜅ˆ︁𝑌)︂

∗

)︂)︂𝑝]︂

+ 𝑝

2 
𝔼

[︄ ∑︂
0<𝑠≤𝑇

𝑒
𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︁
𝜈𝜀

(︁⃓⃓
𝑌𝑠−

⃓⃓
∨
⃓⃓
𝑌𝑠
⃓⃓)︁)︁𝑝−2 ⃓⃓

Δ ˆ︁𝑀𝑠

⃓⃓2]︄
. (23)

We know that

lim
𝜀↓0 

(︂
𝜈ˆ︁𝜀𝑝,2−𝑝

𝑠

(︂(︂
𝑒

𝛽
2 𝐴+

𝜇
2 ̄𝜅ˆ︁𝑌)︂

∗

)︂)︂𝑝
= sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝 a.s.

and that

lim
𝜀↓0 

(︂
𝜈𝜀

(︂⃓⃓ˆ︁𝑌𝑠− ⃓⃓ ∨ ⃓⃓ˆ︁𝑌𝑠 ⃓⃓)︂)︂𝑝−2
↗ (︁⃓⃓

𝑌𝑠−
⃓⃓
∨
⃓⃓
𝑌𝑠
⃓⃓)︁𝑝−2

1⃓⃓ˆ︁𝑌𝑠− ⃓⃓∨⃓⃓ˆ︁𝑌𝑠 ⃓⃓≠0
a.s.,

since 𝑝 < 2.
Letting 𝜀 → 0 and then applying the Lebesgue dominated convergence theorem for 

the left term in the last inequality of the estimation (23) and the monotone convergence 
theorem for the right term in the last inequality of the estimation (23) (see also the 
proof of Lemma 9 in [36]), we obtain

𝔼

⎡
⎣(︄ ∑︂

0<𝑠≤𝑇
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓Δ ˆ︁𝑀𝑠

⃓⃓2)︄ 𝑝
2 
⎤
⎦

≤ 2 − 𝑝

2 
𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄

+ 𝑝

2 
𝔼

[︄ ∑︂
0<𝑠≤𝑇

𝑒
𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
(︂⃓⃓
𝑌𝑠−

⃓⃓2 ∨ ⃓⃓
𝑌𝑠
⃓⃓2)︂ 𝑝−2

2 
1⃓⃓ˆ︁𝑌𝑠− ⃓⃓∨⃓⃓ˆ︁𝑌𝑠 ⃓⃓≠0

⃓⃓
Δ ˆ︁𝑀𝑠

⃓⃓2]︄
.

Finally, the proof is completed by applying the inequalities (16) and (22). □

From Proposition 1, we obtain the uniqueness of the solution.
Corollary 1. Let (𝜉, 𝑓 , 𝑔, 𝜅) be any set of data satisfying assumption (H-M)p. Then, 
there exists at most one triplet of processes (𝑌𝑡 , 𝑍𝑡 , 𝑀𝑡 )𝑡≤𝑇 corresponding to the 
𝕃
𝑝-solution of the GBSDE (5) associated with (𝜉, 𝑓 , 𝑔, 𝜅).

4 Existence of 𝕃𝒑-solutions

First, note that the uniqueness result has been established in Corollary 1. Using 
Proposition 1, we obtain an important result that provides an 𝕃𝑝-estimate for the 
solutions of the GBSDE (5) associated with the given data (𝜉, 𝑓 , 𝑔, 𝜅).
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Corollary 2. Let (𝜉, 𝑓 , 𝑔, 𝜅) be any set of data satisfying assumption (H-M)p. For 
any 𝛽, 𝜇 > 2(𝑝−1)

𝑝 , there exists a constant 𝔠𝛽,𝜇, 𝑝,𝜖 such that, whenever (𝑌, 𝑍) is an 
𝕃
𝑝-solution of the GBSDE (5), we have

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓
𝑌𝑡
⃓⃓𝑝]︄ + 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
𝑌𝑠
⃓⃓𝑝
𝑑𝐴𝑠

+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
𝑌𝑠
⃓⃓𝑝
𝑑𝜅𝑠 + 𝔼

[︄(︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃦⃦
𝑍𝑠
⃦⃦2
𝑑𝑠

)︃ 𝑝
2 
]︄

+ 𝔼

[︄(︃∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠𝑑
[︁
𝑀
]︁
𝑠

)︃ 𝑝
2 
]︄

≤ 𝔠𝛽,𝜇, 𝑝,𝜖

(︃
𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓
𝜉
⃓⃓𝑝]︂+ 

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝜑𝑠 ⃓⃓𝑝𝑑𝑠 + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝜓𝑠 ⃓⃓𝑝𝑑𝜅𝑠

)︃
.

