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Abstract Multidimensional generalized backward stochastic differential equations (GBSDEs)
are studied within a general filtration that supports a Brownian motion under weak assumptions
on the associated data. The existence and uniqueness of solutions in L? for p € (1,2) are
established. The results apply to generators that are stochastic monotone in the y-variable,
stochastic Lipschitz in the z-variable, and satisfy a general stochastic linear growth condition.
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1 Introduction

The theory of backward stochastic differential equations (BSDEs) has been thoroughly
studied and shown to have a wide range of applications in various mathematical do-
mains, including partial differential equations (PDEs) [43], stochastic control and
differential games [29, 30], mathematical finance [17, 54], and other related fields.
Bismut [5] originally introduced the concept as the adjoint equations related to stochas-
tic Pontryagin maximum principles in stochastic control theory. Pardoux and Peng [46]
were the first to study the general case of nonlinear multidimensional BSDEs. Roughly
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speaking, for a finite horizon time 7' € (0, +c0), a solution of such equations, associ-
ated with a terminal value ¢ and a generator (coefficient or driver) f(w,?,y,7), is a
pair of stochastic processes (Y;, Z;); <7 satisfying

T T
Y; =§+/ f(s,Ys,Zs)ds—/ ZdWs, te[0,T], (1)
t t

where W = (W;);<r is a standard Brownian motion, and the solution process
(Yy, Z;)s <1 1s adapted to the natural filtration of W. Under a uniform Lipschitz con-
dition on the driver f and a square integrability condition on & and the process
(f(w,t,0,0)); <71, the authors of [46] demonstrated the existence and uniqueness of a
solution.

Following this work, many researchers have aimed to weaken the uniform Lips-
chitz continuity constraint on the generator to address more interesting problems. In
this context, significant research has been conducted on the existence, uniqueness,
and comparison theorems for L2-solutions of the BSDE (1) with square-integrable
parameters and a condition weaker than the Lipschitz one considered in [46]; see,
e.g., [2, 26, 28], among others. However, in some practical applications, even when
considering an appropriate condition on the generator f weaker than the Lipschitz one,
the terminal condition ¢ and the driver process (f(w, t,0,0)), <7 of the BSDE (1) are
not necessarily assumed to be square-integrable. Consequently, considering BSDEs
with L”-integrable data and L”-solutions for p > 1 has attracted significant interest
over the last decade. Briand et al. [6] demonstrated the existence and uniqueness of
LP-solutions for p € (1,2) of the BSDE (1) when the generator f is monotonic in y
and Lipschitz continuous in z. For additional relevant works, see [10, 13, 24, 25, 53]
and the references therein.

Using a new class of BSDEs that involves the integral with respect to a continu-
ous nondecreasing process interpreted as the local time of a diffusion process on the
boundary, Pardoux and Zhang [48] provided a probabilistic representation for a solu-
tion of a system of parabolic and elliptic semilinear PDEs with the Neumann boundary
conditions. This new type of BSDE is called Generalized BSDEs (GBSDE:s). A so-
lution of such equations is a pair of adapted processes (Y3, Z;);<r that satisfies the
equation

T T T
Y; = §+/ f(s,Ys, Zs)ds +/ g(s,Ys)dks —/ ZsdWs, te€[0,T]. (2)
t t t

Here:
e £isan R9-valued Fr-measurable random variable,

o £:Qx[0,T] xRYxR¥* — RY isan F ® B([0,T]) ® B(RY) ® B(R4*k)-
measurable random function such that for any (y, z) € R? x R4k, the process
(w, 1) — f(w,t,y,z) is progressively measurable,

e g:Qx[0,T]xR? = R%isan FRB([0, T])®B(R4)-measurable random func-
tion such that for any y € R<, the process (w, ) — g(w,t,y) is progressively
measurable,
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* k = (Kky)i<7 1s an R-valued adapted, continuous, nondecreasing process on
[0,T1].

Under a monotonicity assumption on the drivers f and g, and appropriate L>-integ-
rability conditions on the data, the authors established the existence and uniqueness
of a solution using a convolution approximation. Extending this framework, Pardoux
[45] addressed the discontinuous case by incorporating a jump term into (2), repre-
sented by an independent Poisson random measure. More recently, Elmansouri and
El Otmani [20, 21] demonstrated existence and uniqueness results for GBSDEs in
a general filtration under similar or more general assumptions compared to those in
[45, 48].

In contrast to the standard BSDE formulation (1), the introduction of the Stieltjes—
Lebesgue integral with respect to « in (2) necessitates a refinement of the integrability
conditions on the data (¢, f, g). These conditions are stronger than those commonly
considered in the literature for (1), which typically involve only (¢, f). This adjust-
ment reflects the deeper connection between each class of BSDEs and their associated
PDE:s. For the classical BSDE (1), various authors have provided probabilistic repre-
sentations of solutions to systems of semilinear PDEs, both parabolic and elliptic (see,
e.g., [43, 44, 49]). Elliptic equations with Dirichlet boundary conditions based on (1)
have been studied in [11], while homogeneous linear Neumann boundary conditions
have been addressed in [31]. In all these works, the underlying Markovian process
is either a classical diffusion driven by a Brownian motion, as in [11, 44, 49], or a
reflecting Brownian motion involving its boundary local time, as in [31]. However, in
the presence of a nonlinear Neumann boundary condition, a probabilistic interpreta-
tion of the viscosity solution to a system of elliptic PDEs cannot be obtained via the
standard BSDE (1). Instead, the generalized BSDE (5) must be employed, wherein the
nonlinear term g appears in the boundary condition, leading to the incorporation of
the boundary local time process «. This change shifts the diffusion process from the
classical to the reflected setting. Consequently, establishing a probabilistic represen-
tation for solutions of parabolic PDEs with nonlinear Neumann boundary conditions
requires the generalized BSDE (5), together with integrability assumptions on the data
involving the process «, in order to ensure existence and uniqueness of a solution, as
shown in [18, 45, 48], among others.

However, all the aforementioned works, concerning BSDE (1) or GBSDE (2), deal
with square or L”-integrable parameters and different weak conditions on the drivers
only in a Brownian framework. In such a case, it is well known that the predictable
representation property holds for every local martingale (see, e.g., Theorem 43 in [51,
p. 186]). However, this is no longer valid for more general filtrations (see Section
II.4 in [32]), and the description of a solution must include an extra martingale
term orthogonal to W. More precisely, for a filtration F := (F;);<r carrying (or
supporting) the Brownian motion W, every right-continuous with left limits (RCLL)
local martingale (N;);<7 can be represented as (see, e.g., Lemma 4.24 in [32, p. 185])

t
N, :/ ZgdWs+ M, te][0,T], 3)
0

for some predictable process (Z;);<r such that fOT |Zs||>ds < +c0 a.s. and an RCLL
local martingale (M), <7 such that [M, W] = 0 a.s., where [M, W] denotes the co-
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variation process of M and W. Therefore, in the general filtration setting F, the standard
BSDE takes the form

T T T
Yz=§+/ f(s,Ys,Zs)ds—/ ZSdWS—/ dMg, te[0,T]. 4)
t t t

This type of BSDE (4) has been studied by Klimsiak and Rozkosz [35] in an arbi-
trary complete probability space (2, F, P) equipped with a complete right-continuous
filtration F, in the case where the driver f depends only on the state variable y, and
the noise source is given by a general RCLL martingale. Additionally, a probabilistic
definition of solutions to semilinear elliptic equations with operators associated with
regular Dirichlet forms is provided. In the case of a stochastic basis supporting a
Brownian motion W, Liang et al. [41] studied BSDEs of the form (4), where a con-
nection with nonlinear PDEs involving integral operators is established. For RCLL
martingales in a general filtration, this approach was developed in the groundbreaking
works of Carbone et al. [7] and El Karoui and Huang [15] for classical BSDEs, and
later by Elmansouri and El Otmani [21] for GBSDEs in a more general framework. In
the same filtration context, but within the L” -setup, Kruse and Popier [36, 37] studied
the problem of L”-solutions (p > 1) for BSDEs in a general filtration supporting a
Brownian motion and an independent Poisson random measure. The authors proved
the existence and uniqueness of a solution when the driver f is monotone with respect
to y and uniformly Lipschitz with respect to z.

