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Abstract In this paper, a non-Gaussian Ornstein—Uhlenbeck process driven by a Hermite—
Ornstein—Uhlenbeck process is introduced, which belongs to the gth Wiener chaos. A systematic
procedure to identify the drift parameter 6 and the Hurst parameter H is given based on the
study of the limit behavior of its quadratic variations. Estimators for these two parameters and
their asymptotic properties are studied.
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1 Introduction

Since the seminal work of Ornstein and Uhlenbeck [22], the Ornstein—Uhlenbeck
(OU) process has become a cornerstone of stochastic modeling. Originally introduced
to describe the velocity of a particle subject to friction in statistical physics, its math-
ematical tractability and mean-reverting structure have made it a canonical model
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across disciplines, from physics and biology to financial mathematics. In finance, OU-
type dynamics underpin, among others, the Vasicek model for interest rates [23], the
Heston model for stochastic volatility [14], and the Lévy-driven volatility models of
Barndorff-Nielsen and Shephard [5, 4].

OU-type processes are particularly valued for their ability to capture relaxation
phenomena in physics and mean-reverting quantities in finance, such as interest rates
or volatility. The classical Brownian and fractional Brownian cases laid the foundation
for a vast literature, but they also revealed limitations: Gaussianity and light tails are
often inconsistent with empirical data. This has motivated a surge of interest in OU
processes driven by more general type of noises. For instance, Barndorff-Nielsen and
Shephard [5] pioneered Lévy-driven OU processes for stochastic volatility, while more
recent works have emphasized roughness and long memory as essential features of
volatility dynamics.

In parallel, several recent contributions have explored OU-type dynamics driven by
even more exotic or generalized types of noise than the usual Brownian or fractional
Brownian motion case, extending the classical Gaussian or Lévy settings. Exam-
ples include OU processes constructed in the white-noise framework via generalized
fractional operators as in Beghin, Cristofaro and Mishura [6], models based on gener-
alized grey Brownian motion and considered by Bock, Demestre and da Silva [9], and
OU-type systems driven by generalized grey incomplete gamma noise, quite recently
investigated by Bock and Cristofaro [8]. These works illustrate the growing interest in
OU dynamics beyond the classical paradigms and further motivate the study of OU
processes driven by new type of noises, and in particular, a non-Gaussian one (the
Hermite Ornstein-Uhlenbeck process) as considered in the present paper.

Modeling of volatility remains one of the central challenges in quantitative finance.
The breakthrough work of Jaisson, Gatheral, and Rosenbaum [13] demonstrated that
volatility exhibits rough behavior, well described by fractional OU processes with
Hurst parameter H close to zero. Yet Gaussian or Lévy-driven models, while capturing
some stylized facts, remain insufficient for certain asset classes, such as commodities
or cryptocurrencies, where empirical evidence points to heavy tails, long memory, and
non-Gaussian dependence structures. In these contexts, richer models are required.

A promising direction is provided by Hermite processes, which are non-Gaussian,
self-similar processes living in the gth Wiener chaos. When ¢ = 1, the Hermite
process reduces to fractional Brownian motion, but for ¢ > 2 it becomes genuinely
non-Gaussian while still retaining long memory and self-similarity. Recent work by
Assaad, Diez and Tudor [2] has highlighted the potential of generalized Hermite
processes as flexible models for log-volatility, with self-similarity indices spanning
the entire interval (0, 1). These processes thus offer a natural framework for modeling
assets that require advanced non-Gaussian features.

In this paper, we take a further step by considering an Ornstein—Uhlenbeck process
driven by a “Hermite—Ornstein—Uhlenbeck (HOU) noise”. It will be called the OU-
HOU process (the Ornstein—Uhlenbeck process driven by a Hermite—Ornstein—Uhlen-
beck process). This construction is particularly appealing because it introduces mul-
tiscale mean reversion: the outer OU captures long-term dynamics, while the inner
Hermite-driven OU injects correlated, non-Gaussian fluctuations. Such nested struc-
tures are natural in applications where both short-term noise and long-term equilib-
rium forces coexist, including statistical physics (colored noise models), neuroscience
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(correlated membrane potential fluctuations), and finance (multiscale volatility). For
related works on OU-type processes driven by standard OU or fractional OU processes,
we refer to [7] or [12].

