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Abstract The first-return time is the time that it takes a random walker to go back to the initial 
position for the first time. In this paper, the first-return time is studied when random walkers 
perform fractional kinetics, specifically fractional diffusion, that is modelled within the frame
work of the continuous-time random walk on homogeneous space in the uncoupled formulation 
with Mittag-Le�ler distributed waiting-times. Both the Markovian and non-Markovian settings 
are considered, as well as any kind of symmetric jump-size distributions, namely with finite 
or infinite variance. It is shown that the first-return time density is indeed independent of the 
jump-size distribution when it is symmetric, and therefore it is affected only by the waiting-time 
distribution that embodies the memory of the process. The analysis is performed in two cases: 
first jump then wait and first wait then jump, and several exact results are provided, including 
the relation between results in the Markovian and non-Markovian settings and the difference 
between the two cases.

Keywords First-return time, fractional kinetics, fractional diffusion, continuous-time 
random walk, first-passage time, Sparre Andersen theorem
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1 Introduction

Fractional kinetics [43, 23] concerns particles’ motion whose random displacements 
follow a probability density function that evolves according to equations including 
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fractional calculus operators. In a sloppy way, we can say that fractional kinetics con
cerns processes that follow a nonlocal generalisation of the Fokker–Planck equation. 
A noteworthy example is fractional diffusion [30].

The emerging evolution equation in fractional diffusion generalises the heat diffu
sion equation by replacing the first derivative in time and/or the second derivative in 
space by the corresponding fractional derivatives [17]. As a consequence, the under
lying random walk model is not the classical random walk leading to the Brownian 
motion but its generalisation characterised by power-law distributions. Such gener
alised random walk is the continuous-time random walk (CTRW) [37] that extends 
classical random walk by replacing a fixed time-step with a random interval between 
consecutive jumps. These random intervals are called waiting-times and, in the basic 
formulation [37], are assumed to be i.i.d. random variables and independent of the 
jump-sizes, which also are assumed to be i.i.d. random variables. When the distribution 
of the waiting-times displays a power-law, then the evolution equation of the displace
ment density function contains time-fractional derivatives. On the other side, when 
the distribution of the jump-sizes displays a power-law, then such evolution equation 
contains space-fractional derivatives. In this second case, the corresponding random 
walk is called Lévy flight [5]. When the jump-size distribution displays power-law 
then the variance of the jumps and that of the walker’s density function are infinite. 
When the waiting-time distribution displays a power-law and time-fractional deriva
tives appear, then the process is non-Markovian. The process is strictly Markovian 
when the waiting-time distribution is exponential [53, 33], however, this constraint 
can be relaxed by considering as Markovian all those processes with finite mean 
waiting-times, and as non-Markovian those with infinite mean waiting-times. Here, 
we study the first-return time when both waiting-time and jump-size distribution may 
display power-law.

The first-return time is the time after which a random walker comes back to 
the starting location for the first time. This kind of problem has a quite important 
application in the animal kingdom because it is linked to concepts as site fidelity, 
breeding, social associations, optimal foraging [18]. Mathematically, it is strongly 
related with the first-passage time problem [41]. The main result in first-passage 
time problems is the celebrated Sparre Andersen theorem [46], which concerns the 
survival probability on the half-line conditioned on the walker’s initial position for 
symmetric Markovian random walks with fixed time-steps in the presence of an 
absorbing boundary. Its importance lays on the fact that it states that the conditional 
survival probability is independent of the jump-size distribution when the walker’s 
trajectory starts from the location of the absorbing boundary, thus, it is universal. 
As a matter of fact, we show in this paper that this universality of first-passage time 
problems is reflected also in first-return time problems. Therefore, the results derived 
here are indeed independent of the tails of the walkers’ density function and so the 
process can be governed by a Gaussian or by a Lévy stable density, as well. On the 
other side, the system is affected indeed by memory effects. Therefore, the results 
display different behaviour for the Markovian framework, namely with exponentially 
distributed waiting-times [53, 33], and for the non-Markovian one.

In particular, we report here that in discrete-time random walks, which are Marko
vian by construction, when a nearest-neighbour jump-law is taken into account then 
the probability mass function of the first-return time is linearly proportional to that 
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of the first-passage time [41, 26, 19]. As it is discussed in the following, see formula 
(32), this linear proportionality holds also when the assumed jump-law is different 
of the nearest-neighbour rule. However, since the general framework of the CTRW is 
considered here, we study in addition the specific non-Markovian setting generated 
by Mittag-Le�ler distributed waiting-times and we determine and investigate also the 
difference emerging between Markovian and non-Markovian formulations.

The formulation of the CTRW depends on the choice of the starting instant for 
measuring the elapsed time. In fact, the measurement of the duration of the first-return 
time can start synchronised with the first jump, and we label this case as the case 
first jump then wait, or it can start independently of the process so that the first jump 
occurs after the first random waiting-time, and we label this case as the case first wait 
then jump. We consider both cases, because, even if formulae relating Markovian and 
non-Markovian frameworks are equal, exact results in the Markovian setting differ for 
the two cases, and so in the non-Markovian setting. Moreover, we also quantify this 
difference.

We derive exact results in the Markovian setting and provide the relation between 
the Markovian and non-Markovian settings, so that non-Markovian results for Mittag
Le�ler distributed waiting-times are also exact and fully determined. The derivation 
of the result is based on the Sparre Andersen theorem and it exploits the Laplace 
transform method. In particular, we provide some preliminary notions and results in 
Section 2 where the Sparre Andersen theorem is reminded and we also briefly remind 
the theory of the CTRW [37]. This allows us to state the Sparre Andersen theorem 
in the framework of the CTRW. In this section, we also derive integral (27), which 
is the main formula for the calculation of the remaining results. In Section 3, first we 
formulate the problem of first-return time and later we derive exact results for both 
cases first jump then wait and first wait then jump.

