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Abstract In this paper, a non-Gaussian Ornstein–Uhlenbeck process driven by a Hermite--
Ornstein--Uhlenbeck process is introduced, which belongs to the 𝑞th Wiener chaos. A systematic 
procedure to identify the drift parameter 𝜃 and the Hurst parameter 𝐻 is given based on the 
study of the limit behavior of its quadratic variations. Estimators for these two parameters and 
their asymptotic properties are studied.
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1 Introduction

Since the seminal work of Ornstein and Uhlenbeck [22], the Ornstein–Uhlenbeck 
(OU) process has become a cornerstone of stochastic modeling. Originally introduced 
to describe the velocity of a particle subject to friction in statistical physics, its math
ematical tractability and mean-reverting structure have made it a canonical model 
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across disciplines, from physics and biology to financial mathematics. In finance, OU
type dynamics underpin, among others, the Vasicek model for interest rates [23], the 
Heston model for stochastic volatility [14], and the Lévy-driven volatility models of 
Barndorff-Nielsen and Shephard [5, 4].

OU-type processes are particularly valued for their ability to capture relaxation 
phenomena in physics and mean-reverting quantities in finance, such as interest rates 
or volatility. The classical Brownian and fractional Brownian cases laid the foundation 
for a vast literature, but they also revealed limitations: Gaussianity and light tails are 
often inconsistent with empirical data. This has motivated a surge of interest in OU 
processes driven by more general type of noises. For instance, Barndorff-Nielsen and 
Shephard [5] pioneered Lévy-driven OU processes for stochastic volatility, while more 
recent works have emphasized roughness and long memory as essential features of 
volatility dynamics.

In parallel, several recent contributions have explored OU-type dynamics driven by 
even more exotic or generalized types of noise than the usual Brownian or fractional 
Brownian motion case, extending the classical Gaussian or Lévy settings. Exam
ples include OU processes constructed in the white-noise framework via generalized 
fractional operators as in Beghin, Cristofaro and Mishura [6], models based on gener
alized grey Brownian motion and considered by Bock, Demestre and da Silva [9], and 
OU-type systems driven by generalized grey incomplete gamma noise, quite recently 
investigated by Bock and Cristofaro [8]. These works illustrate the growing interest in 
OU dynamics beyond the classical paradigms and further motivate the study of OU 
processes driven by new type of noises, and in particular, a non-Gaussian one (the 
Hermite Ornstein-Uhlenbeck process) as considered in the present paper.

Modeling of volatility remains one of the central challenges in quantitative finance. 
The breakthrough work of Jaisson, Gatheral, and Rosenbaum [13] demonstrated that 
volatility exhibits rough behavior, well described by fractional OU processes with 
Hurst parameter 𝐻 close to zero. Yet Gaussian or Lévy-driven models, while capturing 
some stylized facts, remain insufficient for certain asset classes, such as commodities 
or cryptocurrencies, where empirical evidence points to heavy tails, long memory, and 
non-Gaussian dependence structures. In these contexts, richer models are required.

A promising direction is provided by Hermite processes, which are non-Gaussian, 
self-similar processes living in the 𝑞th Wiener chaos. When 𝑞 = 1, the Hermite 
process reduces to fractional Brownian motion, but for 𝑞 ≥ 2 it becomes genuinely 
non-Gaussian while still retaining long memory and self-similarity. Recent work by 
Assaad, Diez and Tudor [2] has highlighted the potential of generalized Hermite 
processes as flexible models for log-volatility, with self-similarity indices spanning 
the entire interval (0, 1). These processes thus offer a natural framework for modeling 
assets that require advanced non-Gaussian features.

In this paper, we take a further step by considering an Ornstein–Uhlenbeck process 
driven by a ``Hermite–Ornstein--Uhlenbeck (HOU) noise''. It will be called the OU
HOU process (the Ornstein–Uhlenbeck process driven by a Hermite–Ornstein--Uhlen
beck process). This construction is particularly appealing because it introduces mul
tiscale mean reversion: the outer OU captures long-term dynamics, while the inner 
Hermite-driven OU injects correlated, non-Gaussian fluctuations. Such nested struc
tures are natural in applications where both short-term noise and long-term equilib
rium forces coexist, including statistical physics (colored noise models), neuroscience 
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(correlated membrane potential fluctuations), and finance (multiscale volatility). For 
related works on OU-type processes driven by standard OU or fractional OU processes, 
we refer to [7] or [12].

First of all, let us introduce 
(︂
𝑍𝐻,𝑞
𝑡 , 𝑡 ≥ 0

)︂
as the Hermite process of order 𝑞 ≥ 1

and with self-similarity index 𝐻 ∈
(︁ 1

2 , 1
)︁

in the following way (precise details are 
given in Section 2):

𝑍
𝐻,𝑞
𝑡 = 𝑑 (𝐻) 

∫
ℝ𝑞

(︃∫ 𝑡

0
𝑑𝑢(𝑢 − 𝑦1)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ . . . (𝑢 − 𝑦𝑞)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+

)︃
× 𝑑𝐵(𝑦1) . . . 𝑑𝐵(𝑦𝑞)

where (𝐵(𝑦), 𝑦 ∈ ℝ) is a two-sided Brownian motion and the iterated stochastic 
integral from above is a multiple integral with repect to 𝐵...

