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Abstract An algorithm is proposed for simulation of superpositions of Ornstein–Uhlenbeck 
processes which may have short- or long-range dependencies and specified marginal distribu
tions. The algorithm is based on the Bondesson–Rosinski representation of the supOU process as 
a shot-noise process and enables a clear constructive view on the structure of supOU processes. 
The use of the proposed algorithm is demonstrated for eight positive marginal distributions and 
eight entire real line marginal distributions when the explicit formulae for the Lévy density are 
available or not.
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1 Superpositions of Ornstein–Uhlenbeck processes

We consider the superpositions of Ornstein–Uhlenbeck (supOU) processes which are 
an important class of ambit stochastic processes [11] and play a fundamental role in 
finance and insurance, degradation modelling, diffusion, turbulence, astrophysics and 
transport, see [20, 52, 30, 51] and references therein. SupOU processes are proving 
to be invaluable tools for modeling complex phenomena with long-range dependence, 
intermittency, and non-Gaussian behaviors.
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In finance, the supOU processes can be incorporated in different ways. The popular 
continuous time stochastic volatility model for financial assets

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝐵(𝑡), 𝑡 ≥ 0,

generalizes the classical Black–Scholes model by replacing the volatility parameter 𝜎
by the volatility process 𝜎(𝑡) in the form of a superposition of positive OU processes, 
where 𝐵(𝑡) is the standard Brownian motion that is independent of 𝜎(𝑡), see the 
fundamental work [8]. If 𝜎(𝑡) is a supOU process with inverse gamma marginals, 
then log-returns have approximately the Student distribution, see [8, p. 170] for a 
general correspondence.

The fractal activity time geometric Brownian motion model introduced in [35] has 
the form

𝑆(𝑡) = 𝑆0𝑒
𝜇𝑡+𝜃𝑇 (𝑡 )+𝜎𝐵(𝑇 (𝑡 ) ) , 𝑡 ≥ 0,

where 𝑆(𝑡) is the asset price and the fractal activity time 𝑇 (𝑡) is a positive, nonde
creasing stochastic process in the form of the linear spline of a discrete integrated 
supOU process with positive marginals that is independent of 𝐵(𝑡). If 𝑇 (𝑡) is an in
tegrated supOU process with inverse gamma marginals, then log-returns have exactly 
the Student distribution, see [27, 28] for other marginals.

For modeling high-frequency financial data, supOU processes were explored in 
[37] by demonstrating their efficacy in capturing the stochastic volatility of stock 
prices with improved accuracy over traditional models like GARCH. The authors 
leveraged the superposition property to model multiscale temporal dependencies, 
which proved particularly effective for intraday trading strategies. Furthermore, supOU 
processes were applied to stock indexes [36], zero-coupon bonds [61], and option 
pricing [48, 59].

SupOU processes are well suited for modeling migrating fish counts [62] and 
intricate hydrological phenomena, such as river discharge time series [65, 63] and 
water characteristics [64]. In the context of wind energy systems, the utility of graph 
supOU models in capturing the spatial and temporal variability of wind capacity factors 
across a European electricity network was demonstrated in [50]. In astrophysics, the 
supOU processes were applied to modelling the X-ray light curves generated by black 
holes [42].

For the main properties of supOU processes, we refer to several works by Barn
dorff-Nielsen and his collaborators [5, 9, 14, 6]. In particular, for every self-decompos
able (SD) distribution, there is a stationary supOU process with this SD distribution 
as marginal distribution and quite flexible class of covariance structures including 
long-range dependence (LRD), that follows from the following theorem.
Theorem 1. For any SD random variable 𝑉 there is a double-sided Lévy process 
𝑍 (𝑡), called backward driving Lévy process (BDLP), such that

𝑉
𝑑
=
∫ ∞

0
𝑒−𝑡𝑑𝑍 (𝑡),

where we assume 𝔼[1 + log |𝑍 (1) |] < ∞ and log𝔼𝑒𝑖𝑧𝑍 (𝑡 ) = 𝑡 𝜅𝑍 (𝑧), where

𝜅𝑍 (𝑧) = log𝔼𝑒𝑖𝑧𝑍 (1) , 𝑧 ∈ ℝ,
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is the cumulant function of an infinitely divisible (ID) random variable 𝑍 (1) with 
Lévy–Khintchine characteristic triplet (𝑏, 𝜎2, 𝜇𝑍 ), that is,

𝜅𝑍 (𝑧) = 𝑖𝑧𝑏 −
1
2
𝑧2𝜎2 +

∫
ℝ\{0}

(𝑒𝑖𝑧𝑥 − 1 − 𝑖𝑧𝑥1[−1,1] (𝑥))𝜇𝑍 (𝑑𝑥),

where ∫
ℝ\{0}

min(|𝑥 |2, 1)𝜇𝑍 (𝑑𝑥) < ∞.

We note that Theorem 1 is a reformulation of Theorem 3.9.3 in [41]. Let us now 
give the definition of supOU processes.

Definition 1. A supOU process 𝑌 (𝑡), 𝑡 ∈ ℝ, is a strictly stationary process defined 
by the stochastic integral

𝑌 (𝑡) =
∫ ∞

0

∫ 𝑡

−∞
𝑒−𝜉 (𝑡−𝑠)Λ(𝑑𝜉, 𝑑𝑠) (1)

in the sense of the paper [53], where Λ is a homogeneous infinitely divisible indepen
dently scattered random measure (Lévy basis) on ℝ+ × ℝ with cumulant function

log𝔼𝑒𝑖𝑧Λ(𝐴) = 𝑚𝑐 (𝐴)𝜅𝑍 (𝑧) = (𝜋 × Leb)(𝐴)𝜅𝑍 (𝑧), 𝑧 ∈ ℝ,

for any Borel set 𝐴 ∈ ℬ(ℝ+ × ℝ), where the control measure 𝑚𝑐 = 𝜋 × Leb is the 
product of a measure 𝜋 on (0,∞), such that

𝜂−1 :=
∫
ℝ+

𝜉−1𝜋(𝑑𝜉) < ∞, (2)

and the Lebesgue measure Leb on ℝ, the Lévy measure 𝜇𝑍 of the cumulant function 
𝜅𝑍 (𝑧) is a positive Radon measure on ℝ\{0} such that

∫
|𝑥 |>1

log(1 + |𝑥 |)𝜇𝑍 (𝑑𝑥) < ∞.

The quadruple (𝑏, 𝜎2, 𝜇𝑍 , 𝜋) is referred to as the characteristic quadruple and it 
completely determines the supOU process (1) with any given marginal SD distribution 
with Lévy triplet (𝑏𝑌 , 𝜎2

𝑌 , 𝜇𝑌 ), that is,

𝜅𝑌 (𝑧) = 𝑖𝑧𝑏𝑌 − 1
2
𝑧2𝜎2

𝑌 +
∫
ℝ\{0}

(𝑒𝑖𝑧𝑥 − 1 − 𝑖𝑧𝑥1[−1,1] (𝑥))𝜇𝑌 (𝑑𝑥). (3)

Recall that the ID random variable 𝑉
𝑑
= 𝑌 (0) with characteristic function 𝜙(𝑧) =

exp(𝜅𝑌 (𝑧)) is self-decomposable if for every constant 𝑐 ∈ (0, 1) there is a characteristic 
function 𝜙𝑐 (𝑧) such that 𝜙(𝑧) = 𝜙(𝑐𝑧)𝜙𝑐 (𝑧), 𝑧 ∈ ℝ. The ID random variable 𝑉 is 
self-decomposable if and only if its Lévy measure has the form 𝜇𝑌 (𝑑𝑥) = 𝑔 (𝑥 )

|𝑥 | 𝑑𝑥, 
where 𝑔(𝑥) is increasing in (−∞, 0) and decreasing on (0,∞), see [58, 54]. We also 
note that 𝜅𝑍 (𝑧) = 𝑧 𝑑

𝑑𝑧 𝜅𝑌 (𝑧).
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If 𝔼𝑌2(𝑡) < ∞, the correlation function of the supOU process (1) is given by

𝑟 (𝜏) = Corr(𝑌 (𝑡), 𝑌 (𝑡 + 𝜏)) = 𝜂
∫ ∞

0
𝜉−1𝑒−𝜏 𝜉 𝜋(𝑑𝜉), 𝜏 ≥ 0, (4)

which can exhibit either short-range dependence (SRD) or LRD depending on the 
measure 𝜋.

