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Abstract The first-return time is the time that it takes a random walker to go back to the initial
position for the first time. In this paper, the first-return time is studied when random walkers
perform fractional kinetics, specifically fractional diffusion, that is modelled within the frame-
work of the continuous-time random walk on homogeneous space in the uncoupled formulation
with Mittag-Leffler distributed waiting-times. Both the Markovian and non-Markovian settings
are considered, as well as any kind of symmetric jump-size distributions, namely with finite
or infinite variance. It is shown that the first-return time density is indeed independent of the
jump-size distribution when it is symmetric, and therefore it is affected only by the waiting-time
distribution that embodies the memory of the process. The analysis is performed in two cases:
first jump then wait and first wait then jump, and several exact results are provided, including
the relation between results in the Markovian and non-Markovian settings and the difference
between the two cases.

Keywords First-return time, fractional kinetics, fractional diffusion, continuous-time
random walk, first-passage time, Sparre Andersen theorem
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1 Introduction

Fractional kinetics [43, 23] concerns particles’ motion whose random displacements
follow a probability density function that evolves according to equations including
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fractional calculus operators. In a sloppy way, we can say that fractional kinetics con-
cerns processes that follow a nonlocal generalisation of the Fokker—Planck equation.
A noteworthy example is fractional diffusion [30].

The emerging evolution equation in fractional diffusion generalises the heat diffu-
sion equation by replacing the first derivative in time and/or the second derivative in
space by the corresponding fractional derivatives [17]. As a consequence, the under-
lying random walk model is not the classical random walk leading to the Brownian
motion but its generalisation characterised by power-law distributions. Such gener-
alised random walk is the continuous-time random walk (CTRW) [37] that extends
classical random walk by replacing a fixed time-step with a random interval between
consecutive jumps. These random intervals are called waiting-times and, in the basic
formulation [37], are assumed to be i.i.d. random variables and independent of the
jump-sizes, which also are assumed to be i.i.d. random variables. When the distribution
of the waiting-times displays a power-law, then the evolution equation of the displace-
ment density function contains time-fractional derivatives. On the other side, when
the distribution of the jump-sizes displays a power-law, then such evolution equation
contains space-fractional derivatives. In this second case, the corresponding random
walk is called Lévy flight [5]. When the jump-size distribution displays power-law
then the variance of the jumps and that of the walker’s density function are infinite.
When the waiting-time distribution displays a power-law and time-fractional deriva-
tives appear, then the process is non-Markovian. The process is strictly Markovian
when the waiting-time distribution is exponential [53, 33], however, this constraint
can be relaxed by considering as Markovian all those processes with finite mean
waiting-times, and as non-Markovian those with infinite mean waiting-times. Here,
we study the first-return time when both waiting-time and jump-size distribution may
display power-law.

The first-return time is the time after which a random walker comes back to
the starting location for the first time. This kind of problem has a quite important
application in the animal kingdom because it is linked to concepts as site fidelity,
breeding, social associations, optimal foraging [18]. Mathematically, it is strongly
related with the first-passage time problem [41]. The main result in first-passage
time problems is the celebrated Sparre Andersen theorem [46], which concerns the
survival probability on the half-line conditioned on the walker’s initial position for
symmetric Markovian random walks with fixed time-steps in the presence of an
absorbing boundary. Its importance lays on the fact that it states that the conditional
survival probability is independent of the jump-size distribution when the walker’s
trajectory starts from the location of the absorbing boundary, thus, it is universal.
As a matter of fact, we show in this paper that this universality of first-passage time
problems is reflected also in first-return time problems. Therefore, the results derived
here are indeed independent of the tails of the walkers’ density function and so the
process can be governed by a Gaussian or by a Lévy stable density, as well. On the
other side, the system is affected indeed by memory effects. Therefore, the results
display different behaviour for the Markovian framework, namely with exponentially
distributed waiting-times [53, 33], and for the non-Markovian one.