First of all, let us introduce (Z,H 4> 0) as the Hermite process of order g > 1

and with self-similarity index H € (% 1) in the following way (precise details are
given in Section 2):

0 ‘“H)/Rq (/0 dutu -y, ) —yq>+(“"))

X dB(y1)...dB(yq)

where (B(y),y € R) is a two-sided Brownian motion and the iterated stochastic
integral from above is a multiple integral with repect to B...

Formally, we are interested in this paper to the stochastic process (X, > 0)
defined by the dynamics

t
dX; = —9/ Xeds+Vy, t20, (1)
0

with the initial condition Xy = x¢p € R, where 6 > 0 and the noise process (V;,t > 0)
is a Hermite—Ornstein—Uhlenbeck process, i.e., for every ¢ > 0,

t
V; = / e )z @)
0

where (ZtH 4> O) is a Hermite process of order > 1 with self-similarity index

He (%, 1). In particular, V satisfies the Langevin equation
dv, ==V dt+Z™, 120, 3)

with the vanishing initial condition, Vj = 0.

The main objective of this work is to develop consistent estimators for both the drift
parameter 6 and the Hurst parameter H, based on discrete-time observations of the
solution to (1). Our methodology relies on quadratic variations, building on earlier re-
sults for Hermite processes (Tudor and Viens [21]) and Hermite—Ornstein—Uhlenbeck
processes (Assaad and Tudor [1]). These works showed that, in the Rosenblatt case
(g = 2), quadratic variations converge to a non-Gaussian limit, complicating inference.
To address this, we adapt the recent breakthrough approach of a modified quadratic
variation method introduced recently by Ayache and Tudor [3], which cancels the long-
memory contribution of the second chaos and restores a Gaussian CLT. This enables
the construction of estimators for H that are not only consistent but also asymptotically
normal, allowing for classical statistical inference. The estimation of 6 is also based on
quadratic variations, and this is obtained thanks to the special behavior of this statistic
when g = 2.

The paper is organized as follows. In Section 2 we present the Hermite processes
and the associated Ornstein—Uhlenbeck processes. We also introduce the OU-HOU
process and we discuss its main properties. In Section 3 we derive the behavior of
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the quadratic variation of the OU-HOU process and then, in Section 4, the results are
applied to derive an estimator for the drift parameter 8 when the Hurst parameter H is
known. In Section 5, we also estimate the Hurst parameter via the modified quadratic
variations.

2 Hermite processes and Hermite—Ornstein—Uhlenbeck processes

We begin by introducing the Hermite process and the associated Ornstein—Uhlenbeck
process. Let (ZtH 4> 0) be the Hermite process of order ¢ > 1 and with self-

similarity index H € (% 1). For each + > 0, the random variable ZtH "4 can be
expressed as a multiple stochastic integral with respect to the two-sided Brownian
motion (B(y),y € R) in the following way:

Z"9 = d(H) /R dB(y)-+-dB(y,)

t _(ly1=H C(Lern
(‘/0' du(u—y1)+(2 q)~~-(u_)’q)+( q))
=1L, =0, “4)

where for every yi,...,y4 €R,

4 _(l41=H _(1,1=H
L?"%yl,...,yq):d(H)/O dutu -y, T sy (),

We denote by /, the multiple stochastic integral of order g > 1 with respect to B
(see, e.g., [17] or [15] for the definition). In (4), d(H) is a strictly positive constant

2
chosen so that E (Z,H’q) = 1M for every t > 0. We recall that Z#+9 is a H-self-

similar process and it has stationary increments and long memory. Its sample paths
are Holder continuous of order 8, for every ¢ € (0, H). The class of Hermite processes
contains the fractional Brownian motion which is obtained for ¢ = 1 in (4) and
which is the only Gaussian process in this class. The Hermite process of order g = 2
is the so-called Rosenblatt process. We refer to the monographs [18] or [20] for a
more detailed presentation of Hermite and related processes. The value at time 1 of a
Hermite process Z+4 is called a Hermite random variable.