To establish the existence and uniqueness of 𝕃𝑝-solutions for 𝑝 ∈ (1, 2) of the 
GBSDE (5), we first need to establish the existence and uniqueness of 𝕃2-solutions. 
While this result may have appeared in previous works (see, e.g., [20, 21]), we could 
not find an equivalent result for the GBSDE (5) under our general condition (H-M)2, 
which assumes stochastic monotonicity, Lipschitz continuity, and linear growth in a 
general filtration with larger integrability conditions. The proof of this result can be 
obtained using the Yosida approximation method, following an approach similar to 
that adopted in [21, Theorems 1--2]. We also refer to Proposition 4.1 and Theorem 4.1 
in [19]. The latter reference deals with a more general class of GBSDEs with reflecting 
obstacles. By letting the lower and upper obstacles tend to −∞ and +∞, respectively, 
one recovers the classical GBSDE studied in our case.
Theorem 1. Suppose that (H-M)2 holds. Then, the GBSDE (5) admits a unique 
𝕃

2-solution.

Now, we can state the main result of this section, which is described as follows.
Theorem 2. Suppose that (H-M)p holds. Then, the GBSDE (5) admits a unique 
𝕃
𝑝-solution.

Proof. We assume that

𝑒
𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓
𝜉
⃓⃓𝑝 + sup 

𝑡∈[0,𝑇 ]
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 ⃓⃓𝜑𝑡 ⃓⃓𝑝 + sup 

𝑡∈[0,𝑇 ]
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 ⃓⃓𝜓𝑡 ⃓⃓𝑝 ≤ C. (24)

Note that since 𝜑 and 𝜓 are [1, +∞)-valued stochastic processes, we deduce that 
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 ≤ C for any 𝑡 ∈ [0, 𝑇]. Moreover, from (H7), it follows that

𝔼

[︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 (𝑑𝑠 + 𝑑𝜅𝑠)

]︃
< +∞.

Additionally, using the definition of the process 
(︁
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 )︁

𝑡≤𝑇 , we obviously have 
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 ≥ 1 for any 𝑡 ∈ [0, 𝑇]. Consequently,

|𝜉 |2 + sup 
𝑡∈[0,𝑇 ]

|𝜑𝑡 |2 + sup 
𝑡∈[0,𝑇 ]

|𝜓𝑡 |2 ≤ C
2 
𝑝 .
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Therefore, using this and condition (H5), we conclude that

𝔼

[︄
𝑒𝛽𝐴𝑇+𝜇𝜅𝑇 ⃓⃓𝜉 ⃓⃓2 + ∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠

⃓⃓⃓
⃓𝜑𝑠𝑎𝑠

⃓⃓⃓
⃓
2
𝑑𝑠 +

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 |𝜓𝑠 |2 𝑑𝜅𝑠

]︄

≤ C
2+𝑝
𝑝 +

(︃
1 
𝜖2 + 1

)︃
C

2 
𝑝 𝔼

[︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 (𝑑𝑠 + 𝑑𝜅𝑠)

]︃
< +∞.

Then, using (24) and assumptions (H1)--(H5) and (H7), we place ourselves within the 
framework of Theorem 1. Consequently, there exists a unique 𝕃2-solution (𝑌𝑛, 𝑍𝑛, 𝑀𝑛)
and, hence, an 𝕃𝑝-solution for any 𝑝 ∈ (1, 2) for the GBSDE (5). Note also that, by ap
plying Corollary 2, we observe that the triplet (𝑌, 𝑍, 𝑀) satisfies the same estimation 
stated for any 𝛽, 𝜇 > 2(𝑝−1)

𝑝 .
Using (24), we construct a sequence of GBSDEs associated with some data 

(𝜉𝑛, 𝑓𝑛, 𝑔𝑛, 𝜅) such that (24) is satisfied and that approximates the GBSDE (5). To 
this end, and to simplify notation, we set 𝑓0(𝑡) = 𝑓 (𝑡, 0, 0) and 𝑔0(𝑡) = 𝑔(𝑡, 0). For 
each 𝑛 ≥ 1, we define a set of data (𝜉𝑛, 𝑓𝑛, 𝑔𝑛) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜉𝑛 =