Formally, we are interested in this paper to the stochastic process (𝑋𝑡 , 𝑡 ≥ 0)
defined by the dynamics

𝑑𝑋𝑡 = −𝜃

∫ 𝑡

0
𝑋𝑠𝑑𝑠 +𝑉𝑡 , 𝑡 ≥ 0, (1)

with the initial condition 𝑋0 = 𝑥0 ∈ ℝ, where 𝜃 > 0 and the noise process (𝑉𝑡 , 𝑡 ≥ 0)
is a Hermite–Ornstein--Uhlenbeck process, i.e., for every 𝑡 ≥ 0,

𝑉𝑡 =
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝑑𝑍𝐻,𝑞

𝑠 (2)

where 
(︂
𝑍
𝐻,𝑞
𝑡 , 𝑡 ≥ 0

)︂
is a Hermite process of order ≥ 1 with self-similarity index 

𝐻 ∈
(︁ 1

2 , 1
)︁
. In particular, 𝑉 satisfies the Langevin equation

𝑑𝑉𝑡 = −𝑉𝑡𝑑𝑡 + 𝑍
𝐻,𝑞
𝑡 , 𝑡 ≥ 0, (3)

with the vanishing initial condition, 𝑉0 = 0.
The main objective of this work is to develop consistent estimators for both the drift 

parameter 𝜃 and the Hurst parameter 𝐻, based on discrete-time observations of the 
solution to (1). Our methodology relies on quadratic variations, building on earlier re
sults for Hermite processes (Tudor and Viens [21]) and Hermite–Ornstein--Uhlenbeck 
processes (Assaad and Tudor [1]). These works showed that, in the Rosenblatt case 
(𝑞 = 2), quadratic variations converge to a non-Gaussian limit, complicating inference. 
To address this, we adapt the recent breakthrough approach of a modified quadratic 
variation method introduced recently by Ayache and Tudor [3], which cancels the long
memory contribution of the second chaos and restores a Gaussian CLT. This enables 
the construction of estimators for 𝐻 that are not only consistent but also asymptotically 
normal, allowing for classical statistical inference. The estimation of 𝜃 is also based on 
quadratic variations, and this is obtained thanks to the special behavior of this statistic 
when 𝑞 = 2.

The paper is organized as follows. In Section 2 we present the Hermite processes 
and the associated Ornstein–Uhlenbeck processes. We also introduce the OU-HOU 
process and we discuss its main properties. In Section 3 we derive the behavior of 
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the quadratic variation of the OU-HOU process and then, in Section 4, the results are 
applied to derive an estimator for the drift parameter 𝜃 when the Hurst parameter 𝐻 is 
known. In Section 5, we also estimate the Hurst parameter via the modified quadratic 
variations.

2 Hermite processes and Hermite–Ornstein--Uhlenbeck processes

We begin by introducing the Hermite process and the associated Ornstein–Uhlenbeck 

process. Let 
(︂
𝑍𝐻,𝑞
𝑡 , 𝑡 ≥ 0

)︂
be the Hermite process of order 𝑞 ≥ 1 and with self

similarity index 𝐻 ∈
(︁ 1

2 , 1
)︁
. For each 𝑡 ≥ 0, the random variable 𝑍𝐻,𝑞

𝑡 can be 
expressed as a multiple stochastic integral with respect to the two-sided Brownian 
motion (𝐵(𝑦), 𝑦 ∈ ℝ) in the following way:

𝑍𝐻,𝑞
𝑡 = 𝑑 (𝐻)

∫
ℝ𝑞
𝑑𝐵(𝑦1) · · · 𝑑𝐵(𝑦𝑞)(︃∫ 𝑡

0
𝑑𝑢(𝑢 − 𝑦1)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ . . . (𝑢 − 𝑦𝑞)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+

)︃
= 𝐼𝑞 (𝐿

𝐻,𝑞
𝑡 ), 𝑡 ≥ 0, (4)

where for every 𝑦1, . . . , 𝑦𝑞 ∈ ℝ,

𝐿
𝐻,𝑞
𝑡 (𝑦1, . . . , 𝑦𝑞) = 𝑑 (𝐻)

∫ 𝑡

0
𝑑𝑢(𝑢 − 𝑦1)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ . . . (𝑢 − 𝑦𝑞)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ .

We denote by 𝐼𝑞 the multiple stochastic integral of order 𝑞 ≥ 1 with respect to 𝐵
(see, e.g., [17] or [15] for the definition). In (4), 𝑑 (𝐻) is a strictly positive constant 

chosen so that E
(︂
𝑍𝐻,𝑞
𝑡

)︂2
= 𝑡2𝐻 for every 𝑡 ≥ 0. We recall that 𝑍𝐻,𝑞 is a 𝐻-self

similar process and it has stationary increments and long memory. Its sample paths 
are Hölder continuous of order 𝛿, for every 𝛿 ∈ (0, 𝐻). The class of Hermite processes 
contains the fractional Brownian motion which is obtained for 𝑞 = 1 in (4) and 
which is the only Gaussian process in this class. The Hermite process of order 𝑞 = 2
is the so-called Rosenblatt process. We refer to the monographs [18] or [20] for a 
more detailed presentation of Hermite and related processes. The value at time 1 of a 
Hermite process 𝑍𝐻,𝑞 is called a Hermite random variable.