We will use in this work the Wiener integral with respect to a Hermite process. If
f : R — R is a deterministic function that satisfies

/R /R F)] - 1)) - = vPH2 < o, 5)

then one can construct the stochastic integral fR f(s) dZ;q "9 Tt is called the Hermite—
Wiener integral and it enjoys the isometry property: if f, g satisfy (5), then

H.q H,q _ _ _ L 2H-2
E‘/Rf(s)dZS /Rg(s)dZS =HQH 1)/R‘[Rf(u)g(v)|u V| dudv.
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The Hermite—Ornstein—Uhlenbeck (HOU) process (or the Ornstein—Uhlenbeck pro-
cess driven by a Hermite noise) (V;,t > 0) is given by the formula (2) and it solves
the stochastic differential equation (3). The stochastic integral in (2) is a well-defined
Hermite—Wiener integral since its integrand satisfies (5). It can be also interpreted
as a Riemann-Stieltjes integral with respect to the Hermite process Z7+4 (see [2] or
[20]). We also know that for every T > 0 and for every p > 1, we have (see also the
proof of Proposition 1)

sup E|V;|? < Cr < o0, (6)
t€l0,T]
andforO0 <s<r<T,
E|V, - V| < Crlt - s|P7. @)

Let us now discuss the Ornstein—Uhlenbeck process driven by a HOU process (or the
OU-HOU process). This stochastic process, denoted (X;, ¢ > 0), is the unique solution
to the model (1) and it can be written as

t
th/ e 0= gy . t>0.
0

The stochastic integral above is well-defined as a pathwise Riemann—Stieltjes integral.
This is because the paths of the integrator V are 6-Holder continuous, for each ¢ €
(0, H), as a consequence of the inequality (7). We can also write, for every ¢ > 0,

t t
X = —/ e_e(’_s)\/sds+/ e_e(’_s)de"’, (8)
0 0

and we recall that the integral dZ*>4 above can be interpreted in the Hermite—Wiener
or Riemann—Stieltjes senses. The process X will be called the Ornstein—Uhlenbeck
process driven by a Hermite—Ornstein—Uhlenbeck process (OU-HOU process).
Another useful representation of the OU-HOU process is the following, see, e.g.,
[12]. For every ¢t > O,
1

X, = x0 - ®

(9)
= X, 9
1-671 1-671 ©)

where X (1) and X(?) are HOU processes with drift parameters 1 and 6, respectively,
ie.,

t t
Xt(g)z‘/0 e~ 0= gz™4  and Xt(l)=‘/0 e U aza, (10

for t > 0. We also notice that Xt(e) is a random variable belonging to the gth Wiener
chaos. Indeed, from the definition of the Wiener integral with respect to the Hermite
process (see, e.g., [20]), for r > 0,

x'9 = d(H) /Rq dB(y1) ...dB(y,)

(/ aue 010y, Uy (kl"ﬂ))

0
= Iq(hf),t),
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where, for every yi,...,y4 €R,

! —0(t-u) -(3+%) -(3+151)
Bou (1.2 yq) = d(H) /O due™" (u ~ y,). =y, .
(11

Therefore,

1 0
X, =1 “fth = —————h +
1 =14(80.0) Wwithgo, e 1T g

From (9) and the analysis of the HOU process (see, e.g., [16], [19] or [20]), we can
easily deduce the following properties of the OU-HOU process.

Proposition 1. Let (X;,t > 0) be the solution to (1). Let T > 0 be arbitrary. Then:

hey. (12)

1. Foreveryp > 1,

sup E[X;|P < Cr p.o < 0. (13)
t€[0,T]

2. Forevery0 < s <t <T andforeveryp > 1,
E|X, - X,|7 < Cr,pqlt - s|P". (14)

In particular, the sample paths t — X; are almost surely Holder continuous of
order 8, for every ¢ € (0, H).

Proof. Let T > 0 and let X(?) be the HOU process given by (10). From Proposition
3.31in [20], we know that for all p > 1,

sup E|X\V|P < Crpo. (15)
0<t<T

Thus the bound (13) follows directly from (9). To see point 2, we have, for every
0<s<t<T,

t
X\ - x{¥ =—9/ X du+ 7" - 789,

A

Thus, for every p > 1, by using (15),

p
E +E

P
X[(H) _ XS(H)| < CT,p,H (E

t
/ X, du
S

< Crp.o (It = sIP + |t — s|P7)

< CT’p,gll‘ - S|pH.

Hq _Hgq|P
z7 -7, |

]
3 Quadratic variation of the OU-HOU process
For the stochastic process (X;,t > 0) given by (1), we use the notation
N-1 2
1 (Xfi+ - Xli)
VN (X) = & —var | (16)
i=0
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where t; = ﬁ fori =0,1,...,N. This is known in the literature as the (centered and
renormalized) quadratic variation of the process X associated to the uniform partition
of the unit interval [0, 1].