The general representation (3) in the filtration F arises in several important cases,
particularly in financial applications. In this context, Kusuoka [38] showed that the
representation (3) holds when F is the progressive enlargement of a Brownian filtration
G by a default time 7, which is not necessarily a G-stopping time. More precisely, one
has F; = (Vo0 Fo Where FP := G, V o (min(r,1)). In such cases, the orthogonal
martingale M is given explicitly by

t
M, :/ Us(dDg — ygds),
0

where D; := 1<, and (y,);<r is an F-predictable intensity of 7, while (U;),<r

is an F-predictable process such that fOT |Ug|*ysds < +00 a.s. These representations
have been widely used in the BSDE literature (see, e.g., [12, 50]). For further studies,
we refer to Section 3.3 in Bielecki et al. [4], Theorem 2.1 in Jeanblanc and Le Cam
[34], and [33]. Besides Lemma 4.24 in [32, p. 185], this structure (3) is also known
as the Kunita—Watanabe decomposition, explicitly developed in [1] and used in [16]
for pricing contingent claims under general information flows (i.e., not necessarily
generated by a Brownian motion). This type of decomposition has also been analyzed
in the restricted information setting by Ceci et al. [9], and applied to risk minimization
via BSDE techniques in [8].

Compared to the existing literature, and to the best of our knowledge, the study
of L”-solutions for p > 1 in a filtration generated by a Brownian motion W has been
primarily addressed in [47, Chapter 5], which also explores applications to PDEs, while
GBSDEs in a more general filtration have been studied in the L?-case by Elmansouri
and El Otmani [20, 21]. However, for p € (1,2), LP-solutions for GBSDEs in a
general filtration IF have not been extensively investigated. More precisely, we consider
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the generalized formulation of the BSDE (4) given by the multidimensional GBSDE

T T T T
Y, =§+/ f(s»Ys,Zs)ds"'/ g(S,Ys)sz_/ stWs_/ dMg, te€[0,T].
t t t t
(%)

The main idea here for the existence results is to study L2-solution for GBSDE (5),
using and extending the general result from [21].

Motivated by the works mentioned above, it is naturally interesting to investigate
the existence and uniqueness results for L”-solutions (p € (1,2)) of multidimensional
GBSDEs (5) under suitable, more general conditions on the data. To this end, under
a stochastic monotonicity condition on f and g with respect to the y-variable, a
stochastic Lipschitz condition on f with respect to the z-variable, a general stochastic
linear growth condition, and an appropriate L”-integrability condition on the data,
we aim to establish a general existence and uniqueness result for L”-solutions of the
multidimensional GBSDEs (5) for p € (1,2).

In the sequel, we present several publications that studied the uniqueness and
existence of L”-solutions for BSDEs (1) with time-varying or stochastic monotonic
conditions on the coefficient f, since results for the GBSDE (5) have not been examined
previously. Xiao et al. [52] consider the case where the driver g satisfies a time-varying
monotonicity condition in y, meaning that there exists a deterministic integrable
function [0,T] > t — a, € R, such that for each y,y’ € R? and z € R4%k,

(v =) (fw,1,y.2) = flw.1,y,2) <arly—y'|*, dP®drtae.,

and a time-varying Lipschitz continuity condition on z, meaning that there exists a
deterministic square-integrable function [0,7] > ¢ — n, € R, such that, for any
7.7 € Rdxk

lf(w,t,y,2) — f(w,t,y,Z2)| < llz— 7|, dP®drae.

Under these conditions and appropriate L”-integrability conditions on the data & and
the process (f(z,0,0));<r, the authors in [52] prove the existence and uniqueness
of LP-solutions for p > 1 using the method of convolution and weak convergence.
Pardoux and Réascanu [47] also study existence and uniqueness results for L”-solutions
(p > 1) for multidimensional BSDEs of the form (1) and (2) (see [47, Chapter 5])
under different growth conditions, including the case where (a;);<7, (17:):<T are
deterministic functions and where « takes values in R as stochastic processes. They also
provide the connection with semilinear PDEs and parabolic variational inequalities
with a mixed nonlinear multivalued Neumann-Dirichlet boundary condition. Very
recently, Li et al. [39] established the existence and uniqueness of L”-solutions for
the BSDE (1) under a stochastic monotonicity condition on the driver f with respect
to (v, z). Specifically, for two given positive progressively measurable processes Q X
[0,T] 3 (w, 1) - (a;(w), s (w)) € Ry X Ry, as a direct extension of the earlier work
by Li et al. [40] in the L? case, the following conditions are assumed:

=) (fw.1,y,2) - fw,1,¥,2)) < o (w) |y —y'|*, dP®dr-ae.,

and
|f(w, t,y,2) = flw,t,y,2)| < n(w) Iz =-7'||, dP®dt-ae.,
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for each y,y’ € R? and z, 7/ € R¥*k,

In this paper, under the above-mentioned stochastic monotonicity (where we drop
the positivity assumption on the process (a;);<;) and Lipschitz conditions on the
drivers f and g, we establish a general existence and uniqueness result for L”-solutions
(p € (1,2)) of multidimensional GBSDEs in a general filtration carrying a Brownian
motion. The first part of this paper is devoted to establishing essential a priori L”-
estimates for the solutions to the GBSDE (5) for p € (1,2). It is worth noting
that, compared to the Brownian case with stochastic coefficients and L?-solutions
(p > 1) treated in [47], we work within a general filtration setup. Therefore, our
state process (Y;); <7 is not necessarily continuous, but only RCLL, which introduces
additional challenges in our work. Specifically, compared to (1) or (2), our GBSDE
(5) includes a jump term represented by the orthogonal martingale M, complicating
the proof since the bracket process involving the quadratic jumps of M (or the state
process Y) must be carefully handled. Afterwards, using these results, we study the
existence and uniqueness of L”-solutions for p € (1,2) when the generators f and g
are stochastically monotonic with respect to y, and f is stochastically Lipschitz with
respect to z, along with a general stochastic linear growth condition in y. By using the
result from the L2 case (i.e., for p = 2) established in the paper by Elmansouri and El
Otmani [21], we derive the existence and uniqueness of LP-solutions for p € (1,2)
by constructing an appropriate sequence of GBSDEs of the form (5).

Finally, it is worth mentioning that the case p € (2, +0c0) can also be treated within
our framework without additional complexity compared to the case p € (1,2). This
is due to the fact that for p > 2, the function R? 5 x > |x|? is sufficiently smooth,
which allows for the direct application of 1t6’s formula and other classical arguments
(see [13] for a related study). On the other hand, the case p € (1, 2) is less regular and
requires alternative representation formulas. In view of this, our results extend and
improve upon the works of Briand et al. [6], Pardoux and Zhang [48], Xiao [52], the
aforementioned contributions [2, 3, 10, 24-26, 46—48], and the recent studies [39, 40],
among others.