We will use in this work the Wiener integral with respect to a Hermite process. If 
𝑓 : ℝ → ℝ is a deterministic function that satisfies∫

ℝ

∫
ℝ

| 𝑓 (𝑢) | · | 𝑓 (𝑣) | · |𝑢 − 𝑣 |2𝐻−2 < ∞, (5)

then one can construct the stochastic integral 
∫
ℝ
𝑓 (𝑠)𝑑𝑍𝐻,𝑞

𝑠 . It is called the Hermite--
Wiener integral and it enjoys the isometry property: if 𝑓 , 𝑔 satisfy (5), then

E
∫
ℝ

𝑓 (𝑠)𝑑𝑍
𝐻,𝑞
𝑠

∫
ℝ

𝑔(𝑠)𝑑𝑍
𝐻,𝑞
𝑠 = 𝐻 (2𝐻 − 1)

∫
ℝ

∫
ℝ

𝑓 (𝑢)𝑔(𝑣) |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣.
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The Hermite–Ornstein--Uhlenbeck (HOU) process (or the Ornstein–Uhlenbeck pro
cess driven by a Hermite noise) (𝑉𝑡 , 𝑡 ≥ 0) is given by the formula (2) and it solves 
the stochastic differential equation (3). The stochastic integral in (2) is a well-defined 
Hermite–Wiener integral since its integrand satisfies (5). It can be also interpreted 
as a Riemann-Stieltjes integral with respect to the Hermite process 𝑍𝐻,𝑞 (see [2] or 
[20]). We also know that for every 𝑇 > 0 and for every 𝑝 ≥ 1, we have (see also the 
proof of Proposition 1)

sup 
𝑡∈[0,𝑇 ]

E|𝑉𝑡 |
𝑝 ≤ 𝐶𝑇 < ∞, (6)

and for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 ,
E |𝑉𝑡 −𝑉𝑠 |

𝑝 ≤ 𝐶𝑇 |𝑡 − 𝑠 |
𝑝𝐻 . (7)

Let us now discuss the Ornstein–Uhlenbeck process driven by a HOU process (or the 
OU-HOU process). This stochastic process, denoted (𝑋𝑡 , 𝑡 ≥ 0), is the unique solution 
to the model (1) and it can be written as

𝑋𝑡 =
∫ 𝑡

0
𝑒−𝜃 (𝑡−𝑠)𝑑𝑉𝑠 , 𝑡 ≥ 0.

The stochastic integral above is well-defined as a pathwise Riemann–Stieltjes integral. 
This is because the paths of the integrator 𝑉 are 𝛿-Hölder continuous, for each 𝛿 ∈

(0, 𝐻), as a consequence of the inequality (7). We can also write, for every 𝑡 ≥ 0,

𝑋𝑡 = −

∫ 𝑡

0
𝑒−𝜃 (𝑡−𝑠)𝑉𝑠𝑑𝑠 +

∫ 𝑡

0
𝑒−𝜃 (𝑡−𝑠)𝑑𝑍𝐻,𝑞

𝑠 , (8)

and we recall that the integral 𝑑𝑍𝐻,𝑞 above can be interpreted in the Hermite–Wiener 
or Riemann–Stieltjes senses. The process 𝑋 will be called the Ornstein–Uhlenbeck 
process driven by a Hermite–Ornstein--Uhlenbeck process (OU-HOU process).

Another useful representation of the OU-HOU process is the following, see, e.g., 
[12]. For every 𝑡 ≥ 0,

𝑋𝑡 =
1 

1 − 𝜃
𝑋 (1)
𝑡 −

𝜃

1 − 𝜃
𝑋 (𝜃 )
𝑡 , (9)

where 𝑋 (1) and 𝑋 (𝜃 ) are HOU processes with drift parameters 1 and 𝜃, respectively, 
i.e.,

𝑋 (𝜃 )
𝑡 =

∫ 𝑡

0
𝑒−𝜃 (𝑡−𝑠)𝑑𝑍𝐻,𝑞

𝑠 and 𝑋 (1)
𝑡 =

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝑑𝑍𝐻,𝑞

𝑠 , (10)

for 𝑡 ≥ 0. We also notice that 𝑋 (𝜃 )
𝑡 is a random variable belonging to the 𝑞th Wiener 

chaos. Indeed, from the definition of the Wiener integral with respect to the Hermite 
process (see, e.g., [20]), for 𝑡 ≥ 0,

𝑋 (𝜃 )
𝑡 = 𝑑 (𝐻)

∫
ℝ𝑞
𝑑𝐵(𝑦1) . . . 𝑑𝐵(𝑦𝑞)(︃∫ 𝑡

0
𝑑𝑢𝑒−𝜃 (𝑡−𝑢) (𝑢 − 𝑦1)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ . . . (𝑢 − 𝑦𝑞)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+

)︃
= 𝐼𝑞 (ℎ𝜃,𝑡 ),
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where, for every 𝑦1, . . . , 𝑦𝑞 ∈ ℝ,

ℎ𝜃,𝑡 (𝑦1, . . . , 𝑦𝑞) = 𝑑 (𝐻)
∫ 𝑡

0
𝑑𝑢𝑒−𝜃 (𝑡−𝑢) (𝑢 − 𝑦1)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ . . . (𝑢 − 𝑦𝑞)

−
(︁

1
2+

1−𝐻
𝑞

)︁
+ .

(11)
Therefore,

𝑋𝑡 = 𝐼𝑞 (𝑔𝜃,𝑡 ) with 𝑔𝜃,𝑡 =
1 

1 − 𝜃
ℎ𝜃,1 +

𝜃

1 − 𝜃
ℎ𝜃,𝑡 . (12)

From (9) and the analysis of the HOU process (see, e.g., [16], [19] or [20]), we can 
easily deduce the following properties of the OU-HOU process.
Proposition 1. Let (𝑋𝑡 , 𝑡 ≥ 0) be the solution to (1). Let 𝑇 > 0 be arbitrary. Then:

1. For every 𝑝 ≥ 1,
sup 

𝑡∈[0,𝑇 ]

E|𝑋𝑡 |
𝑝 ≤ 𝐶𝑇,𝑝, 𝜃 < ∞. (13)

2. For every 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 and for every 𝑝 ≥ 1,

E|𝑋𝑡 − 𝑋𝑠 |
𝑝 ≤ 𝐶𝑇,𝑝, 𝜃 |𝑡 − 𝑠 |

𝑝𝐻 . (14)

In particular, the sample paths 𝑡 → 𝑋𝑡 are almost surely Hölder continuous of 
order 𝛿, for every 𝛿 ∈ (0, 𝐻).

