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Abstract An algorithm is proposed for simulation of superpositions of Ornstein—Uhlenbeck
processes which may have short- or long-range dependencies and specified marginal distribu-
tions. The algorithm is based on the Bondesson—Rosinski representation of the supOU process as
a shot-noise process and enables a clear constructive view on the structure of supOU processes.
The use of the proposed algorithm is demonstrated for eight positive marginal distributions and
eight entire real line marginal distributions when the explicit formulae for the Lévy density are
available or not.
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1 Superpositions of Ornstein—Uhlenbeck processes

We consider the superpositions of Ornstein—Uhlenbeck (supOU) processes which are
an important class of ambit stochastic processes [11] and play a fundamental role in
finance and insurance, degradation modelling, diffusion, turbulence, astrophysics and
transport, see [20, 52, 30, 51] and references therein. SupOU processes are proving
to be invaluable tools for modeling complex phenomena with long-range dependence,
intermittency, and non-Gaussian behaviors.
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In finance, the supOU processes can be incorporated in different ways. The popular
continuous time stochastic volatility model for financial assets

dS(t) = uS(t)dt + o (¢)S(t)dB(t), =0,

generalizes the classical Black—Scholes model by replacing the volatility parameter o
by the volatility process o-(7) in the form of a superposition of positive OU processes,
where B(f) is the standard Brownian motion that is independent of o (), see the
fundamental work [8]. If o-(¢) is a supOU process with inverse gamma marginals,
then log-returns have approximately the Student distribution, see [8, p. 170] for a
general correspondence.

The fractal activity time geometric Brownian motion model introduced in [35] has

the form
S([) — Soe,ut+9T(t)+0'B(T(t))’ t > O,

where S(¢) is the asset price and the fractal activity time 7'(¢) is a positive, nonde-
creasing stochastic process in the form of the linear spline of a discrete integrated
supOU process with positive marginals that is independent of B(r). If T'(¢) is an in-
tegrated supOU process with inverse gamma marginals, then log-returns have exactly
the Student distribution, see [27, 28] for other marginals.

For modeling high-frequency financial data, supOU processes were explored in
[37] by demonstrating their efficacy in capturing the stochastic volatility of stock
prices with improved accuracy over traditional models like GARCH. The authors
leveraged the superposition property to model multiscale temporal dependencies,
which proved particularly effective for intraday trading strategies. Furthermore, supOU
processes were applied to stock indexes [36], zero-coupon bonds [61], and option
pricing [48, 59].

SupOU processes are well suited for modeling migrating fish counts [62] and
intricate hydrological phenomena, such as river discharge time series [65, 63] and
water characteristics [64]. In the context of wind energy systems, the utility of graph
supOU models in capturing the spatial and temporal variability of wind capacity factors
across a European electricity network was demonstrated in [50]. In astrophysics, the
supOU processes were applied to modelling the X-ray light curves generated by black
holes [42].

For the main properties of supOU processes, we refer to several works by Barn-
dorff-Nielsen and his collaborators [5, 9, 14, 6]. In particular, for every self-decompos-
able (SD) distribution, there is a stationary supOU process with this SD distribution
as marginal distribution and quite flexible class of covariance structures including
long-range dependence (LRD), that follows from the following theorem.

Theorem 1. For any SD random variable V there is a double-sided Lévy process
Z (1), called backward driving Lévy process (BDLP), such that

vif e dZ (1),
0

where we assume E[1 +1og|Z(1)|] < o and logEe'??") =t k,(z), where

kz(z) = logEe??V) | 7 R,
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is the cumulant function of an infinitely divisible (ID) random variable Z(1) with
Lévy—Khintchine characteristic triplet (b, o2, Uz), that is,

1 .
kz(z) = izh — =% +/ (e =1 —izxl_y 17(x))uz (dx),
2 R\{0}

where
/ min(|x|?, 1) uz (dx) < .
R\{0}

We note that Theorem 1 is a reformulation of Theorem 3.9.3 in [41]. Let us now
give the definition of supOU processes.

Definition 1. A supOU process Y (1), t € R, is a strictly stationary process defined
by the stochastic integral

Y () :[o/_t e €U A(dé¢, ds) 1)

in the sense of the paper [53], where A is a homogeneous infinitely divisible indepen-
dently scattered random measure (Lévy basis) on Ry X R with cumulant function

log Ee'?A) = m . (A)kz(z) = (7 X Leb) (A)kz(z), z€R,

for any Borel set A € B(R; X R), where the control measure m; = n X Leb is the
product of a measure it on (0, ), such that

n! = /R En(dé) < oo, )

and the Lebesgue measure Leb on R, the Lévy measure uz of the cumulant function
kz(z) is a positive Radon measure on R\{0} such that

/ log(1 + |x|)uz(dx) < co.
|x|>1

The quadruple (b, 0%, uz, ) is referred to as the characteristic quadruple and it
completely determines the supOU process (1) with any given marginal SD distribution
with Lévy triplet (by, 02, y), that is,

1 )
ky(z) = izhy — Ezzoﬁ + ‘/R\{O}(e‘” =1 —izxlj_y 17(x))py (dx). 3)

Recall that the ID random variable V < Y (0) with characteristic function ¢(z) =
exp(ky (z)) is self-decomposable if for every constant ¢ € (0, 1) there is a characteristic
function ¢.(z) such that ¢(z) = ¢(cz)d-(z), z € R. The ID random variable V is
self-decomposable if and only if its Lévy measure has the form uy(dx) = gl(x—xl)dx,
where g(x) is increasing in (—o0,0) and decreasing on (0, ), see [58, 54]. We also

note that kz(z) = Zdizky(z).
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If EY?(f) < oo, the correlation function of the supOU process (1) is given by

r(t) = Corr(Y(¢),Y(t+71)) = n/mf_le_Tfn(df), T2>0, )
0

which can exhibit either short-range dependence (SRD) or LRD depending on the
measure 7.

For explanation of the concept of the superposition, let us introduce the Lévy-
driven Ornstein—Uhlenbeck process

X(1) = /t e $0=94dz(&5), teR,

[e9)

where Z(t) is a two-sided Lévy process with Lévy—Khintchine triplet (b, 02, ).
The correlation function of the OU process X (7) is of the form

r(t) = Corr(X(1), X(t+ 7)) =e %7, 7>0,

provided EX?% (1) < co.