For explanation of the concept of the superposition, let us introduce the Lévy
driven Ornstein–Uhlenbeck process

𝑋 (𝑡) =
∫ 𝑡

−∞
𝑒−𝜉 (𝑡−𝑠)𝑑𝑍 (𝜉𝑠), 𝑡 ∈ ℝ,

where 𝑍 (𝑡) is a two-sided Lévy process with Lévy–Khintchine triplet (𝑏, 𝜎2, 𝜇𝑍 ).
The correlation function of the OU process 𝑋 (𝑡) is of the form

𝑟 (𝜏) = Corr(𝑋 (𝑡), 𝑋 (𝑡 + 𝜏)) = 𝑒−𝜉 𝜏 , 𝜏 > 0,

provided 𝔼𝑋2(𝑡) < ∞.
Thus, if 𝜋 is a probability measure, then the measure 𝜋 provides a randomization 

of the rate parameter 𝜉 of the Lévy-driven OU process 𝑋 (𝑡) and hence the correlation 
structure (4) of the supOU process is more flexible and can exhibit LRD. The popular 
example of the measure 𝜋 is the gamma distribution, some other examples can be 
found in [7]. Although the OU process 𝑋 (𝑡) is a linear process, the supOU process is 
nonlinear in general, that is, 𝑌 (𝑡) cannot be represented in the form 

∫ 𝑡

−∞ 𝑎(𝑡 − 𝑠)𝑑𝑍 (𝑠)
for some function 𝑎(·), see [23, 5, 47].

In [38--40] self-decomposability was shown for the gamma distribution, the inverse 
gamma distribution, the inverse Gaussian distribution, the Student distribution, the 
hyperbolic cosine distribution, the Gumbel distribution and the Bessel distribution. 
Also, self-decomposability was shown for the generalized inverse Gaussian distribu
tion in [34], for the generalized Gaussian distribution in [24], for the positive 𝛼-stable 
distribution in [9], and for the generalized Linnik distribution in [3].

Self-decomposability of the log-normal distribution follows from [18], where it 
is proven that the log-normal distribution belongs to the class of generalized gamma 
convolutions, which is a subclass of SD distributions. Finally, self-decomposability of 
the Rosenblatt distribution has been proven in [49].

Let us present the fundamental result which explains the structure of supOU 
processes.

Theorem 2. Let 𝑌 (𝑡) be a supOU process with generating quadruple (𝑏, 0, 𝜇𝑍 , 𝜋), 
where the measure 𝜋 is arbitrary and satisfies (2). Then there exists a modification of 
Λ such that for 𝐴 ∈ ℬ(ℝ+ × ℝ) we have

Λ(𝐴) =
∞ ∑︂

𝑘=−∞
𝐻𝑘𝛿 (𝑅𝑘 ,𝑆𝑘 ) (𝐴), (5)

where −∞ < · · · < 𝑆−1 < 𝑆0 ≤ 0 < 𝑆1 < · · · < ∞ are the jump times of a two-sided 
Poisson process on ℝ with some intensity 𝜃, {𝑅𝑘 , 𝑘 ∈ ℤ} are i.i.d. variables with the 
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distribution 𝜋 independent of {𝑆𝑘 , 𝑘 ∈ ℤ}, and {𝐻𝑘 , 𝑘 ∈ ℤ} are i.i.d. variables with 
the shot-height distribution 𝐹 such that

𝜇𝑌 [𝑥,∞) = 𝜃
∫ ∞

𝑥

1 − 𝐹 (𝑦)
𝑦

𝑑𝑦,

and equivalently

𝜇𝑍 [𝑥,∞)
𝑥

(𝑑𝑥) = 𝜇𝑌 [𝑥,∞)(𝑑𝑥) = 𝜃 1 − 𝐹 (𝑥)
𝑥

𝑑𝑥, (6)

where 𝜇𝑌 is the Lévy measure for the supOU process 𝑌 (𝑡). Thus, the supOU process 
can be represented as

𝑌 (𝑡) =
∞ ∑︂

𝑘=−∞
𝐻𝑘𝑒

−𝑅𝑘 (𝑡−𝑆𝑘/𝜂)1[0,∞) (𝑡 − 𝑆𝑘/𝜂). (7)

Proof. From the Lévy–Itô decomposition, the Lévy basis Λ in (1) can be written as

Λ(𝑑𝜉, 𝑑𝑠) = 𝑏𝜋(𝑑𝜉)𝑑𝑠 +
∫
(0,1]

𝑥(𝜈 − 𝜇𝑍 )(𝑑𝜉, 𝑑𝑠, 𝑑𝑥) +
∫
(1,∞)

𝑥𝜈(𝑑𝜉, 𝑑𝑠, 𝑑𝑥),

where 𝑏 ∈ ℝ and 𝜈 is a Poisson random measure on ℝ+ × ℝ × ℝ+ with intensity mea
sure 𝜋(𝑑𝜉)𝑑𝑠𝜇𝑍 (𝑑𝑥). By the Poisson construction theorem, for the Poisson random 
measure 𝜈 there exists a sequence {(𝐻𝑘 , 𝑅𝑘 , 𝑆𝑘)} such that the equality (5) holds. 
Substituting the Lévy basis (5) into the formula (1), we obtain the representation (7). 
Direct calculation of the cumulant function of the process (7) shows that it coincides 
with the cumulant function of the process (1). We refer to [56] for further details, see 
also [10, Theorem 2.2] and [26]. □

The representation of 𝜈 in the proof of Theorem 6 is most convenient for us among 
several series representations of random measures which are reviewed in [56].

The most famous example of the application of Theorem 2 is the gamma process, 
however, the relation (6) does not work for many other marginal distributions, see Sec
tion 2. We note that the equation (7) is called the Bondesson–Rosinski representation 
due to [16, 56], which is not unique, if we change the intensity 𝜃, then the shot-height 
distribution 𝐹 (𝑥) should be scaled. If 𝑅𝑘 = 𝜆 for all 𝑘 , then the formula (7) becomes 
the representation of the usual OU process. Since 𝑆𝑘 are jump times of the Poisson 
process with intensity 𝜃, we have

𝑆𝑘 − 𝑆𝑘−1 ∼ Exp(𝜃),

that is, 𝑆𝑘 − 𝑆𝑘−1 has the exponential distribution with rate 𝜃 (implying mean 1/𝜃). 
Thus, the Bondesson–Rosinski representation (7) has in average 𝜃 summands per any 
unit interval. We note that 𝑆𝑘/𝜂 are jumps of the Poisson process with intensity 𝜃/𝜂. 
In Figure 1 we show a typical sample path of the supOU process 𝑌 (𝑡), which consists 
of jumps with different heights and mixed-exponential decays with different rates.

Overall, we can see that the supOU processes form a wide class of stochastic 
processes and the representation (7) enables to independently specify the marginal 
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Fig. 1. A typical sample path of the supOU process 𝑌 (𝑡) with positive marginals, 𝑡 ∈ [0, 10]

distribution by the choice of the shot-height distribution and the correlation structure 
by the choice of the measure 𝜋.

We note that the Lévy measure 𝜇𝑌 for the specified marginal distribution of the 
process 𝑌 (𝑡) can be derived from the one-to-one correspondence between the Lévy 
density and the characteristic function as stated in the following result.
Theorem 3. Let 𝜅𝑌 (𝑧) = log 𝜙(𝑧) be the cumulant function of an ID marginal distribu
tion of the supOU process 𝑌 (𝑡) with Lévy triplet (𝑏𝑌 , 0, 𝜇𝑌 ) and 

∫
|𝑥 |>1𝑥

2𝜇𝑌 (𝑑𝑥) <∞. 
Then the Lévy measure 𝜇𝑌 (𝑑𝑥) = 𝑚(𝑥)𝑑𝑥 satisfies the equation

(log 𝜙(𝑧))′′ = −
∫ ∞

−∞
𝑥2𝑒𝑖𝑥𝑧𝑚(𝑥)𝑑𝑥. (8)

If 
∫ ∞
−∞ |(log 𝜙(𝑧))′′ |𝑑𝑧 < ∞, then the Lévy measure 𝜇𝑌 is absolutely continuous with 

respect to the Lebesgue measure.

Proof. By differentiating twice the equality (3) with 𝜎2
𝑌 = 0, we obtain the equation 

(8), which can be interpreted as the Fourier transform of 𝑥2𝑚(𝑥). For its inversion, we 
can use the identity∫

𝐵
𝑥2𝑚(𝑥)𝑑𝑥 = − 1 

2𝜋
𝑣.𝑝.