The rest of this paper is organized as follows. Section 2 introduces some notations,
definitions, and results used in the paper. Section 3 establishes some important a priori
LP-estimates (p € (1,2)) for solutions of the GBSDE (5). In Section 4, we prove the
existence and uniqueness result for the L”-solutions for p € (1,2).

2 Preliminaries

Let T > 0 be a fixed deterministic horizon time, and let (Q, F,P) be a complete
probability space equipped with a filtration F := (F;),<r, carrying a k-dimensional
Brownian motion (W;);<7. The filtration F is assumed to satisfy the usual conditions
of right-continuity and completeness. The initial o-field Fg is assumed to be trivial,
and F is assumed to be F7. Unless explicitly stated, all stochastic processes are
considered on the time interval [0, 7], and the measurability properties of stochastic
processes (such as adaptedness, predictability, progressive measurability) are taken
with respect to F.

The bracket process (or quadratic variation) of any given R%-valued RCLL local
martingale M is defined by [M]. The notation [M] denotes the continuous part of
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the quadratic variation [ M]. Specifically, the bracket process [M] of M is defined for

every t € [0,T] as follows:
d

[M]t = Z [Ml]t ’
i=1

where M' is the ith component of the vector M = (M', M?,..., M?).

For another given RCLL local martingale N, [M, N] denotes the matrix-valued
quadratic covariation process of M and N, defined for every z € [0, 7] as

[M9 N]t = ([MlaNJ]t)]Si,jsd .

Note that our notation [ M ], represents the trace of the matrix-valued process [M, M |,=
([M M| ,) and should not be confused with the full matrix-valued quadratic
covariation.

The Euclidean norm of a vector y € R is defined by | y|2 = Zflzl | yilz, and for
a given matrix z € R¥*?_ we set ||z||> = Trace(zz*), where z* denotes the transpose
of z.

For an RCLL process (X})s<1, X;— = li}n X, denotes the left limit of X" at r. We

s/t

1<i,j<d

set Xo_ = A by convention. The process X_ = (X;_);¢[0,7] is called the left-limited
process, and AX = X — A_ is the jump process associated with X'. More precisely,
for any ¢ € [0,T], we have AX; = A} — X;_, which is the jump of X at time 7.

For an adapted process with finite variation V = (V;),<r, we denote by ||V|| =
(IWl¢)¢ <t the total variation process on [0, T7.

To simplify the notation, we omit any dependence on w of a given process or
random function. By convention, all brackets and stochastic integrals are assumed to
be zero at time zero.

Let 8,u > 0, p > 1 and (a;),;<7 be a progressively measurable positive process.
We consider the nondecreasing continuous process A; := /Ot a’ds fort € [0,T).

To define the L”-solution of our GBSDE (5) for p > 1, we need to introduce the
following spaces.

. Dg’ﬂ is the space of R¢-valued and F-adapted RCLL processes (Y;);<7 such

that 1
P P P
Yllpr =(E| sup e TBAT T I |y P < 400,
Buu te[0,T]

. Sg ’;‘ is the space of R¢-valued and F-adapted RCLL processes (Y;);<r such

that
r , P %
”Y“SI%A = <E |:/ eiﬁAS+7MKS|YS|pdAx:|) < +o00.
B.u 0

o SP : is the space of R?-valued and F-adapted RCLL processes (¥;);<7 such

B,
that
T PBA 4P %
||Y||sg* = (E [/ e?h S+2”K“|Ys|pdks]) < 400.
M 0
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Hg p is the space of R9*-valued and F-predictable processes (Z;); < such that

T 51\ 7
1Zll3e2 = (E l(‘/ eﬁASJr"KSHZstdS) ]) < oo
: 0

Mg u is the space of all F-martingales (M;);<r orthogonal to W such that

r 1
T 5 P
”M”MZ‘“:<EK / eﬁAww[M]s) D < 40,

Finally, we define the spaces:

P ._ PP p.A Pk ; - P
%ﬁ,ﬂ = Dﬁyﬂ N Sﬁ’ﬂ N Sﬁ’ﬂ endowed with the norm ”Y”SB’M = ||Y||D;y +

N2, A+ 1Y
St Sha
e &P == BL xHE x MP  endowed with the norm ||(Y,Z, M)||Z, =
B.u B.u B.u B.u > EL
iz, +1zi%, +imi": , .
%Zvl‘ 7‘[;3,” MZJ‘

Let p > 1. Throughout the rest of this paper, the following conditions on the
terminal value £ and the generator f are denoted by (H-M),.

Conditions on the data (¢, f, g, k). For some 3, u > 0, we assume the following.

(H1) Forall (¢,z) € [0,T] x R¥¥, the mappings y — f(t,y,z) and y — g(t,y) are
continuous, dP ® dr-a.e. and dP ® dk;-a.e., respectively.

(H2) There exists an F-progressively measurable process @ : Q X [0,7] — R such
that for all r € [0,T], v,y € R?, z € R¥* dP ® dt-a.e.,

O-Y)(fty. ) - f@Y. ) <aly—yI.

(H3) There exists an F-progressively measurable process 6 : Q X [0,T] — R* such
that for all 7 € [0,T], y,y’ € R?, z e R, dP @ dt-a.e.,

=) (g(t,y) —g(t,y)) <6 Iy —y'I*.

(H4) There exists an F-progressively measurable process n : Q x [0,7] — R} such
that for all r € [0,T], y, € RY, z,7 € R™k, dP ® dt-a.e.,

[f(t,y,2) = f(t,y. ) <me llz =2l

(H5) There exists a constant € > 0 such that a2 := ¢? +n2 > € for any s € [0,T].!

Note that the choice of 77 is not unique. In particular, if the condition a% > € is not satisfied, one can
replace 775 by 175 + € for some constant € > 0.
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(H6) The process k = (k;);<7 is a real-valued, F-adapted, continuous, and nonde-
creasing process, and the terminal condition ¢ is an JF7-measurable random
variable satisfying

E [e%ﬁAT+%"KT |§|p] < oo.

(H7) There exist three progressively measurable processes ¢, : Q x [0,T] —
[1,+00), ¢ : Q% [0,T] — (0,40), ¢ : QX% [0,T] — (0,I'] for some I" > 0
such that | f(z,y, 0)| < @ + ¢¢yl, (2, ¥)| < ¥ + {i|y| and

T
B / PASHES ([P ds + |1 |P dics) < +oo.
0

‘We now provide the definition of an L”-solution for the GBSDE (5).

Definition 1. Let p € (1,2]. A triplet (Y;, Z;, M;),<7 is called an LP-solution of the
GBSDE (5) if the following conditions are satisfied:

e (Y,Z, M) satisfies (5),
* (Y,Z, M) belongs to 55,4 for some 3, i > 0.

Sometimes, we shall refer to the triplet (Y;, Z;, M;);<7 as a solution in Sg u if
(Y, Z, M) satisfies (5) and belongs to €£ﬂ for some S, u > 0.

Let us point out that compared to the existing literature on L”-solutions (p > 1) for
classical BSDEs with monotonic drivers and deterministic parameters, the standard
integrability condition on the terminal condition & as in [6, 22, 36, 37], given by
E [|£]P] < +o0, suffices to derive the desired a priori estimates and, consequently, the
existence and uniqueness results using approximation techniques.

For BSDEs with stochastic Lipschitz drivers in the case p = 2, as in [15], the
condition E [eAA7 |¢|] < +oo is imposed to derive analogous results. In the same L2-
setting, but for the class of generalized BSDEs involving the local time of a diffusion
process on the boundary «, the assumption E [e“KT|§ |2] < +co is used in [45, 48] to
establish existence and uniqueness.