2 Preliminaries

2.1 The Sparre Andersen theorem
Let ℝ be the set of real numbers, we denote by ℝ+ and ℝ+

0 the set of positive real 
numbers and the set of nonnegative real numbers, e.g., the half-line of spatial excursions 
excluded the origin ℝ+ = {𝑥 ∈ ℝ|𝑥 > 0} and the elapsed times ℝ+

0 = {𝑡 ∈ ℝ|𝑡 ≥ 0}. 
Analogously, we denote by ℝ− and ℝ−

0 the set of negative real numbers and the set 
of nonpositive real numbers. Let furthermore ℕ be the set of natural numbers and 
ℕ0 = ℕ ∪ {0}. Let 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛 be the sum of 𝑛 ∈ ℕ i.i.d. random variables 
𝑋𝑛 ∈ ℝ. Then the first ladder epoch {𝒯 = 𝑛} = {𝑆1 ≥ 0, . . . , 𝑆𝑛−1 ≥ 0, 𝑆𝑛 < 0} is 
the epoch of the first entry of the walker into the negative semiaxis ℝ−. By adding 
a constant 𝑥0 ∈ ℝ

+
0 to all terms, we obtain a random walk with initial position at 𝑥0. 

The probability for a walker started at 𝑆0 = 𝑥0 to remain in the initial half-axis after 
𝑛 steps, that is, the probability for 𝒯 to be larger than 𝑛, is called survival probability 
conditioned on the initial position and the site 𝑥 = 0 is termed as the location of an 
absorbing barrier. Thus, let the survival probability conditioned on the initial position 
be denoted by 𝜙𝑛 : ℝ+

0 → [0, 1] ,∀𝑛 ∈ ℕ. Then for a walker starting at 𝑆0 = 𝑥0 we 
have 𝜙𝑛 (𝑥0) = ℙ(𝒯 > 𝑛), and it yields∫ +∞

0
𝑘 (𝑧 − 𝑥0) 𝜙𝑛 (𝑧) 𝑑𝑧 = 𝜙𝑛+1 (𝑥0) , 𝑥0 ∈ ℝ

+
0 , 𝑛 ∈ ℕ0 , (1)
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with initial condition 𝜙0(𝜉) = 1 ,∀ 𝜉 ∈ ℝ
+
0 , where 𝑘 : ℝ → ℝ

+
0 is the probability 

density function of the i.i.d. random variables 𝑋𝑛, ∀ 𝑛 ∈ ℕ. Within the framework of 
the CTRW, the density function 𝑘 (𝑥) turns into the jump-size distribution.

Integral equation (1) is known as the Wiener–Hopf equation [12]. A first connection 
between random walks with an absorbing barrier and the Wiener–Hopf integrals was 
pointed out by D.V. Lindley in 1952 [28]. For a more general relations between the 
Wiener–Hopf integrals and probabilistic problems, see, e.g., reference [13, Sections 
XII.3a and XVIII.3]. However, as observed by W. Feller, the connections between 
first-passage problems and the Wiener–Hopf integrals ``are not as close as they are 
usually made to appear'' [13, Introduction to Chapter XII]. For more recent papers, 
see, e.g., references [21, 15, 35, 34, 3, 36, 7]. A general solution to the Wiener–Hopf 
equation (1) is known in the literature as the Pollaczek–Spitzer formula [3, formula 
(12)]. This name refers to a formula (see [49, theorem 5, formula (4.6)]) derived by 
F. Spitzer in 1957 [49, theorem 3, formula (3.1)] on the basis of an auxiliary formula 
obtained by F. Pollaczek in 1952 [40, formula (8)] but through a different method. It 
is possible to show that problem (1) is equivalent to a Sturm–Liouville problem with 
proper boundary conditions [8], and this is also an alternative and easier approach with 
respect to the Pollaczek–Spitzer formula for the calculation of the survival probability. 
In particular, one of the required boundary conditions for the Sturm–Liouville system 
emerged due to the Sparre Andersen theorem. Moreover, the Sparre Andersen theorem 
can be derived on the basis of formula (1) under the assumption that 𝜙𝑛+1(·) is of 
bounded variation [14]. Actually, the Sparre Andersen theorem [46] is a fundamental 
result in the study of the first-passage time problems.

Originally established in 1954 [46], the Sparre Andersen theorem states

𝜙𝑛 (0) = 2−2𝑛
(︃

2𝑛
𝑛 

)︃
∼ 1 √

𝑛𝜋
, 𝑛 → ∞ . (2)

Thereby, the Sparre Andersen formula (2) is valid for arbitrary but symmetric jump
size distribution, i.e., 𝑘 (𝜉) = 𝑘 (−𝜉) with 𝜉 ∈ ℝ. In other words, the Sparre Andersen 
theorem [46] provides the exact survival probability conditioned on the initial position 
for symmetric Markovian random walkers starting in the same location of the absorbing 
barrier and states that it is independent of the jump-size distribution 𝑘 (𝑥) (whenever 
it is assumed to be symmetric). See, for example, F. Spitzer [48] and W. Feller [13, 
Section XII.7]. This independency uncovers a universal nature of the Sparre Andersen 
theorem which is reflected also in other results, see, e.g., [4, 24, 25, 34, 10, 38, 27]. 
Thus, we refer to this independency as the universality of the Sparre Andersen theorem. 
Sparre Andersen formula (2) is indeed one of the many results emerging from a deep 
corpus studiorum on random walks based on combinatorial arguments by E. Sparre 
Andersen [44, 45, 47, 46] and F. Spitzer [48--50]. For more recent and general results 
on the basis of probabilistic arguments, see, e.g., [2]. The general formulation of the 
first-passage time problem for processes with discrete-time is available in [3, 36].

2.2 From the discrete- to the continuous-time setting
The survival probability problem can be formulated also in the continuous-time setting. 
In particular, we consider the CTRW on homogeneous and continuous space in the 
uncoupled formulation as originally introduced by Montroll and Weiss in the year 
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1965 [37]. This means that the i.i.d. random waiting-times and the i.i.d. random jump
sizes are, at any epoch, independent of each other and also of the current position and 
time. Therefore, in analogy with the discrete-time setting, the walker’s position after 
𝑛 iterations, with 𝑛 ∈ ℕ, is given by the sum of 𝑛 i.i.d. random variables 𝑋𝑛 ∈ ℝ

distributed according to the jump-size distribution 𝑘 (𝑥), i.e., 𝑆𝑛 = 𝑥0 + 𝑋1 + · · · + 𝑋𝑛

where 𝑥0 ∈ ℝ
+
0 is the initial position. The actual time 𝑡 ≥ 0 is given by the sum of 𝑛

i.i.d. random waiting-times 𝜏𝑗 ∈ ℝ
+
0 between two consecutive jumps, i.e., 𝑡 =

∑︁𝑛
𝑗=1 𝜏𝑗

with initial instant 𝑡 = 0. Moreover, let the survival probability conditioned on the 
initial position in the continuous-time setting be denoted by Λ : ℝ+

0 × ℝ
+
0 → [0, 1]. 