⎧⎪⎨
⎪⎩

⃓⃓
𝜉
⃓⃓
∧ 𝑝

√
𝑛𝑒−

𝛽
2 𝐴𝑇− 𝜇

2 𝜅𝑇⃓⃓
𝜉
⃓⃓ 𝜉 if 𝜉 ≠ 0,

0 if 𝜉 = 0,

𝑓𝑛 (𝑡, 𝑦, 𝑧) =

⎧⎪⎪⎨
⎪⎪⎩
𝑓 (𝑡, 𝑦, 𝑧) − 𝑓0(𝑡) +

⃓⃓
𝑓0(𝑡)

⃓⃓
∧ 𝑝

√
𝑛𝑒−

𝛽
𝑝 𝐴𝑡− 𝜇

𝑝 𝜅𝑡⃓⃓
𝑓0(𝑡)

⃓⃓ 𝑓0(𝑡) if 𝑓0(𝑡) ≠ 0,

0 if 𝑓0(𝑡) = 0,

𝑔𝑛 (𝑡, 𝑦) =

⎧⎪⎪⎨
⎪⎪⎩
𝑔(𝑡, 𝑦) − 𝑔0(𝑡) +

⃓⃓
𝑔0(𝑡)

⃓⃓
∧ 𝑝

√
𝑛𝑒−

𝛽
𝑝 𝐴𝑡− 𝜇

𝑝 𝜅𝑡⃓⃓
𝑔0(𝑡)

⃓⃓ 𝑔0(𝑡) if 𝑔0(𝑡) ≠ 0,

0 if 𝑔0(𝑡) = 0.
(25)

For each 𝑛 ≥ 1, the data (𝜉𝑛, 𝑓𝑛, 𝑔𝑛) satisfies condition (24). Indeed, it is straight
forward to observe the inequality

𝑒
𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓
𝜉𝑛
⃓⃓𝑝 + sup 

𝑡∈[0,𝑇 ]
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 ⃓⃓ 𝑓𝑛 (𝑡, 0, 0) ⃓⃓𝑝 + sup 

𝑡∈[0,𝑇 ]
𝑒𝛽𝐴𝑡+𝜇𝜅𝑡 ⃓⃓𝑔𝑛 (𝑡, 0) ⃓⃓𝑝 ≤ 𝑛.

Therefore, from the previous step, for each 𝑛 ≥ 1, there exists a unique triplet 
(𝑌𝑛, 𝑍𝑛, 𝑀𝑛) that solves the GBSDE

𝑌𝑛
𝑡 = 𝜉𝑛 +

∫ 𝑇

𝑡
𝑓𝑛 (𝑠,𝑌𝑛

𝑠 , 𝑍
𝑛
𝑠 )𝑑𝑠 +

∫ 𝑇

𝑡
𝑔𝑛 (𝑠,𝑌𝑛

𝑠 )𝑑𝜅𝑠 −
∫ 𝑇

𝑡
𝑍𝑛𝑠 𝑑𝑊𝑠 −

∫ 𝑇

𝑡
𝑑𝑀𝑛

𝑠 (26)

for any 𝑡 ∈ [0, 𝑇].
Let 𝑛 ≥ 𝑚 ≥ 1. Set ˆ︁𝑅 := ℛ𝑛 −ℛ𝑚 for ℛ ∈ {𝜉,𝑌 , 𝑍, 𝑀}. Using again Lemma 1

with the integration-by-parts formula, we get

𝑒
𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝 + 𝑝

2 
𝛽

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠 + 𝑝

2 
𝜇

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝜅𝑠
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+ 𝑐(𝑝)
∫ 𝑡

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−2

1𝑌𝑠≠0

(︂⃦⃦ˆ︁𝑍𝑠 ⃦⃦2
𝑑𝑠 + 𝑑[︁ ˆ︁𝑀]︁𝑐

𝑠

)︂

≤ 𝑒
𝑝
2 𝛽𝐴𝑇+ 𝑝2 𝜇𝜅𝑇

⃓⃓ˆ︁𝜉 ⃓⃓𝑝 + 𝑝 ∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠

(︁
𝑓𝑛 (𝑠,𝑌𝑛

𝑠 , 𝑍
𝑛
𝑠 ) − 𝑓𝑚(𝑠,𝑌𝑚

𝑠 , 𝑍
𝑚
𝑠 )