Thus, in our work which combines both stochastic monotonicity (in y) and stochas-
tic Lipschitz continuity (in z), the integrability condition (H6) is a natural continuation
and extension of this framework. In particular, in the case where the stochastic pro-
cesses (A;);<r and (k;);<7 are bounded by a constant ¢ > 0, i.e., Ay + k7 < ¢,
the weighted integrability condition (H6) and the standard one E [|£|P] < +co are
equivalent. Indeed, using the monotonicity of A and «, we have

E [egﬁAﬁ%ukr |§|P] < eFBHE [1€]P] < eTCBR [e%'BAﬂ%”KT |§|p] .

Therefore, in this particular situation, the weighted integrability condition (H6) and
the standard L? condition are equivalent. A similar analysis holds when A is a de-
terministic function and « is bounded. Furthermore, when A is bounded (e.g., when
¢: = ¢ and n, = n with ¢,n > 0 constants) and p = 2, we recover the classical
integrability setting for GBSDEs [18, 45, 48].
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Following this discussion on the terminal condition ¢ and assumption (H6), a
similar rationale applies to the integrability conditions on the drivers f and g given
in (H7), which are naturally imposed in the LP-setting for GBSDEs with stochastic
monotonicity and stochastic Lipschitz continuity.

Finally, even in the context of generalized BSDEs where A is bounded or deter-
ministic, the equivalence between the two norms may not always hold. Indeed, it is
possible for the standard integrability condition E [|£|P] < +oo to be satisfied while
(H6) fails, which illustrates the necessity of our assumption, as supported by the
literature on GBSDEs with continuous or jump frameworks [45, 48].

To illustrate such a case, we consider a filtered probability space G generated by
a Brownian motion W, completed and made right-continuous. Let (X;);c[0,7] be a
reflected Brownian motion (see, e.g., [42]) satisfying the Skorokhod SDE on [0, 1],
ie,

X; =x+Wt+£?—£,1, t€[0,7],

where:
e x € [0, 1] is the initial condition,

o L0=(LY),<rand L' = (L), <7 are the local times of X at 0 and 1, respectively.
That is, £° and £! are G-adapted, continuous, nondecreasing processes that
increase only when X; = 0 and X, = 1, respectively. Equivalently, we have
L= [ 1x,—opdLand L] = [ 1ix,-1y dLL forall 1 € [0,77].

Let X be a version of the sticky reflected Brownian motion (see, e.g., [23, 27])
with local times defined by

! 1 ! 1
L°=/7]1 —oyds, lef—]l _nds, €>0.
t 0 (T _ s)[ {Xs=0} 5 t o (T— S)g {Xs=1} 5

Define «; := E? + [I,l, which is continuous, G-adapted, and nondecreasing, that
represents the total time the process X has reflected at the boundary. For ¢ < 1, the
integral /Ot(T — 5)~%ds converges for all ¢ € [0,T], so k7 is finite, bounded and
assumption (H6) holds. However, for £ > 1, k; is finite for r < T since «; < (Tz_—’t), <
+oo but diverges at T', i.e., k7 = +o0. Since & := Xy € [0, 1], we have E [|£|P] < +oo,
but

E I:e%BAT“'%HKTlé:lp:I >E [e.%;mrmp} = oo,

Therefore, the a priori estimates in the paper, which rely on assumption (H6), may
not hold and the existence result would not be valid. This highlights the necessity of
assumptions (H6) and (H7). Accordingly, the conditions we impose extend rather than
restrict the existing results for LP-solutions of GBSDEs.

Remark 1. Throughout this paper, ¢ denotes a positive constant that may change from
one line to another. Additionally, the notation ¢,, is used to emphasize the dependence
of the constant ¢ on a specific set of parameters 7.

To derive the optimal constants in the a priori estimates of the solutions, we use
the following remark.
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Remark 2. Let (Y, Z, M) be a solution of the GBSDE (5) associated with (&, f, g, k).
Lete > 0, 0 € R and (/lga)’s’g)tsT be a progressively measurable nondecreas-

ing continuous process defined by /lia)’a’g = exp { fOt asds + €A + QK,}. Then we
define

Vo= A0, 2= 20007, db, =000 dM,.

By applying the integration-by-parts formula, we obtain

L T T A T T
Y,=§f+/ f(s,YS,ZS)ds+/ g(s,Ys)dKS—/ ZSdWS—/ dM;,
t t t t
with & = /l(T“)’s’g £ and drivers
f(t,y,z) _ /lt(a/),s,y f (l‘, A;—a),—a,—gy’ /lt(_a)’_s’_QZ) _ (Qs +sa§)y,

2(ty) =40 (t, ﬂﬁ“”"s’_gy) - oy.

Thus, if (Y, Z, M) is a solution of the GBSDE (5) associated with (&, f, g, ), then
the process (¥, Z, M) satisfies a similar GBSDE associated with (£, f, g, ). The
driver f satisfies the stochastic Lipschitz condition described in (H3) with the same
stochastic process (17;);<7. Moreover, the coefficient f satisfies an analogous mono-
tonicity condition (H2) with a modified real-valued stochastic process (&) given by
&f = a, — (@, + £a?) = —ea? < 0. Consequently, for any ¢ € [0,T] and each & > 0,
we have &7 + ea? = 0. On the other hand, we can see that 6, < 0 is not a severe
restriction. Indeed, if g satisfies (H3), it follows that the coefficient g also satisfies a
similar monotonicity condition with the real-valued stochastic process (5,) given by
5} = 0; — o. By choosing ¢ large enough so that §; < g, we can always reduce the
case where g satisfies (H3) with 8 negative.

Finally, let € > 0 and (Y#,Z%, M?) be a solution of the GBSDE (5) associated
with (&, fe, g, k), where f. satisfies (H2) with () replaced by (—&a?) and also

verifies (H4). Set '™ = exp {— fot asds — sA,} and define
pe._ (@), e pe 5e ._ (@),e 5 ye ._ (a)e &
Y7 =2, Yo, Zf =4, Z5, dM; =2, dMf .
Using the integration-by-parts formula, we obtain
. A r T . T T
YE=£¢ +/ fe(s.¥Y2,22) ds +/ 8o(5, V) drs —/ ZE dW —/ dm?g
t t t t
with £¢ = /l(T“)’g ¢ and drivers
7 — (). (ma).—2  (-a).-& 2
fe(t,y,Z)—/l, fs taA[ y,/l, Z +(at+8at)y3
ge(t,) =21 g (1,477 %y).

Then, g, satisfies (H3) with the negative process (6,), and fs satisfies (H2) and (H4)
with respect to the processes (a;) and (1), respectively.
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To facilitate the calculations, we shall assume, for the remainder of this paper, that
condition (H2) is satisfied with a process (a;); <7 such that «;, +ea% = 0 for each given
g > 0 and for all # € [0, T], and that (H3) holds with 8, < O for all ¢t € [0, T]. If this
is not the case, the same change of variables as described in Remark 2 can be applied
to reduce the situation to this case, while condition (H4) remains valid with the same
process (1;); <. Moreover, in order to avoid any ambiguity regarding integrability, we
shall also assume that conditions (H6)—(H?7) hold for the transformed data introduced
in Remark 2. For simplicity of notation, all these requirements, for both the original
and, when relevant, the transformed data, will be collectively referred to as (H-M),,.