Our estimators for the parameters 6 and H that appear in the model (1)—(3) will be
constructed in terms of the sequence (Vy(X),N > 1) given by (16), where X is the
OU-HOU process from (1) or (8). The asymptotic properties of these estimators are
related to the limit behavior of Viy (X) as N — oo. We therefore analyze its asymptotic
behavior.

We will state and prove a general result concerning the almost sure convergence of
random variables in the Wiener chaos. This result implies that convergence in L?(Q)
with an explicit power rate y > 0, of a sequence of random variables in a fixed chaos
implies almost sure convergence (without the need to pass to a subsequence).

Lemma 1. Let p > 1. Consider the sequence (Fy,N > 1) where Fy = 1,(fn) with
fn € L>(RP) foreveryn > 1. Let F = I,(f) with f € L*(RP). Assume that, for N
large enough, there exists a constant C > 0, such that

E|Fy - F|> <CN7?, 17)

with y > 0. Then the sequence (Fy,N > 1) converges almost surely, as N — oo,
toF.

Proof. By (17) and the hypercontractivity property of random variables in Wiener
chaos (see, e.g., [15]), we have for every p > 1,

E|Fy - FIP < CN7"%, (18)

for N sufficiently large. Let 0 < 6 < X. We have by (18), forany p > 1,

Z P(|Fy - F| > N‘5) <C Z NOPE|Fy — F|P
N>1 N=>1

<C Y NHP
N>1

and the above series is convergent for p large. The Borel-Cantelli lemma gives the
desired almost sure convergence. O

We now deduce the asymptotic behavior of the quadratic variation of the OU-HOU
process. A key element of the proof is the behavior of the quadratic variation of the
Hermite process ZH.9 'We denote, for N > 1,

2
Ne ( ZH-a ZH q)
tiv1

VN(ZH,q) Z T - 1 . (19)

By Proposition 4.1 in [11], we know that, for all ¢ > 2,

4—4H7| . 1 3
N 7, ifHe(3.3),

E|Ky NV (209) - 7 2‘ <C{N-tlog(N), ifH =3, (20)
NH=2, ifHe(3,1),




8 C.P. Diez, C.A. Tudor

where Ky, is an explicit strictly positive constant depending on H, g and Z "2

is a Rosenblatt process (i.e., a Hermite process of order g = 2) with self-similarity
2-2H
index H' = 2(};_—1) + 1. In particular, the sequence (KH,qN a Vn(ZH49),N > 1)

converges in L?(Q) to Z]H/’z.
From (20), we obtain the following result.

Proposition 2. Let Vy (X) be given by (16), where X is the OU-HOU process given
by (1). Then, for every q > 3,

-2H H’ 2 -
KyuN @ VN(X) ONow Z almost surely and in L“(Q),

where Z fl "2 is a Rosenblatt random variable with the Hurst parameter H' = Z(IZ—_I) +1
and Ky 4 is the constant from (20). Moreover,
(ML rHe ().
2-2H ,
E[KynN 5 Vn () - 28 < C{ N-Y1og(V), ifH =3, @)
N2, ifHe (3,1).
Proof. We notice that, by (1) and (3),
t t
X, = —9/ Xsds—/ Veds + 24
0 0
=Y, +2M, (22)
where . .
Y, = —9/ Xyds —/ Vids, t=0. 23)
0 0

From (6) and (13), it is immediate to see that for every 7 > 0and 0 < s <t < T and
for all p > 1, with C that may depend on 7', p, 6,
t p
/ V,.du )
S

t
/ X, du

t
< C|t—s|1"1/ sup (E|X,|? +E|V,|?)du
N

0<u<T

p

E|Yt—YA.|”sC<E +E

<Clt—s|”. (24)

Before expanding Vi (X), we express explicitly the effect of the decomposition
X, =Y+ Z,H "4 from Equation (22). For each i, we write

H, H,
Xioo = Xty = Yy = Yi) + (Ztmq - Ztl- q)-
Hence
H, H, H, H,
(Xtm - Xti)2 = (Ztmq - Zt,- q)z + (Yl‘i+1 - Yl‘i)2 + 2(Yl‘i+1 - Yli)(Zt,-+1q - Zti q)’

and therefore

N-1 N-1
Vi (X) = Vi (ZH4) 4 N2H-1 Z (Y, —Y, ) +2N?H-1 Z (Yo ~Yi)(Z[ - 2109,
=0 =0
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. . 2-2H . H 2 .
Multiplying by Kg ;N ¢ and subtracting Z," ** yield