∫ ∞

−∞
(log 𝜙(𝑧))′′

(︃∫
𝐵
𝑒−𝑖𝑥𝑧𝑑𝑥

)︃
𝑑𝑧,

where 𝐵 is any Borel set. If 
∫ ∞
−∞ |(log 𝜙(𝑧))′′ |𝑑𝑧 < ∞, then

𝑚(𝑥) = − 1 
2𝜋𝑥2

∫ ∞

−∞
𝑒−𝑖𝑥𝑧 (log 𝜙(𝑧))′′𝑑𝑧, (9)

where we refer to [19] for further details. □

Let us now reformulate Theorem 3 for the supOU processes 𝑌 (𝑡) with positive 
marginals using the Laplace transform 𝜓(𝑠) = 𝔼𝑒−𝑠𝑌 (𝑡 ) =

∫ ∞
0 𝑒−𝑠𝑥 𝑝(𝑥)𝑑𝑥, 𝑠 > 0, 

where 𝑝(𝑥) is the density of the marginal distribution. Following [17, p. 15], the 
density 𝑝(𝑥) is infinitely divisible if and only if

𝜁 (𝑠) = log𝜓(𝑠) = −𝑎𝑠 +
∫ ∞

0
(𝑒−𝑠𝑥 − 1)𝑚(𝑥)𝑑𝑥,

where 𝑎 ≥ 0 is the left-extremity of the distribution. Taking the first and second 
derivatives of the above identity with 𝑎 = 0, we obtain

𝜁 ′ (𝑠) = −
∫ ∞

0
𝑒−𝑠𝑥𝑥𝑚(𝑥)𝑑𝑥, (10)
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𝜁 ′′ (𝑠) =
∫ ∞

0
𝑒−𝑠𝑥𝑥2𝑚(𝑥)𝑑𝑥, (11)

which can be interpreted as the Laplace transforms of 𝑥𝑚(𝑥) and 𝑥2𝑚(𝑥), respectively. 
Therefore, the Lévy density 𝑚(𝑥) can be found by the inversion of either (10) or (11)
using one of several methods: the Bromwich integral, the Post–Widder formula, or 
Fredholm equations, see [21] for details. In particular, the Lévy density for the log
normal distribution was numerically computed by the method of Fredholm equations 
in [18]. In our numerical examples, where the Lévy density is not known analytically, 
we use the method based on the Bromwich integral.

The following theorem establishes another useful relation for the OU-type pro
cesses, one that does do not involve the Lévy measure and is motivated by the theory 
of shot-noise processes [58].
Theorem 4. Define a shot-noise process

𝑌ℎ (𝑡) =
∞ ∑︂

𝑘=−∞
𝐻𝑘ℎ(𝑡 − 𝑆𝑘)1[0,∞) (𝑡 − 𝑆𝑘),

where ℎ(·) is an impulse response, 𝑆𝑘 are jumps of the Poisson process with intensity 
𝜃 and 𝐻𝑘 are i.i.d. random variables with cdf 𝐹 (𝑥), 𝑥 ∈ ℝ. Then the characteristic 
function 𝜙(𝑧) of the marginal distribution of 𝑌ℎ (𝑡) can be written as

log(𝜙(𝑧)) = 𝜃
∫ ∞

−∞

∫ ∞

0
(𝑒𝑖𝑧𝑥ℎ(𝑢) − 1)𝑑𝑢𝑑𝐹 (𝑥).

Proof. Since {𝑆𝑘} are the points of a Poisson process on ℝwith intensity 𝜃, the marked 
point process {(𝑆𝑘 , 𝐻𝑘)} is a Poisson random measure on ℝ×ℝwith intensity measure

𝜈(𝑑𝑠, 𝑑𝑥) = 𝜃 𝑑𝑠 𝑑𝐹 (𝑥).

The characteristic function of 𝑌ℎ (𝑡) is

𝜙(𝑧) = 𝔼
[︁
𝑒𝑖𝑧𝑌ℎ (𝑡 )

]︁
= 𝔼

[︂
exp

(︂
𝑖𝑧
∑︂
𝑘

𝐻𝑘ℎ(𝑡 − 𝑆𝑘)1[0,∞) (𝑡 − 𝑆𝑘)
)︂]︂
.

By the Laplace functional of a Poisson random measure, we have

𝔼

[︂
exp

(︂∑︂
𝑓 (𝑆𝑘 , 𝐻𝑘)

)︂]︂
= exp

(︂∫
(𝑒 𝑓 (𝑠,𝑥 ) − 1) 𝜈(𝑑𝑠, 𝑑𝑥)

)︂
for any measurable function 𝑓 . Taking 𝑓 (𝑠, 𝑥) = 𝑖𝑧𝑥ℎ(𝑡 − 𝑠)1[0,∞) (𝑡 − 𝑠), we obtain

log 𝜙(𝑧) =
∫
ℝ

∫
ℝ

(︁
𝑒𝑖𝑧𝑥ℎ(𝑡−𝑠)1[0,∞) (𝑡−𝑠) − 1

)︁
𝜈(𝑑𝑠, 𝑑𝑥).

Since 𝜈(𝑑𝑠, 𝑑𝑥) = 𝜃 𝑑𝑠 𝑑𝐹 (𝑥) and 1[0,∞) (𝑡 − 𝑠) restricts 𝑠 ≤ 𝑡, we have

log 𝜙(𝑧) = 𝜃
∫ 𝑡

−∞

∫
ℝ

(︁
𝑒𝑖𝑧𝑥ℎ(𝑡−𝑠) − 1

)︁
𝑑𝐹 (𝑥) 𝑑𝑠.

By the change of variables, we obtain the required statement. □

From Theorem 4 for the exponential impulse response ℎ(𝑡) = 𝑒−𝑅𝑡 , we have

log 𝜙(𝑧) = 𝜃

𝑅

∫ ∞

−∞
𝐾 (𝑧𝑥)𝑑𝐹 (𝑥), 𝐾 (𝑢) =

∫ 𝑢

0

𝑒𝑖𝑠 − 1
𝑠

𝑑𝑠.
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1.1 Choice of the correlation function via the measure 𝜋

From the relation (4) we have
∫ ∞

0
𝑟 (𝜏)𝑑𝜏 = 𝜂

∫ ∞

0
𝜉−2𝜋(𝑑𝜉), (12)

and this integral can be either finite or infinite. Hence, we will say that a supOU 
process exhibits LRD (long memory) if the integral in (12) is infinite, and we will say 
that it exhibits SRD (short memory) otherwise. Moreover, if 𝜋 is regularly varying at 
zero, i.e.

𝜋((0, 𝜉]) ∼ ℓ(𝜉−1)𝜉1+𝛼, as 𝜉 → 0, (13)

for some 𝛼 > 0 and a slowly varying function ℓ(·) at infinity, then

𝑟 (𝜏) ∼ 𝜂(1 + 𝛼)
Γ(𝛼) ℓ(𝜏)𝜏−𝛼, as 𝜏 → ∞,

see [30]. In particular, if 𝛼 ∈ (0, 1) in (13), then the supOU process exhibits LRD; 
see [26] and [31] for details.

We consider two cases of the measure 𝜋 in the present paper. If 𝜋 is the Dirac 
measure at point 𝜆, then the supOU process is actually a usual OU process. If the 
measure 𝜋 is given by the gamma distribution Γ(1 + 𝛼, 𝛽) with density

𝑝Γ(1+𝛼,𝛽) (𝜉) =
𝛽1+𝛼

Γ(1 + 𝛼) 𝜉
𝛼𝑒−𝛽𝜉 , 𝜉 > 0, 𝛼 > 0, 𝛽 > 0,

where Γ(·) is the gamma function, then (2) holds and the supOU process has the 
correlation function

𝑟 (𝑡) =
(︃

1 + 𝑡

𝛽

)︃−𝛼
, 𝑡 ≥ 0.

In particular, for 𝛼 ∈ (0, 1) we obtain processes with LRD. More examples of possible 
choices of 𝜋 and corresponding supOU processes are given in [7].

1.2 Choice of the marginal distribution via the shot-height distribution 𝐹 (𝑥)
Due to (6), we can derive the shot-height distribution 𝐹 (𝑥) via the Lévy measure if 
the Lévy measure of the marginal distribution is known. However, most of the known 
simulation algorithms for OU processes with GIG marginals are constructed using the 
autoregressive formulae of order 1 and are rather difficult, see [66]. We also note that 
we cannot extend the simulation algorithm for OU processes from [66] to the case 
of superpositions because a linear combination of OU processes does not have the 
desired fat-tail marginal distribution.

The gamma OU process is the most famous stochastic process which has a very 
simple simulation algorithm obtained in [16]. The gamma distribution Γ(𝑎, 𝑏) has 
the density 𝑝(𝑥) = 𝑏𝑎𝑥𝑎−1𝑒−𝑏𝑥/Γ(𝑎) with mean 𝑎/𝑏, variance 𝑎/𝑏2, the cumulant 
function 𝜅𝑌 (𝑧) = −𝑎 log(1 − 𝑖𝑧/𝑏), the Lévy density 𝑚(𝑥) = 𝑎𝑥−1𝑒−𝑏𝑥 , and the 
Bondesson–Rosinski representation (7) holds with

𝐻𝑘 ∼ Exp(𝑏) and 𝑆𝑘 − 𝑆𝑘−1 ∼ Exp(𝑎).
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The Dickman OU process is another process with simple simulation algorithm, 
see [32]. We note that the Dickman distribution 𝐷 (𝑎) is the distribution of a random 

variable 𝑉 that satisfies the distributional fixed-point equation 𝑉
𝑑
= 𝑈1/𝑎 (1+𝑉), where 

𝑎 > 0, `` 𝑑
= '' denotes the equality in distribution, 𝑈 is independent of 𝑉 and has the 

uniform distribution on (0, 1]. The Dickman distribution 𝐷 (𝑎) has the density

𝑝(𝑥) =
{︄

𝑒−𝛾𝑎

Γ(𝑎) 𝑥
𝑎−1, 0 < 𝑥 ≤ 1,

𝑒−𝛾𝑎

Γ(𝑎) 𝑥
𝑎−1 − 𝑎𝑥𝑎−1

∫ 𝑥−1
0

𝑝 (𝑢) 
(1+𝑢)𝑎 𝑑𝑢, 𝑥 > 1,

where 𝛾 = −Γ′ (1) ≈ 0.5772 is Euler’s constant, with mean 𝑎, variance 𝑎/2, the cumu
lant function 𝜅𝑌 (𝑧) = 𝑎

∫ 1
0 𝑢

−1(𝑒𝑖𝑧𝑢 − 1)𝑑𝑢, the Lévy density 𝑚(𝑥) = 𝑎𝑥−11(0,1] (𝑥), 
and the Bondesson–Rosinski representation (7) holds with

𝐻𝑘 = 1 and 𝑆𝑘 − 𝑆𝑘−1 ∼ Exp(𝑎).