Proof. Let 𝑇 > 0 and let 𝑋 (𝜃 ) be the HOU process given by (10). From Proposition 
3.3 in [20], we know that for all 𝑝 ≥ 1,

sup 
0≤𝑡≤𝑇

E|𝑋 (𝜃 )
𝑡 |𝑝 ≤ 𝐶𝑇,𝑝, 𝜃 . (15)

Thus the bound (13) follows directly from (9). To see point 2, we have, for every 
0 ≤ 𝑠 < 𝑡 ≤ 𝑇 ,

𝑋 (𝜃 )
𝑡 − 𝑋 (𝜃 )

𝑠 = −𝜃

∫ 𝑡

𝑠
𝑋 𝜃 )
𝑢 𝑑𝑢 + 𝑍𝐻,𝑞

𝑡 − 𝑍𝐻,𝑞
𝑠 .

Thus, for every 𝑝 ≥ 1, by using (15),

E
⃓⃓⃓
𝑋 (𝜃 )
𝑡 − 𝑋 (𝜃 )

𝑠

⃓⃓⃓𝑝
≤ 𝐶𝑇,𝑝, 𝜃

(︃
E
⃓⃓⃓
⃓
∫ 𝑡

𝑠
𝑋𝑢𝑑𝑢

⃓⃓⃓
⃓
𝑝

+ E
⃓⃓⃓
𝑍
𝐻,𝑞
𝑡 − 𝑍

𝐻,𝑞
𝑠

⃓⃓⃓𝑝)︃
≤ 𝐶𝑇,𝑝, 𝜃

(︁
|𝑡 − 𝑠 |𝑝 + |𝑡 − 𝑠 |𝑝𝐻

)︁
≤ 𝐶𝑇,𝑝, 𝜃 |𝑡 − 𝑠 |

𝑝𝐻 .

□

3 Quadratic variation of the OU-HOU process

For the stochastic process (𝑋𝑡 , 𝑡 ≥ 0) given by (1), we use the notation

𝑉𝑁 (𝑋) =
1 
𝑁

𝑁−1∑︂
𝑖=0 

[︄(︁
𝑋𝑡𝑖+1 − 𝑋𝑡𝑖

)︁2

𝑁−2𝐻 − 1

]︄
, (16)
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where 𝑡𝑖 = 𝑖
𝑁 for 𝑖 = 0, 1, . . . , 𝑁 . This is known in the literature as the (centered and 

renormalized) quadratic variation of the process 𝑋 associated to the uniform partition 
of the unit interval [0, 1].

Our estimators for the parameters 𝜃 and 𝐻 that appear in the model (1)--(3) will be 
constructed in terms of the sequence (𝑉𝑁 (𝑋), 𝑁 ≥ 1) given by (16), where 𝑋 is the 
OU-HOU process from (1) or (8). The asymptotic properties of these estimators are 
related to the limit behavior of 𝑉𝑁 (𝑋) as 𝑁 → ∞. We therefore analyze its asymptotic 
behavior.

We will state and prove a general result concerning the almost sure convergence of 
random variables in the Wiener chaos. This result implies that convergence in 𝐿2(Ω)
with an explicit power rate 𝛾 > 0, of a sequence of random variables in a fixed chaos 
implies almost sure convergence (without the need to pass to a subsequence).
Lemma 1. Let 𝑝 ≥ 1. Consider the sequence (𝐹𝑁 , 𝑁 ≥ 1) where 𝐹𝑁 = 𝐼𝑝 ( 𝑓𝑁 ) with 
𝑓𝑁 ∈ 𝐿2(ℝ𝑝) for every 𝑛 ≥ 1. Let 𝐹 = 𝐼𝑝 ( 𝑓 ) with 𝑓 ∈ 𝐿2(ℝ𝑝). Assume that, for 𝑁
large enough, there exists a constant 𝐶 ≥ 0, such that

E|𝐹𝑁 − 𝐹 |2 ≤ 𝐶𝑁−𝛾 , (17)

with 𝛾 > 0. Then the sequence (𝐹𝑁 , 𝑁 ≥ 1) converges almost surely, as 𝑁 → ∞, 
to 𝐹.

Proof. By (17) and the hypercontractivity property of random variables in Wiener 
chaos (see, e.g., [15]), we have for every 𝑝 ≥ 1,

E|𝐹𝑁 − 𝐹 |𝑝 ≤ 𝐶𝑁−𝛾 𝑝
2 , (18)

for 𝑁 sufficiently large. Let 0 < 𝛿 < 𝛾
2 . We have by (18), for any 𝑝 ≥ 1,∑︂

𝑁≥1
𝑃
(︁
|𝐹𝑁 − 𝐹 | ≥ 𝑁−𝛿

)︁
≤ 𝐶

∑︂
𝑁≥1

𝑁 𝛿𝑝E|𝐹𝑁 − 𝐹 |𝑝

≤ 𝐶
∑︂
𝑁≥1

𝑁 ( 𝛿− 𝛾
2 ) 𝑝

and the above series is convergent for 𝑝 large. The Borel–Cantelli lemma gives the 
desired almost sure convergence. □