In particular, we report here that in discrete-time random walks, which are Marko-
vian by construction, when a nearest-neighbour jump-law is taken into account then
the probability mass function of the first-return time is linearly proportional to that
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of the first-passage time [41, 26, 19]. As it is discussed in the following, see formula
(32), this linear proportionality holds also when the assumed jump-law is different
of the nearest-neighbour rule. However, since the general framework of the CTRW is
considered here, we study in addition the specific non-Markovian setting generated
by Mittag-Leffler distributed waiting-times and we determine and investigate also the
difference emerging between Markovian and non-Markovian formulations.

The formulation of the CTRW depends on the choice of the starting instant for
measuring the elapsed time. In fact, the measurement of the duration of the first-return
time can start synchronised with the first jump, and we label this case as the case
first jump then wait, or it can start independently of the process so that the first jump
occurs after the first random waiting-time, and we label this case as the case first wait
then jump. We consider both cases, because, even if formulae relating Markovian and
non-Markovian frameworks are equal, exact results in the Markovian setting differ for
the two cases, and so in the non-Markovian setting. Moreover, we also quantify this
difference.

We derive exact results in the Markovian setting and provide the relation between
the Markovian and non-Markovian settings, so that non-Markovian results for Mittag-
Leffler distributed waiting-times are also exact and fully determined. The derivation
of the result is based on the Sparre Andersen theorem and it exploits the Laplace
transform method. In particular, we provide some preliminary notions and results in
Section 2 where the Sparre Andersen theorem is reminded and we also briefly remind
the theory of the CTRW [37]. This allows us to state the Sparre Andersen theorem
in the framework of the CTRW. In this section, we also derive integral (27), which
is the main formula for the calculation of the remaining results. In Section 3, first we
formulate the problem of first-return time and later we derive exact results for both
cases first jump then wait and first wait then jump.

2 Preliminaries

2.1 The Sparre Andersen theorem

Let R be the set of real numbers, we denote by R* and R{ the set of positive real
numbers and the set of nonnegative real numbers, e.g., the half-line of spatial excursions
excluded the origin R* = {x € R|x > 0} and the elapsed times Ry = {r € R|t > 0}.
Analogously, we denote by R™ and Ry the set of negative real numbers and the set
of nonpositive real numbers. Let furthermore N be the set of natural numbers and
No =NU {0}. Let S, = X; + -+ + X, be the sum of n € N ii.d. random variables
X,, € R. Then the first ladder epoch {7 =n} = {S; >20,...,S,-1 = 0,85, <0} is
the epoch of the first entry of the walker into the negative semiaxis R™. By adding
a constant xo € Rg to all terms, we obtain a random walk with initial position at xo.
The probability for a walker started at So = xg to remain in the initial half-axis after
n steps, that is, the probability for 7 to be larger than n, is called survival probability
conditioned on the initial position and the site x = 0 is termed as the location of an
absorbing barrier. Thus, let the survival probability conditioned on the initial position
be denoted by ¢,, : R — [0,1],Vn € N. Then for a walker starting at So = xo we
have ¢,,(xo) = P(T > n), and it yields

/0 k(2 = %0) én(2) d2 = a1 (x0) . ¥0 € RS, 1 € No, M)
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with initial condition ¢o(¢) = 1,V¢ € R§, where k : R — R is the probability
density function of the i.i.d. random variables X,,, Vn € N. Within the framework of
the CTRW, the density function k (x) turns into the jump-size distribution.