The above two processes have marginals with short tails and their Lévy measures 
are such that 𝑥𝑚(𝑥) is finite. The case of OU processes with fat-tail marginals is more 
difficult because 𝑥𝑚(𝑥) is not finite at zero. This means that sample paths of 𝑍 (𝑡) have 
infinitely many jumps and exact simulation is impossible, see [57].

2 Main results

We will concentrate on simulation of supOU processes with fat-tail marginals such 
as the inverse gamma distribution and the inverse Gaussian distribution. We note that 
supOU processes with fat-tail marginals usually have the Lévy density 𝑚(𝑥) such that 
𝑥 𝑚(𝑥) is singular at zero that disables the direct use of (6).

We propose to adapt the Bondesson–Rosinski representation (7) for simulation of 
the supOU processes which may have infinitely many jumps. In numerical studies, we 
usually simulate a stochastic process at equidistant points 𝑡 𝑗 = 𝑗Δ with time step Δ
and, therefore, the contribution of frequent small jumps between points 𝑡1, 𝑡2, . . . can 
be disregarded that can be viewed as the truncation of the Lévy measure.

Indeed, consider the Lévy measure 𝜇𝑌 on the interval [0,∞). This measure on the 
interval [0, 𝜖] corresponds to small jumps of the supOU process 𝑌 (𝑡). We approximate 
𝑌 (𝑡) by a stochastic process 𝑌𝜖 (𝑡) with the Lévy measure 𝜇𝑌 truncated to the interval 
[𝜖,∞). Specifically, we construct 𝑌𝜖 (𝑡) as follows.

For the given Lévy density 𝑚(𝑥) of the process 𝑌 (𝑡), from the relation (6), we 
obtain

𝐹 (𝑥) = 1 − 𝑥
𝜃
𝑚(𝑥),

which gives negative values near zero if 𝑥 𝑚(𝑥) is singular at zero, and 𝐹 (𝑥) is an 
increasing function with 𝐹 (𝑥) → 1 as 𝑥 → ∞. Solving 𝐹 (𝜖) = 0 with respect to 𝜃 for 
given 𝜖 ∈ (0,∞), we get the solution 𝜃 𝜖 = 𝜖 𝑚(𝜖). By truncating 𝐹 (𝑥) to the interval 
[𝜖,∞), we define the function

𝐹𝜖 (𝑥) =
{︄

1 − 𝑥
𝜃𝜖
𝑚(𝑥), 𝑥 ≥ 𝜖,

0, 𝑥 < 𝜖,
(14)

which is a cumulative distribution function. Now we will state a main theorem which 
will be used for simulation.
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Theorem 5. Let 𝑌 (𝑡) be a supOU process with positive marginals such that 𝑥𝑚(𝑥) is 
singular at zero. Define the process 𝑌𝜖 (𝑡) via the Bondesson–Rosinski representation 
(7), where 𝐻𝑘 has the distribution function 𝐹𝜖 (𝑥) defined in (14). Then 𝜅𝑌 (𝑧) −
𝜅𝑌𝜖 (𝑧) → 0 as 𝜖 → 0 and the correlation functions of 𝑌 (𝑡) and 𝑌𝜖 (𝑡) coincide.

Proof. We note that 𝜃 𝜖 is the intensity of the Poisson process with jumps at time 
moments 𝑆𝑘 . By construction, the process 𝑌𝜖 (𝑡) is well defined. Moreover, we have 
that 𝐹𝜖 (𝑥) → 𝐹 (𝑥) and 𝜅𝑌 (𝑧) − 𝜅𝑌𝜖 (𝑧) =

∫ 𝜀

0 (𝑒𝑖𝑧𝑥 − 1 − 𝑖𝑧𝑥1[−1,1] (𝑥))𝑚(𝑥)𝑑𝑥 → 0
as 𝜖 → 0. The correlation structure is specified by the measure 𝜋(𝑑𝜉), which is the 
same for both supOU processes 𝑌 (𝑡) and 𝑌𝜖 (𝑡). □

Since the probability density function (pdf) is the inverse Fourier transform of 
the exponent of the cumulant function, the pdf of the marginal distribution of 𝑌𝜖 (𝑡)
converges to that of 𝑌 (𝑡). Moreover, the finite-dimensional distributions of the process 
𝑌𝜖 (𝑡) converge to those of 𝑌 (𝑡) and, consequently, the statistical properties of sample 
paths of 𝑌𝜖 (𝑡) approximate those of 𝑌 (𝑡) for small 𝜖 . Since the supOU process 𝑌𝜖 (𝑡) can 
be viewed as a surrogate model of 𝑌 (𝑡), the sampling error for modelling the stochastic 
process 𝑌 (𝑡) on a finite interval is larger than the error due to the replacement of the 
model 𝑌 (𝑡) by 𝑌𝜖 (𝑡) with small 𝜖 , see Supplementary Materials in [45] for details. 
From a practical point of view, we can take 𝜖 = 0.001. For other Lévy processes, the 
convergence under truncation of the Lévy measure is investigated in [29].

In summary, the simulation algorithm for a supOU process with the given measure 
𝜋 and the Lévy density 𝑚(𝑥) of the given marginal distribution is as follows.
t = s e q ( 0 , T , d t ) # V e c t o r o f t i m e s 
n = l e n g t h ( t ) # N u m b e r o f t i m e s t e p s . 
Y = r e p ( 0 , n ) # V e c t o r w i t h s u p O U p r o c e s s 
d S _ k = - T _ W a r m U p + r e x p ( 1 , r a t e = t h e t a _ e / e t a ) 
w h i l e ( d S _ k < t [ n ] ) # I t e r a t e a l o n g P o i s s o n p r o c e s s 
{ 

R _ k = R a n d o m F r o m M e a s u r e _ p i 
H _ k = R a n d o m F r o m D i s t r i b u t i o n _ F e 
i n d = f l o o r ( d S _ k / d t ) + 2 
i f ( d S _ k < 0 ) 
Y = Y + H _ k ⁎ e x p ( R _ k ⁎ ( d S _ k -t ) ) 

e l s e 
Y [ i n d : n ] = Y [ i n d : n ] + H _ k ⁎ e x p ( R _ k ⁎ ( d S _ k -t [ i n d : n ] ) ) 

d S _ k = d S _ k + r e x p ( 1 , r a t e = t h e t a _ e / e t a ) 
} 
r e t u r n ( l i s t ( t = t , Y = Y ) ) 

In the above algorithm, we replace the infinite sum in the Bondesson–Rosinski rep
resentation (7) by the sum in which 𝑘 is such that 𝑆𝑘 > −𝑇WarmUp, where 𝑇WarmUp is 
a constant such that the correlation function 𝑟 (𝑡) at 𝑡 = 𝑇WarmUp is close to zero, say, 
𝑟 (𝑇WarmUp) ≦ 0.1. We also note that the above algorithm produces processes with pos
itive marginals and the computational time is proportional to (𝑇 + 𝑇WarmUp)𝜃 𝜖 /(𝜂Δ)
and takes seconds in our further examples.

If the marginal distribution is defined on ℝ, then the Lévy density 𝑚(𝑥) is also 
defined on ℝ and we construct the simulation algorithm for a process with nonpositive 
marginals as the difference of two positive processes,

𝑌𝜖 (𝑡) = 𝑀 + 𝑌𝜖 ,1 (𝑡) − 𝑌𝜖 ,2 (𝑡),

where 𝑀 is the mean-correction parameter, 𝑌𝜖 ,1 (𝑡) and 𝑌𝜖 ,2 (𝑡) are independent 
stochastic processes, 𝑌𝜖 ,1(𝑡) has the representation (7) with positive 𝐻𝑘 from the 
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distribution (14) and 𝑌𝜖 ,2 (𝑡) has the representation (7) with positive 𝐻𝑘 from the dis
tribution (14) with 𝑚(𝑥) replaced by 𝑚(−𝑥). In this construction, the process 𝑌𝜖 ,2 (𝑡)
corresponds to the Lévy density 𝑚(𝑥) for 𝑥 < 0.