Remark 3. In particular, when A and « are bounded, the exponential weight is
finite, and one recovers the equivalence of the conditions on & and &. In the general
case, this equivalence may break down, as illustrated in the example with the sticky
reflected Brownian motion. This shows that, contrary to the classical setting with
deterministic monotonicity and Lipschitz conditions, such an equivalence can no
longer be expected under stochastic monotonicity and stochastic Lipschitz coefficients.
Therefore, assumptions (H6) and (H7) must also be imposed for the transformed data.

Since the function x + |x|P is not sufficiently smooth for p < 2, Itd’s formula
cannot be applied directly. Therefore, we need a generalization of Tanaka’s formula
for the multidimensional case. To this end, we introduce the notation X = |fc_|]1x¢0

for x € R?. The following lemma extends the Meyer—Itd formula as referenced in
[6]. Although this result likely appears in earlier works, its proof is provided in
[36, Lemma 7] (see also [6, Lemma 2.2] for the Brownian case). In the context of
the BSDE in a general filtration considered in [36], the additional generator term
associated with («;);<7 in our formulation (5) is a continuous stochastic process, and
our filtration supports a Brownian motion without requiring an independent jump
measure. Consequently, the proof remains unchanged. The same observation applies
if fo. g(s,Yy) dk; is replaced by an R-valued, continuous, adapted process with locally
integrable variation on [0, T], denoted by (G;);<7 with Gy = 0. Therefore, we omit
the proof for brevity.

Lemma 1. Let (F;);<1 and (Z;); <1 be two progressively measurable processes with
values respectively in R? and R¥* such that P-a.s.

T
A {(IF| +1Zs)1?) ds +d [M]} < +oo.

We consider the R¢-valued semimartingale (X,); <t defined by

t t t t
X, =X0+/ des+/ dGS+/ ZSdWS+/ dM;. (6)
0 0 0 0

Then, for any p > 1, the process (|X,|p )e<1 is an R-semimartingale with the decom-
position

1X:1”

1 ! 1 ! 1~
= |X0|p + §1p=1Lt +P/ |Xs|p ! X Fyds +P/ |Xs|p ! XdGy
0 0
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t t
+p/ |XS|P‘1>?szdes+p/ | X177 Xs_dM
0 0

+ > {1 X A AMIP = X, |P = p X [P Xy AMLY

O<s<t

5 [ s (@ ) (1220 - (R0 ZZ) + (- D 12,17 ds
+ %/0 1X17 2 1y 0 {2-p)(d[M] - (X,)*d [M, M]g)?s)"‘(p M),

where (L;); <7 is a continuous, nondecreasing process with Lo = 0, which increases
only on the boundary of the random set {t € [0,T] : X,- = X, = 0}.

From this point forward, throughout the remainder of the paper, we assume p €
(1,2) and set c(p) = w.

3 A priori estimates and uniqueness

Let (Y}, Z!,M});<r and (Y?,Z2, M?),<r be two LP-solutions of the GBSDE (5)
associated with the data (¢!, 1, g', k') and (&2, f2, g%, k%), respectively, satisfying
condition (H-M),. Define R =R - R? with R € {Y,Z, M, &, f,g,k}, and set
i := ||&]|; + k> for t € [0, T]. Then we have the following proposition.

Proposition 1. Forany 8, u > 2(’%1), there exists a constant cg . p e Such that

Y|” (dA + d|IRlls + di?)

T
El sup e%BA”%”K’\mp] +E/ ¢ FBAT ks
0

t€[0,T]
T o g T o \*%
+E (/ eBAsTHKs ZSH ds) +E (/ eBAS‘L”KSd[M]S)
0 0

T
< cﬁ U p,€ <]E [E%BAT+%NRT|ap:| +/ e,BAS"'/JES
0

T
+E / oSS
0

Proof. As in [21, Proposition 1], it suffices to prove the result in the case where
Il + K% is a bounded random variable, and then apply Fatou’s lemma.
Using assumptions (H2)-(H4) on the drivers f and g, along with the basic in-

Fs,73, 23| ds

T
¢! (5. Y2)|PdlIRll, + B / PASHES
0

26, Y3)|Pd,<g) .

equality ab < % + ‘97"2 for all € > 0 and Remark 2, we derive the following:
v (sl 1 -1 2 2 2 <Pz e wia 2 2 7
Yo (F1G Y5, Z0) = f2(. Y5, 20)) < == |Z + [Vl F (s v 2] )

and

Yo (8'(5.Y)) — 8" (5, YD) di} + Vig' (5. Y2)dRy + Yy (8" (5. YD) — °(5, YD) dk?
< |Y|lg" (s, YDdIIRIls + |¥s||g (s, Y2)|di? (8)
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Next, using (7)—(8) along with Lemma 1, and the integration-by-parts formula [51,
Corollary 2, p. 68] for the product of semimartingales (e >A4+5#%|Y,|P), and the

S p-1E s p2 S .
fact that |Ys|p Y, = |Ys|p 1y,+0Ys, we obtain
P PPN T, [T T, P,z
eiﬁAﬁjllKr’Yt’p_i_Elg/ o BBAE i, YS|PdAS+£#/ o BBAE i,
20 200
T T
+£ﬂ/ e%ﬁAs+%uksyS|PdK§+C(P)/ o BBAE ik,
25 2 U
T p P,z
+C(p)/ eiBA,v"'jﬂKs
t

T
< e%ﬁAT+%uI?T|g|P+p/ ezﬁA +5 puics
t

Y| dllxll

1l 2P

Z\p_2]le¢od [M]¢

Yo" F (s, Y2, Z2)|ds

T
ip / e FBATERET P o1 (5, Y2)|dIR1l, +[2 (s, ¥2)|di}
t
T v T by X —~
-p / EPASRUR Y Py ZoaW, — p / e BPATR IR Y |P7YY _dM,
t t
- Z e%ﬁAs"'%/‘l?s {l?s_ + AMs|p - i?s—|p - p|YS—|p_l?s—AMs} . (9)
t<s<T

By applying Holder’s mequallty f|h|p 1|£’| a9 < ([|nf® dﬂ) (f le|” dﬁ)%
<P pl a+ L, and assumption (H5), we derive

Young’s inequality a 5 b

p‘/‘Te%BAs*'%HKS
'
T BB i [ (P 2<p’1) BA vk Sy Ae)
:p/ ( °Y| ! )(ez s+ Ks f(s,YS,Z)|aS ! )ds
t

T T
<(p-1) / e TPATIHRIY | dA + / AR, ¥2, ZD)| a3 P ds

T
<(p—1)/ e2'3A+2’““Y|pdA + (1 1)/ eBAsTHEs

VP F (s, Y2, Z2)|ds

f(s, 2,z ds.
(10)

Using a similar argument, we obtain
T P P, =
p/ o BBAFE uE,
t
T r P,z
< (p — 1)/ efBAs"'T/JKS
t
T T
_ b _
v [l D dR, [
t t

Next, from [36, Lemma 9], the jump part of the quadratic variation is controlled by a

V"™ {8 (s, YDLalRIls +]g" (5, Y2) = &35, ¥2)| i}

Y|” {dlRlls + dx2}

g, YH|Pd (11
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nondecreasing process involving the jumps of Y, as described below:

Z E%BAS_F%'“ES {|)7S— + A]Ws|p - |?s—|p - p|?s—|p_1?s—AMs}

t<s<T

> c(p) Z o TBAs+E pks

t<s<T

p-2
ML (o P v B+ AR P) T 15

#0°
R R R (12)
éddit/i\onally, fgom the dynamics of the process Y, we know that AYy = AMj. Therefore,
Yy =Y, + AM; for any s € [0,T1].
Returning to (9) and using (10), (11), and (12), we have