Integral equation (1) is known as the Wiener—Hopf equation [ 12]. A first connection
between random walks with an absorbing barrier and the Wiener—Hopf integrals was
pointed out by D.V. Lindley in 1952 [28]. For a more general relations between the
Wiener—Hopf integrals and probabilistic problems, see, e.g., reference [13, Sections
XII.3a and XVIIL.3]. However, as observed by W. Feller, the connections between
first-passage problems and the Wiener—Hopf integrals “are not as close as they are
usually made to appear” [13, Introduction to Chapter XII]. For more recent papers,
see, e.g., references [21, 15, 35, 34, 3, 36, 7]. A general solution to the Wiener—Hopf
equation (1) is known in the literature as the Pollaczek—Spitzer formula [3, formula
(12)]. This name refers to a formula (see [49, theorem 5, formula (4.6)]) derived by
F. Spitzer in 1957 [49, theorem 3, formula (3.1)] on the basis of an auxiliary formula
obtained by F. Pollaczek in 1952 [40, formula (8)] but through a different method. It
is possible to show that problem (1) is equivalent to a Sturm—Liouville problem with
proper boundary conditions [8], and this is also an alternative and easier approach with
respect to the Pollaczek—Spitzer formula for the calculation of the survival probability.
In particular, one of the required boundary conditions for the Sturm-Liouville system
emerged due to the Sparre Andersen theorem. Moreover, the Sparre Andersen theorem
can be derived on the basis of formula (1) under the assumption that ¢,;(-) is of
bounded variation [14]. Actually, the Sparre Andersen theorem [46] is a fundamental
result in the study of the first-passage time problems.

Originally established in 1954 [46], the Sparre Andersen theorem states

_on(2n 1

$n(0) =2 (n) N n— oo, @)
Thereby, the Sparre Andersen formula (2) is valid for arbitrary but symmetric jump-
size distribution, i.e., k(&) = k(—=¢) with & € R. In other words, the Sparre Andersen
theorem [46] provides the exact survival probability conditioned on the initial position
for symmetric Markovian random walkers starting in the same location of the absorbing
barrier and states that it is independent of the jump-size distribution & (x) (whenever
it is assumed to be symmetric). See, for example, F. Spitzer [48] and W. Feller [13,
Section XII.7]. This independency uncovers a universal nature of the Sparre Andersen
theorem which is reflected also in other results, see, e.g., [4, 24, 25, 34, 10, 38, 27].
Thus, we refer to this independency as the universality of the Sparre Andersen theorem.
Sparre Andersen formula (2) is indeed one of the many results emerging from a deep
corpus studiorum on random walks based on combinatorial arguments by E. Sparre
Andersen [44, 45, 47, 46] and F. Spitzer [48—50]. For more recent and general results
on the basis of probabilistic arguments, see, e.g., [2]. The general formulation of the
first-passage time problem for processes with discrete-time is available in [3, 36].

2.2 From the discrete- to the continuous-time setting

The survival probability problem can be formulated also in the continuous-time setting.
In particular, we consider the CTRW on homogeneous and continuous space in the
uncoupled formulation as originally introduced by Montroll and Weiss in the year
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1965 [37]. This means that the i.i.d. random waiting-times and the i.i.d. random jump-
sizes are, at any epoch, independent of each other and also of the current position and
time. Therefore, in analogy with the discrete-time setting, the walker’s position after
n iterations, with n € N, is given by the sum of n i.i.d. random variables X,, € R
distributed according to the jump-size distribution k(x), i.e., S, = xo + X1 + -+ + X,
where x( € R is the initial position. The actual time ¢ > 0 is given by the sum of n
i.i.d. random waiting-times 7; € R between two consecutive jumps, i.e., r = 3 7;
with initial instant # = 0. Moreover, let the survival probability conditioned on the
initial position in the continuous-time setting be denoted by A : Rj X Rf — [0, 1].
Thus, by using the same approach adopted to compute the walker’s density function in
the CTRW theory [37], the conditional survival probability A is given by the weighted
superposition of all the possible discrete-time counterparts ¢, (-), and it results in the
series

A(x0,1) = ) ¢n(x0) Wult),  x0,1 € RY, 3)
n=0

where the index n counts the number of occurred jumps and ¥, (-) is the probability
to have an elapsed time equals to ¢ € R] after n € Ny jumps such that

¥, (1) = /O Wi (i - Dw(r) dT, Bolt) = B(1) = | - /0 y(dr, @

and ¢ : R — Ry is the distribution of the waiting-times.
For the present purposes, we pass to the Laplace domain and obtain for formula
(3) that