In the following sections we will confirm the theoretical behavior of the proposed 
algorithm by simulation for a wide range of supOU processes.

2.1 SupOU processes with positive marginals
2.1.1 SupOU process with inverse gamma marginals
The density of the inverse gamma distribution, RΓ(𝑎, 𝑏) for short, is

𝑝(𝑥) = 𝑏𝑎

Γ(𝑎)
1 
𝑥𝑎+1 𝑒

−𝑏/𝑥 , 𝑥 > 0, 𝑎 > 0, 𝑏 > 0,

which has mean 𝑏
𝑎−1 if 𝑎 > 1, variance 𝑏2

(𝑎−1)2 (𝑎−2) if 𝑎 > 2, and the cumulant function

𝜅𝑌 (𝑧) = log
(︂

2(−𝑖𝑏𝑧)𝑎/2/Γ(𝑎)𝐾𝑎 (
√
−4𝑖𝑏𝑧)

)︂
,

where 𝐾𝑎 (·) is the modified Bessel function of the second kind. Following [8], the 
Lévy density of the supOU process with inverse gamma marginals is

𝑚(𝑥) = 1 
2𝑥

∫ ∞

0
𝑒−

𝑥𝑢
4𝑏 𝑔𝑎 (𝑢)𝑑𝑢, 𝑥 > 0,

where
𝑔𝑎 (𝑢) =

2 

𝑡𝜋2
(︁
𝐽2
|𝑎 | (

√
𝑢) + 𝑌2

|𝑎 | (
√
𝑢)
)︁ , (15)

𝐽 |𝑎 | (·) and 𝑌|𝑎 | (·) are Bessel functions of the first and second kind, respectively.

Fig. 2. Top: Realizations of the supOU process 𝑌𝜖 (𝑡) with RΓ(3, 2) marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: 
The true density of RΓ(3, 2) and empirical densities of realizations. Bottom-Right: The true 
acf (dotted) and empirical acf (solid line) of realizations, the 𝑥-axis represents the lag between 
points

We note that the intensity 𝜃 𝜖 depends on 𝑎 and 𝑏. For example, for 𝑎 = 4 and 
𝜖 = 0.001, we have 𝜃 𝜖 = 23.5 for 𝑏 = 2 and 𝜃 𝜖 = 29.2 for 𝑏 = 3. Thus, we can 
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evaluate the cumulative distribution function 𝐹𝜖 (𝑥) by (14) and simulate the process 
𝑌𝜖 (𝑡) using the Bondesson–Rosinski representation (7) with intensity 𝜃 𝜖 , 𝑅𝑘 ∼ 𝜋 and 
𝐻𝑘 ∼ 𝐹𝜖 . The R code of simulation of 𝑌𝜖 (𝑡) is given in [45].

In Figure 2 we depict several realizations of the supOU process 𝑌𝜖 (𝑡) with inverse 
gamma marginals and their characteristics. We need the large interval [0,3000] to show 
the behavior of the supOU process which shows distinct patterns on short intervals. 
The measure 𝜋 = Γ(1 + 𝛼, 𝛼) implies the long-range dependence for 𝛼 ∈ (0, 1] and 
short-range dependence for 𝛼 > 1. We can see that the empirical density is close to 
the true density of the inverse gamma distribution and the empirical autocorrelation 
function (acf) is close the true acf. We note that the empirical estimators of parameters 
of realizations of the supOU process are usually very far from the true values if the 
supOU process is observed over short intervals.

2.1.2 SupOU process with inverse Gaussian marginals
The inverse Gaussian distribution, IG(𝑎, 𝑏) for short, has the density

𝑝(𝑥) = 𝑎𝑒
𝑎𝑏

√
2𝜋
𝑥−3/2𝑒−(𝑎2/𝑥+𝑏2𝑥 )/2, 𝑥 > 0, 𝑎 > 0, 𝑏 > 0,

with mean 𝑎𝑏 , variance 𝑎
𝑏3 and the cumulant function 𝜅𝑌 (𝑧) = 𝑎𝑏 − 𝑎

√
𝑏2 − 2𝑖𝑧. 

Following [8], the Lévy density of the supOU process with inverse Gaussian marginals 
is

𝑚(𝑥) = 𝑎 
√

2𝜋
𝑥−3/2𝑒−𝑏

2𝑥/2, 𝑥 > 0.

Fig. 3. Top: Realizations of the supOU process with IG(2, 2) marginals on the interval [0, 3000]
with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: The true 
density of IG(2, 2) and empirical densities of realizations. Bottom-Right: The true acf (dotted) 
and empirical acf (solid line) of realizations

In Figure 3 we depict several realizations of the supOU process with inverse 
Gaussian marginals and their characteristics.

2.1.3 SupOU process with generalized inverse Gaussian marginals
The properties of supOU processes with GIG marginals were studied in [8]. In [67], 
simulation algorithms of OU processes with GIG marginals were constructed using 
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the autoregressive formulae of order 1. The GIG distribution has the density

𝑝(𝑥) = (𝑐/𝑏)𝑎/2

2𝐾𝑎 (
√
𝑐𝑏)

𝑥𝑎−1𝑒−(𝑐𝑥+𝑏/𝑥 )/2, 𝑥 > 0, 𝑐 > 0, 𝑏 > 0, 𝑎 ∈ ℝ,

with mean 
√︁
𝑏/𝑐 𝐾𝑎+1 (

√
𝑐𝑏)

𝐾𝑎 (
√
𝑐𝑏) , variance 𝑏𝑐

[︃
𝐾𝑎+2 (

√
𝑐𝑏)

𝐾𝑎 (
√
𝑐𝑏) −

(︂
𝐾𝑎+1 (

√
𝑐𝑏)

𝐾𝑎 (
√
𝑐𝑏) 

)︂2
]︃

and the cumulant 

function

𝜅𝑌 (𝑧) = log

(︄(︃
𝑐

𝑐 − 2𝑖𝑧

)︃𝑎/2 𝐾𝑎 (
√︁
𝑏(𝑐 − 2𝑖𝑧))

𝐾𝑎 (
√
𝑐𝑏) 

)︄
.

The following distributions are special cases of GIG(𝑎, 𝑏, 𝑐):

• GIG(𝑎, 0, 𝑐) is the gamma distribution Γ(𝑎, 𝑐), 𝑎 > 0,

• GIG(−𝑎, 𝑏, 0) is the inverse gamma distribution RΓ(𝑎, 𝑏), 𝑎 > 0,

• GIG(−1/2, 𝑏, 𝑐) is the inverse Gaussian distribution IG(
√
𝑏,
√
𝑐),

• GIG(1/2, 𝑏, 𝑐) is the reciprocal inverse Gaussian distribution RIG(
√
𝑏,
√
𝑐),

• GIG(1, 𝑏, 𝑐) is the positive hyperbolic distribution PH(𝑏, 𝑐),

• GIG(−1, 𝑏, 𝑐) is the reciprocal positive hyperbolic distribution RPH(𝑏, 𝑐).

The GIG distribution is essential for constructing the family of Generalized Hyperbolic 
Lévy processes [11], which are highly effective tools for modeling phenomena in 
finance and turbulence [8, 15].

Following [8], the Lévy density of the supOU process with GIG marginals is

𝑚(𝑥) = 1
𝑥

(︃
1
2

∫ ∞

0
𝑒−

𝑥𝑢
2𝑏 𝑔𝑎 (𝑢)𝑑𝑢 + max{0, 𝑎}

)︃
𝑒−

𝑐𝑥
2 , 𝑥 > 0,

where 𝑔𝑎 (𝑢) is defined in (15).
In Figure 4 we depict several realizations of the supOU process with generalized 

inverse Gaussian marginals and their characteristics.

2.1.4 SupOU process with Bessel marginals
The Bessel distribution B(𝑎) (which can be viewed as the generalized Mc Kay distri
bution) has the density

𝑝(𝑥) = 𝑎
𝑥
𝑒−𝑥 𝐼𝑎 (𝑥), 𝑥 > 0, 𝑎 > 0,

with infinite mean, the Laplace transform 𝔼𝑒−𝑠𝑉 = (1 + 𝑠 −
√
𝑠2 + 2𝑠)𝑎 and the 

cumulant function 𝜅𝑌 (𝑧) = 𝑎 log(1 − 𝑖𝑧 −
√
−2𝑖𝑧 − 𝑧2), where 𝐼𝑎 (·) is the modified 

Bessel functions of the first kind. Following [12], the Lévy density of the supOU 
process with Bessel marginals is given by

𝑚(𝑥) = 𝑎
𝑥
𝑒−𝑥 𝐼0 (𝑥), 𝑥 > 0,
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Fig. 4. Top: Realizations of the supOU process with GIG(1.5, 2, 1) marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: 
The true density of GIG(1.5, 2, 1) and empirical densities of realizations. Bottom-Right: The 
true acf (dotted) and empirical acf (solid line) of realizations

Fig. 5. Top: Realizations of the supOU process with B(2) marginals on the interval [0, 3000]
with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom: The true density 
of B(2) and empirical densities of realizations

which implies a small finite value of 𝜃 𝜖 even if 𝜖 → 0 because 𝑥 𝑚(𝑥) is not singular 
at zero.