We now deduce the asymptotic behavior of the quadratic variation of the OU-HOU 
process. A key element of the proof is the behavior of the quadratic variation of the 
Hermite process 𝑍𝐻,𝑞. We denote, for 𝑁 ≥ 1,

𝑉𝑁 (𝑍𝐻,𝑞) =
1 
𝑁

𝑁−1∑︂
𝑖=0 

⎡
⎢⎣
(︂
𝑍
𝐻,𝑞
𝑡𝑖+1

− 𝑍
𝐻,𝑞
𝑡𝑖

)︂2

𝑁−2𝐻 − 1

⎤
⎥⎦ , (19)

By Proposition 4.1 in [11], we know that, for all 𝑞 ≥ 2,

E
⃓⃓⃓
𝐾𝐻,𝑞𝑁

2−2𝐻
𝑞 𝑉𝑁 (𝑍𝐻,𝑞) − 𝑍𝐻′ ,2

1

⃓⃓⃓2
≤ 𝐶

⎧⎪⎨
⎪⎩
𝑁

4−4𝐻
𝑞 −1, if 𝐻 ∈

(︁ 1
2 ,

3
4
)︁
,

𝑁− 1
2 log(𝑁), if 𝐻 = 3

4 ,

𝑁2𝐻−2, if 𝐻 ∈
(︁ 3

4 , 1
)︁
,

(20)



8 C.P. Diez, C.A. Tudor

where 𝐾𝐻,𝑞 is an explicit strictly positive constant depending on 𝐻, 𝑞 and 𝑍𝐻′ ,2

is a Rosenblatt process (i.e., a Hermite process of order 𝑞 = 2) with self-similarity 

index 𝐻′ = 2(𝐻−1)
𝑞 + 1. In particular, the sequence 

(︂
𝐾𝐻,𝑞𝑁

2−2𝐻
𝑞 𝑉𝑁 (𝑍𝐻,𝑞), 𝑁 ≥ 1

)︂
converges in 𝐿2(Ω) to 𝑍𝐻′ ,2

1 .
From (20), we obtain the following result.

Proposition 2. Let 𝑉𝑁 (𝑋) be given by (16), where 𝑋 is the OU-HOU process given 
by (1). Then, for every 𝑞 ≥ 3,

𝐾𝑞,𝐻𝑁
2−2𝐻

𝑞 𝑉𝑁 (𝑋) →𝑁→∞ 𝑍𝐻′ ,2
1 almost surely and in 𝐿2(Ω),

where 𝑍𝐻′ ,2
1 is a Rosenblatt random variable with the Hurst parameter 𝐻′ = 2(𝐻−1)

𝑞 +1
and 𝐾𝐻,𝑞 is the constant from (20). Moreover,

E
⃓⃓⃓
𝐾𝑞,𝐻𝑁

2−2𝐻
𝑞 𝑉𝑁 (𝑋) − 𝑍𝐻′ ,2

1

⃓⃓⃓2
≤ 𝐶

⎧⎪⎨
⎪⎩
𝑁

4−4𝐻
𝑞 −1, if 𝐻 ∈

(︁ 1
2 ,

3
4
)︁
,

𝑁− 1
2 log(𝑁), if 𝐻 = 3

4 ,

𝑁2𝐻−2, if 𝐻 ∈
(︁ 3

4 , 1
)︁
.

(21)

Proof. We notice that, by (1) and (3),

𝑋𝑡 = −𝜃

∫ 𝑡

0
𝑋𝑠𝑑𝑠 −

∫ 𝑡

0
𝑉𝑠𝑑𝑠 + 𝑍

𝐻,𝑞
𝑡

= 𝑌𝑡 + 𝑍
𝐻,𝑞
𝑡 , (22)

where
𝑌𝑡 = −𝜃

∫ 𝑡

0
𝑋𝑠𝑑𝑠 −

∫ 𝑡

0
𝑉𝑠𝑑𝑠, 𝑡 ≥ 0. (23)

From (6) and (13), it is immediate to see that for every 𝑇 > 0 and 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 and 
for all 𝑝 ≥ 1, with 𝐶 that may depend on 𝑇 , 𝑝, 𝜃,

E|𝑌𝑡 − 𝑌𝑠 |
𝑝 ≤ 𝐶

(︃
E
⃓⃓⃓
⃓
∫ 𝑡

𝑠
𝑋𝑢𝑑𝑢

⃓⃓⃓
⃓
𝑝

+ E
⃓⃓⃓
⃓
∫ 𝑡

𝑠
𝑉𝑢𝑑𝑢

⃓⃓⃓
⃓
𝑝)︃

≤ 𝐶 |𝑡 − 𝑠 |𝑝−1
∫ 𝑡

𝑠
sup 

0≤𝑢≤𝑇
(E|𝑋𝑢 |

𝑝 + E|𝑉𝑢 |
𝑝)𝑑𝑢

≤ 𝐶 |𝑡 − 𝑠 |𝑝 . (24)

Before expanding 𝑉𝑁 (𝑋), we express explicitly the effect of the decomposition 
𝑋𝑡 = 𝑌𝑡 + 𝑍

𝐻,𝑞
𝑡 from Equation (22). For each 𝑖, we write

𝑋𝑡𝑖+1 − 𝑋𝑡𝑖 = (𝑌𝑡𝑖+1 − 𝑌𝑡𝑖 ) + (𝑍𝐻,𝑞
𝑡𝑖+1

− 𝑍𝐻,𝑞
𝑡𝑖

).