LLA(x0, 135} = Alxo, 5) = B(s) > dulxo) [(9)]" )
n=0

+00

where L{g(2);s} :=g(s) = / e " g(t) dt is the Laplace transform of a suffi-

0
ciently well-behaving function g (7). Hence, after splitting formula (5) in
A(xo,s) = ¥(5)g0(x0) + P(5) ) dulxo) [W(s)]" (©)
n=1

by recalling that ¢o(xo) = 1,Vxo € Ry, and expressing ¢, (-) through the Wiener—

Hopf integral equation (1), from formula (6) we get
Rli0.5) = #) +7(5) [ k(e =R, de ™

Finally, after the inverse Laplace transformation g (7) = £~!{g(s);}, the equation for
the survival probability is

Alxo.1) = (1) + /0 w(t—0) /0 k(€ —x)AE.Q) dEdl . xot € RS, (8)

which is the analogue of formula (1) in continuous time, see also [7, 8, 42], and we
recover A(xp,0) = 1,Vxy € R, because ¥(0) = 1 by definition (4).
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2.3 The Sparre Andersen theorem in the framework of the CTRW

The Sparre Andersen theorem can also be put in the framework of the uncoupled
CTRW, in particular, through formula (3). In fact, if we set xo = 0 in formula (5),
and from the Sparre Anderson formula (2) for the discrete-time setting we take the
expression of ¢,,(0), then

A0, 5) = ‘I’(S)ZZ_Z"( ) ()]
‘T’(s) ~ \/S lFf‘(s)
N

V1)
= 1-30), ©

where in the second line we used the series

& 2n 1
2-2"( )Z" = . lzl < 1. (10)

Formula (9) was already reported to some extent in [1, formula (7)] but not formally
derived, yet. By applying the initial and final value theorems we have

A(0,0) = lim sA(0,5) =1, (11a)
A(0. ) = lim sA0,5) =0, (11b)
§—

because {[ (0) =1and zZ (o0) = 0. After the Laplace antitransformation of the first line
of formula (9), the Sparre Andersen theorem reads

- 2
A=) 2—2"( ”) W, (1) . (12)

n=0 n
For Markovian random walks, we have that y (7) = ¢y (¢) = e [53, 33], such that

~ ~ 1
Ym(s) =¥m(s) = s (13)
+s
and then formula (9) reads

~ 1

AMm(0, 5) = ——. (14)

Vs(1+5s)

Consequently, formula (12) for the Markovian case gives in the original domain [42]
Am(0.1) = ™2 Io(1/2), (15)

where I(-) is the modified Bessel function of the first kind of order 0 defined by the
series

2
(&) = Z(g e feR (16)
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with o 5 o
3 dly({ _ d-1o({ 1
I(0) =1, 7 =0, T 0 =5 a7

From formula (14) we have in the long-time limit, i.e., s — 0, that KM(O, s) ~ 1/4/s
and after the Laplace inversion it gives Ay (0,7) ~ 1/4/t for t — +oo. This last limit

is the continuous-time counterpart of limit (2).
For non-Markovian random walks, we consider the specific model [20]

w(t) =P Eg g(—1F), W(1) = Eg1(—1F) = Eg(—1P), (18)

where Eg ,(z) is the Mittag-Leffler function [29, Appendix E]
Eg a(z) = ——— ., Re{f}>0,a€eC, zeC, (19)
P ,ZO L(Bj+a)

which in the Laplace domain correspond to

7 L g 20
l//(S)—m, (S)—1+SB (20)
Hence, formula (9) reads
. §BI2-1
A0, s) = . 2n
1+s8
We observe that _ _
A0,5) = 1A (0, 5P) (22)
and by applying the Efros formula [11, 51], i.e.,
e} = [ woc ieeiota. e
0
with v(s) = s#~! and ¢(s) = 5P, in the original domain we have
MO =1 [P DM/ de 4)
0

where Mpg(-) is the Mainardi/Wright function defined by the series [29, Appendix F]

(o]

B (=1)/ 7/
MV(Z)_,ZO TS e Ay 0<r<liet (25)

whose Laplace transform is known in the literature [30, (4.26)]. From formula (21)
we have that A(0, s) ~ s#/2~1, when s — 0, and after the Laplace inversion A(0, 1) ~
1/tP1% for t — +oo.