In Figure 5 we depict several realizations of the supOU process with Bessel 
marginals and their characteristics. The correlation function of this supOU process 
does not exist, see Supplementary Materials in [45] for details on empirical estimation.

2.1.5 SupOU process with Mittag-Le�ler marginals
The Mittag-Le�ler distribution ML(𝑎) has the cumulative distribution function

𝐹ML(𝑥) = 1 − 𝐸𝑎 (−𝑥𝑎), 𝑥 > 0, 𝑎 ∈ (0, 1),

with infinite mean, the density 𝑝(𝑥) = 𝑥𝑎−1𝐸𝑎,𝑎 (−𝑥𝑎), the Laplace transform 𝔼𝑒−𝑠𝑉 =
1/(1 + 𝑠𝑎) and the cumulant function

𝜅𝑌 (𝑧) = − log (1 + (−𝑖𝑧)𝑎) = − log
(︂

1 + |𝑧 |𝑎𝑒−𝑖 sign(𝑧) 𝜋𝑎/2
)︂
,
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where 𝐸𝑎 (𝑧) = 𝐸𝑎,1(𝑧) and

𝐸𝑎,𝑏 (𝑧) =
∞ ∑︂
𝑘=0 

𝑧𝑘

Γ(𝑏 + 𝑎𝑘) , 𝑧 ∈ ℂ,

is the two-parameter Mittag-Le�ler function. Following [12, 44], the Lévy density of 
the supOU process with Mittag-Le�ler marginals is given by

𝑚(𝑥) = 𝑎
𝑥
𝐸𝑎 (−𝑥𝑎), 𝑥 > 0,

which implies a small finite value of 𝜃 𝜖 even if 𝜖 → 0 because 𝑥 𝑚(𝑥) is not singular 
at zero.

Fig. 6. Top: Realizations of the supOU process with ML(0.9) marginals on the interval [0, 3000]
with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom: The true density 
of ML(0.9) and empirical densities of realizations

In Figure 6 we depict several realizations of the supOU process with Mittag-Le�ler 
marginals and their characteristics.

2.1.6 SupOU process with positive 𝛼-stable marginals
The positive 𝛼-stable distribution has the Laplace transform 𝔼𝑒−𝑠𝑉 = 𝑒−𝑠

𝑎 , 𝑠 ≥ 0, 
the density

𝑝𝑎 (𝑥) =
1 
𝜋

∞ ∑︂
𝑘=1 

(−1)𝑘+1 Γ(𝑘𝑎 + 1)
𝑘!𝑥𝑎𝑘+1 sin(𝑘𝑎𝜋), 𝑥 > 0, 𝑎 ∈ (0, 1), (16)

implying infinite mean, and the cumulant function

𝜅𝑌 (𝑧) = −(𝑖𝑧)𝑎 = −|𝑧 |𝑎𝑒−𝑖 sign(𝑧) 𝜋𝑎/2.

Following [6], the Lévy density of the supOU process with 𝛼-stable marginals is given 
by

𝑚(𝑥) = 𝑎 
𝑥1+𝑎Γ(1 − 𝑎)

, 𝑥 > 0.
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Therefore, we obtain 𝜃 𝜖 = −1/(𝜖𝑎Γ(−𝑎)) and

𝐹𝜖 (𝑥) = (1 − (𝜖/𝑥)𝑎)1[ 𝜖 ,∞) (𝑥),

that enables us to exactly simulate the random variables with the cumulative distribu
tion function 𝐹𝜖 (𝑥).

Fig. 7. Top: Realizations of the supOU process with positive 0.9-stable marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1+𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom: The true 
density of the positive 0.9-stable distribution and empirical densities of realizations

In Figure 7 we depict several realizations of the supOU process with positive 
0.9-stable marginals and their characteristics.

2.1.7 SupOU process with tempered stable marginals
The tempered stable distribution TS(𝑎, 𝑏) has the cumulant function

𝜅𝑌 (𝑧) = 𝑏𝑎 − (𝑏 − 𝑖𝑧)𝑎, 𝑎 ∈ (0, 1), 𝑏 > 0,

the mean 𝑏𝑎−1𝑎, the variance 𝑏𝑎−2𝑎(1 − 𝑎) and the density 𝑝(𝑥) = 𝑝𝑎 (𝑥)𝑒𝑏
𝑎−𝑏𝑥 , 

where 𝑝𝑎 (𝑥) is defined in (16), see [13]. Following [9], the Lévy density of the supOU 
process with tempered stable marginals is given by

𝑚(𝑥) = 𝑎 
Γ(𝑎) 𝑥

−1−𝑎𝑒−𝑏𝑥 , 𝑥 > 0.

In Figure 8 we depict several realizations of the supOU process with tempered 
stable marginals and their characteristics.

2.1.8 SupOU process with log-normal marginals
The log-normal distribution LN(𝑎, 𝑏) has the density

𝑝(𝑥) = 1 

𝑥𝑏
√

2𝜋
exp

(︃
− (log 𝑥 − 𝑎)2

2𝑏2

)︃
, 𝑥 > 0, 𝑎 ∈ ℝ, 𝑏 > 0.



Simulation of supOU processes 17

Fig. 8. Top: Realizations of the supOU process with TS(0.4, 1) marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: 
The true density of TS(0.4, 1) and empirical densities of realizations. Bottom-Right: The true 
acf (dotted) and empirical acf (solid line) of realizations

with mean exp(𝑎 + 𝑏2

2 ) and variance (exp(𝑏2) − 1) exp(2𝑎 + 𝑏2). The log-normal dis
tribution is not determined by its moments. The characteristic function of LN(𝑎, 𝑏) is

𝜙(𝑧) = 𝑒
𝜋2

8𝑏2

√
𝜋

∫ ∞

−∞
𝑒
−𝑧𝑒𝑎+

√
2𝑏𝑥− 𝑖√

2𝑏
𝜋𝑥−𝑥2

𝑑𝑥,

see [33]. Following [2], the characteristic function has a good approximation

𝜙(𝑧) ≊
exp

(︂
−𝑊2 (−𝑖𝑧𝑏2𝑒𝑎 )+2𝑊 (−𝑖𝑧𝑏2𝑒𝑎 )

2𝑏2

)︂
√︁

1 +𝑊 (−𝑖𝑧𝑏2𝑒𝑎)
,

where 𝑊 (·) is the Lambert W function which satisfies 𝑊 (𝑥)𝑒𝑊 (𝑥 ) = 𝑥, see [22].
Following [18], there is no explicit formula for the Lévy density of the log-normal 

distribution. Thus, we directly compute the Lévy density 𝑚(𝑥) by the method based 
on the Bromwich integral, which is equivalent to formula (9) with

(log 𝜙(𝑧))′′ ≊
(︁
𝑊3(−𝑖𝑧𝑏2𝑒𝑎) + 3𝑊2(−𝑖𝑧𝑏2𝑒𝑎) + (3 + 𝑏2/2)𝑊 (−𝑖𝑧𝑏2𝑒𝑎) + 1 + 3𝑏2/2

)︁
𝑊2(−𝑖𝑧𝑏2𝑒𝑎)

(1 +𝑊 (−𝑖𝑧𝑏2𝑒𝑎))4𝑧2𝑏4 ,

which is absolutely integrable because 𝑊 (𝑥) ∼ log(𝑥) as 𝑥 → ∞.
In Figure 9 we depict several realizations of the supOU process with log-normal 

marginals and their characteristics. The error analysis is given in Supplementary 
Materials in [45].

2.2 SupOU processes with marginals on entire real line
2.2.1 SupOU process with hyperbolic cosine marginals
The hyperbolic cosine distribution has the density 𝑝(𝑥) = 1/(𝜋 cosh(𝑥)), 𝑥 ∈ ℝ, with 
zero mean, variance 𝜋2/4 and the characteristic function 𝜙(𝑧) = 1/cosh(𝜋𝑧/2). Fol
lowing [19], the Lévy density of the supOU process with hyperbolic cosine marginals 
is given by

𝑚(𝑥) = 1 
𝑥(𝑒𝑥 − 𝑒−𝑥) , 𝑥 ∈ ℝ,
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Fig. 9. Top: Realizations of the supOU process with LN(0, 1) marginals on the interval [0, 3000]
with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: The true 
density of LN(0, 1) and empirical densities of realizations. Bottom-Right: The true acf (dotted) 
and empirical acf (solid line) of realizations

which implies a small finite value of 𝜃 𝜖 even if 𝜖 → 0 because 𝑥 𝑚(𝑥) is not singular 
at zero. 