Thus, by using the same approach adopted to compute the walker’s density function in 
the CTRW theory [37], the conditional survival probability Λ is given by the weighted 
superposition of all the possible discrete-time counterparts 𝜙𝑛(·), and it results in the 
series

Λ(𝑥0, 𝑡) =
∞ ∑︂
𝑛=0 

𝜙𝑛 (𝑥0) Ψ𝑛 (𝑡) , 𝑥0, 𝑡 ∈ ℝ
+
0 , (3)

where the index 𝑛 counts the number of occurred jumps and Ψ𝑛 (·) is the probability 
to have an elapsed time equals to 𝑡 ∈ ℝ

+
0 after 𝑛 ∈ ℕ0 jumps such that

Ψ𝑛 (𝑡) =
∫ 𝑡

0
Ψ𝑛−1 (𝑡 − 𝜏)𝜓(𝜏) 𝑑𝜏 , Ψ0 (𝑡) = Ψ(𝑡) = 1 −

∫ 𝑡

0
𝜓(𝜏)𝑑𝜏 , (4)

and 𝜓 : ℝ+
0 → ℝ

+
0 is the distribution of the waiting-times.

For the present purposes, we pass to the Laplace domain and obtain for formula 
(3) that

ℒ{Λ(𝑥0, 𝑡); 𝑠} = ˜︁Λ(𝑥0, 𝑠) = ˜︁Ψ(𝑠)
∞ ∑︂
𝑛=0 

𝜙𝑛 (𝑥0) 
[︁˜︁𝜓(𝑠)]︁𝑛 , (5)

where ℒ{𝑔(𝑡); 𝑠} := ˜︁𝑔(𝑠) = ∫ +∞

0
e−𝑠𝑡 𝑔(𝑡) 𝑑𝑡 is the Laplace transform of a suffi

ciently well-behaving function 𝑔(𝑡). Hence, after splitting formula (5) in

˜︁Λ(𝑥0, 𝑠) = ˜︁Ψ(𝑠)𝜙0 (𝑥0) + ˜︁Ψ(𝑠)
∞ ∑︂
𝑛=1 

𝜙𝑛 (𝑥0) 
[︁˜︁𝜓(𝑠)]︁𝑛 , (6)

by recalling that 𝜙0(𝑥0) = 1 ,∀ 𝑥0 ∈ ℝ
+
0 , and expressing 𝜙𝑛 (·) through the Wiener--

Hopf integral equation (1), from formula (6) we get

˜︁Λ(𝑥0, 𝑠) = ˜︁Ψ(𝑠) + ˜︁𝜓(𝑠) ∫ +∞

0
𝑘 (𝜉 − 𝑥0)˜︁Λ(𝜉, 𝑠) 𝑑𝜉 . (7)

Finally, after the inverse Laplace transformation 𝑔(𝑡) = ℒ−1{˜︁𝑔(𝑠); 𝑡}, the equation for 
the survival probability is

Λ(𝑥0, 𝑡) = Ψ(𝑡) +
∫ 𝑡

0
𝜓(𝑡 − 𝜁)

∫ +∞

0
𝑘 (𝜉 − 𝑥0)Λ(𝜉, 𝜁) 𝑑𝜉𝑑𝜁 , 𝑥0, 𝑡 ∈ ℝ

+
0 , (8)

which is the analogue of formula (1) in continuous time, see also [7, 8, 42], and we 
recover Λ(𝑥0, 0) = 1 ,∀ 𝑥0 ∈ ℝ

+
0 , because Ψ(0) = 1 by definition (4).
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2.3 The Sparre Andersen theorem in the framework of the CTRW
The Sparre Andersen theorem can also be put in the framework of the uncoupled 
CTRW, in particular, through formula (3). In fact, if we set 𝑥0 = 0 in formula (5), 
and from the Sparre Anderson formula (2) for the discrete-time setting we take the 
expression of 𝜙𝑛 (0), then

˜︁Λ(0, 𝑠) = ˜︁Ψ(𝑠) 
∞ ∑︂
𝑛=0 

2−2𝑛
(︃

2𝑛
𝑛 

)︃ [︁˜︁𝜓(𝑠)]︁𝑛

=
˜︁Ψ(𝑠) √︂

1 − ˜︁𝜓(𝑠) =

√︂
𝑠 ˜︁Ψ(𝑠)
𝑠

=
1
𝑠

√︂
1 − ˜︁𝜓(𝑠) , (9)

where in the second line we used the series
∞ ∑︂
𝑛=0 

2−2𝑛
(︃

2𝑛
𝑛 

)︃
𝑧𝑛 =

1 √
1 − 𝑧

, |𝑧 | < 1 . (10)

Formula (9) was already reported to some extent in [1, formula (7)] but not formally 
derived, yet. By applying the initial and final value theorems we have 

Λ(0, 0) = lim 
𝑠→∞ 𝑠˜︁Λ(0, 𝑠) = 1 , (11a)

Λ(0,∞) = lim 
𝑠→0

𝑠˜︁Λ(0, 𝑠) = 0 , (11b)

because ˜︁𝜓(0) = 1 and ˜︁𝜓(∞) = 0. After the Laplace antitransformation of the first line 
of formula (9), the Sparre Andersen theorem reads

Λ(0, 𝑡) =
∞ ∑︂
𝑛=0 

2−2𝑛
(︃

2𝑛
𝑛 

)︃
Ψ𝑛 (𝑡) . (12)