Moreover, after reminding that the unconditional survival probability is determined
by the integral / p(&)A(&,1) dé, where p : Rf — R is the distribution of the initial

0
position, we can state the following theorem.
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Theorem 1. The unconditional survival probability of a symmetric CTRW is inde-
pendent of the jump-size distribution if this distribution is equal to the distribution of
the initial position.

Proof. From the third line of formula (9) we have q’(s) = us(O, s) and, after
summing and subtracting A(0, s), we can derive

A0, 5) = B(s) + A0, ) [1 — sA(0, s)] , (26)
which, after the comparison against formula (7) with xo = 0, gives

/ k@R de = 2O [ R o,0)]
0 705)

_ li‘(s) 1
AR 0
V1=0(9) = 143()

-1

= = ; @7

sy (s)
and this is independent of the jump-size distribution k(x) as a consequence of the
universality of the Sparre Andersen theorem (2) when plugged into (3). O

3 First-return time for CTRW

3.1 Problem formulation and definitions

The duration of excursions of a random walker until its first comeback to the starting
position is called first-return time (FRT). This observable can be understood by an
example from the animal kingdom in terms of the return of an animal to a previously
occupied area, such as the duration of the flight of birds when they leave and then
return to their nests. This is a wide-spread behaviour associated with a number of
ecological processes as site fidelity, breeding, social associations, optimal foraging
[18] and is successfully modelled also by fractional kinetics [16, 52].

The FRT for the uncoupled CTRW reported at the beginning of Subsection 2.2
can be exactly calculated by using integral formula (27). In particular, we can exactly
calculate the FRT for the fractional kinetics emerging from a CTRW with Mittag-
Leffler distributed waiting-times (18). In this section, we consider a random walk
starting at the origin x = 0 and, provided that the first jump away is of length, say, &,
we are interested in how much time it takes to the random walker to pass through the
origin for the first time after the departure. As a matter of fact, the problem is equivalent
to a first-passage time problem when the random walker starts at the initial instant 7
from the random first-landing position & and the associated absorbing barrier is located
at the origin x = 0. Actually, the first-landing position ¢ is distributed according to
the jump-size distribution k(&) and 79 is the delay elapsed between the two locations
x = 0and x = ¢. The CTRW formalism allows for two different formulations of the
problem: first jump then wait (jw), such that 79 = 0, and first wait then jump (wj),
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such that 7y is a random variable distributed according to ¢ (). Thus, by following the
literature [9, 6, 22], we define the FRT as follows:

RT = {72(5)+To, EeR,

(28)
T (&) +1, £€RT,

where 7T is the first-passage time and, in particular, 7, is the first-passage time when
the first jump away from the origin is towards the left into the position & < 0 and 7
when it is towards the right into the position & > 0.

oA
Let A(&,1) = o be the first-passage time density conditioned to the starting

position ¢ and satisfying the normalisation condition / A(&,t)dt = 1. Then the

0
density function of the first-passage time weighted over all the possibile first-jump
landing positions is

) = / KA 1) dE

+00
-2 [ ko e, @9
where the symmetry property of the jump-size distribution, k(&) = k(=¢), is used.

Thus, since 7 and 1) are statistically independent, we have that the density function
of their sum, namely the FRT (28), is

PiV(r) = f(r), whenty=0, (30a)
PY(1t) = /0 w(t =) PY()dl, whento~y(r). (30b)

An alternative formulation is possible by starting from the discrete-time setting
with the extension to the continuous-time setting in the fashion of formula (3) [1]. In
particular, by defining the discrete-time first-passage time density 1,,(¢) = ¢,,-1(&¢) —
¢n(€), with n > 1, and exploiting the Sparre Andersen theorem (2) at & = 0, we

have [41]
1,,(0) = 2-2nD) 2(n=1Y\ p-2n 2n
" n-—1 n
— 2-2(n-1) 2n n_ 1
n n-2 4
— 9-2(n-1) 2n 1
n)2(4n-2)
272 (p
_2n—1(n)’ (D

A,(0) = 1. Moreover, by definition (29), in the discrete-

00

which correctly gives >,

time setting we have

fo=2 /0 ")) de
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o / K [Gnor (€) - 0n(9)] dE
0

=2[¢n(0) = $p41(0)] =22541(0), n2>1, (32)
where in the third line we used (1), and it holds that fy = 0.