Hence

(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖 )
2 = (𝑍𝐻,𝑞

𝑡𝑖+1
− 𝑍𝐻,𝑞

𝑡𝑖
)2 + (𝑌𝑡𝑖+1 − 𝑌𝑡𝑖 )

2 + 2(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖 )(𝑍
𝐻,𝑞
𝑡𝑖+1

− 𝑍𝐻,𝑞
𝑡𝑖

),

and therefore

𝑉𝑁 (𝑋) = 𝑉𝑁 (𝑍𝐻,𝑞)+𝑁2𝐻−1
𝑁−1∑︂
𝑖=0 

(𝑌𝑡𝑖+1−𝑌𝑡𝑖 )
2+2𝑁2𝐻−1

𝑁−1∑︂
𝑖=0 

(𝑌𝑡𝑖+1−𝑌𝑡𝑖 )(𝑍
𝐻,𝑞
𝑡𝑖+1

−𝑍𝐻,𝑞
𝑡𝑖

).
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Multiplying by 𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 and subtracting 𝑍𝐻′,2
1 yield

𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 𝑉𝑁 (𝑋) − 𝑍𝐻′ ,2
1

= 𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 𝑉𝑁 (𝑍𝐻,𝑞) − 𝑍𝐻′ ,2
1 + 𝐾𝑞,𝐻𝑁

2−2𝐻
𝑞 𝑁2𝐻−1

𝑁−1∑︂
𝑖=0 

(︁
𝑌𝑡𝑖+1 − 𝑌𝑡𝑖

)︁2

+ 2𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 𝑁2𝐻−1
𝑁−1∑︂
𝑖=0 

(︁
𝑌𝑡𝑖+1 − 𝑌𝑡𝑖

)︁ (︂
𝑍
𝐻,𝑞
𝑡𝑖+1

− 𝑍
𝐻,𝑞
𝑡𝑖

)︂

= 𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 𝑉𝑁 (𝑍𝐻,𝑞) − 𝑍𝐻′ ,2
1 + 𝐴1,𝑁 + 𝐴2,𝑁 , (25)

with the notations

𝐴1,𝑁 = 𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 𝑁2𝐻−1
𝑁−1∑︂
𝑖=0 

(︁
𝑌𝑡𝑖+1 − 𝑌𝑡𝑖

)︁2 (26)

and

𝐴2,𝑁 = 2𝐾𝐻,𝑞𝑁
2−2𝐻

𝑞 𝑁2𝐻−1
𝑁−1∑︂
𝑖=0 

(︁
𝑌𝑡𝑖+1 − 𝑌𝑡𝑖

)︁ (︂
𝑍𝐻,𝑞
𝑡𝑖+1

− 𝑍𝐻,𝑞
𝑡𝑖

)︂
. (27)

To estimate the term 𝐴1,𝑁 , we notice that, by (24), we have, for every 𝑝 ≥ 1,

E
⃓⃓
𝐴1,𝑁

⃓⃓𝑝
= 𝐾𝐻,𝑞𝑁

(2−2𝐻) 𝑝
𝑞 𝑁 (2𝐻−1) 𝑝E

⃓⃓⃓
⃓⃓𝑁−1∑︂
𝑖=0 

(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖 )
2

⃓⃓⃓
⃓⃓
𝑝

≤ 𝐶𝑁
(2−2𝐻) 𝑝

𝑞 𝑁 (2𝐻−1) 𝑝𝑁 𝑝−1
𝑁−1∑︂
𝑖=0 

E|𝑌𝑡𝑖+1 − 𝑌𝑡𝑖 |
2𝑝

≤ 𝐶𝑁
(2−2𝐻) 𝑝

𝑞 𝑁 (2𝐻−1) 𝑝𝑁 𝑝−1𝑁1−2𝑝 .

Thus
E
⃓⃓
𝐴1,𝑁

⃓⃓𝑝
≤ 𝐶𝑁 (2𝐻−2) 𝑝 (1− 1 

𝑞 ) , (28)

and this converges to zero as 𝑁 → ∞. Concerning the summand 𝐴2,𝑁 , let us notice 
that, by using (10),

𝑌𝑡 = −
𝜃

1 − 𝜃

∫ 𝑡

0
𝑋 (1)
𝑠 𝑑𝑠 +

𝜃2

1 − 𝜃

∫ 𝑡

0
𝑋 (𝜃 )
𝑠 𝑑𝑠 −

∫ 𝑡

0
𝑉𝑠𝑑𝑠,

where 𝑋 (1) , 𝑋 𝜃 ) and 𝑉 are all HOU processes. By using the proof of Proposition 2 in 
[3], we deduce that

E
⃓⃓
𝐴2,𝑁

⃓⃓𝑝
≤ 𝐶𝑁 (2𝐻−2) 𝑝 (1− 1 

𝑞 ) . (29)

The bound (21) is obtained by plugging the estimates (20), (28) and (29) into (25). 
The almost sure convergence is a consequence of Lemma 1, since all the summands 
in the right-hand side of (25) belongs to the 𝑞th Wiener chaos. □
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We will focus in the next sections on the case 𝑞 = 2 (the Rosenblatt process case). 
The particularity of this case is that the limit of the quadratic variation 𝑉𝑁 (𝑋) is 
exactly the driving noise that appears in (1). Let us write separately the result obtained 
in Proposition 2 for 𝑞 = 2.
Corollary 1. Let 𝑞 = 2, 𝜃 > 0 and let (𝑋𝑡 , 𝑡 ≥ 0) given by (1). Then

𝐾𝐻,2𝑁
1−𝐻𝑉𝑁 (𝑋) →𝑁→∞ 𝑍𝐻,2

1 almost surely and in 𝐿2(Ω),

where 𝑍𝐻,2
1 is the value at time 1 of the stochastic process 𝑍𝐻,2 which appears as the 

integrator in (2). Moreover,

E
⃓⃓⃓
𝐾𝐻,2𝑁

1−𝐻𝑉𝑁 (𝑋) − 𝑍𝐻,2
1

⃓⃓⃓2
≤ 𝐶

⎧⎪⎨
⎪⎩
𝑁1−2𝐻 , if 𝐻 ∈

(︁ 1
2 ,

3
4
)︁
,

𝑁− 1
2 log(𝑁), if 𝐻 = 3

4 ,

𝑁2𝐻−2, if 𝐻 ∈
(︁ 3

4 , 1
)︁
.