For Markovian random walks, we have that 𝜓(𝑡) = 𝜓M (𝑡) = e−𝑡 [53, 33], such that

˜︁𝜓M (𝑠) = ˜︁ΨM(𝑠) = 1 
1 + 𝑠

. (13)

and then formula (9) reads

˜︁ΛM(0, 𝑠) = 1 √︁
𝑠(1 + 𝑠)

. (14)

Consequently, formula (12) for the Markovian case gives in the original domain [42]

ΛM(0, 𝑡) = e−𝑡/2 𝐼0 (𝑡/2) , (15)

where 𝐼0(·) is the modified Bessel function of the first kind of order 0 defined by the 
series

𝐼0 (𝜁) =
∞ ∑︂
𝑗=0 

(𝜁2/4) 𝑗
( 𝑗!)2 , 𝜁 ∈ ℝ

+
0 , (16)
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with
𝐼0 (0) = 1 , 

𝑑𝐼0 (𝜁)
𝑑𝜁 

⃓⃓⃓
⃓
𝜁=0

= 0 , 
𝑑2𝐼0 (𝜁)
𝑑𝜁2

⃓⃓⃓
⃓
𝜁=0

=
1
2
. (17)

From formula (14) we have in the long-time limit, i.e., 𝑠 → 0, that ˜︁ΛM(0, 𝑠) ∼ 1/√𝑠
and after the Laplace inversion it gives ΛM(0, 𝑡) ∼ 1/√𝑡 for 𝑡 → +∞. This last limit 
is the continuous-time counterpart of limit (2).

For non-Markovian random walks, we consider the specific model [20]

𝜓(𝑡) = 𝑡𝛽−1𝐸𝛽,𝛽 (−𝑡𝛽) , Ψ(𝑡) = 𝐸𝛽,1 (−𝑡𝛽) = 𝐸𝛽 (−𝑡𝛽) , (18)

where 𝐸𝛽,𝛼 (𝑧) is the Mittag-Le�ler function [29, Appendix E]

𝐸𝛽,𝛼 (𝑧) =
∞ ∑︂
𝑗=0 

𝑧 𝑗

Γ(𝛽 𝑗 + 𝛼) , Re{𝛽} > 0 , 𝛼 ∈ ℂ , 𝑧 ∈ ℂ , (19)

which in the Laplace domain correspond to

˜︁𝜓(𝑠) = 1 
1 + 𝑠𝛽

, ˜︁Ψ(𝑠) = 𝑠𝛽−1

1 + 𝑠𝛽
. (20)

Hence, formula (9) reads
˜︁Λ(0, 𝑠) = 𝑠𝛽/2−1

√
1 + 𝑠𝛽

. (21)

We observe that ˜︁Λ(0, 𝑠) = 𝑠𝛽−1˜︁ΛM(0, 𝑠𝛽) , (22)

and by applying the Efros formula [11, 51], i.e.,

ℒ−1
{︂
𝑣(𝑠)˜︂𝒲 [𝑞(𝑠)]

}︂
=
∫ ∞

0
𝒲 (𝜁) ℒ−1

{︂
𝑣(𝑠)e−𝜁 𝑞 (𝑠)

}︂
𝑑𝜁 , (23)

with 𝑣(𝑠) = 𝑠𝛽−1 and 𝑞(𝑠) = 𝑠𝛽 , in the original domain we have

Λ(0, 𝑡) = 𝑡−𝛽
∫ ∞

0
e−𝜁 /2𝐼0 (𝜁/2)𝑀𝛽 (𝜁/𝑡𝛽) 𝑑𝜁 , (24)

where 𝑀𝛽 (·) is the Mainardi/Wright function defined by the series [29, Appendix F]

𝑀𝜈 (𝑧) =
∞ ∑︂
𝑗=0 

(−1) 𝑗
𝑗! 

𝑧 𝑗

Γ[−𝜈 𝑗 + (1 − 𝜈)] , 0 < 𝜈 < 1 , 𝑧 ∈ ℂ , (25)

whose Laplace transform is known in the literature [30, (4.26)]. From formula (21)
we have that ˜︁Λ(0, 𝑠) ∼ 𝑠𝛽/2−1, when 𝑠 → 0, and after the Laplace inversion Λ(0, 𝑡) ∼
1/𝑡𝛽/2 for 𝑡 → +∞.

Moreover, after reminding that the unconditional survival probability is determined 

by the integral 
∫ ∞

0
𝜌(𝜉)Λ(𝜉, 𝑡) 𝑑𝜉, where 𝜌 : ℝ+

0 → ℝ
+
0 is the distribution of the initial 

position, we can state the following theorem.
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Theorem 1. The unconditional survival probability of a symmetric CTRW is inde
pendent of the jump-size distribution if this distribution is equal to the distribution of 
the initial position.

Proof. From the third line of formula (9) we have ˜︁Ψ(𝑠) = 𝑠˜︁Λ2(0, 𝑠) and, after 
summing and subtracting ˜︁Λ(0, 𝑠), we can derive

˜︁Λ(0, 𝑠) = ˜︁Ψ(𝑠) + ˜︁Λ(0, 𝑠)
[︂
1 − 𝑠˜︁Λ(0, 𝑠)

]︂
, (26)

which, after the comparison against formula (7) with 𝑥0 = 0, gives
∫ ∞

0
𝑘 (𝜉)˜︁Λ(𝜉, 𝑠) 𝑑𝜉 =

˜︁Λ(0, 𝑠)˜︁𝜓(𝑠) 
[︂
1 − 𝑠˜︁Λ(0, 𝑠)

]︂

=
˜︁Ψ(𝑠)˜︁𝜓(𝑠) 

⎡
⎢⎣ 1 √︂

1 − ˜︁𝜓(𝑠) − 1

⎤
⎥⎦

=

√︂
1 − ˜︁𝜓(𝑠) − 1 + ˜︁𝜓(𝑠)

𝑠 ˜︁𝜓(𝑠) , (27)

and this is independent of the jump-size distribution 𝑘 (𝑥) as a consequence of the 
universality of the Sparre Andersen theorem (2) when plugged into (3). □

3 First-return time for CTRW

3.1 Problem formulation and definitions
The duration of excursions of a random walker until its first comeback to the starting 
position is called first-return time (FRT). This observable can be understood by an 
example from the animal kingdom in terms of the return of an animal to a previously 
occupied area, such as the duration of the flight of birds when they leave and then 
return to their nests. This is a wide-spread behaviour associated with a number of 
ecological processes as site fidelity, breeding, social associations, optimal foraging 
[18] and is successfully modelled also by fractional kinetics [16, 52].