3.2 The (jw)-case
We remind that in this case PI¥(¢) = £(¢) (see (30a)), thus in the following we study
the density function f(z).

In particular, thanks to the relation in the Laplace domain between the first-passage
time density and the corresponding survival probability, i.e., 1(£,s) = 1 — s A(E, s),
from (29) we have

Fls) =2 /0 K(OT(E. 5) dé

— 1o /0 KN, s) de

N0 - 143
U(s)
2-§(5) =241 - 8(s)
) U (s) ’
where formula (27) has been used in the third line. It can be checked that the nor-

malisation condition f(O) = 1 is met because ¢ (0) = 1. Since formula (27) from
Theorem 1 has been used for deriving (33), we underline the following remark.

Remark 1. The density function of the FRT of a symmetric CTRW in the (jw)-case
is independent of the jump-size distribution.

(33)

Moreover, if we consider the non-Markovian setting (20), from formula (33) we
finally obtain that the Laplace transform of the density function of the FRT for a
CTRW of (jw)-type is

f(s)=1+2s8 —2VsBVsP + 1. (34)

When 3 = 1, the system is Markovian. Therefore, if fy1(¢) denotes the corresponding
density of the FRT, the following equality holds in the Laplace domain:

f(s) = fu(s). (35)
Hence, we can state the next theorem.

Theorem 2. Let f(t) and fum(t) be the density functions of the FRT in the (jw)-
case for a symmetric CTRW with Mittag-Leffler (18) and exponentially distributed
waiting-times, respectively, then

£1) = /0 VBB (O de. 0 < B <1, (36)

where {g(t) is the one-sided Lévy stable density characterised by the Laplace trans-

form e’
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Proof. By reminding the Efros theorem (23), formula (35) can be inverted setting
v(s) = 1 and g(s) = sP, so that we have the integral relation (36). O

We observe that from (36) the Markovian case is recovered when S = 1 because
6(t) =6(t—1).
In the Markovian case with 8 = 1, from (34) we have

1+2s—24/sVs+1

1+s

fuls) = (1+5)

1 1 1
- 1+s+2sl1+s_m]
1 1 1
+s{l+s+2s l“_s—m]}. (37)

Thus, by remembering the properties of the Laplace transform, and also the Laplace
transform pair (14) and (15), we can calculate the exact result

) =P [zo@) - ‘”"—“)] e
i=t/2

¢
I
+i e*t/Z |:IO({)_ dO(§):| _e*t
dt dc £=1)2
1 d’I
— _e—t/2 |:10(§) _ 0(25)] , (38)
2 d( £=t]2
and then the integral formula (36) is fully determined.
From (38), by using the values given in (17), we have that
1
m(0) = 1 (39)
and, when plugged in (29), it gives the following universal result independent of k(¢)
+00 1
MO = [ k@m0 de = ;. (40)

in opposition to the first-passage time density which is indeed dependent on & (¢) also

at t = 0 according to Ap(£,0) = k(y)dy. In the non-Markovian case
3

F(0) = +oo 1)

in analogy with the first-passage time density A(&,0). In fact, after the change of
variable ¢ = (¢/x)? in (36), we have

e d
1) = B! /0 G [3)

o d
~Ct'8_1, t—0, withC:%/ fﬁ()()—);. 42)
0 X
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From (34) we can derive the asymptotic behaviour for large elapsed times. Actually,

we have f(s) ~ 1—2s5/2 when s — 0 which is consistent with the behaviour of e 2"
for small s and gives
f() ~ g (1/2%P) ~ 2 t — 400 (43)
22//3 B2 B2+ ‘

From (43) it follows that the mean FRT in the (jw)-case is infinite both in the Markovian
and non-Markovian setting but the right tail of the density function decreases slower in
non-Markovian systems. Because of formula (29), we have that scaling (43) is also the
scaling of the corresponding first-passage time density A(&, ) [22], notwithstanding
the exact functions may differ.