4 Estimation of the drift parameter

The main goal of this section is to derive an estimator for the drift parameter of our 
Rosenblatt–Ornstein--Hermite process (the HOU process with 𝑞 = 2). We will assume 
for the moment that the Hurst parameter 𝐻 is known (it will also be estimated in 
the next section). We will suppose in the sequel that we have access to the discrete 
observations of the process (𝑋𝑡 , 𝑡 ≥ 0) on the uniform partition of the interval [0, 1]. 
We will start by describing the construction of our estimator and then derive its 
asymptotic properties.

4.1 The definition and the consistency of the estimator
The procedure to derive an estimator for 𝜃 is inspired from the work [10]. Let 𝐻 ∈(︁ 1

2 , 1
)︁
. From (1) and (3), we can write, for every 𝑡 ≥ 0,

𝑋𝑡 = −𝜃

∫ 𝑡

0
𝑋𝑠𝑑𝑠 −

∫ 𝑡

0
𝑉𝑠𝑑𝑠 + 𝑍

𝐻,𝑞
𝑡

= −𝜃

∫ 𝑡

0
𝑋𝑠𝑑𝑠 −

∫ 𝑡

0
𝑋𝑠𝑑𝑠 − 𝜃

∫ 𝑡

0
𝑑𝑠

(︃∫ 𝑠

0
𝑋𝑢𝑑𝑢

)︃
+ 𝑍𝐻,𝑞

𝑡

= −𝜃

∫ 𝑡

0
𝑋𝑠 (1 + 𝑡 − 𝑠)𝑑𝑠 −

∫ 𝑡

0
𝑋𝑠𝑑𝑠 + 𝑍

𝐻,𝑞
𝑡 .

In particular, for 𝑡 = 1,

𝑋1 = −𝜃

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠 −

∫ 1

0
𝑋𝑠𝑑𝑠 + 𝑍

𝐻,𝑞
1 . (30)

Assume that 𝑞 = 2. In this case, we construct an estimator for the drift parameter 𝜃 in 
(1) by using the result in Corollary 1. From (30), with 𝑉𝑁 (𝑋) given by (16),

𝐾𝐻,2𝑁
1−𝐻𝑉𝑁 (𝑋) − 𝑋1 = 𝜃

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠 +

∫ 1

0
𝑋𝑠𝑑𝑠

+ 𝐾𝐻,2𝑁
1−𝐻𝑉𝑁 (𝑋) − 𝑍𝐻,2

1 .
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Since, by Corollary 1,

𝐾𝐻,2𝑁
1−𝐻𝑉𝑁 (𝑋) − 𝑍𝐻,2

1 → 
𝑁→∞

0 almost surely,

we can write (where 𝑎𝑁 ∼ 𝑏𝑁 means that 𝑎𝑁 − 𝑏𝑁 converges to zero almost surely)

𝐾𝐻,2𝑁
1−𝐻𝑉𝑁 (𝑋) − 𝑋1 ∼ 𝜃

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠 +

∫ 1

0
𝑋𝑠𝑑𝑠. (31)

Approximating Lebesque integrals by Riemann sums, the relation (31) leads to the 
definition of the estimator

ˆ︁𝜃𝑁 =
𝐾𝐻,2𝑁

1−𝐻𝑉𝑁 (𝑋) − 𝑋1 −
1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1

1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1) 

. (32)

From the previous results, we deduce the consistency of the above estimator.
Proposition 3. Let 𝐻 ∈

(︁ 1
2 , 1

)︁
and let ˆ︁𝜃𝑁 be given by (32). Then ˆ︁𝜃𝑁 is strongly 

consistent, i.e, ˆ︁𝜃𝑁 → 
𝑁→∞

𝜃 almost surely.

Proof. The result is obtained from Corollary 1, and from the almost sure convergences

1 
𝑁

𝑁−1∑︂
𝑖=0 

𝑋𝑡𝑖+1 → 
𝑁→∞

∫ 1

0
𝑋𝑠𝑑𝑠

and
1 
𝑁

𝑁−1∑︂
𝑖=0 

𝑋𝑡𝑖 (2 − 𝑡𝑖) → 
𝑁→∞

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

□

As a straightforward corollary, we deduce that this quantity is nonzero almost 
surely, which will be important for the estimation procedure.

4.2 The limit distribution of the estimator
In this section, we will derive the limit distribution for the estimator ˆ︁𝜃𝑁 of the drift 
parameter 𝜃. As mentioned above, we assume at this time that the Hurst parameter 𝐻
is known.