Thus, if & is a probability measure, then the measure 7 provides a randomization
of the rate parameter ¢ of the Lévy-driven OU process X () and hence the correlation
structure (4) of the supOU process is more flexible and can exhibit LRD. The popular
example of the measure 7 is the gamma distribution, some other examples can be
found in [7]. Although the OU process X () is a linear process, the supOU process is
nonlinear in general, that is, Y (¢) cannot be represented in the form f_ tm a(t—s)dZ(s)
for some function a(-), see [23, 5, 47].

In [38—40] self-decomposability was shown for the gamma distribution, the inverse
gamma distribution, the inverse Gaussian distribution, the Student distribution, the
hyperbolic cosine distribution, the Gumbel distribution and the Bessel distribution.
Also, self-decomposability was shown for the generalized inverse Gaussian distribu-
tion in [34], for the generalized Gaussian distribution in [24], for the positive a-stable
distribution in [9], and for the generalized Linnik distribution in [3].

Self-decomposability of the log-normal distribution follows from [18], where it
is proven that the log-normal distribution belongs to the class of generalized gamma
convolutions, which is a subclass of SD distributions. Finally, self-decomposability of
the Rosenblatt distribution has been proven in [49].

Let us present the fundamental result which explains the structure of supOU
processes.

Theorem 2. Let Y(t) be a supOU process with generating quadruple (b,0, uz, ),
where the measure 7 is arbitrary and satisfies (2). Then there exists a modification of
A such that for A € B(R; X R) we have

A(A) = > Hid(ry. 50 (A), 5)

k=—00

where —00 < -+ < S_1 < 8§y <0< 8 <::- < oo are the jump times of a two-sided
Poisson process on R with some intensity 0, {Ry, k € Z} are i.i.d. variables with the



Simulation of supOU processes 5

distribution m independent of {Si, k € Z}, and {Hy, k € Z} are i.i.d. variables with
the shot-height distribution F such that

®1-F
uy[x,oo)=9/ %dy,

and equivalently

Hz [)C, 00)

(dx) = py [x, 00)(dx) = 6 (6)

1-F

L=FG)
X

where uy is the Lévy measure for the supOU process Y (t). Thus, the supOU process

can be represented as

Y(t)= > Hee RS G (2= Sifm). )

k=—00

Proof. From the Lévy—Itd6 decomposition, the Lévy basis A in (1) can be written as

A(dé, ds) = br(d€)ds +/ x(v —uz)(dé, ds, dx) + / xv(dé, ds, dx),
(0,1] 1

(1,00)

where b € R and v is a Poisson random measure on R, X R X R, with intensity mea-
sure 7 (d&)dsuz(dx). By the Poisson construction theorem, for the Poisson random
measure v there exists a sequence {(Hy, Ry, Sx)} such that the equality (5) holds.
Substituting the Lévy basis (5) into the formula (1), we obtain the representation (7).
Direct calculation of the cumulant function of the process (7) shows that it coincides
with the cumulant function of the process (1). We refer to [56] for further details, see
also [10, Theorem 2.2] and [26]. |

The representation of v in the proof of Theorem 6 is most convenient for us among
several series representations of random measures which are reviewed in [56].

The most famous example of the application of Theorem 2 is the gamma process,
however, the relation (6) does not work for many other marginal distributions, see Sec-
tion 2. We note that the equation (7) is called the Bondesson—Rosinski representation
due to [16, 56], which is not unique, if we change the intensity 6, then the shot-height
distribution F(x) should be scaled. If Ry = A for all k, then the formula (7) becomes
the representation of the usual OU process. Since S are jump times of the Poisson
process with intensity 8, we have

Sk — Sk-1 ~ Exp(0),

that is, Sx — Sk—1 has the exponential distribution with rate § (implying mean 1/6).
Thus, the Bondesson—Rosinski representation (7) has in average 8 summands per any
unit interval. We note that Sy /n are jumps of the Poisson process with intensity 6/7.
In Figure 1 we show a typical sample path of the supOU process Y (#), which consists
of jumps with different heights and mixed-exponential decays with different rates.
Overall, we can see that the supOU processes form a wide class of stochastic
processes and the representation (7) enables to independently specify the marginal
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Fig. 1. A typical sample path of the supOU process Y (¢) with positive marginals, ¢ € [0, 10]

distribution by the choice of the shot-height distribution and the correlation structure
by the choice of the measure 7.

We note that the Lévy measure uy for the specified marginal distribution of the
process Y(t) can be derived from the one-to-one correspondence between the Lévy
density and the characteristic function as stated in the following result.

Theorem 3. Let ky (z) = log ¢(z) be the cumulant function of an ID marginal distribu-
tion of the supOU process Y (t) with Lévy triplet (by,0, uy) andfl X2y (dx) < co.
Then the Lévy measure uy (dx) = m(x)dx satisfies the equation

x|>1

(log $(2))" = - / e (x) d. ®

(o8]

If /_ 0:0 |(log ¢(z))”|dz < oo, then the Lévy measure py is absolutely continuous with
respect to the Lebesgue measure.

Proof. By differentiating twice the equality (3) with 0'1% = 0, we obtain the equation
(8), which can be interpreted as the Fourier transform of x2m (x). For its inversion, we
can use the identity

/szm(x)dx = —%v.p.[m (log ¢(z2))” (/B e_ixzdx> dz,

where B is any Borel set. If /j:o |(log ¢(z))”'|dz < oo, then

1 ®
mx) =->— / e (log ¢(z))" dz, ©)

where we refer to [19] for further details. |

Let us now reformulate Theorem 3 for the supOU processes Y (¢) with positive
marginals using the Laplace transform ¢ (s) = Ee™Y(®) = /Om e **p(x)dx, s > 0,
where p(x) is the density of the marginal distribution. Following [17, p. 15], the
density p(x) is infinitely divisible if and only if

L(s) =logy(s) = —as+ ‘/Om(e” - Dm(x)dx,

where a > 0 is the left-extremity of the distribution. Taking the first and second
derivatives of the above identity with a = 0, we obtain

I (s) = —/me_sxxm(x)dx, (10)
0
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7" (s) = /me_”xzm(x)dx, 11
0

which can be interpreted as the Laplace transforms of xm (x) and x*m (x), respectively.
Therefore, the Lévy density m(x) can be found by the inversion of either (10) or (11)
using one of several methods: the Bromwich integral, the Post—-Widder formula, or
Fredholm equations, see [21] for details. In particular, the Lévy density for the log-
normal distribution was numerically computed by the method of Fredholm equations
in [18]. In our numerical examples, where the Lévy density is not known analytically,
we use the method based on the Bromwich integral.