The FRT for the uncoupled CTRW reported at the beginning of Subsection 2.2
can be exactly calculated by using integral formula (27). In particular, we can exactly 
calculate the FRT for the fractional kinetics emerging from a CTRW with Mittag
Le�ler distributed waiting-times (18). In this section, we consider a random walk 
starting at the origin 𝑥 = 0 and, provided that the first jump away is of length, say, 𝜉, 
we are interested in how much time it takes to the random walker to pass through the 
origin for the first time after the departure. As a matter of fact, the problem is equivalent 
to a first-passage time problem when the random walker starts at the initial instant 𝜏0
from the random first-landing position 𝜉 and the associated absorbing barrier is located 
at the origin 𝑥 = 0. Actually, the first-landing position 𝜉 is distributed according to 
the jump-size distribution 𝑘 (𝜉) and 𝜏0 is the delay elapsed between the two locations 
𝑥 = 0 and 𝑥 = 𝜉. The CTRW formalism allows for two different formulations of the 
problem: first jump then wait (jw), such that 𝜏0 = 0, and first wait then jump (wj), 
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such that 𝜏0 is a random variable distributed according to 𝜓(𝑡). Thus, by following the 
literature [9, 6, 22], we define the FRT as follows:

FRT ≡
{︄
𝒯ℓ (𝜉) + 𝜏0 , 𝜉 ∈ ℝ

− ,

𝒯𝑟 (𝜉) + 𝜏0 , 𝜉 ∈ ℝ
+ ,

(28)

where 𝒯 is the first-passage time and, in particular, 𝒯ℓ is the first-passage time when 
the first jump away from the origin is towards the left into the position 𝜉 < 0 and 𝒯𝑟
when it is towards the right into the position 𝜉 > 0.

Let 𝜆(𝜉, 𝑡) = −𝜕Λ
𝜕𝑡 

be the first-passage time density conditioned to the starting 

position 𝜉 and satisfying the normalisation condition 
∫ ∞

0
𝜆(𝜉, 𝑡) 𝑑𝑡 = 1. Then the 

density function of the first-passage time weighted over all the possibile first-jump 
landing positions is

𝑓 (𝑡) =
∫ +∞

−∞
𝑘 (𝜉)𝜆(𝜉, 𝑡) 𝑑𝜉

= 2
∫ +∞

0
𝑘 (𝜉)𝜆(𝜉, 𝑡) 𝑑𝜉 , (29)

where the symmetry property of the jump-size distribution, 𝑘 (𝜉) = 𝑘 (−𝜉), is used.
Thus, since 𝒯 and 𝜏0 are statistically independent, we have that the density function 

of their sum, namely the FRT (28), is 

𝒫 jw(𝑡) = 𝑓 (𝑡) , when 𝜏0 = 0 , (30a)

𝒫wj(𝑡) =
∫ 𝑡

0
𝜓(𝑡 − 𝜁) 𝒫 jw(𝜁) 𝑑𝜁 , when 𝜏0 ∼ 𝜓(𝑡) . (30b)

An alternative formulation is possible by starting from the discrete-time setting 
with the extension to the continuous-time setting in the fashion of formula (3) [1]. In 
particular, by defining the discrete-time first-passage time density 𝜆𝑛(𝜉) = 𝜙𝑛−1 (𝜉) −
𝜙𝑛 (𝜉), with 𝑛 ≥ 1, and exploiting the Sparre Andersen theorem (2) at 𝜉 = 0, we 
have [41]

𝜆𝑛 (0) = 2−2(𝑛−1)
(︃

2(𝑛 − 1)
𝑛 − 1 

)︃
− 2−2𝑛

(︃
2𝑛
𝑛 

)︃

= 2−2(𝑛−1)
(︃

2𝑛
𝑛 

)︃{︃
𝑛 

4𝑛 − 2
− 1

4

}︃

= 2−2(𝑛−1)
(︃

2𝑛
𝑛 

)︃
1 

2(4𝑛 − 2)

=
2−2𝑛

2𝑛 − 1

(︃
2𝑛
𝑛 

)︃
, (31)

which correctly gives 
∑︁∞

𝑛=1 𝜆𝑛 (0) = 1. Moreover, by definition (29), in the discrete
time setting we have

𝑓𝑛 = 2
∫ ∞

0
𝑘 (𝜉)𝜆𝑛 (𝜉) 𝑑𝜉
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= 2
∫ ∞

0
𝑘 (𝜉) [𝜙𝑛−1 (𝜉) − 𝜙𝑛 (𝜉)] 𝑑𝜉

= 2 [𝜙𝑛 (0) − 𝜙𝑛+1 (0)] = 2𝜆𝑛+1(0) , 𝑛 ≥ 1 , (32)

where in the third line we used (1), and it holds that 𝑓0 = 0.

3.2 The (jw)-case
We remind that in this case 𝒫 jw(𝑡) = 𝑓 (𝑡) (see (30a)), thus in the following we study 
the density function 𝑓 (𝑡).

In particular, thanks to the relation in the Laplace domain between the first-passage 
time density and the corresponding survival probability, i.e., ˜︁𝜆(𝜉, 𝑠) = 1 − 𝑠 ˜︁Λ(𝜉, 𝑠), 
from (29) we have

˜︁𝑓 (𝑠) = 2
∫ +∞

0
𝑘 (𝜉)˜︁𝜆(𝜉, 𝑠) 𝑑𝜉

= 1 − 2𝑠
∫ ∞

0
𝑘 (𝜉)˜︁Λ(𝜉, 𝑠) 𝑑𝜉

= 1 − 2 

√︂
1 − ˜︁𝜓(𝑠) − 1 + ˜︁𝜓(𝑠)

˜︁𝜓(𝑠) 
=

2 − ˜︁𝜓(𝑠) − 2
√︂

1 − ˜︁𝜓(𝑠)
˜︁𝜓(𝑠) , (33)

where formula (27) has been used in the third line. It can be checked that the nor
malisation condition ˜︁𝑓 (0) = 1 is met because ˜︁𝜓(0) = 1. Since formula (27) from 
Theorem 1 has been used for deriving (33), we underline the following remark.
Remark 1. The density function of the FRT of a symmetric CTRW in the (jw)-case 
is independent of the jump-size distribution.