)︁
𝑑𝑠

+ 𝑝
∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠

(︁
𝑔𝑛 (𝑠,𝑌𝑛

𝑠 ) − 𝑔𝑚(𝑠,𝑌𝑚
𝑠 ))︁𝑑𝜅𝑠

− 𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠ˆ︁𝑍𝑠𝑑𝑊𝑠 − 𝑝

∫ 𝑇

𝑡
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−𝑑 ˆ︁𝑀𝑠

−
∑︂

𝑡<𝑠≤𝑇
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
{︂⃓⃓ˆ︁𝑌𝑠− + Δ ˆ︁𝑀𝑠

⃓⃓𝑝 − ⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝 − 𝑝
⃓⃓ˆ︁𝑌𝑠− ⃓⃓𝑝−1ˆ̌︁𝑌 𝑠−Δ ˆ︁𝑀𝑠

}︂
. (27)

From (25) and assumptions (H2)--(H4) on 𝑓 and 𝑔, we have

ˆ︁𝑌𝑡 (︁ 𝑓𝑛 (𝑠,𝑌𝑛
𝑠 , 𝑍

𝑛
𝑠 ) − 𝑓𝑚(𝑠,𝑌𝑚

𝑠 , 𝑍
𝑚
𝑠 )

)︁
≤ 𝑐(𝑝)

2 
∥ˆ︁𝑍𝑠 ∥2 +

⃓⃓ˆ︁𝑌𝑡 ⃓⃓⃓⃓ 𝑓𝑛 (𝑠, 0, 0) − 𝑓𝑚(𝑠, 0, 0)
⃓⃓

and

ˆ︁𝑌𝑡 (︁𝑔𝑛 (𝑠,𝑌𝑛
𝑠 ) − 𝑔𝑚(𝑠,𝑌𝑚

𝑠 ))︁ = ˆ︁𝑌𝑡 (︁𝑔(𝑠,𝑌𝑛
𝑠 ) − 𝑔(𝑠,𝑌𝑚

𝑠 ))︁ + ˆ︁𝑌𝑡 (𝑔𝑛 (𝑠, 0) − 𝑔𝑚(𝑠, 0))
≤
⃓⃓ˆ︁𝑌𝑠 ⃓⃓⃓⃓𝑔𝑛 (𝑠, 0) − 𝑔𝑚(𝑠, 0) ⃓⃓

Then, we obtain an analogous estimation to (7) for the driver 𝑓𝑛 and a simpler one than 
(8) for the coefficient 𝑔. Following this, using (27) and re-performing the calculations 
from Proposition 1, we deduce that, for any 𝛽, 𝜇 > 2(𝑝−1)

𝑝 , there exists a constant 
𝔠𝛽,𝜇, 𝑝,𝜖 such that

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓ˆ︁𝑌𝑡 ⃓⃓𝑝

]︄
+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝐴𝑠

+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓ˆ︁𝑌𝑠 ⃓⃓𝑝𝑑𝜅𝑠 + 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃦⃦ˆ︁𝑍𝑠 ⃦⃦2

𝑑𝑠

)︃ 𝑝
2 
]︄

+ 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠𝑑

[︁ ˆ︁𝑀]︁
𝑠

)︃ 𝑝
2 
]︄

≤ 𝔠𝛽,𝜇, 𝑝,𝜖

(︃
𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓ˆ︁𝜉 ⃓⃓𝑝]︂ + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑡+𝜇𝜅𝑠 ⃓⃓ 𝑓𝑛 (𝑠, 0, 0) − 𝑓𝑚 (𝑠, 0, 0)

⃓⃓𝑝
𝑑𝑠

+ 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝑔𝑛 (𝑠, 0) − 𝑔𝑚(𝑠, 0) ⃓⃓𝑝𝑑𝜅𝑠

)︃
. (28)

By using the basic inequality
(︄

𝑛∑︂
𝑖=1 

|𝑋𝑖 |
)︄𝑝

≤ 𝑛𝑝
𝑛∑︂
𝑖=1 

|𝑋𝑖 |𝑝 ∀(𝑛, 𝑝) ∈ ℕ
∗ × (0, +∞),
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along with (25) and assumption (H5), we obtain⎧⎪⎨
⎪⎩

⃓⃓ˆ︁𝜉 ⃓⃓𝑝 ≤ 2𝑝+1 ⃓⃓𝜉 ⃓⃓𝑝 ,⃓⃓
𝑓𝑛 (𝑠, 0, 0) − 𝑓𝑚(𝑠, 0, 0)

⃓⃓𝑝 ≤ 2𝑝+1 |𝜑𝑠 |𝑝 , ℙ ⊗ 𝑑𝑡-a.e.,⃓⃓
𝑔𝑛 (𝑠, 0) − 𝑔𝑚(𝑠, 0)

⃓⃓𝑝 ≤ 2𝑝+1 |𝜓𝑠 |𝑝 , ℙ ⊗ 𝑑𝜅𝑡 -a.e.