V|V +AM

T
egﬁA,+1Wz,|Yt|p+(gﬁ_(p_l))/ (BBAEUR T |P gA,
t
P T PBA +2uk
+(§,3—(P—1))/ e TPAstTHks
t

T
+C(P)/ o TBAs+E ks
2

Yo|” (dlllls + di)

Yo|" w0l Z|ds

V" Ly, s0d [M]

T
+c(p)/ o ZPAHE ks
t
+c(p) Z o TBAHE ks
t<s<T

T
< e%ﬁAT‘r%lu?Tk?l” +/ PBAs+UKs
t

T T
o [ gl s 2Rl + [ e
t t

T
-p / e%ﬁAs‘F%/‘Es
t

Let us set

2

p-2
st (TP v ) 1

Ys_|V|Vs |20

f(s,¥2, 22| ds

805, YD)  di;

Yo |7V, _did,.
(13)

- , 7
Ys|p—1yszsdws_p/ JBBAEuk,
t

Yo|P'Y  Zod W,

A ::/ o 2BA B uk,
0

= / o BBAE ik,
0

It follows from the Burkholder—Davis—Gundy inequality (BDG; see, e.g, Theorem 48
in [51, p. 193]) that the local martingales A and E are uniformly integrable martingales
with zero expectation.

Indeed, for the continuous local martingale part A, we have, by Young’s inequality,

T
< (E (/ ePPBAs*TPKs
0

and
V7'V il

1
S R(p-) 5 :
Yo )||zs||2ds)

E[ sup \A,|
te[0,T]
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1
B o T o 2
B || sup e"TAAFTT |y, P! ( / eﬁA“+"K‘S'||ZS||2dS)
te[0,T] 0
| T 5
— C p p o~ C _ o~
(p=1De E| sup elTﬁA’+17"K’|Yt|p +-E (/ e'BAS“‘KSHZSszs)
p t€[0,T] p 0

< +00, (14)

IA

IA

A similar argument holds for the RCLL local martingale part =, where we have
1
d s 2o-D o )
E| sup |Z]| <<E (/ ePPASTPIE Y |77 d[ M) v)
te[0,T] 0 ;

—_— b T K, v %
< (p l)c]E sup E%IBA,+%;1K1‘YI‘-” + g (/ eﬁASHAKSd[M]S)
p 1€[0,T] p 0

< 400, (15)

Then, taking the expectation on both sides and setting ¢t = 0, and 8, u > 0 such that
B,u > 2(” D we deduce the existence of a constant ¢B,u,p,e Such that

T
E/ e%ﬁAs"'%/ﬂ?s
0
T r P,z
+E/ eiﬁAx"'TﬂKs
0
T ) B
+E/ o BBAE Ry
0
+E[ Z ﬁA +2HKv
O0<s<T
R BAr+E pkr | Z|P T sAgtuk
< Coppe E[e7ﬁ T+7I1KT|E| ]+ PBAsTHKs
0

T T
+E/0 ePAHHEs gl(s,xf)|”d||f||s+15/0 ePAHHEs

T
X = eEpArsugr ¢ [ o
0

T —
N / oPAHRS
0

Then, using (13) with 8, u > @, we have, a.s., for each ¢ € [0, T]

Yo|” (dllRlls + i)

T
- DA
Ys|PdAs+E/ e TPAH T HEs
0

Vl" Ny, 0| Zo| s

Vol by, sod [M]

p-2
N (A A

Yo V|

]

f(s,¥2, 22| ds

s g

g(s, Yf)l”dx?) . (16)

Let

f(s Y? Z2)|p ds

s Lgo

T
¢! (5. Y2)| dIR]ls + / Pt
0

= y2 2
8(s,Y; )|p dks.

s|p_2ﬂYs¢O||Zs||2ds

T
egﬁA,+gyE,|Yt|p N c(p) / BBA+E
2
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T
+C(P)/ e TRAH T ks Ys|p_2]lys¢od [M]j
t

p-2
r 2ok =20 2., 15 > 2ANE
+C(p) Z ezﬁA5+2lle AMS| (lYS_| ViYs—"'AMS') 1? VP AR 20
t<s<T . B ’
<X-p(Ar—-N)-p(Er—E). 17

Using again the BDG inequality, we derive

E

sup e%ﬁAt+%pxt|g|P] <E[X]+¢c, (]E [A]‘T/2+E[5]1T/2). (18)
1€[0,T]

The term [A] lT/ % can be controlled as in [6]:

t€[0,T]

1/2
¢pE[AlY
1
PBA+L Uk v |5 T"A+P-Ap—2 =) 2
<pE [ sup eTPATIH|y, |2 / e 2 PAT IS Y|P My 0| Zs P ds
te[0,T] 0
1 PBA+LZ pk |y |P 2 T”A‘”’AP—z Z 2
< ZE sup ezPATIHAy,| +CPE/ e TPASTIEK Y|P Ny, 20| Z| " dis.
0

(19)
For the term [E] 1T/ 2, which is more complicated to handle, we follow [36] to obtain a
bound in terms of the estimation (16):

—11/2
pE[E T/

T
PBAs+pUKs
HE </0 e

1
PP Vapi), )

T _
B ( A ersncens (17, P v ) 1

1
2

IA

Yo |V|Ys

W41,

r 1

2
oz | 50 (R P p) )
1

te[0,T]
T epactun (5 Ry R\ )
R AR i)

1 b an b e T,
—E| sup e2PAt 2’”<’|Y,|p + C?,E e TPAs+ T 1K
4 |ief0.1] 0

IN
IS0

IA

Al

}7;__ Vv ?S ¢0d|:M:|S'

Using the pathwise decomposition of the bracket process [A’/}] (see, e.g., [51, p. 70]),
we have

P, reloT], (20)

a[i), = d[#]; +|af,
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Therefore,

Yo |V|Ys d [M] s

r 2BAg+E ukg S 12 512 %
/ R o (TR A o I TR,

0

T 2 P
— e FBAs+5 ks
0

p-2
e 8 (A A N
0<s<T

7P alid]f

N

A

Yoo |V|¥s|20°

Injecting this into the above estimation and using the basic inequality Vab < %a +b
for any a, b > 0, we obtain

1 o
HE[E]? < ~E| sup e2PA+Era|y,|P
4 iefor)

vy d[M]¢

N

T
P P,
SBAs+5 UKs _
+CPEA e |Ys|¢0

p-2
+c§E Z o BBAHE ks (|?v—|2v|?v|2) 2 |AA7I‘Y|2]1
O0<s<T

5 21

v‘ﬁ.’;&o'

Plugging (19) and (21) into (18), along with (16), we derive
E| sup E%BA,+%;1E,|Z|P
te[0,T]
2 BAT+2 uir | 7|P ’ Ag+uk
< Cﬁ,ﬂ,p,e E [67'8 T+7#KT|a ] +E/ €B sHHKs
0

T —
+E / eﬁAs"’ﬂKs
0

Showing the estimation for the remaining term

T N\ T N\
(1) o[ o
0 0

is the last step in proving the assertion. To this end, since p € (1,2), we apply the
equality 1117&=0 {Hfsnz ds + d[ﬂ]s} = 0 on [0,T] (we refer to [36, Lemma 8] for a
detailed proof). Using this result, along with Young’s inequality, we obtain

T N Z
E l(/ eﬁAsHle”ZS” ds) ]
0
T 2-p 2-p = 1~ 12— P Pz = 121 ) %
—u |([ AT (A PR 0 )

< Z—PE sup egﬁA,+§,1,z,|2|p
te[0,T]

f(s, sz, Z§)|pds

T
' (s, Y)|"dlklls +E / ePAstiks ;g‘(s,Yf)I”dK?) . (22)
0
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T
+ BE / e%BA.T+%ME.S‘
2 0
Similarly, we can show that
r O\
E ( i eﬁAsw-d[M]z)
0 s
2-p LRAA+E uic, |7 |P
< E| sup e2P” 2”’|Yt|
2 1€[0,T]
p ! LBA+E uks |y P2 71k
+5E NEEG Yo" d M)

By virtue of (20), it remains to show a similar estimation for the quadratic jump part

AR

of the state process Y given by \AM \2. To this end, we will use an approximating
procedure via a smooth function that is widely considered in the literature (see, e.g.,
[6, Lemma 2.2], [36, Lemma 7], or [14, Lemma 2.2]).