Moreover, if we consider the non-Markovian setting (20), from formula (33) we 
finally obtain that the Laplace transform of the density function of the FRT for a 
CTRW of (jw)-type is

˜︁𝑓 (𝑠) = 1 + 2𝑠𝛽 − 2
√
𝑠𝛽
√
𝑠𝛽 + 1 . (34)

When 𝛽 = 1, the system is Markovian. Therefore, if 𝑓M(𝑡) denotes the corresponding 
density of the FRT, the following equality holds in the Laplace domain:

˜︁𝑓 (𝑠) = ˜︁𝑓M(𝑠𝛽) . (35)

Hence, we can state the next theorem.
Theorem 2. Let 𝑓 (𝑡) and 𝑓M(𝑡) be the density functions of the FRT in the ( 𝑗𝑤)
case for a symmetric CTRW with Mittag-Le�ler (18) and exponentially distributed 
waiting-times, respectively, then

𝑓 (𝑡) =
∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) 𝑓M(𝜁) 𝑑𝜁 , 0 < 𝛽 < 1 , (36)

where ℓ𝛽 (𝑡) is the one-sided Lévy stable density characterised by the Laplace trans
form e−𝑠

𝛽
.
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Proof. By reminding the Efros theorem (23), formula (35) can be inverted setting 
𝑣(𝑠) = 1 and 𝑞(𝑠) = 𝑠𝛽 , so that we have the integral relation (36). □

We observe that from (36) the Markovian case is recovered when 𝛽 = 1 because 
ℓ1(𝑡) = 𝛿(𝑡 − 1).

In the Markovian case with 𝛽 = 1, from (34) we have

˜︁𝑓M(𝑠) = (1 + 𝑠) 1 + 2𝑠 − 2
√
𝑠
√
𝑠 + 1

1 + 𝑠 

=
1 

1 + 𝑠
+ 2𝑠

[︄
1 

1 + 𝑠
− 1 √︁

𝑠(1 + 𝑠)

]︄

+ 𝑠 

{︄
1 

1 + 𝑠
+ 2𝑠

[︄
1 

1 + 𝑠
− 1 √︁

𝑠(1 + 𝑠)

]︄}︄
. (37)

Thus, by remembering the properties of the Laplace transform, and also the Laplace 
transform pair (14) and (15), we can calculate the exact result

𝑓M(𝑡) = e−𝑡/2
[︃
𝐼0 (𝜁) − 𝑑𝐼0 (𝜁)

𝑑𝜁 

]︃
𝜁=𝑡/2

− e−𝑡

+ 𝑑

𝑑𝑡

{︄
e−𝑡/2

[︃
𝐼0 (𝜁) − 𝑑𝐼0 (𝜁)

𝑑𝜁 

]︃
𝜁=𝑡/2

− e−𝑡
}︄

=
1
2

e−𝑡/2
[︃
𝐼0 (𝜁) − 𝑑2𝐼0 (𝜁)

𝑑𝜁2

]︃
𝜁=𝑡/2

, (38)

and then the integral formula (36) is fully determined.
From (38), by using the values given in (17), we have that

𝑓M(0) = 1
4
, (39)

and, when plugged in (29), it gives the following universal result independent of 𝑘 (𝜉)

𝑓M(0) =
∫ +∞

−∞
𝑘 (𝜉)𝜆M (𝜉, 0) 𝑑𝜉 =

1
4
, (40)

in opposition to the first-passage time density which is indeed dependent on 𝑘 (𝜉) also 

at 𝑡 = 0 according to 𝜆M(𝜉, 0) =
∫ ∞

𝜉
𝑘 (𝑦)𝑑𝑦. In the non-Markovian case

𝑓 (0) = +∞ (41)

in analogy with the first-passage time density 𝜆(𝜉, 0). In fact, after the change of 
variable 𝜁 = (𝑡/𝜒)𝛽 in (36), we have

𝑓 (𝑡) = 𝛽𝑡𝛽−1
∫ ∞

0
ℓ𝛽 (𝜒) 𝑓M(𝑡𝛽/𝜒𝛽) 𝑑𝜒 

𝜒𝛽

∼ 𝐶 𝑡𝛽−1 , 𝑡 → 0 , with 𝐶 =
𝛽

4 

∫ ∞

0
ℓ𝛽 (𝜒) 𝑑𝜒 

𝜒𝛽
. (42)
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From (34) we can derive the asymptotic behaviour for large elapsed times. Actually, 
we have ˜︁𝑓 (𝑠) ∼ 1−2𝑠𝛽/2 when 𝑠 → 0 which is consistent with the behaviour of e−2𝑠𝛽/2

for small 𝑠 and gives

𝑓 (𝑡) ∼ 1 
22/𝛽 ℓ𝛽/2(𝑡/22/𝛽) ∼ 2 

𝑡𝛽/2+1 , 𝑡 → +∞ . (43)

From (43) it follows that the mean FRT in the (jw)-case is infinite both in the Markovian 
and non-Markovian setting but the right tail of the density function decreases slower in 
non-Markovian systems. Because of formula (29), we have that scaling (43) is also the 
scaling of the corresponding first-passage time density 𝜆(𝜉, 𝑡) [22], notwithstanding 
the exact functions may differ.