Fig. 10. Top: Realizations of the supOU process with hyperbolic cosine marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: 
The true density of the hyperbolic cosine distribution and empirical densities of realizations. 
Bottom-Right: The true acf (dotted) and empirical acf (solid line) of realizations

In Figure 10 we depict several realizations of the supOU process with hyperbolic 
cosine marginals and their characteristics.

2.2.2 SupOU process with normal inverse Gaussian marginals
The supOU processes with NIG marginals were extensively studied in [4]. The NIG 
distribution has the density

𝑝(𝑥) =
𝑎𝛿𝐾1

(︂
𝑎
√︁
𝛿2 + (𝑥 − 𝑐)2

)︂
𝜋
√︁
𝛿2 + (𝑥 − 𝑐)2

𝑒𝛿𝛾+𝛽 (𝑥−𝑐) , 𝑥 ∈ ℝ, 𝑎 > 0, 𝛾 =
√︁
𝑎2 − 𝛽2,
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where 𝑐 is the location parameter, 𝑎 is the tail parameter, 𝛽 is the asymmetry parameter 
and 𝛿 is the scale parameter. The NIG distribution has semi-heavy tails, specifically, 
the tails of 𝑝(𝑥) behave like |𝑥 |−3/2𝑒−𝑎 |𝑥 |+𝛽𝑥 as 𝑥 → ±∞. The NIG distribution has 
the mean 𝑐 + 𝛿𝛽/𝛾, the variance 𝛿𝑎2/𝛾3 and the cumulant function

𝜅𝑌 (𝑧) = 𝑖𝑐𝑧 + 𝛿
(︂
𝛾 −

√︁
𝑎2 − (𝛽 + 𝑖𝑧)2

)︂
.

Following [4, 6], the Lévy density of the supOU process with NIG marginals is given 
by

𝑚(𝑥) = 𝛿𝑎 
𝜋 |𝑥 |𝐾1 (𝑎 |𝑥 |)𝑒𝛽𝑥 , 𝑥 ∈ ℝ.

Consider the case of 𝑐 = 0, 𝛽 = 0 and 𝛿 = 1, which will be denoted as NIG(𝑎).

Fig. 11. Top: Realizations of the supOU process with NIG(0.6) marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: 
The true density of the NIG distribution and empirical densities of realizations. Bottom-Right: 
The true acf (dotted) and empirical acf (solid line) of realizations

In Figure 11 we depict several realizations of the supOU process with NIG(0.6) 
marginals and their characteristics.

2.2.3 SupOU process with Student marginals
The Student distribution ST(𝑐, 𝑎, 𝜈) has the density

𝑝(𝑥) = Γ((𝜈 + 1)/2) 
𝑎
√
𝜋𝜈Γ(𝜈/2)

(︃
1 + 1 

𝜈

(︂𝑥 − 𝑐
𝑎 

)︂2
)︃−(𝜈+1)/2

, 𝑥 ∈ ℝ, 𝜈 > 0, 𝑎 > 0,

which has mean 𝑐 if 𝜈 > 1, variance 𝜈𝑎 
𝜈−2 if 𝜈 > 2 and the cumulant function

𝜅𝑌 (𝑧) = log

(︄(︁√
𝜈𝑎 |𝑧 |

)︁𝜈/2
𝐾𝜈/2

(︁√
𝜈𝑎 |𝑧 |

)︁
Γ(𝜈/2) 2𝜈/2−1

)︄
+ 𝑖𝑐𝑧.

Following [35], the Lévy density of the supOU process with Student marginals is 
given by

𝑚(𝑥) = 𝑎 
2|𝑥 |

∫ ∞

0
𝑒−|𝑥 |

√︁
𝑢/𝜈𝑔𝜈/2(𝑢)𝑑𝑢, 𝑥 ∈ ℝ,
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where 𝑔𝑎 (𝑢) is defined in (15), and has the property 𝑥2𝑚(𝑥)/𝑎 =
√
𝜈/𝜋+ (1−𝜈) |𝑥 |/4+

𝑜(𝑥) as 𝑥 → 0.

Fig. 12. Top: Realizations of the supOU process with ST(0,1,2.5) marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1+𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: The 
true density of the Student distribution and empirical densities of realizations. Bottom-Right: 
The true acf (dotted) and empirical acf (solid line) of realizations

In Figure 12 we depict several realizations of the supOU process with ST(0,1,2.5) 
marginals and their characteristics.

2.2.4 SupOU process with Cauchy marginals
The Cauchy distribution has the density

𝑝(𝑥) = 1 
𝜋𝑎

(︃
1 +

(︂𝑥 − 𝑐
𝑎 

)︂2
)︃−1

, 𝑥 ∈ ℝ, 𝑎 > 0,

which has infinite absolute moment of order 1 and the cumulant function 𝜅𝑌 (𝑧) =
𝑎 |𝑧 | + 𝑖𝑐𝑧. Following [19], the Lévy density of the supOU process with Cauchy 
marginals is given by

𝑚(𝑥) = 𝑎 
𝜋𝑥2 , 𝑥 ∈ ℝ.

In Figure 13 we depict several realizations of the supOU process with Cauchy 
marginals and their characteristics.

2.2.5 SupOU process with generalized Linnik marginals
The generalized Linnik distribution GL(𝑎, 𝑏) has the characteristic function

𝜙(𝑧) = 1 
(1 + |𝑧 |𝑎)𝑏

, 𝑧 ∈ ℝ, 𝑎 ∈ (0, 2], 𝑏 > 0.

The density does not have an explicit form and can be computed as

𝑝(𝑥) = 1 
2𝜋

∫ ∞

−∞
𝜙(𝑧) cos(𝑥𝑧)𝑑𝑧 = 1 

𝜋
Im

∫ ∞

0

𝑒−𝑦 |𝑥 |

(1 + 𝑒−𝑖 𝜋𝑎/2𝑦𝑎)𝑏
𝑑𝑦, 𝑥 ≠ 0  for 𝑎 ≤ 1,
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Fig. 13. Top: Realizations of the supOU process with Cauchy marginals with 𝑎 = 1, 𝑐 = 0 on 
the interval [0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. 
Bottom: The true density of the Cauchy distribution and empirical densities of realizations

which has zero mean if 𝑎 > 1 and has the property

𝑝(𝑥) = 𝑏 
2𝜋

sin(𝑎𝜋/2)Γ(1 + 𝑎) |𝑥 |−1−𝑎 + 𝑜(|𝑥 |−1−𝑎) as |𝑥 | → ∞, 𝑎 ∈ (0, 2),

see [3, 25] for details. The GL(2, 𝑏) distribution is a special case, for example, for 
𝑎 = 2 and 𝑏 = 1 we have the density 𝑝(𝑥) = 1

2 𝑒
−|𝑥 | of the Laplace distribution with 

zero mean, variance 2 and the Lévy density 𝑚(𝑥) = |𝑥 |−1𝑒−|𝑥 | .
The GL(𝑎, 1) distribution is the Linnik distribution with the Lévy density

𝑚(𝑥) =
∫ ∞

0
𝑝𝑎 (𝑥𝑢−

1 
𝑎 )𝑢−1− 1 

𝑎 𝑒−𝑢𝑑𝑢,

where 𝑝𝑎 (𝑥) is defined in (16).
The Lévy density of the generalized Linnik distribution is given by

𝑚(𝑥) = 𝑏
∫ ∞

0
𝑓 (𝑥, 𝑢) 𝑒

−𝑢

𝑢 
𝑑𝑢,

where

𝑓 (𝑥, 𝑢) =
{︄

1 
𝜋

∑︁∞
𝑘=1(−1)𝑘+1 Γ(𝑎𝑘+1)

𝑘! 
𝑢𝑘

𝑥𝑎𝑘+1 sin(𝜋𝑎𝑘/2), 𝑎 ∈ (0, 1),
1 
𝜋

∑︁∞
𝑘=1(−1)𝑘+1 Γ(𝑘/𝑎+1)

𝑘! 
𝑥𝑘−1

𝑢𝑘/𝑎 sin(𝜋𝑘/2), 𝑎 ∈ (1, 2),

see [43]. Alternatively, we can directly compute the Lévy density 𝑚(𝑥) by formula (9)
with

(log 𝜙(𝑧))′′ = 𝑎𝑏 |𝑧 |
2(𝑎−1) + (1 − 𝑎) |𝑧 |𝑎−2

(1 + |𝑧 |𝑎)2 ,

which is absolutely integrable.
In Figure 14 we depict several realizations of the supOU process with generalized 

Linnik marginals and their characteristics.
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Fig. 14. Top: Realizations of the supOU process with generalized Linnik marginals with 𝑎 =
1.5, 𝑏 = 1 on the interval [0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼)
and 𝜋 = 𝛿𝜆. Bottom-Left: The true density of the generalized Linnik distribution and empirical 
densities of realizations. Bottom-Right: The specified acf (dotted) and empirical acf (solid line) 
of realizations