Tools of fractional calculus can be used for studying the integral formula (36). In
fact, let J#, with u > 0, be the Riemann—Liouville fractional integral defined by the
Laplace symbol s™# [17], then in the Laplace domain

o —{S:B
£ s = 1 - [ S, (44)

which, by using the formula E{t"BMﬁ({f’B); s} = sﬁ_le_gsﬁ, with Re{s} > 0, [30,
(4.26)], gives

1
JBf() = /0 t?Mﬁ(s“/rﬁ)fM(g) d¢ . (45)

Since from the study of time-fractional diffusion equations [30] we have that
lim, 0 A Mg(£/1P) = 5(¢), then

J7PE)] o = fu(0) = % : (46)

Furthermore, we can also have the Laplace transform of the cumulative density func-

tion Fjw(t) = / f(&)d¢ which, by using (35), leads to the equality
0

() = L0 o1 M) _ g @)

Therefore, we can state the following theorem.

Theorem 3. Let FI¥(t) and FIJ;X' (t) be the cumulative density functions of the FRT
in the (jw)-case for a symmetric CTRW with Mittag-Leffler (18) and exponentially
distributed waiting-times, respectively. Then

F¥(1) = fﬁl Mg(¢/P)FY () de, 0<B<1, (48)

where Mg({) is the Mainardi/Wright function defined in (25).

Proof. By applying Efros formula (23) in analogy with the pair (22) and (24), we
have (48). m|
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To conclude, we remind the formula [32, (6.3)]

e d
BM( ) = 17 /0 My @M S @)

and then from Theorem 3 we have the following corollary.

Corollary 1. The relation between the cumulative density function with the anomalous
parameter 3 and that of parameter n > (3 is

F™(6:) = 17 /0 My (I F™(Cim)dl . B=vn. (50)

Proof. By using (49) in (48) we have (50). O

Remark 2. An interesting special case of formula (50) is obtained when v = 1/2, that

S,
1 g ea [ gy g 51
(t’ﬂ/ ) - 0 W (g’ﬁ) {’ ( )

where the identity M;/,({) = 6‘42/4/\/5 has been used.

A large number of other formulae can be obtained using the existing results for
the Mainardi/Wright function, e.g., [30, 29, 31, 39].

3.3 The (wj)-case

The FRT density function in the (wj)-case (30b) can be studied in the Laplace domain.
In particular, by using (29) and (33), from (30b) we have

PYi(s) = 4 (s)f(s)
=2—g(s) =241 =9 (s). (52)

It can be checked that the normalisation condition P*(0) = 1 is met and by applying
the initial and the final value theorems one has

PY(0) = lim sPY(s) =0, (53a)
PV (+00) = lin(l) sPY(s) =0, (53b)

because ¢ (0) = 1 and  (+00) = 0. In analogy with Remark 1, we underline also in this
case that, since Theorem 1 lays behind the derivation of (52), we have the following
remark.

Remark 3. The density function of the FRT of a symmetric CTRW in the (wj)-case
is independent of the jump-size distribution.

Formulae (53a) and (53b) hold both in the Markovian and non-Markovian case.
More explicitly, from (20) we have that the density function of the FRT for a CTRW

of (wj)-type is
1+258 - 2VsBVsB + 1

ﬁwj(s) - sB+1

(54)
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When g = 1, the system is Markovian and therefore, denoting by PI\‘ZJ(I) the cor-
responding density of the FRT, in analogy with (35), in the Laplace domain one
has _ .

PY(s) =Py (sP). (55)
Formula (55) can be inverted by applying the Efros formula (23), and we have the
following theorem.