Let & > 0, and consider the function v, : R — R, defined by v.(y) = 4/ |y|2 + &2
Then, for any g > 0, we have

1\ 9
2-p 2-r & P 2-p 2 2
e 2 BAs+=5- ks (Vg(y))q — (( = BAs +2 i (iy| +82)) )
PBA +2P MK 4
< (vauq (e E % y)) ,

where £, , = &Cj, , with C, /= esssup,cq e 2BAT(@)+5pkr (@) Without loss of
generality, instead of replacmg A with A A k and then passing to the limit using the
monotone convergence theorem, we may assume that A is bounded. Therefore, we
have C pg < T, and consequently, 181?(} &p,q = 0. Furthermore,

. 2PpA 2Pk 2PpA + 2Pk
11?8 VEpa (e 7q BAs* g HEs y) = ¢ 2 PAst g His [y 1y as., g >0.
&

To simplify notation, we denote X, = sup,¢[o 7} |X,| for any RCLL process X =
(AX%)¢<7. Then, using Holder’s and Young’s inequalities

LE[B]

E [Ap(Z—p)/Z Bp/2i| < (E [AP])(z—P)/2 (E [B])p/2 < p E [AP] +

for some random variables A, B > 0, we have

P

(5 o)
O<s<T

( Z oBAHHRs (V‘9 (|Ys—| y |YS|))2—1) (Vs (|Ys—i v |YSD)p72 |AMS|2)

O0<s<T

P

2
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P
2
x (E [ S ebantun (v, (v, |v ) IAWD
0

<s<T
< 5502 (v ((4447) )]
+ E]E[ D eEPATENE (3 (Yo | v i) |A1\713|2] . (23)
2 O<s<T
We know that
lim (VA]),Z*]) ((egm%’??) ))p: sup g%BAt+%l“?z|ﬁ|p as.
gl0 \ % * te[0,T]
and that
. S S\ 7?2 -2
lim (ve (B VIRD)" 2 (el VIGD " 15 e 25

since p < 2.

Letting £ — 0 and then applying the Lebesgue dominated convergence theorem for
the left term in the last inequality of the estimation (23) and the monotone convergence
theorem for the right term in the last inequality of the estimation (23) (see also the
proof of Lemma 9 in [36]), we obtain

p

7

o[((g )
0<s<T

< Z—PEl sup e%ﬁA,+%ﬂK,|E|P]

te[0,T]

P P BAE i b -
+ EE lOZ egﬁAs+127ﬂKs (|Ys—|2 v |Y‘|2> 2 ]li?si|v|?g|¢o|AMs|2 '

<s<T
Finally, the proof is completed by applying the inequalities (16) and (22). O
From Proposition 1, we obtain the uniqueness of the solution.

Corollary 1. Let (¢, f, g, k) be any set of data satisfying assumption (H-M)y. Then,
there exists at most one triplet of processes (Yy, Z;, My);<1 corresponding to the
LP-solution of the GBSDE (5) associated with (¢, f, g, k).

4 Existence of L -solutions

First, note that the uniqueness result has been established in Corollary 1. Using
Proposition 1, we obtain an important result that provides an L”-estimate for the
solutions of the GBSDE (5) associated with the given data (¢, f, g, k).
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Corollary 2. Let (¢, f, g, k) be any set of data satisfying assumption (H-M),. For

any B, 1 > 2=V there exists a constant €B.up.e Such that, whenever (Y,Z) is an
L?-solution of the GBSDE (5), we have

T
El sup e%ﬁAz+17l1Kx’Yt|p‘| +E/ e%ﬁAx+17[1K_\. Ys|pdAs
0

te[0,T]
P r PpoA +2
Y| dis +E / e TRAT T HKs
0

T 5
+E [(/ e€ﬁAs+%#K!d[M:| ) ‘|
0 A
PA P p T A p
Scﬁ’#’p’e E[ezﬁ T+2/~U(T|§| ]_,_'/. eﬁ stUKs Ws| sz .
0

To establish the existence and uniqueness of L”-solutions for p € (1,2) of the
GBSDE (5), we first need to establish the existence and uniqueness of L2-solutions.
While this result may have appeared in previous works (see, e.g., [20, 21]), we could
not find an equivalent result for the GBSDE (5) under our general condition (H-M)3,
which assumes stochastic monotonicity, Lipschitz continuity, and linear growth in a
general filtration with larger integrability conditions. The proof of this result can be
obtained using the Yosida approximation method, following an approach similar to
that adopted in [21, Theorems 1-2]. We also refer to Proposition 4.1 and Theorem 4.1
in [19]. The latter reference deals with a more general class of GBSDEs with reflecting
obstacles. By letting the lower and upper obstacles tend to —co and +oo, respectively,
one recovers the classical GBSDE studied in our case.

Theorem 1. Suppose that (H-M), holds. Then, the GBSDE (5) admits a unique
L2-solution.

T
+ E/ e TBASH T ks
0

z
Zs||2ds) ]

T
gos|pds+E/ ePAsHIKs
0

Now, we can state the main result of this section, which is described as follows.
Theorem 2. Suppose that (H-M),, holds. Then, the GBSDE (5) admits a unique
LP-solution.

Proof. We assume that

e%ﬁAT+%"KT|§|p+ sup eﬁA’+”K’|go,|p+ sup eﬁA’+"’<’|l//,|p <C. (24)
T te[0,T]

]

Note that since ¢ and i are [1,+o0)-valued stochastic processes, we deduce that
eBA+u < G for any t € [0, T]. Moreover, from (H7), it follows that

T
E [/ ePASTHES (ds + dig) | < +oo.
0

Additionally, using the definition of the process (eA4*#%) . we obviously have

ePArtHk > | for any ¢ € [0, T]. Consequently,

2 2 2 2
€17+ sup |e["+ sup [y |" <CP.
te[0,T] t€[0,T]
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Therefore, using this and condition (H5), we conclude that

@s

S

T 2 T
E [EBAT+HKT|§|2 +/ oBAHHKs ds +/ PASHIKs 1y |2 dKS]
0 0

2+p 1 T
<C7 + (—2 + 1) CPE [/ ePASTHES (g +d/<s)] < 400,
€ 0

Then, using (24) and assumptions (H1)—(H5) and (H7), we place ourselves within the
framework of Theorem 1. Consequently, there exists a unique L.>-solution (Y", Z", M™)
and, hence, an L”-solution for any p € (1, 2) for the GBSDE (5). Note also that, by ap-
plying Corollary 2, we observe that the triplet (Y, Z, M) satisfies the same estimation
stated for any 3, u > %.