KugNa Vy(X) -z

N-1
= KH,(IN q VN(ZH 1) - ZH 2 +Kq, HN2 2HN2H71 Z (th - Yti)2
i=0
2-0H N-]
$ 2Ky NN (v, -, (2000 - 2)
i=0
= K gN=@ Vi (Z149) = 272 4 Ay + Aoy, (25)
with the notations
2-2H = 2
Ay =Ky N @ N2 Z (Yior = Y, (26)
=0
and
AN ) & H.,q H.,q
Aoy = 2K N NS (1, — 7,) (z Ha _ zH. ) . 27)
i=0

To estimate the term A; n, we notice that, by (24), we have, for every p > 1,

p
(2— 2H)
E|An] =Ky N @ NCH-DPE Z(Y,,+l Y,)?

i=0

C2Hp o 2H-1 1N l 2

<CN @ NC@H-Dpryp- Z ElY,, -, |7
i=0

< CN(Z ZH“’N(zH Dp -1 y1-2p
Thus
1
E|A; n|" < eNCH2PU) (28)

and this converges to zero as N — oco. Concerning the summand A3 n, let us notice
that, by using (10),

0 t ) 92 t 0) t
Y,=——— [ xWas+ L [ xOq _ [ v,

where X1, X9 and V are all HOU processes. By using the proof of Proposition 2 in
[3], we deduce that

E|An|7 < CNCH-2P0-0), (29)
The bound (21) is obtained by plugging the estimates (20), (28) and (29) into (25).

The almost sure convergence is a consequence of Lemma 1, since all the summands
in the right-hand side of (25) belongs to the gth Wiener chaos. O
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We will focus in the next sections on the case ¢ = 2 (the Rosenblatt process case).
The particularity of this case is that the limit of the quadratic variation Vy (X) is
exactly the driving noise that appears in (1). Let us write separately the result obtained
in Proposition 2 for g = 2.

Corollary 1. Let g =2, 0 > 0 and let (X;,t > 0) given by (1). Then
K aN'""1Vy(X) 5N e Zf{’z almost surely and in L* (),

where Z fl 2 is the value at time 1 of the stochastic process Z-* which appears as the
integrator in (2). Moreover,

1-2H . 13
" ol N,l ’ ’.fHegzwt)’
E Kp N VN(X) - Zl <C{N 2 log(N), ifH = I
N2 ifH e (3,1).

4 Estimation of the drift parameter

The main goal of this section is to derive an estimator for the drift parameter of our
Rosenblatt—Ornstein—Hermite process (the HOU process with g = 2). We will assume
for the moment that the Hurst parameter H is known (it will also be estimated in
the next section). We will suppose in the sequel that we have access to the discrete
observations of the process (X;,¢ > 0) on the uniform partition of the interval [0, 1].
We will start by describing the construction of our estimator and then derive its
asymptotic properties.

4.1 The definition and the consistency of the estimator

The procedure to derive an estimator for 6 is inspired from the work [10]. Let H €
(3.1). From (1) and (3), we can write, for every ¢ > 0,

t t
X, = - / Xsds—/ Vyds + 24
0 0
t t t N
:—9/ Xsds—/ Xsds—Q/ ds (/ Xudu) + 7z
0 0 0 0
t t
=- / Xs(1+1t—s)ds —/ Xsds+ZfJ’q.
0 0
In particular, for ¢t = 1,
1 1
X = —9/ Xs(Z—s)ds—/ Xsds+Z1H’q. 30)
0 0

Assume that ¢ = 2. In this case, we construct an estimator for the drift parameter 6 in
(1) by using the result in Corollary 1. From (30), with Vjy (X) given by (16),

1 1
KH,ZNI-HVN(X)—XFQ/ Xs(Z—s)ds+/ Xds
0 0

+ K N7y (X) - 21702
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Since, by Corollary 1,

KHyzNI*HVN(X) - ZIH’2 ij 0 almost surely,

we can write (where ay ~ by means that ay — by converges to zero almost surely)

1 1
K N'"Hvy (X) - X) ~ 9/ X,(2 - s)ds+/ X,ds. (31)
0 0

Approximating Lebesque integrals by Riemann sums, the relation (31) leads to the

definition of the estimator

. K N'YHVN(X) - X - & 200 X,
N = - .
% Zi}\iol Xtm (2 - ti+l)

From the previous results, we deduce the consistency of the above estimator.