The following theorem establishes another useful relation for the OU-type pro-
cesses, one that does do not involve the Lévy measure and is motivated by the theory
of shot-noise processes [58].

Theorem 4. Define a shot-noise process

Yu(t) = Z Hih(t = Si)1[0,00) (t = Sk),

k=—c0

where h(-) is an impulse response, Sy are jumps of the Poisson process with intensity
0 and Hy are i.i.d. random variables with cdf F(x), x € R. Then the characteristic
function ¢(z) of the marginal distribution of Yi,(t) can be written as

log(¢(2)) =6 /_ ) /0 m(el'”““) — 1)dudF (x).

Proof. Since {Sy} are the points of a Poisson process on R with intensity 6, the marked
point process {(Sk, Hx) } is a Poisson random measure on R xR with intensity measure

v(ds,dx) = 0ds dF (x).

The characteristic function of Y3, (¢) is
¢(z) = B[] = E[exp (iz Z Hich(t = Si) Lj0,00) (t = Sk))} .
k

By the Laplace functional of a Poisson random measure, we have

E[exp (Zf(Sk,Hk))] = exp (‘/(ef(“"x) — 1) v(ds, dx))

for any measurable function f. Taking f(s,x) = izxh(t — 5)1|0,c0) (¢ — 5), We obtain

log ¢(2) = / / (e=xhU= M0 =5) _ 1) y(ds, dx).
R JR

Since v(ds, dx) = 6 ds dF (x) and 1o ) (¢ — s) restricts s < t, we have

t
1og¢(z)=9/ /(eith<’—5>—1) dF (x) ds.
-0 JR

By the change of variables, we obtain the required statement. O
From Theorem 4 for the exponential impulse response 4(t) = e R, we have
6 < U pls _
log ¢(z) = z K(zx)dF(x), K(u)= . ds.
—oo 0
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1.1 Choice of the correlation function via the measure ©t

From the relation (4) we have

/ r(tr)dr =n / E72n(de), (12)
0 0

and this integral can be either finite or infinite. Hence, we will say that a supOU
process exhibits LRD (long memory) if the integral in (12) is infinite, and we will say
that it exhibits SRD (short memory) otherwise. Moreover, if r is regularly varying at
Z€ro, 1.€.

n((0.6]) ~ L(€7HEM, asé >0, (13)
for some @ > 0 and a slowly varying function £(-) at infinity, then
1
r(7) ~ n(l“(jr;l) ()T, asT - oo,

see [30]. In particular, if @ € (0, 1) in (13), then the supOU process exhibits LRD;
see [26] and [31] for details.

We consider two cases of the measure 7 in the present paper. If « is the Dirac
measure at point A, then the supOU process is actually a usual OU process. If the
measure 7 is given by the gamma distribution I'(1 + @, ) with density

ﬁl+a
L _£¥%BE £50,a>0,8>0,

Prii+ap) (é) = r(l+a)

where I'(+) is the gamma function, then (2) holds and the supOU process has the

correlation function o
t
(1) = (1+—) izo0.
B

In particular, for @ € (0, 1) we obtain processes with LRD. More examples of possible
choices of 7 and corresponding supOU processes are given in [7].

1.2 Choice of the marginal distribution via the shot-height distribution F (x)

Due to (6), we can derive the shot-height distribution F(x) via the Lévy measure if
the Lévy measure of the marginal distribution is known. However, most of the known
simulation algorithms for OU processes with GIG marginals are constructed using the
autoregressive formulae of order 1 and are rather difficult, see [66]. We also note that
we cannot extend the simulation algorithm for OU processes from [66] to the case
of superpositions because a linear combination of OU processes does not have the
desired fat-tail marginal distribution.

The gamma OU process is the most famous stochastic process which has a very
simple simulation algorithm obtained in [16]. The gamma distribution I'(a, ) has
the density p(x) = b 'e~"*/T"(a) with mean a/b, variance a/b?, the cumulant
function ky(z) = —alog(1 — iz/b), the Lévy density m(x) = ax~'e™"*, and the
Bondesson—Rosinski representation (7) holds with

Hy ~ Exp(b) and Sy - Sx-1 ~ Exp(a).
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The Dickman OU process is another process with simple simulation algorithm,
see [32]. We note that the Dickman distribution D(a) is the distribution of a random

variable V that satisfies the distributional fixed-point equation V dyva (1+V), where

a >0, «2» denotes the equality in distribution, U is independent of V and has the
uniform distribution on (0, 1]. The Dickman distribution D (a) has the density

g ya-1 0<x<1
py=9 70" -1 by ’

“va g -1 [x=1 pu

f-(a)x“ —ax*"" | ()7 du, x>1,

where y = —I""(1) = 0.5772 is Euler’s constant, with mean a, variance a /2, the cumu-
lant function ky (z) = a /01 u~'(e'*™ — 1)du, the Lévy density m(x) = ax‘ll(g’l](x),
and the Bondesson—Rosinski representation (7) holds with

Hpy=1 and Sy - Sk-1 ~Exp(a).

The above two processes have marginals with short tails and their Lévy measures
are such that xm(x) is finite. The case of OU processes with fat-tail marginals is more
difficult because xm (x) is not finite at zero. This means that sample paths of Z(¢) have
infinitely many jumps and exact simulation is impossible, see [57].

2 Main results

We will concentrate on simulation of supOU processes with fat-tail marginals such
as the inverse gamma distribution and the inverse Gaussian distribution. We note that
supOU processes with fat-tail marginals usually have the Lévy density m (x) such that
x m(x) is singular at zero that disables the direct use of (6).