Using (24), we construct a sequence of GBSDEs associated with some data
(&n, fu> &n» k) such that (24) is satisfied and that approximates the GBSDE (5). To
this end, and to simplify notation, we set fy(t) = f(¢,0,0) and go(z) = g(¢,0). For
each n > 1, we define a set of data (&, f;, gx) as follows:

(

oo~ 5 Ar—Skr
. €] A WTg\ ¢ itero,
0 if&=0,
! Ba o,
1D IWANR ptTptt
falt,y.zy = { T3 o0 o |;:)ﬁ(f)‘ fole) it o) # 0,
(0 if fo() = 0,
( _EAr_EKt
A P P
en(t,y) = 8000—8M0+|&m)||zi;| go(t) ifgo(r) #0
0 if g0(t) = 0.

\ \

(25)
For each n > 1, the data (&, f,, gn) satisfies condition (24). Indeed, it is straight-
forward to observe the inequality

e%BAT+%“KT‘§n|P+ sup ePAtHR|£(£,0,0)|” + sup ePAtHR g, (2,0)|” < n.
te[0,T] t€[0,T]

Therefore, from the previous step, for each n > 1, there exists a unique triplet
(Y",Z", M") that solves the GBSDE

T T T T
Yf=§n+/ fn(s,YS",Zf)ds+/ gn(S,YSn)dKS—/ Z;‘dWs—/ dMy (26)
t t t t

for any ¢ € [0,7T].

Letn>m > 1.Set R := R" = R™ for R € {£,Y,Z, M}. Using again Lemma 1
with the integration-by-parts formula, we get

?S|deS

T T
e TBAT TN |P 4 Pg [ o5pA+Euks Y|P dA, + Py e5pas+bun
25 20
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t
4 4
+C(p)/ ezBAs"'z,u’(s
0

T
< e BPArE | g)P +p/ e BPAHE K|y,
t

Tl 1y (7] ds + a[41]7)

VolP 7Y o (fu (5 Y Z) = (s, Y™, Z)) ds

T v
+p / e EPAHEIS TPV (g (5, YD) = g (5, Y1) dik

t

’ A p-155 T ppaLue s (p-1% o
—p/ e7h +2’“<°Y| Y ZsdW, — p/ eTPATII |y |PTTY s _d M

P —~ _l)’\ —~

= 3 ekpa ks I7 w AM| - [Ty | - plF- Y- AR @7
t<s<T

From (25) and assumptions (H2)-(H4) on f and g, we have

Yt (fn(s» s,Zn) fm(s, K ’Zm))
< SPNZ, P 4 71 12(5.0.0) = fi(5,0.0)

and

Y (8n(s,Y)) = gm(s, ¥J)) =¥ (g5, ¥) = (5, ¥J") + ¥, (gn(5,0) = gm(s,0))
< |?8Hgn(s’ 0) _gm(s’0)|

Then, we obtain an analogous estimation to (7) for the driver f,, and a simpler one than
(8) for the coefficient g. Following this, using (27) and re- performing the calculations

from Proposition 1, we deduce that, for any 8, u > 2(”p ) , there exists a constant
€B,u,p,e such that

Y| dAy

%
zn%) ]

T
E[ sup ﬁA|?|] vB [ oot
0

t€[0,T]
T » b R T
+E/ eT,BAS"'TI‘Ks YsideS +E (/ eﬁAs"'lle
0 0

T Nz
+E ( / eﬁAS“‘KSd[M]S)
0
EﬁAT+£MKT p g BA+uk
< Bup.e ]E[eZ 2 ia ]+E ; eP TS

T
+E / PATHES g, (5,0) = gm (s, 0>|"dxs) : (28)
0

F2(5.0,0) = fu(5,0,0)|" ds

By using the basic inequality

n p n
(Z |x,-|> <nP Y 1XIP V(n,p) € N x (0, +0),
i=1

i=1
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along with (25) and assumption (HS), we obtain

6" < 27",
|£1(5,0,0) = fu(5,0,0)|” < 2P* |p,|P, P®dt-ae., (29)
|gn(5,0) = gm(5,0)" <2 |y|”, P o dk-ace.

Since lim f,(#,0,0) = fo(¢) P ® dt-a.e. and lim g,(7,0) = go(t) P ® dk;-a.e., it
n—+oo n—+oo

follows from (H6) and (H7) that we can apply the Lebesgue dominated convergence

theorem. Hence, we deduce that the right-hand side of (28) tends to zero as n, m — +oo.

Therefore, the left-hand side of (28) also tends to zero. Consequently, we derive the

convergence

n,m-—+oo

lim (||yn R AR Mm||§4£#) ~0.  (0)

Hence, {(Y",Z",M")},- is a Cauchy sequence in the Banach space 6'[;” for any

Bou > @. It then converges to a process (Y, Z, M) € 5;);’ .- Moreover, using (29)

and Corollary 2, we deduce that, for any S8, u > Z(pT;l), there exists a constant ¢g , p, e

(independent of n) such that

Y|’ dA;

T N
Ys"|pd/<s+]El(‘/0 ePAstiis| zn|| ds) ]
T 5
+El< Ji eﬁAS“"“‘d[M"]Y) ]
A A

D D
< C,B,/l,p,e (E [6 zﬁAT+2#KT|§:|Pi|

T
+E / eﬁAs"'/JKs
0

It remains to confirm that the limiting process solves the generalized BSDE (5).
To this end, since p > 1, we apply the BDG inequality along with (7) to obtain

T
E| sup eBpAbunlyn)? |4z [ haa b
te[0,T] 0

T
+E / e TBAHE prs
0

T
¢s|"ds +E / ePAsHHKs ¢/S|”d;<x). (31)
0

T T P T ) z
E| sup /Z"dWS—/ ZsdWs| | < B (/ |z - z4| ds) ——0
ref0,T] /¢ t 0 n—+eo
and
T T P T £
E| sup / a’M;’—/ dMy| | < ¢E (/ d[M"—ML) —— 0.
re[0,T] 1Vt t ] 0 ; n—+oo

From assumptions (H1) and (H4), we have

|f(t’ Ytn’Z?) - f(t’Yth)'
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SllZE = Zill + | (Y] Z2) = [ (Y2, Zo)| —— 0. (32)

Moreover, from assumptions (HS) and (H7), and Jensen’s inequality, we have
T

2,

0

T ) T T
< 2% (215:/ 1 Zs|I7 ds + —E/ los]? ds+]E/ ([v2)” +1v,17) ds)
0 e? Jo 0
- T g 2 T
<2 (2TTE (/ ||Zs||2ds) + —E/ los|P ds
0 e’ Jo

2 ’ n|P r
+ZE/0 ([72]” +1¥517) dAs | -

Using (25), (30), (31), (32), and the Lebesgue dominated convergence theorem, we

obtain
T
lim E /
n—+oo 0

Similarly, we can show that

f(t’Yn7Zl‘) _f(taYl’ZI) P

dag

p

fn(t’YtnsZ[n)_f(t’Yt9Zl) ds:()

as

T
lim E / lgn (5. Y7) = g(s.¥)|F iy = 0,
0

n—+oo

Finally, by passing to the limit term by term in (26), we deduce that the limiting process
(Y,Z, M) is the LP-solution of the GBSDE (5).
This completes the proof. O

Remark 4. An interesting direction and perspective for future research would be to
use the results presented in this paper, along with the arguments in [36, Section 6],
[43, Theorem 4.1], and [48, Theorem 53.2], to extend the current framework to the
case where the deterministic terminal time 7 is replaced by a stopping time 7 in the
general filtration F, which may be unbounded.
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