(32)

Proposition 3. Let H € (%, 1) and let Oy be given by (32). Then Oy is strongly
consistent, i.e, _
On Pem¢ 0 almost surely.

Proof. The resultis obtained from Corollary 1, and from the almost sure convergences

1 N-1 1
N Z X Njw/ Xsds

i=0 0

and

1 N-1 1
ﬁ Z Xti (2 - tl) N:)oo /O‘ X\(Z - S)ds
i=0

O

As a straightforward corollary, we deduce that this quantity is nonzero almost
surely, which will be important for the estimation procedure.

4.2 The limit distribution of the estimator
In this section, we will derive the limit distribution for the estimator 9, N of the drift
parameter 6. As mentioned above, we assume at this time that the Hurst parameter H
is known.

We start with a technical lemma which is needed for the proof of the main result
of this section.

Lemma 2. Let H € (% 1) and let, for N > 1,

N-1
1
Un = I ; Xt (2 = tig1). (33)

Then 5
<CN~, (34)

1
E UN—/ X (2 —s)ds
0

In particular, the sequence (Uy, N > 1) converges to /01 X;(2 = s)ds in L*(Q).
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Proof. We can write

1
Un —/ X (2 - s5)ds
0

N-1

= Z ‘/titnl (Xtm 2-tiy1) - Xs(2 - S)) ds

i=0
N-1 N-1 iyl
= Z (Xt — X5)(2 = tig1)ds — Z / Xs(tiy1 — s)ds.
1

i=0 Yl i=0

liy]

Using the elementary inequality |a — b|*> < 2(a” + b?), we obtain

2

1
EUN—/ X,(2 - s5)ds| <2E|An|>+2E|Bn|?,
0

where Ay and By denote the two sums above.
Next, for each i, we use Jensen/Cauchy—Schwarz inequality to control the square
of the integral

tivl 2 tit1 1 tiv1
(/ Yi,s dS) < (ti+1 - ti) / Yiz,s ds = N / Yiz,s ds,
t; 143 t

and summing over i gives

Tit)

N-1
Blav? < 3 [ B[, - X022 - ) ds
i=0 Yt
Similarly,

tivl

N-1
E|By|* < Z/ E[X7] (tis1 — 5)* ds.
i=0 1

By using the inequalities (13) and (14) in Proposition 1,
2

1
EUN—/ X (2 —s)ds
0

N=1 it N-1
SC[Z/ (i =oas 3 [
i=0 Yl i=0 Yt

Since 2 > 2H and t;1; — s < 1/N, we have (fi41 — )% < (tix1 — )27, so

tiy

(tiy1 — s)zds] .

tivl

N-1 g N-1
PO ARCREDTED WY CRE D
i=0 “fi i=0 Yl

Thus,

Tiy

1 2 N-1
E‘UN—/ X, (2= s)ds ch/ (tig1 — )" ds < CN72H,
0 i=0 vl
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which concludes the proof. O

Theorem 1. Assume H € (%, %) and let Oy be given by (32). Then

1
Ep,Ni—2 (/ X, (2 - s)ds) (eN - 9) -0z,
0

where Eg» > 0 is an explicit constant depending only on H, and Z is a standard
normal random variable.

Proof. First we prove that, with Uy given by (33),

N>

EnaN"-1Uy (§N - 9) NG (35)

where Ef > > 0 is an explicit constant depending only on H, and Z is a standard
normal random variable. By using (32), with the expression of X; taken from (30), we
can write, for every integer N > 1,
1 _

KuoN'""Hvy(X) - zI? 7 Xods - & SN0 Xy,

ﬁ Zf\zl(;l Xti+1 (2 - t[+1) ﬁ Zf\zl(;l Xti+1 (2 - ti+1)

1 _
9/0 X;(2 - s5)ds — & SN X, (2= tis)
N 20! Xipy (2= 1)

_ KuoN'"MVy(X) - z,"? Jhn Ty
o Un Uv Un'