We propose to adapt the Bondesson—Rosinski representation (7) for simulation of
the supOU processes which may have infinitely many jumps. In numerical studies, we
usually simulate a stochastic process at equidistant points #; = jA with time step A
and, therefore, the contribution of frequent small jumps between points 71, 73, . . . can
be disregarded that can be viewed as the truncation of the Lévy measure.

Indeed, consider the Lévy measure uy on the interval [0, co). This measure on the
interval [0, €] corresponds to small jumps of the supOU process Y (¢). We approximate
Y (¢) by a stochastic process Y (#) with the Lévy measure uy truncated to the interval
[€, o). Specifically, we construct Y (¢) as follows.

For the given Lévy density m(x) of the process Y (¢), from the relation (6), we
obtain X

Fx)=1- 5m(x),

which gives negative values near zero if x m(x) is singular at zero, and F(x) is an
increasing function with F(x) — 1 as x — oo. Solving F(€) = 0 with respect to 6 for
given € € (0, o), we get the solution 8, = € m(e). By truncating F(x) to the interval
[€, ), we define the function

1-—ZXmx), x>e¢€,
Fe(x)={ 7 e (14)

which is a cumulative distribution function. Now we will state a main theorem which
will be used for simulation.
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Theorem 5. Let Y () be a supOU process with positive marginals such that xm(x) is
singular at zero. Define the process Y (t) via the Bondesson—Rosinski representation
(7), where Hy has the distribution function F¢(x) defined in (14). Then ky(z) —
ky,(z) = 0 as € — 0 and the correlation functions of Y (t) and Y ¢ (t) coincide.

Proof. We note that 6. is the intensity of the Poisson process with jumps at time
moments Si. By construction, the process Y (t) is well defined. Moreover, we have
that Fe (x) — F(x) and ky (z) — ky, (z) = /(]s(eizx — 1 —izx1j_y,1y(x))m(x)dx — 0
as € — 0. The correlation structure is specified by the measure 7(d¢), which is the
same for both supOU processes Y (¢) and Y (7). O

Since the probability density function (pdf) is the inverse Fourier transform of
the exponent of the cumulant function, the pdf of the marginal distribution of Y ()
converges to that of Y (¢). Moreover, the finite-dimensional distributions of the process
Y (t) converge to those of Y (¢) and, consequently, the statistical properties of sample
paths of Y (¢) approximate those of Y (¢) for small €. Since the supOU process Y (f) can
be viewed as a surrogate model of Y (¢), the sampling error for modelling the stochastic
process Y (¢) on a finite interval is larger than the error due to the replacement of the
model Y (7) by Y¢(#) with small €, see Supplementary Materials in [45] for details.
From a practical point of view, we can take € = 0.001. For other Lévy processes, the
convergence under truncation of the Lévy measure is investigated in [29].

In summary, the simulation algorithm for a supOU process with the given measure
m and the Lévy density m(x) of the given marginal distribution is as follows.

t seq(0, T, dt) # Vector of times

n = length(t) # Number of time steps.
Y = rep(0, n) # Vector with supOU process
dS_k = - T_WarmUp + rexp(l, rate = theta_e/eta)
while (dS_k<t[n]) # Iterate along Poisson process
{
R_k = RandomFromMeasure_pi
H_k = RandomFromDistribution_Fe
ind = floor (dS_k/dt)+2
if (dS_k<0)
Y =Y + H_k*xexp (R_k* (dS_k-t))
else
Y[ind:n] = Y[ind:n] + H_k*exp (R_k* (dS_k-t[ind:n]))

dS_k = dS_k + rexp(l, rate = theta_e/eta)
}
return (list (t=t, Y=Y))

In the above algorithm, we replace the infinite sum in the Bondesson—Rosinski rep-
resentation (7) by the sum in which k is such that Sy > —Twarmup, Where Twarmup 15
a constant such that the correlation function r(f) at ¢ = Twarmup i close to zero, say,
7(Twarmup) < 0.1. We also note that the above algorithm produces processes with pos-
itive marginals and the computational time is proportional to (T + Twarmup)fe/(7A)
and takes seconds in our further examples.

If the marginal distribution is defined on R, then the Lévy density m(x) is also
defined on R and we construct the simulation algorithm for a process with nonpositive
marginals as the difference of two positive processes,

Ye(t) =M +Ye,l(t) - Ye,2(t),

where M is the mean-correction parameter, Y i(f) and Y. o(#) are independent
stochastic processes, Y 1(#) has the representation (7) with positive Hy from the
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distribution (14) and Y, »(#) has the representation (7) with positive Hy from the dis-
tribution (14) with m(x) replaced by m(—x). In this construction, the process Y¢ 2(#)
corresponds to the Lévy density m(x) for x < 0.

In the following sections we will confirm the theoretical behavior of the proposed
algorithm by simulation for a wide range of supOU processes.

2.1 SupOU processes with positive marginals

2.1.1 SupOU process with inverse gamma marginals

The density of the inverse gamma distribution, RI"(a, b) for short, is
b« 1 e—b/x

F(a) ya+l

p(x) = x>0,a>0,b>0,

. . . 2 . .
which has mean % ifa > 1, variance Wlﬁw if a > 2, and the cumulant function

ky (z) = log (2(—ibz)“/2 /F(a)Ka(\/—4ibz_)) ,

where K, (+) is the modified Bessel function of the second kind. Following [8], the
Lévy density of the supOU process with inverse gamma marginals is

1 e xXu
m(x) = —/ e wg,(u)du, x>0,
2x 0

where
2

i (J7, (Vi) + Y, (V)

Jiq|(-) and Y|4 (-) are Bessel functions of the first and second kind, respectively.
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Fig. 2. Top: Realizations of the supOU process Y () with RI'(3, 2) marginals on the interval
[0,3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and 7 = §,. Bottom-Left:
The true density of RI'(3,2) and empirical densities of realizations. Bottom-Right: The true
acf (dotted) and empirical acf (solid line) of realizations, the x-axis represents the lag between
points

We note that the intensity 6, depends on a and b. For example, for a = 4 and
e = 0.001, we have §, = 23.5 for b = 2 and 6, = 29.2 for b = 3. Thus, we can
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evaluate the cumulative distribution function F (x) by (14) and simulate the process
Y (¢) using the Bondesson—Rosinski representation (7) with intensity 6, Ry ~  and
Hj ~ F¢. The R code of simulation of Y (¢) is given in [45].