(29)

Since lim 
𝑛→+∞ 𝑓𝑛 (𝑡, 0, 0) = 𝑓0(𝑡) ℙ ⊗ 𝑑𝑡-a.e. and lim 

𝑛→+∞ 𝑔𝑛 (𝑡, 0) = 𝑔0(𝑡) ℙ ⊗ 𝑑𝜅𝑡 -a.e., it 
follows from (H6) and (H7) that we can apply the Lebesgue dominated convergence 
theorem. Hence, we deduce that the right-hand side of (28) tends to zero as 𝑛, 𝑚 → +∞. 
Therefore, the left-hand side of (28) also tends to zero. Consequently, we derive the 
convergence

lim 
𝑛,𝑚→+∞

(︃⃦⃦
𝑌𝑛 − 𝑌𝑚

⃦⃦𝑝
𝔅𝑝

𝛽,𝜇
+
⃦⃦
𝑍𝑛 − 𝑍𝑚

⃦⃦𝑝
ℋ𝑝

𝛽,𝜇
+
⃦⃦
𝑀𝑛 − 𝑀𝑚

⃦⃦𝑝
ℳ𝑝

𝛽,𝜇

)︃
= 0. (30)

Hence, {(𝑌𝑛, 𝑍𝑛, 𝑀𝑛)}𝑛≥1 is a Cauchy sequence in the Banach space ℰ 𝑝
𝛽,𝜇 for any 

𝛽, 𝜇 > 2(𝑝−1)
𝑝 . It then converges to a process (𝑌, 𝑍, 𝑀) ∈ ℰ 𝑝

𝛽,𝜇. Moreover, using (29) 
and Corollary 2, we deduce that, for any 𝛽, 𝜇 > 2(𝑝−1)

𝑝 , there exists a constant 𝔠𝛽,𝜇, 𝑝,𝜖
(independent of 𝑛) such that

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]
𝑒

𝑝
2 𝛽𝐴𝑡+ 𝑝

2 𝜇𝜅𝑡
⃓⃓
𝑌𝑛
𝑡

⃓⃓𝑝]︄ + 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
𝑌𝑛
𝑠

⃓⃓𝑝
𝑑𝐴𝑠

+ 𝔼

∫ 𝑇

0
𝑒

𝑝
2 𝛽𝐴𝑠+ 𝑝

2 𝜇𝜅𝑠
⃓⃓
𝑌𝑛
𝑠

⃓⃓𝑝
𝑑𝜅𝑠 + 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃦⃦𝑍𝑛𝑠 ⃦⃦2

𝑑𝑠

)︃ 𝑝
2 
]︄

+ 𝔼

[︄(︃∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠𝑑

[︁
𝑀𝑛

]︁
𝑠

)︃ 𝑝
2 
]︄

≤ 𝔠𝛽,𝜇, 𝑝,𝜖

(︃
𝔼

[︂
𝑒

𝑝
2 𝛽𝐴𝑇+ 𝑝

2 𝜇𝜅𝑇
⃓⃓
𝜉
⃓⃓𝑝]︂

+ 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝜑𝑠 ⃓⃓𝑝𝑑𝑠 + 𝔼

∫ 𝑇

0
𝑒𝛽𝐴𝑠+𝜇𝜅𝑠 ⃓⃓𝜓𝑠 ⃓⃓𝑝𝑑𝜅𝑠

)︃
. (31)

It remains to confirm that the limiting process solves the generalized BSDE (5). 
To this end, since 𝑝 > 1, we apply the BDG inequality along with (7) to obtain

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]

⃓⃓⃓
⃓
∫ 𝑇

𝑡
𝑍𝑛𝑑𝑊𝑠 −

∫ 𝑇

𝑡
𝑍𝑠𝑑𝑊𝑠

⃓⃓⃓
⃓
𝑝
]︄
≤ 𝔠𝔼

[︄(︃∫ 𝑇

0

⃦⃦
𝑍𝑛𝑠 − 𝑍𝑠

⃦⃦2
𝑑𝑠

)︃ 𝑝
2 
]︄
−−−−−→
𝑛→+∞ 

0

and

𝔼

[︄
sup 

𝑡∈[0,𝑇 ]