Oy — 6 =

(36)
Taking into account the decomposition (25), we get
UN (51\] — 0) = KH’QNI_HVN(ZH’(]) - ZlH’2 + AI,N + AZ,N + TI,N + TZ’N,

with Aj v, A, v defined by (26) and (27), respectively. It has been shown in Proposition

3in [1] (see also Theorem 3.3 in [21]) that, for H € (3, 3),

EnaNi-1 (KH’le‘HVN(ZH’q) —zf”) @ N, 1),

N—o0

where Eg 2 > 0 is a constant. To deduce the limit (35), it remains to show that, for
i=1,2,with T\ n, T>,y defined by (36), and with A; » given by (26), (27),

NH"24; n and NH7IT, N —n_w O in probability. (37)
By using the estimates (28) and (29) with p = 1, g = 2, we obtain
(E|A1v] +E|A2,n]) < CN?H73,
and this converges to zero as N — oo for H < %. By writing

Ti)

1 1 Nl N-1
/0 Xods = ; X, = ; /t (Xs = X,..,)ds,
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we get

2
H-1 2

E‘N _ETLN‘ =E

, 1 1 N-1
H-1
N7™2 <[) Xsds—ﬁiz(;X;iH)

N-l1 liv1
<cNHt Y / E(X, - X,,.,)2ds.
i=0 vl

By (14), we obtain
2
E |NH—%T1,N| < CNM-1 5 N2 = oN~1,
Next, by (34),

2
E)N”*%TQ,N|

1 1 1
NH- (/ Xo(2 = s)ds — Z X (2= tin1)
0 i=0

< CNM-1x N72H =N~

2
=E

and therefore (37) holds also for i = 2. We then obtain (37) and we conclude the proof
of (35). To get the stated result, we write

1
EnaNt-1 / X,(2 - 5)ds (eN - 9)
0

= Ey,NH 21Uy (§N - 9)

1
+ Ep ,NH (/ X,(2 = s)ds UN) (aN - 9) .
0

We show that the last summand from above goes to zero in probability as N — co. By
Lemma 2, NH-3 (fol X;(2—s)ds — UN) — Now 0in L?(Q) and by Proposition 3,

Oy — 0 converges to zero almost surely as N tends to infinity. O

5 Modified quadratic variation and Gaussian estimators for the Hurst param-
eter

In this section, we deal with the estimation of the Hurst parameter of the OU-HOU
process. In fact, we propose another approach in order to avoid Rosenblatt-type esti-
mator for the Hurst index which can be difficult to use for real applications. Instead,
we rigorously adapt the Ayache—Tudor [3] modified quadratic variation method to
the Ornstein—Uhlenbeck process driven by Hermite—Ornstein—Uhlenbeck (OU-HOU)
noise. We first construct the statistic, then prove a central limit theorem (CLT) with an
explicit rate for the Wasserstein distance by using the known results for the Hermite
process. Using these results, we derive a strongly consistent and asymptotically normal
estimator of the Hurst parameter H and discuss the implications for the estimation
of 8.



OU process driven by the HOU process 15

5.1 The modified quadratic variation

The construction proposed in [3] is based on some special increments of the Hermite
process along the dyadic partition of the interval [0, 1]. We now introduce the dyadic
discretization that will be used to construct localized increments of the OU-HOU
process. This discretization is designed to isolate the diagonal singularity of the
Hermite kernel and to produce independent contributions across disjoint windows.

Definition 1 (Dyadic anchors and index sets). Fix parameters 8 € (0,1) and y €
(0, B). For each integer N > 1, define

Ly = {0, 1., [2N0-#)] - 1}, Ly, =Ly N [1, LzNVJ]. (38)
For I € Ly, the dyadic anchor is
einp =2"N[2VF] L (39)

Thus Ly indexes the admissible anchors at resolution 2=, and L N,y selects the first
of them, [2V7 |. Note that |Ly | < 2V as N — co.

Definition 2 (Localized increments). For each / € Ly ,, define the increment of the
OU-HOU process X of length 2= anchored at ¢;, N8 by

AX; N = Xel,N,ﬁ+2’N - Xet,N,ﬁ' 40)
Similarly, define the corresponding increment of the Hermite driver Z#-9 by
AZi N =Z 4 —zHa 1)

Npt2 N €LN.B
By construction, if/ # k then the intervals [e; n g, e/, N g+2 V] and [ex,n g, €k N g+
2-N7 are disjoint.