In Figure 2 we depict several realizations of the supOU process Y (¢) with inverse
gamma marginals and their characteristics. We need the large interval [0,3000] to show
the behavior of the supOU process which shows distinct patterns on short intervals.
The measure 7 = ['(1 + @, @) implies the long-range dependence for a € (0, 1] and
short-range dependence for @ > 1. We can see that the empirical density is close to
the true density of the inverse gamma distribution and the empirical autocorrelation
function (acf) is close the true acf. We note that the empirical estimators of parameters
of realizations of the supOU process are usually very far from the true values if the
supOU process is observed over short intervals.

2.1.2  SupOU process with inverse Gaussian marginals
The inverse Gaussian distribution, IG(a, b) for short, has the density

b
p(x) = ﬂx—me_(az/“bzx)/z’ x>0.a>0,b>0,

Varn

with mean £, variance ;5 and the cumulant function ky(z) = ab — avb? - 2iz.
Following [8], the Lévy density of the supOU process with inverse Gaussian marginals

is ,
x32=b2x/2,

2

m(x) = x> 0.
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Fig. 3. Top: Realizations of the supOU process with IG(2, 2) marginals on the interval [0, 3000]
with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,. Bottom-Left: The true
density of IG(2, 2) and empirical densities of realizations. Bottom-Right: The true acf (dotted)
and empirical acf (solid line) of realizations

In Figure 3 we depict several realizations of the supOU process with inverse
Gaussian marginals and their characteristics.

2.1.3  SupOU process with generalized inverse Gaussian marginals
The properties of supOU processes with GIG marginals were studied in [8]. In [67],
simulation algorithms of OU processes with GIG marginals were constructed using
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the autoregressive formulae of order 1. The GIG distribution has the density

b al2
(x) = Lx“_le—(””’/m/z, x>0,¢>0,b>0, acR,

2K, (Veb)
: Kav1 (Veb) o b Kai2(Veb) _ (KaH(VCb))Z
with mean \/b/c—Ka Veb) , variance [ K. (Veb) K. (VeB) and the cumulant
function
(2) =1 ( c )“/2 Ko(/b(c =2i2))
ky(z) = log - .
c—2iz K. (Veb)

The following distributions are special cases of GIG(a, b, ¢):

¢ GIG(a,0, ¢) is the gamma distribution I'(a, c), a > 0,

GIG(—a, b, 0) is the inverse gamma distribution RT"(a, b), a > 0,

GIG(—1/2, b, ¢) is the inverse Gaussian distribution IG(Vb, v/c),

GIG(1/2, b, ¢) is the reciprocal inverse Gaussian distribution RIG(Vb, v/¢),

GIG(1, b, c) is the positive hyperbolic distribution PH(b, ¢),

GIG(-1, b, ¢) is the reciprocal positive hyperbolic distribution RPH(b, ¢).

The GIG distribution is essential for constructing the family of Generalized Hyperbolic
Lévy processes [11], which are highly effective tools for modeling phenomena in
finance and turbulence [8, 15].

Following [8], the Lévy density of the supOU process with GIG marginals is

1 1 e Xu cxX
m(x) = — (5/ e" 2 g, (u)du +max{0,a}> e 2, x>0,
x 0

where g, (u) is defined in (15).
In Figure 4 we depict several realizations of the supOU process with generalized
inverse Gaussian marginals and their characteristics.

2.1.4 SupOU process with Bessel marginals
The Bessel distribution B(a) (which can be viewed as the generalized Mc Kay distri-
bution) has the density

p(x) = ?—Ce_xla(X), x>0,a>0,

with infinite mean, the Laplace transform Ee ™Y = (1 + s — Vs2 +25)“ and the
cumulant function «y(z) = alog(1 — iz — V-2iz — z2), where I,(-) is the modified
Bessel functions of the first kind. Following [12], the Lévy density of the supOU
process with Bessel marginals is given by

m(x) = ge_xlo(x), x>0,
X
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Fig. 4. Top: Realizations of the supOU process with GIG(1.5,2, 1) marginals on the interval
[0,3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,. Bottom-Left:
The true density of GIG(1.5,2, 1) and empirical densities of realizations. Bottom-Right: The
true acf (dotted) and empirical acf (solid line) of realizations
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Fig. 5. Top: Realizations of the supOU process with B(2) marginals on the interval [0, 3000]
with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,;. Bottom: The true density
of B(2) and empirical densities of realizations

which implies a small finite value of 6. even if € — 0 because x m(x) is not singular
at zero.

In Figure 5 we depict several realizations of the supOU process with Bessel
marginals and their characteristics. The correlation function of this supOU process
does not exist, see Supplementary Materials in [45] for details on empirical estimation.

2.1.5 SupOU process with Mittag-Leffler marginals
The Mittag-Leffler distribution ML(a) has the cumulative distribution function
FuL(x) =1 =-E (=x%), x>0,a€(0,1),

with infinite mean, the density p(x) = x¢ ' E,_,(—x%), the Laplace transform Ee ~*V =

1/(1 + s%) and the cumulant function

kr(2) = ~log (1 + (=i)") = ~log (1 + |z (@)na/2)
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where E,(z) = E4,1(z) and

sl k
Z
Ea,b(z) = ——, z€C,
kZ:(:) I'(b+ ak)

is the two-parameter Mittag-Leffler function. Following [12, 44], the Lévy density of
the supOU process with Mittag-Leffler marginals is given by

m(x) = EEa(—xa), x>0,
X

which implies a small finite value of 6. even if € — 0 because x m(x) is not singular
at zero.

MWLL jmm LJ\MM‘M» R L“ kil
AJ il mm {WMM |kl s Lum“mlmih i

T
500 1000 1500 2000 2500 3000

U, AMAMJMM
bl

: N density =07
- \ — a=14
- AV A=0.4
_ \\\\7\7 true
ey
B e N
A/ e —————
T T T T T T T
0.0 0.5 1.0 1.5 20 25 3.0

Fig. 6. Top: Realizations of the supOU process with ML(0.9) marginals on the interval [0, 3000]
with time step A = 0.5 for the measure 7 = I'(1 + @, @) and & = § ;. Bottom: The true density
of ML(0.9) and empirical densities of realizations

In Figure 6 we depict several realizations of the supOU process with Mittag-Leffler
marginals and their characteristics.