Theorem 4. Let PY (1) and Pl‘:’,[j (t) be the density functions of the FRT in the (wj)-
case for a symmetric CTRW with Mittag-Leffler (18) and exponentially distributed
waiting-times, respectively. Then

PYi(r) = /0 L)Y PR de, 0<p <t (56)

which recasts formula (36) for the (jw)-case.

In the Markovian case with 8 = 1, from (54) we have

~wi 1 1 1
P(s) = — +2 -, 57

w (5) I+s sl1+s w/s(1+s)] 57
and, by remembering the properties of the Laplace transform together with the Laplace
transform pair (14) and (15), we can calculate the exact result

' - dly({) - ]
Py (1) = e/ [10(4) vy —e™', P(0)=0, (58)
l=t]2
so that the integral formula (56) is fully determined.
We can quantify the difference between the two cases (jw) and (wj). In fact, first
by comparing (38) and (58) we have the proposition.

Proposition 1. The relationship between the density functions of the FRT with expo-
nentially distributed waiting-times in the (wj)- and (jw)-case is
dly d’Iy

PI(r) = 2P (1) —e7'/? [d: e ] e

e . (59)
Later, by using (36) and (56), we find
PYI) =2PM0) - [ B0 ) e ag
0

) 2
_/ 1B (1)0MB) e [@ _dh 10]
0 Ay d* |yegp

The second term in the r.h.s. can be solved and put in a more clear form. In fact, by
using some formula concerning Lévy density function [30, (4.26)], Mainardi/Wright
function [30, (4.32)] and Mittag-Leffler function [29, (1.45)], we have the equalities

/ TPy e a2 2 / LMy e g
0 t Jo B

dc.  (60)
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sl_'B d o BB
= M, STy g
; 0s/0 s(y)e y
s'F 9
=2 Eg(—1PsP
t Os p(=1°5")

=P Eg g(~1P5P). (61)

Thus, by remembering (18) and setting s = 1, one has

/wg-l/ﬁgﬁ(t/gl/ﬁ)e‘4 dc =y(1). (62)
0

And so we have the following proposition.
Proposition 2. The relationship between the density functions of the FRT with the
Mittag-Leffler distributed waiting-times (18) in the (wj)- and (jw)-case is

PY(t) = 2P (1) =y (1)

® _ep [dly  d*,
_/0 B (1)0MB) et [_0__0

. (63)
d/\/ d/\/z :|X={/2

From (54) we can derive the asymptotic behaviour for large elapsed times and, in
analogy with (43), it is

. 1 2
Wilf) ~ —— 2/By
PY(1) 25 Lpp(t/2°7) B t — 40, (64)

from which it follows that the mean FRT also in the (wj)-case is infinite both in
the Markovian and non-Markovian settings, and the right tail of the density function
decreases slower in non-Markovian systems.

The analogies between the (jw)- and the (wj)-cases also include formulae (45) and
(46) that now read as

. e 1 wj
JPYi(y) = /0 FMp (/PP () dC ©63)
JPPY(1)] = Pl (0) =0, (66)

as well as the analogue of Theorem 3, given below.

Theorem 5. Let F¥i(t) and F&j(t) be the cumulative density functions of the FRT
in the (jw)-case for a symmetric CTRW with Mittag-Leffler (18) and exponentially
distributed waiting-times, respectively. Then

FY(1)=17P /Om Mp(L/PYES (O dz, 0<p<1, (67)

where Mg(() is the Mainardi/Wright function defined in (25).
Proof. The proof is the same as of Theorem 3. O

Moreover, from Theorem 5 and by using (49), we have the following corollary.
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Corollary 2. The relation between the cumulative density function with the anomalous
parameter 3 and that of parameter n > (8 is

F(8) =17 /O M, (Z/FN (G de,  B=vn,

which is the analogue of formula (50).
Proof. The proof is the same as of Corollary 1. O

Remark 4. An interesting special case of Corollary 2 is obtained when v = 1/2, that
is,
g =2 [ i
FH(1B/2) =2 ——F7 (B dd,
0 Vant

which is the analogue of formula (51).
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