Tools of fractional calculus can be used for studying the integral formula (36). In 
fact, let 𝐽𝜇, with 𝜇 > 0, be the Riemann–Liouville fractional integral defined by the 
Laplace symbol 𝑠−𝜇 [17], then in the Laplace domain

ℒ{𝐽1−𝛽 𝑓 (𝑡); 𝑠} =
˜︁𝑓 (𝑠)
𝑠1−𝛽 =

∫ ∞

0

e−𝜁 𝑠𝛽

𝑠1−𝛽 𝑓M(𝜁) 𝑑𝜁 , (44)

which, by using the formula ℒ{𝑡−𝛽𝑀𝛽 (𝜁𝑡−𝛽); 𝑠} = 𝑠𝛽−1e−𝜁 𝑠
𝛽
, with Re{𝑠} > 0, [30, 

(4.26)], gives

𝐽1−𝛽 𝑓 (𝑡) =
∫ ∞

0

1 
𝑡𝛽

𝑀𝛽 (𝜁/𝑡𝛽) 𝑓M(𝜁) 𝑑𝜁 . (45)

Since from the study of time-fractional diffusion equations [30] we have that 
lim𝑡→0 𝑡−𝛽𝑀𝛽 (𝜁/𝑡𝛽) = 𝛿(𝜁), then

𝐽1−𝛽 𝑓 (𝑡)
⃓⃓
𝑡=0 = 𝑓M(0) = 1

4
. (46)

Furthermore, we can also have the Laplace transform of the cumulative density func

tion 𝐹 jw(𝑡) =
∫ 𝑡

0
𝑓 (𝜁)𝑑𝜁 which, by using (35), leads to the equality

˜︁𝐹 jw(𝑠) =
˜︁𝑓 (𝑠)
𝑠

= 𝑠𝛽−1 ˜︁𝑓M(𝑠𝛽)
𝑠𝛽

= 𝑠𝛽−1 ˜︁𝐹 jw
M (𝑠𝛽) . (47)

Therefore, we can state the following theorem.

Theorem 3. Let 𝐹 jw(𝑡) and 𝐹 jw
M (𝑡) be the cumulative density functions of the FRT 

in the ( 𝑗𝑤)-case for a symmetric CTRW with Mittag-Le�ler (18) and exponentially 
distributed waiting-times, respectively. Then

𝐹 jw(𝑡) = 𝑡−𝛽
∫ ∞

0
𝑀𝛽 (𝜁/𝑡𝛽)𝐹 jw

M (𝜁) 𝑑𝜁 , 0 < 𝛽 < 1 , (48)

where 𝑀𝛽 (𝜁) is the Mainardi/Wright function defined in (25).

Proof. By applying Efros formula (23) in analogy with the pair (22) and (24), we 
have (48). □
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To conclude, we remind the formula [32, (6.3)]

𝑡−𝛽𝑀𝛽 (𝜁/𝑡𝛽) = 𝑡−𝜈
∫ ∞

0
𝑀𝜂 (𝜁/𝑦𝜂)𝑀𝜈 (𝑦/𝑡𝜈) 𝑑𝑦 

𝑦𝜂
, 𝛽 = 𝜈𝜂 , (49)

and then from Theorem 3 we have the following corollary.
Corollary 1. The relation between the cumulative density function with the anomalous 
parameter 𝛽 and that of parameter 𝜂 > 𝛽 is

𝐹 jw (𝑡; 𝛽) = 𝑡−𝜈
∫ ∞

0
𝑀𝜈 (𝜁/𝑡𝜈)𝐹 jw(𝜁 ; 𝜂) 𝑑𝜁 , 𝛽 = 𝜈𝜂 . (50)

Proof. By using (49) in (48) we have (50). □

Remark 2. An interesting special case of formula (50) is obtained when 𝜈 = 1/2, that 
is,

𝐹 jw (𝑡; 𝛽/2) = 2
∫ ∞

0

e−𝜁 2/(4𝑡 )
√

4𝜋𝑡
𝐹 jw(𝜁 ; 𝛽) 𝑑𝜁 , (51)

where the identity 𝑀1/2(𝜁) = e−𝜁 2/4/√𝜋 has been used.
A large number of other formulae can be obtained using the existing results for 

the Mainardi/Wright function, e.g., [30, 29, 31, 39].

3.3 The (wj)-case
The FRT density function in the (wj)-case (30b) can be studied in the Laplace domain. 
In particular, by using (29) and (33), from (30b) we have

˜︁𝒫wj(𝑠) = ˜︁𝜓(𝑠) ˜︁𝑓 (𝑠)
= 2 − ˜︁𝜓(𝑠) − 2

√︂
1 − ˜︁𝜓(𝑠) . (52)

It can be checked that the normalisation condition ˜︁𝒫wj(0) = 1 is met and by applying 
the initial and the final value theorems one has 

𝒫wj(0) = lim 
𝑠→+∞ 𝑠˜︁𝒫wj(𝑠) = 0 , (53a)

𝒫wj(+∞) = lim 
𝑠→0

𝑠˜︁𝒫wj(𝑠) = 0 , (53b)

because ˜︁𝜓(0) = 1 and ˜︁𝜓(+∞) = 0. In analogy with Remark 1, we underline also in this 
case that, since Theorem 1 lays behind the derivation of (52), we have the following 
remark.
Remark 3. The density function of the FRT of a symmetric CTRW in the (wj)-case 
is independent of the jump-size distribution.

Formulae (53a) and (53b) hold both in the Markovian and non-Markovian case. 
More explicitly, from (20) we have that the density function of the FRT for a CTRW 
of (wj)-type is

˜︁𝒫wj(𝑠) = 1 + 2𝑠𝛽 − 2
√
𝑠𝛽
√
𝑠𝛽 + 1

𝑠𝛽 + 1 
. (54)
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When 𝛽 = 1, the system is Markovian and therefore, denoting by 𝒫wj
M (𝑡) the cor

responding density of the FRT, in analogy with (35), in the Laplace domain one 
has ˜︁𝒫wj(𝑠) = ˜︁𝒫wj

M (𝑠𝛽) . (55)

Formula (55) can be inverted by applying the Efros formula (23), and we have the 
following theorem.

Theorem 4. Let 𝑃wj(𝑡) and 𝑃wj
M (𝑡) be the density functions of the FRT in the (𝑤 𝑗)

case for a symmetric CTRW with Mittag-Le�ler (18) and exponentially distributed 
waiting-times, respectively. Then

𝒫wj(𝑡) =
∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) 𝒫wj

M (𝜁) 𝑑𝜁 , 0 < 𝛽 < 1 , (56)

which recasts formula (36) for the (jw)-case.