2.1.6  SupOU process with positive a-stable marginals
The positive a-stable distribution has the Laplace transform Ee™sY = ¢5%, 5 > 0,
the density

palx) = Z( 1)’<+‘Flg“::+]) in(kar), x>0, ae(0,1),  (16)

implying infinite mean, and the cumulant function

Ky(Z) — _(iZ)a — _|Z|ae—isign(z)7ra/2.

Following [6], the Lévy density of the supOU process with a-stable marginals is given
by
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Therefore, we obtain 8, = —1/(e*I'(—a)) and
Fe(x) = (1= (/x))1[e,00) (%),

that enables us to exactly simulate the random variables with the cumulative distribu-

tion function F¢ (x).
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Fig. 7. Top: Realizations of the supOU process with positive 0.9-stable marginals on the interval
[0, 3000] with time step A = 0.5 for the measure 7 = T'(1 + @, @) and 7w = § ;. Bottom: The true
density of the positive 0.9-stable distribution and empirical densities of realizations

In Figure 7 we depict several realizations of the supOU process with positive
0.9-stable marginals and their characteristics.

2.1.7 SupOU process with tempered stable marginals
The tempered stable distribution TS (a, b) has the cumulant function

ky(z) =b% — (b —-iz)% a€(0,1), b>0,
the mean b 'a, the variance b*2a(1 — a) and the density p(x) = po(x)e?” 0¥,
where p,(x) is defined in (16), see [13]. Following [9], the Lévy density of the supOU
process with tempered stable marginals is given by
a

m(x) = ——x"' 7970

I (a) , x>0.

In Figure 8 we depict several realizations of the supOU process with tempered
stable marginals and their characteristics.

2.1.8 SupOU process with log-normal marginals
The log-normal distribution LN(a, b) has the density

1 (logx — a)?
x) = exp | —
px) xbV\2r p( 2b?

), x>0,aeR, b>0.
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Fig. 8. Top: Realizations of the supOU process with TS(0.4, 1) marginals on the interval
[0,3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,. Bottom-Left:
The true density of TS(0.4, 1) and empirical densities of realizations. Bottom-Right: The true
acf (dotted) and empirical acf (solid line) of realizations

with mean exp(a + %2) and variance (exp(b?) — 1) exp(2a + b?). The log-normal dis-
tribution is not determined by its moments. The characteristic function of LN(a, b) is

72

esb2 ® a+Vibx_ i .2
e ze \/Eb TX—X dx’
\Y4 —00

see [33]. Following [2], the characteristic function has a good approximation

#(z) =

2b2
VI + W(=izbZe®) ’

where W(-) is the Lambert W function which satisfies W (x)e" *) = x, see [22].

Following [18], there is no explicit formula for the Lévy density of the log-normal
distribution. Thus, we directly compute the Lévy density m(x) by the method based
on the Bromwich integral, which is equivalent to formula (9) with

exp (_ W2(=izb?e®)+2W (=izb%e®) )

#(z) =

I , (W3 (izh?e?) + 3W (<izb?e?) + (3 + b* /)W (izbe?) + 1+ 36 /2) WA (~izb?e")
(log ¢(2))" = (1 + W(=izh%e®))*z2b* ’

which is absolutely integrable because W(x) ~ log(x) as x — oo.

In Figure 9 we depict several realizations of the supOU process with log-normal
marginals and their characteristics. The error analysis is given in Supplementary
Materials in [45].

2.2 SupOU processes with marginals on entire real line

2.2.1 SupOU process with hyperbolic cosine marginals

The hyperbolic cosine distribution has the density p(x) = 1/(m cosh(x)), x € R, with
zero mean, variance 712 /4 and the characteristic function ¢(z) = 1/cosh(rz/2). Fol-
lowing [19], the Lévy density of the supOU process with hyperbolic cosine marginals
is given by X

—, x€R,
x(e* —e™X)

m(x) =
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Fig. 9. Top: Realizations of the supOU process with LN(0, 1) marginals on the interval [0, 3000]
with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,. Bottom-Left: The true
density of LN(0, 1) and empirical densities of realizations. Bottom-Right: The true acf (dotted)
and empirical acf (solid line) of realizations

which implies a small finite value of 6, even if € — 0 because x m(x) is not singular
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Fig. 10. Top: Realizations of the supOU process with hyperbolic cosine marginals on the interval
[0,3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,. Bottom-Left:
The true density of the hyperbolic cosine distribution and empirical densities of realizations.
Bottom-Right: The true acf (dotted) and empirical acf (solid line) of realizations

In Figure 10 we depict several realizations of the supOU process with hyperbolic
cosine marginals and their characteristics.

2.2.2  SupOU process with normal inverse Gaussian marginals
The supOU processes with NIG marginals were extensively studied in [4]. The NIG
distribution has the density

adok, (a\/m)

p(x) = o = VB xR, a>0, y=+d-p>
Vo2 + (x —¢
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where c is the location parameter, a is the tail parameter, § is the asymmetry parameter
and ¢ is the scale parameter. The NIG distribution has semi-heavy tails, specifically,
the tails of p(x) behave like |x|3/2¢~@I*I*A* a5 x — +co. The NIG distribution has
the mean ¢ + §3/y, the variance da”/y> and the cumulant function

ky(z) =icz+96 (y —+a?-(B+ iz)z) .

Following [4, 6], the Lévy density of the supOU process with NIG marginals is given
by

m(x) = %K1(a|x|)eﬁx, x €R.

Consider the case of ¢ =0, 8 =0 and § = 1, which will be denoted as NIG(a).
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Fig. 11. Top: Realizations of the supOU process with NIG(0.6) marginals on the interval
[0,3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = §,. Bottom-Left:
The true density of the NIG distribution and empirical densities of realizations. Bottom-Right:
The true acf (dotted) and empirical acf (solid line) of realizations

In Figure 11 we depict several realizations of the supOU process with NIG(0.6)
marginals and their characteristics.