⃓⃓⃓
⃓
∫ 𝑇

𝑡
𝑑𝑀𝑛

𝑠 −
∫ 𝑇

𝑡
𝑑𝑀𝑠

⃓⃓⃓
⃓
𝑝
]︄
≤ 𝔠𝔼

[︄(︃∫ 𝑇

0
𝑑
[︁
𝑀𝑛 − 𝑀

]︁
𝑠

)︃ 𝑝
2 
]︄
−−−−−→
𝑛→+∞ 

0.

From assumptions (H1) and (H4), we have⃓⃓
𝑓 (𝑡, 𝑌𝑛

𝑡 , 𝑍
𝑛
𝑡 ) − 𝑓 (𝑡, 𝑌𝑡 , 𝑍𝑡 )

⃓⃓
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≤ 𝜂𝑡 ∥𝑍𝑛𝑡 − 𝑍𝑡 ∥ +
⃓⃓
𝑓 (𝑡, 𝑌𝑛

𝑡 , 𝑍𝑡 ) − 𝑓 (𝑡, 𝑌𝑡 , 𝑍𝑡 )
⃓⃓
−−−−−→
𝑛→+∞ 

0. (32)

Moreover, from assumptions (H5) and (H7), and Jensen’s inequality, we have

𝔼

∫ 𝑇

0

⃓⃓⃓
⃓ 𝑓 (𝑡, 𝑌𝑛

𝑡 , 𝑍𝑡 ) − 𝑓 (𝑡, 𝑌𝑡 , 𝑍𝑡 )
𝑎𝑠

⃓⃓⃓
⃓
𝑝

𝑑𝑠

≤ 22𝑝
(︃

2𝔼
∫ 𝑇

0
∥𝑍𝑠 ∥𝑝 𝑑𝑠 + 2 

𝜖 𝑝
𝔼

∫ 𝑇

0
|𝜑𝑠 |𝑝 𝑑𝑠 + 𝔼

∫ 𝑇

0

(︁⃓⃓
𝑌𝑛
𝑠

⃓⃓𝑝 + |𝑌𝑠 |𝑝
)︁
𝑑𝑠

)︃

≤ 22𝑝

(︄
2𝑇

2−𝑝
2 𝔼

[︄(︃∫ 𝑇

0
∥𝑍𝑠 ∥2 𝑑𝑠

)︃ 𝑝
2 
]︄
+ 2 
𝜖 𝑝

𝔼

∫ 𝑇

0
|𝜑𝑠 |𝑝 𝑑𝑠

+ 2 
𝜖2𝔼

∫ 𝑇

0

(︁⃓⃓
𝑌𝑛
𝑠

⃓⃓𝑝 + |𝑌𝑠 |𝑝
)︁
𝑑𝐴𝑠

)︃
.

Using (25), (30), (31), (32), and the Lebesgue dominated convergence theorem, we 
obtain

lim 
𝑛→+∞𝔼

∫ 𝑇

0

⃓⃓⃓
⃓ 𝑓𝑛 (𝑡, 𝑌𝑛

𝑡 , 𝑍
𝑛
𝑡 ) − 𝑓 (𝑡, 𝑌𝑡 , 𝑍𝑡 )
𝑎𝑠

⃓⃓⃓
⃓
𝑝

𝑑𝑠 = 0.

Similarly, we can show that

lim 
𝑛→+∞𝔼

∫ 𝑇

0

⃓⃓
𝑔𝑛 (𝑠,𝑌𝑛

𝑠 ) − 𝑔(𝑠,𝑌𝑠)
⃓⃓𝑝
𝑑𝜅𝑠 = 0.

Finally, by passing to the limit term by term in (26), we deduce that the limiting process 
(𝑌, 𝑍, 𝑀) is the 𝕃𝑝-solution of the GBSDE (5).

This completes the proof. □

Remark 4. An interesting direction and perspective for future research would be to 
use the results presented in this paper, along with the arguments in [36, Section 6], 
[43, Theorem 4.1], and [48, Theorem 53.2], to extend the current framework to the 
case where the deterministic terminal time 𝑇 is replaced by a stopping time 𝜏 in the 
general filtration 𝔽, which may be unbounded.
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