With these localized increments, we compose the modified quadratic variation of
the OU-HOU process X. We set, foreach N > 1,

22HN

VN.mod(X) = —— ((AX;,n)* - E(AZn)?)
V|LN 7| IELZNW
22HN

LN)"IELZ (AX;n)? - 272N (42)

Similarly, we define the modified quadratic variation of the Hermite process

22HN
VN moa(ZH1) = —— Z ((AZyy)? = 272HNY

VILN leLn

We will use the Wasserstein metric to evaluate the distance between probability
distributions. Let us recall its definition. Let

A= {h:R — R, his Lipschitz continuous with ||A[|z;, < 1}
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and let F, G be random variables such that 4(F), h(G) € L'(Q) for every h € A.
Then the Wasserstein distance between the probability distributions of F and G is
defined by

dw(PF, Pg) = sup |[ER(F) - Eh(G)|. (43)
he A
We denoted by [|4]|.;, the Lipschitz norm of / given by
|h(x) = h(y)|
lhllp = sup o
x,yeR,x#y |X - )’|

The behavior of the sequence (Vi _moa(Z7>9), N > 1) has been analyzed in [3].
We have the following result:

VN moa( 279 @ N (0,E|Z{ 1 - 1), (*4)
and for N large enough,
dw (VN,mgd(zH»q),N (0,1«:|Z{1”‘1|4 - 1)) <2 (45)

From the above result, we deduce the behavior of the modified variation of the
OU-HOU process.

Proposition 4. Let X be given by (8), and let us consider the sequence (Vy moa(X),
N > 1) given by (42). Then

VN moa(X) =@ N (0.EIZM P 1),
and for N large enough,
dw (VN,,,wd(X),N (o,E|zf”‘1|4 - 1)) <Y

Proof. We follow the idea of the proof of Proposition 2, based on the decomposition
(20). From the formula (20), we get

VN,mod(X) = VN,m()d(ZH’q) + BI,N + BZ,Na

where
22HN 5
Bin = Z (AY;N)7,
\ |LN"Y| ZELN.y
and
22HN

——— > (AYN)(AZN),
|LN,'y| lELN’y

with the notation AY; n =Y,  ,10-N — Ye, y 5, Where Y is given by (23). Next, the

asymptotic behavior of Vi moq(ZH9) is given by (44) and (45). On the other hand,
by using the calculations in the proof of Proposition 7 in [3], we can prove that

NY

E|B| n| < CoCH-DIN+Y 4 E|Bsy| < C2H-DN+ (46)

The estimate (46), combined with (44) and (45), gives the conclusion. O
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5.2 On the estimation of the Hurst and drift parameters

Using Proposition 4 and a standard procedure, we can define an estimator for the Hurst
index of the OU-HOU process which solves the stochastic differential equation (1).
That is, we let

Sn(X) = 2 Z (AX;n)% N1,
| N”y|lELN,y
and log Sy (X)
T og Sy (X
Hy(X)=——"—-, N2>1. 47
N (X) INTog(2) 47)

Since the OU-HOU process has a structure similar to that of the standard HOU process
(in the sense that both can be written as the sum of the Hermite process plus another
process with nice simple paths, see (20) and (24)), we can follow Section 6 in [3] to get
the asymptotic properties of the estimator (47). We will have that Hy(X ) is strongly
consistent, i.e.,

ﬁN(X) —Noc H almost surely, (48)
and
N—>c

2N log(2)y/|Ln | (H— ﬁN(X)) @y (o,1<:|zl”’4|4 - 1) .

From the above considerations and the expression of the estimator (32), we can deduce
a new estimator for the drift parameter 6 in the model (1) when the Hurst parameter
is unknown. We just have to plug in the Hurst estimator (47) into (32). That is, we set,
forevery N > 1,

. Kg o NNV - X -y 2 X,

01N = -
% Zili()] Xt,-+1 (2 - ti+1)

(49)

We observe that the above estimator (49) can be constructed from the observation
of the OU-HOU process X at discrete times. In practice, we need the data X,,,i =
I,...,N, with t; = ﬁ and the observation of X at the dyadic anchors given by
(39). It can be observed, by following the proofs in [21], that the constant Ky >
depends continuously on the Hurst parameter H. Thus, by taking into account (48)
and Proposition 3, we deduce that 51, ~N given by (49) is a consistent estimator for 6
when H is unknown, i.e., it converges in probability, as N — oo, to the drift parameter

0.
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