2.2.3  SupOU process with Student marginals
The Student distribution ST(c, a, v) has the density

r 1 2 1 _ 2 —(V+l)/2

p(x) = L+ D/2) el (129 . xeR, v>0, a>0,
aNmvl'(v/2) v\ a

which has mean ¢ if v > 1, variance % if v > 2 and the cumulant function

(WG|Z|)V/2 Ky (Vvalz) .
T +icz.

ky(z) = log <

Following [35], the Lévy density of the supOU process with Student marginals is
given by

m(x) = L/ e_lxl\/”/_vgv/z(u)du, x €R,
2lx| Jo
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where g, (u) is defined in (15), and has the property x?m (x)/a = \v/n+(1=v)|x|/4+
o(x)asx — 0.
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Fig. 12. Top: Realizations of the supOU process with ST(0,1,2.5) marginals on the interval
[0, 3000] with time step A = 0.5 for the measure 7 = T'(1+«, @) and & = § ;. Bottom-Left: The
true density of the Student distribution and empirical densities of realizations. Bottom-Right:
The true acf (dotted) and empirical acf (solid line) of realizations

In Figure 12 we depict several realizations of the supOU process with ST(0,1,2.5)
marginals and their characteristics.

2.2.4  SupOU process with Cauchy marginals
The Cauchy distribution has the density

1 x—cy2\ !
px)=— 1+( ) , x€R,a>0,
na a

which has infinite absolute moment of order 1 and the cumulant function «y(z) =
a|z| +icz. Following [19], the Lévy density of the supOU process with Cauchy
marginals is given by

a
m(x) = o x €R.

In Figure 13 we depict several realizations of the supOU process with Cauchy
marginals and their characteristics.

2.2.5 SupOU process with generalized Linnik marginals
The generalized Linnik distribution GL(a, b) has the characteristic function

¢(2) = z€R, a€(0,2], b>0.

(1+z]9)b”
The density does not have an explicit form and can be computed as

1 [ 1 * eVl
p(x) = E [m ¢(Z) COS()CZ)dZ = ;Im/(; md}’, X # 0 fora < 1,
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Fig. 13. Top: Realizations of the supOU process with Cauchy marginals witha =1, ¢ =0 on
the interval [0,3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and 7 = §,.
Bottom: The true density of the Cauchy distribution and empirical densities of realizations

which has zero mean if a > 1 and has the property
b l-a l-a
px)=— 31n(a7r/2)F(1 +a)lx|7 T +o(]x|T %) as|x| = o0, a € (0,2),
see [3, 25] for details. The GL(2, b) distribution is a special case, for example, for
a =2 and b = 1 we have the density p(x) = e ~IxI of the Laplace distribution with

zero mean, variance 2 and the Lévy density m(x) = |x| te ¥l
The GL(a, 1) distribution is the Linnik distribution with the Lévy density

m(x)z/ pa(xu_%)u_l_%e_”du,
0

where p,(x) is defined in (16).
The Lévy density of the generalized Linnik distribution is given by

m(x) =b

where

) = 4 7 2 Dk M) e sin(nak/2), a € (0,1),
Jeem =Ty (- 1)'<+1F<"/“+”x sin(7k/2), ae(1,2)
k=1 5 5

see [43]. Alternatively, we can directly compute the Lévy density m (x) by formula (9)
with
277D + (1 = a)|z|*2

(1+]z]4)? ’

(log ¢(2))" =

which is absolutely integrable.
In Figure 14 we depict several realizations of the supOU process with generalized
Linnik marginals and their characteristics.
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Fig. 14. Top: Realizations of the supOU process with generalized Linnik marginals with a =
1.5, b =1 on the interval [0,3000] with time step A = 0.5 for the measure 7 = ['(1 + @, @)
and 7 = ;. Bottom-Left: The true density of the generalized Linnik distribution and empirical
densities of realizations. Bottom-Right: The specified acf (dotted) and empirical acf (solid line)
of realizations

2.2.6  SupOU process with generalized Gaussian marginals
The random variable V has the (one-parameter) generalized Gaussian distribution if
its density is

p(x) = caexp(=|x|%/2), ca=2"¢a/T(1/a), xR, a >0,

with zero mean and variance 22/4T( % )/T°( é) Following [24], the characteristic func-
tion of V is given by

© . 1 _a_
¢(z) =2¢q / cos(xz) exp(—x?/2)dx = ﬂcacll|Z|_1‘| / Uq(x)e121e7TUal) gy
0 a- 0

where

sin(nxa/Z)) a1 cos(nx(a—1)/2)

z€R, Uslx)= ( cos(7x/2) cos(mx/2)

The random variable V is self-decomposable for a € (0, 1) U {2}.

There is no explicit formula for the Lévy density of the generalized Gaussian
distribution. Thus, we directly compute the Lévy density m(x) by formula (9) since
(log ¢(z))” is absolutely integrable, see [24, App. J].

In Figure 15 we depict several realizations of the supOU process with GG(0.9)
marginals and their characteristics.

2.2.7  SupOU process with Gumbel marginals
The Gumbel distribution G(c, a), which is also known as the extreme value distribu-
tion, has the cumulative distribution function

Fg(x) = exp (—exp (—u)) , x€R, ceR,a>0,
a
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Fig. 15. Top: Realizations of the supOU process with GG(0.9) marginals on the interval
[0, 3000] with time step A = 0.5 for the measure 7 = T'(1+«, @) and 7 = § ;. Bottom-Left: The
true density of the generalized Gaussian and empirical densities of realizations. Bottom-Right:
The true acf (dotted) and empirical acf (solid line) of realizations

with mean ¢ + ay, where y ~ 0.5772, variance % 72 42 and the characteristic function
¢(z) =T (1 —iaz) exp(icz).