2.2.6 SupOU process with generalized Gaussian marginals
The random variable 𝑉 has the (one-parameter) generalized Gaussian distribution if 
its density is

𝑝(𝑥) = 𝑐𝑎 exp(−|𝑥 |𝑎/2), 𝑐𝑎 = 2− 𝑎+1
𝑎 𝑎/Γ(1/𝑎), 𝑥 ∈ ℝ, 𝑎 > 0,

with zero mean and variance 22/𝑎Γ( 3 
𝑎 )/Γ(

1 
𝑎 ). Following [24], the characteristic func

tion of 𝑉 is given by

𝜙(𝑧) = 2𝑐𝑎
∫ ∞

0
cos(𝑥𝑧) exp(−𝑥𝑎/2)𝑑𝑥 = 𝜋𝑐𝑎

𝑎 |𝑧 | 𝑎
𝑎−1

|𝑎 − 1| 

∫ 1

0
𝑈𝑎 (𝑥)𝑒−|𝑧 |

𝑎
𝑎−1𝑈𝑎 (𝑥 )𝑑𝑥,

where

𝑧 ∈ ℝ, 𝑈𝑎 (𝑥) =
(︃

sin(𝜋𝑥𝑎/2)
cos(𝜋𝑥/2) 

)︃ 𝑎
𝑎−1 cos(𝜋𝑥(𝑎 − 1)/2)

cos(𝜋𝑥/2) .

The random variable 𝑉 is self-decomposable for 𝑎 ∈ (0, 1) ∪ {2}.
There is no explicit formula for the Lévy density of the generalized Gaussian 

distribution. Thus, we directly compute the Lévy density 𝑚(𝑥) by formula (9) since 
(log 𝜙(𝑧))′′ is absolutely integrable, see [24, App. J].

In Figure 15 we depict several realizations of the supOU process with GG(0.9) 
marginals and their characteristics.

2.2.7 SupOU process with Gumbel marginals
The Gumbel distribution G(𝑐, 𝑎), which is also known as the extreme value distribu
tion, has the cumulative distribution function

𝐹G(𝑥) = exp
(︂
− exp

(︂
−𝑥 − 𝑐

𝑎 

)︂)︂
, 𝑥 ∈ ℝ, 𝑐 ∈ ℝ, 𝑎 > 0,



Simulation of supOU processes 23

Fig. 15. Top: Realizations of the supOU process with GG(0.9) marginals on the interval 
[0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1+𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: The 
true density of the generalized Gaussian and empirical densities of realizations. Bottom-Right: 
The true acf (dotted) and empirical acf (solid line) of realizations

with mean 𝑐 + 𝑎𝛾, where 𝛾 ≈ 0.5772, variance 𝜋
2

6 𝑎
2 and the characteristic function

𝜙(𝑧) = Γ(1 − 𝑖𝑎𝑧) exp(𝑖𝑐𝑧).

Following [1], the Lévy density of the supOU process with Gumbel marginals is given 
by

𝑚(𝑥) = 𝑎𝑒−𝑥

𝑥(1 − 𝑒−𝑥) , 𝑥 > 0.

Since the Lévy density produces the mean-shifted marginal distribution, we have to 
set the mean-correcting parameter 𝑀 = 𝑀 (𝑎, 𝑐).

Fig. 16. Top: Realizations of the supOU process with G(0,1) marginals on the interval [0, 3000]
with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom-Left: The true 
density of the Gumbel and empirical densities of realizations. Bottom-Right: The true acf 
(dotted) and empirical acf (solid line) of realizations

In Figure 16 we depict several realizations of the supOU process with G(0,1) 
marginals and their characteristics.
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2.2.8 SupOU process with Rosenblatt marginals
The Rosenblatt distribution was introduced in [55] and has zero mean, unit variance 
and the characteristic function

𝜙(𝑧) = exp

(︄
1
2

∞ ∑︂
𝑘=2 

(2𝑖𝑧𝜎𝑎)𝑘
𝑐𝑎,𝑘
𝑘

)︄
, 𝑎 ∈ [0, 1/2], 𝑧 ∈ 𝑆0, (17)

where 𝑆0 is a small neighborhood of zero, 𝜎𝑎 =
√︁
(1 − 2𝑎)(1 − 𝑎)/2 and

𝑐𝑎,𝑘 =
∫ 1

0
· · ·

∫ 1

0
|𝑥1 − 𝑥2 |−𝑎 |𝑥2 − 𝑥3 |−𝑎 · · · |𝑥𝑘−1 − 𝑥𝑘 |−𝑎 |𝑥𝑘 − 𝑥1 |−𝑎𝑑𝑥1 · · · 𝑑𝑥𝑘 ,

an explicit formula for the density is not available. The random variable 𝑉 with the 
Rosenblatt distribution can be given as

𝑉 =
∞ ∑︂
𝑛=1 
𝜆𝑎,𝑛 (𝜀2

𝑛 − 1),

where 𝜀𝑛 are i.i.d. random variables with the standard normal distribution and 
𝜆𝑎,1, 𝜆𝑎,2, . . . are such that 

∑︁∞
𝑛=1 𝜆

𝑘
𝑎,𝑛 = 𝜎𝑘

𝑎 𝑐𝑎,𝑘 for all 𝑘 = 2, 3, . . .. In particular, 
we have 

∑︁∞
𝑛=1 𝜆

2
𝑎,𝑛 = 1/2, 

∑︁∞
𝑛=1 𝜆𝑎,𝑛 = ∞ and the Laplace transform of 𝑉 is given by

𝜙𝐿𝑇 (𝑠) = 𝔼(𝑒−𝑠𝑉 ) = exp

(︄
−

∞ ∑︂
𝑛=1 

(︃
1
2

log(1 + 2𝜆𝑎,𝑛𝑠) − 𝜆𝑎,𝑛𝑠
)︃)︄

, 𝑠 > − 1 
2𝜆𝑎,1

.

Following [60], the Lévy density of the supOU process with Rosenblatt marginals is 
given by

𝑚(𝑥) = 1 
2𝑥

∞ ∑︂
𝑛=1 

exp
(︃
− 𝑥

2𝜆𝑎,𝑛

)︃
, 𝑥 > 0,

and 𝜆𝑎,𝑛 can also be computed as eigenvalues of the integral operator 𝐾̃𝑎 : 𝐿2(0, 1) →
𝐿2(0, 1) defined as

(𝐾̃𝑎 𝑓 )(𝑥) = 𝜎𝑎
∫ 1

0
|𝑥 − 𝑢 |−𝑎 𝑓 (𝑢)𝑑𝑢.

Following [60], the eigenvalues 𝜆𝑎,𝑛 admit the accurate approximation

𝜆𝑎,𝑛 ≈ 𝐶𝑎𝑛𝑎−1 for 𝑛 > 30, 𝐶𝑎 =
2𝜎𝑎
𝜋1−𝑎 Γ(1 − 𝑎) sin(𝜋𝑎/2),

and should be computed numerically for small 𝑛. An accurate approximation of the 
eigenvalues 𝜆𝑎,𝑛 for all 𝑛 is proposed in [46]. Since the Lévy density of the Rosenblatt 
distribution is defined for positive 𝑥 like in cases of supOU processes with positive 
marginals, we have to set the mean-correcting parameter 𝑀 = 𝑀 (𝑎).

In Figure 17 we depict several realizations of the supOU process with Rosenblatt 
marginals and their characteristics.
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Fig. 17. Top: Realizations of the supOU process with Rosenblatt marginals with 𝑎 = 0.3 on the 
interval [0, 3000] with time step Δ = 0.5 for the measure 𝜋 = Γ(1 + 𝛼, 𝛼) and 𝜋 = 𝛿𝜆. Bottom
Left: The true density of the Rosenblatt and empirical densities of realizations. Bottom-Right: 
The true acf (dotted) and empirical acf (solid line) of realizations

3 Conclusion

We proposed the universal simulation algorithm for supOU processes with specified 
marginal distributions and correlation functions that provides the complete viewpoint 
on the structure of these processes. Our algorithm is based on the truncation of 
the Lévy density in cases where 𝑥 𝑚(𝑥) has a singularity at zero. We have applied 
the simulation algorithm for supOU processes with 16 marginal distributions and 
established a repository [45] containing R scripts to facilitate the use of this algorithm. 
Our extensive numerical study confirms that the empirical density of realizations is 
close to the specified marginal density and the empirical acf is close to the true 
acf if the second moment of the marginal distribution is finite and to the specified 
acf otherwise. If a process is required with marginals not included in the list of 18 
distributions (see Table 1), the target marginal distribution can be approximated by 
one of the 18 considered distributions. The supOU process can then be simulated 
using this fitted marginal distribution.
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Table 1. Characteristics of self-decomposable distributions
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