In the Markovian case with 𝛽 = 1, from (54) we have

˜︁𝒫wj
M (𝑠) = 1 

1 + 𝑠
+ 2𝑠

[︄
1 

1 + 𝑠
− 1 √︁

𝑠(1 + 𝑠)

]︄
, (57)

and, by remembering the properties of the Laplace transform together with the Laplace 
transform pair (14) and (15), we can calculate the exact result

𝒫wj
M (𝑡) = e−𝑡/2

[︃
𝐼0 (𝜁) − 𝑑𝐼0 (𝜁)

𝑑𝜁 

]︃
𝜁=𝑡/2

− e−𝑡 , 𝒫wj
M (0) = 0 , (58)

so that the integral formula (56) is fully determined.
We can quantify the difference between the two cases (jw) and (wj). In fact, first 

by comparing (38) and (58) we have the proposition.
Proposition 1. The relationship between the density functions of the FRT with expo
nentially distributed waiting-times in the (𝑤 𝑗)- and ( 𝑗𝑤)-case is

𝒫wj
M (𝑡) = 2𝒫 jw

M (𝑡) − e−𝑡/2
[︃
𝑑𝐼0
𝑑𝜁 

− 𝑑2𝐼0

𝑑𝜁2

]︃
𝜁=𝑡/2

− e−𝑡 . (59)

Later, by using (36) and (56), we find

𝒫wj(𝑡) = 2𝒫 jw(𝑡) −
∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) e−𝜁 𝑑𝜁

−
∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) e−𝜁 /2

[︃
𝑑𝐼0
𝑑𝜒 

− 𝑑2𝐼0

𝑑𝜒2

]︃
𝜒=𝜁 /2

𝑑𝜁 . (60)

The second term in the r.h.s. can be solved and put in a more clear form. In fact, by 
using some formula concerning Lévy density function [30, (4.26)], Mainardi/Wright 
function [30, (4.32)] and Mittag-Le�ler function [29, (1.45)], we have the equalities∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) e−𝜁 𝑠

𝛽
𝑑𝜁 =

𝛽

𝑡

∫ ∞

0

𝜁

𝑡𝛽
𝑀𝛽 (𝜁/𝑡𝛽) e−𝜁 𝑠

𝛽
𝑑𝜁
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= − 𝑠1−𝛽

𝑡

𝜕

𝜕𝑠

∫ ∞

0
𝑀𝛽 (𝑦) e−𝑡

𝛽𝑠𝛽 𝑦 𝑑𝑦

= − 𝑠1−𝛽

𝑡

𝜕

𝜕𝑠
𝐸𝛽 (−𝑡𝛽𝑠𝛽)

= 𝑡𝛽−1𝐸𝛽,𝛽 (−𝑡𝛽𝑠𝛽) . (61)

Thus, by remembering (18) and setting 𝑠 = 1, one has∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) e−𝜁 𝑑𝜁 = 𝜓(𝑡) . (62)

And so we have the following proposition.
Proposition 2. The relationship between the density functions of the FRT with the 
Mittag-Le�ler distributed waiting-times (18) in the (𝑤 𝑗)- and ( 𝑗𝑤)-case is

𝒫wj(𝑡) = 2𝒫 jw(𝑡) − 𝜓(𝑡)

−
∫ ∞

0
𝜁−1/𝛽ℓ𝛽 (𝑡/𝜁1/𝛽) e−𝜁 /2

[︃
𝑑𝐼0
𝑑𝜒 

− 𝑑2𝐼0

𝑑𝜒2

]︃
𝜒=𝜁 /2

𝑑𝜁 . (63)

From (54) we can derive the asymptotic behaviour for large elapsed times and, in 
analogy with (43), it is

𝒫wj(𝑡) ∼ 1 
22/𝛽 ℓ𝛽/2 (𝑡/22/𝛽) ∼ 2 

𝑡𝛽/2+1 , 𝑡 → +∞ , (64)

from which it follows that the mean FRT also in the (wj)-case is infinite both in 
the Markovian and non-Markovian settings, and the right tail of the density function 
decreases slower in non-Markovian systems.

The analogies between the (jw)- and the (wj)-cases also include formulae (45) and 
(46) that now read as

𝐽1−𝛽𝒫wj(𝑡) =
∫ ∞

0

1 
𝑡𝛽

𝑀𝛽 (𝜁/𝑡𝛽)𝒫wj
M (𝜁) 𝑑𝜁 , (65)

𝐽1−𝛽𝒫wj(𝑡)
⃓⃓
𝑡=0 = 𝒫wj

M (0) = 0 , (66)

as well as the analogue of Theorem 3, given below.

Theorem 5. Let 𝐹wj(𝑡) and 𝐹wj
M (𝑡) be the cumulative density functions of the FRT 

in the ( 𝑗𝑤)-case for a symmetric CTRW with Mittag-Le�ler (18) and exponentially 
distributed waiting-times, respectively. Then

𝐹wj(𝑡) = 𝑡−𝛽
∫ ∞

0
𝑀𝛽 (𝜁/𝑡𝛽)𝐹wj

M (𝜁) 𝑑𝜁 , 0 < 𝛽 < 1 , (67)

where 𝑀𝛽 (𝜁) is the Mainardi/Wright function defined in (25).

Proof. The proof is the same as of Theorem 3. □

Moreover, from Theorem 5 and by using (49), we have the following corollary.
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Corollary 2. The relation between the cumulative density function with the anomalous 
parameter 𝛽 and that of parameter 𝜂 > 𝛽 is

𝐹wj (𝑡; 𝛽) = 𝑡−𝜈
∫ ∞

0
𝑀𝜈 (𝜁/𝑡𝜈)𝐹wj(𝜁 ; 𝜂) 𝑑𝜁 , 𝛽 = 𝜈𝜂 ,

which is the analogue of formula (50).

Proof. The proof is the same as of Corollary 1. □

Remark 4. An interesting special case of Corollary 2 is obtained when 𝜈 = 1/2, that 
is,

𝐹wj (𝑡; 𝛽/2) = 2
∫ ∞

0

e−𝜁 2/(4𝑡 )
√

4𝜋𝑡
𝐹wj(𝜁 ; 𝛽) 𝑑𝜁 ,

which is the analogue of formula (51).
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