Following [ 1], the Lévy density of the supOU process with Gumbel marginals is given
by
ae™™
= > 0.
m(x) - x
Since the Lévy density produces the mean-shifted marginal distribution, we have to
set the mean-correcting parameter M = M (a, ¢).
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Fig. 16. Top: Realizations of the supOU process with G(0,1) marginals on the interval [0, 3000]
with time step A = 0.5 for the measure 7 = I'(1 + @, @) and © = & ,. Bottom-Left: The true
density of the Gumbel and empirical densities of realizations. Bottom-Right: The true acf
(dotted) and empirical acf (solid line) of realizations

In Figure 16 we depict several realizations of the supOU process with G(0,1)
marginals and their characteristics.
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2.2.8 SupOU process with Rosenblatt marginals
The Rosenblatt distribution was introduced in [55] and has zero mean, unit variance
and the characteristic function

9(2) = exp (% Z(zizaa)k%’k) . ael01/2, zeS, (D
k=2

where Sy is a small neighborhood of zero, o, = /(1 — 2a)(1 — a)/2 and

! 1
Cak =/ / lx1 — x| "o — X379 - kot — xp| T ke — 21| Ydxy - dxg,
0 0

an explicit formula for the density is not available. The random variable V with the
Rosenblatt distribution can be given as

V= Z/la,n(sgl - 1),
n=1

where g, are i.i.d. random variables with the standard normal distribution and

Aa,1,Aa,2, ... are such that 3 /l’;,n = o-clfca,k for all k = 2,3,.... In particular,

we have Y}, /1%!’" =1/2, Y5> da,n = o0 and the Laplace transform of V' is given by

o (1 1
¢LT(S) = E(e—sV) = exp <_ Z (5 10g(1 + 2/lu,ns) - la,ns)) , S>> _2/la,1 .

n=1

Following [60], the Lévy density of the supOU process with Rosenblatt marginals is

given by
1 « by
= 5 - > 09
m(x) ” nz:; exp ( Z/la,n) x>

and A, can also be computed as eigenvalues of the integral operator K, : L>(0,1) —
L*(0, 1) defined as

1
(Raf) (@) = 0 /O I — ul~% £ (u)du.

Following [60], the eigenvalues A, , admit the accurate approximation

2
dan = Can®™ forn>30, Cu= =TT (1 -a)sin(ra/2),
T a

and should be computed numerically for small #n. An accurate approximation of the
eigenvalues A, , for all n is proposed in [46]. Since the Lévy density of the Rosenblatt
distribution is defined for positive x like in cases of supOU processes with positive
marginals, we have to set the mean-correcting parameter M = M(a).

In Figure 17 we depict several realizations of the supOU process with Rosenblatt
marginals and their characteristics.



Simulation of supOU processes 25

SRR MRk AN

1
500 1000 1500 2000 2500 3000

/)*//(\v'\\ density 407
A\ — o=14
/4

true

correlation function

0.6

0.3
| v
.

F

o

0.0

Fig. 17. Top: Realizations of the supOU process with Rosenblatt marginals with a = 0.3 on the
interval [0, 3000] with time step A = 0.5 for the measure 7 = I'(1 + @, @) and 7 = § ;. Bottom-
Left: The true density of the Rosenblatt and empirical densities of realizations. Bottom-Right:
The true acf (dotted) and empirical acf (solid line) of realizations

3 Conclusion

We proposed the universal simulation algorithm for supOU processes with specified
marginal distributions and correlation functions that provides the complete viewpoint
on the structure of these processes. Our algorithm is based on the truncation of
the Lévy density in cases where x m(x) has a singularity at zero. We have applied
the simulation algorithm for supOU processes with 16 marginal distributions and
established a repository [45] containing R scripts to facilitate the use of this algorithm.
Our extensive numerical study confirms that the empirical density of realizations is
close to the specified marginal density and the empirical acf is close to the true
acf if the second moment of the marginal distribution is finite and to the specified
acf otherwise. If a process is required with marginals not included in the list of 18
distributions (see Table 1), the target marginal distribution can be approximated by
one of the 18 considered distributions. The supOU process can then be simulated
using this fitted marginal distribution.
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Table 1. Characteristics of self-decomposable distributions

Name Parameters __ Density p(x) Variance CF o(z) Lévy density m(x)
Positive distributions, x > 0
Gamma 250,550 Ll 2 ) (1—iz/b)~ axle
(a) b b
el x€(0.1
Dickman 20 @y @1 2 exp (a flu N (e — 1)du
e T x> 1 2 o
7 =—I(1) = 05772
- a2
Inverse 250,60 %%e’”’* W@h ifa>2 A r'(bz)) Ka(v/—4ibz)
a)x* a,
gamma
eI
Inverse 250,650 2 32-@/xi80)2 b% o (abf V- 2,1)
Gaussian
a/2 @) @)\’ 372 K (/e - i) = =
Generalized 550, acR LD ot (ecb Koplyeh) (K—‘(‘—“’Z> ( < ) Kalyvble—2z) 1 (1/ & 3gy(u)du -+ max{0, s)) 5
inverse 2Ka(V/cb) Ko(Veb) Kal(Veb) <oz ) *\2Jo
Gaussian
Bessel a>0 2ex1y(x) (1—iz —V—2iz - 22)° 2exhy(x)
Mittag-  ac (0.1) di(l — Ei(—x)) = x* 165 o(—x%) (1+ (—izy?) ! 2E,(—x%)
Lefler X x
_ 1 kial(ka+1) . a
a-stable 2 c (0.1) ;E( 1 sinkar) exp( (,z)a) =)
Tempered ac (0.1), b>0 e "X%Z( 1)“]%5"‘(‘%) b7%a(1 - a) exp (b7 (b i2)°) ﬁx 1rae b
stable =t x
) et VI 2 -
Log-normal 2 € R, b>0 ﬁexp &%) (exp(b?) — 1) exp (2a-+ b2) g B e e (log ¢(2))"dz
Entire real line distributions, x € &
2
Hyperbolic 1/(m cosh(x)) = 1/ cosh(nz/2) D __
° X&)
cosine
adKy (ay/82+ (x — )2 5a2 icz+8(+—/FOTER 4
Normal cBER, 2,650 %e"’*"""’ in et (-VI=raR) 02 (alxl)e™
inverse T8+ (x = o) 7 B
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1=VZ- B
Student  ceR a0 WEDA() 1 (x-c 3 Y2 iy 2 e’“w i/xf‘*‘v"" (u)du
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