We start with a technical lemma which is needed for the proof of the main result 
of this section.
Lemma 2. Let 𝐻 ∈

(︁ 1
2 , 1

)︁
and let, for 𝑁 ≥ 1,

𝑈𝑁 =
1 
𝑁

𝑁−1∑︂
𝑖=0 

𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1). (33)

Then

E
⃓⃓⃓
⃓𝑈𝑁 −

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

⃓⃓⃓
⃓
2

≤ 𝐶𝑁−2𝐻 . (34)

In particular, the sequence (𝑈𝑁 , 𝑁 ≥ 1) converges to 
∫ 1

0 𝑋𝑠 (2 − 𝑠)𝑑𝑠 in 𝐿2(Ω).
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Proof. We can write

𝑈𝑁 −

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

=
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(︁
𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1) − 𝑋𝑠 (2 − 𝑠)

)︁
𝑑𝑠

=
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑋𝑡𝑖+1 − 𝑋𝑠)(2 − 𝑡𝑖+1)𝑑𝑠 −
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

𝑋𝑠 (𝑡𝑖+1 − 𝑠)𝑑𝑠.

Using the elementary inequality |𝑎 − 𝑏 |2 ≤ 2(𝑎2 + 𝑏2), we obtain

E
⃓⃓⃓
⃓𝑈𝑁 −

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

⃓⃓⃓
⃓
2

≤ 2E |𝐴𝑁 |2 + 2E |𝐵𝑁 |2 ,

where 𝐴𝑁 and 𝐵𝑁 denote the two sums above.
Next, for each 𝑖, we use Jensen/Cauchy–Schwarz inequality to control the square 

of the integral
(︃∫ 𝑡𝑖+1

𝑡𝑖

𝑌𝑖,𝑠 𝑑𝑠

)︃2
≤ (𝑡𝑖+1 − 𝑡𝑖)

∫ 𝑡𝑖+1

𝑡𝑖

𝑌2
𝑖,𝑠 𝑑𝑠 =

1 
𝑁

∫ 𝑡𝑖+1

𝑡𝑖

𝑌2
𝑖,𝑠 𝑑𝑠,

and summing over 𝑖 gives

E|𝐴𝑁 |2 ≤

𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

E
[︁
(𝑋𝑡𝑖+1 − 𝑋𝑠)

2]︁(2 − 𝑡𝑖+1)
2 𝑑𝑠.

Similarly,

E|𝐵𝑁 |2 ≤

𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

E
[︁
𝑋2
𝑠

]︁
(𝑡𝑖+1 − 𝑠)

2 𝑑𝑠.

By using the inequalities (13) and (14) in Proposition 1,

E
⃓⃓⃓
⃓𝑈𝑁 −

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

⃓⃓⃓
⃓
2

≤ 𝐶

[︄
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑡𝑖+1 − 𝑠)
2𝐻𝑑𝑠 +

𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑡𝑖+1 − 𝑠)
2𝑑𝑠

]︄
.

Since 2 > 2𝐻 and 𝑡𝑖+1 − 𝑠 ≤ 1/𝑁 , we have (𝑡𝑖+1 − 𝑠)
2 ≤ (𝑡𝑖+1 − 𝑠)

2𝐻 , so

𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑡𝑖+1 − 𝑠)
2 𝑑𝑠 ≤

𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑡𝑖+1 − 𝑠)
2𝐻 𝑑𝑠.

Thus,

E
⃓⃓⃓
⃓𝑈𝑁 −

∫ 1

0
𝑋𝑠 (2 − 𝑠) 𝑑𝑠

⃓⃓⃓
⃓
2

≤ 𝐶
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑡𝑖+1 − 𝑠)
2𝐻 𝑑𝑠 ≤ 𝐶𝑁−2𝐻 ,
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which concludes the proof. □

Theorem 1. Assume 𝐻 ∈
(︁ 1

2 ,
2
3
)︁

and let ˆ︁𝜃𝑁 be given by (32). Then

𝐸𝐻,2𝑁
𝐻− 1

2

(︃∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

)︃(︂ˆ︁𝜃𝑁 − 𝜃
)︂
→

(𝑑)
𝑁→∞

𝑍,

where 𝐸𝐻,2 > 0 is an explicit constant depending only on 𝐻, and 𝑍 is a standard 
normal random variable.

Proof. First we prove that, with 𝑈𝑁 given by (33),

𝐸𝐻,2𝑁
𝐻− 1

2𝑈𝑁

(︂ˆ︁𝜃𝑁 − 𝜃
)︂
→

(𝑑)
𝑁→∞

𝑍, (35)

where 𝐸𝐻,2 > 0 is an explicit constant depending only on 𝐻, and 𝑍 is a standard 
normal random variable. By using (32), with the expression of 𝑋1 taken from (30), we 
can write, for every integer 𝑁 ≥ 1,

ˆ︁𝜃𝑁 − 𝜃 =
𝐾𝐻,2𝑁

1−𝐻𝑉𝑁 (𝑋) − 𝑍𝐻,2
1

1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1) 

+

∫ 1
0 𝑋𝑠𝑑𝑠 −

1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1

1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1) 

+ 𝜃

∫ 1
0 𝑋𝑠 (2 − 𝑠)𝑑𝑠 − 1 

𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1)

1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1) 

:=
𝐾𝐻,2𝑁

1−𝐻𝑉𝑁 (𝑋) − 𝑍𝐻,2
1

𝑈𝑁
+
𝑇1,𝑁

𝑈𝑁
+
𝑇2,𝑁

𝑈𝑁
. (36)

Taking into account the decomposition (25), we get

𝑈𝑁

(︂ˆ︁𝜃𝑁 − 𝜃
)︂
= 𝐾𝐻,2𝑁

1−𝐻𝑉𝑁 (𝑍𝐻,𝑞) − 𝑍𝐻,2
1 + 𝐴1,𝑁 + 𝐴2,𝑁 + 𝑇1,𝑁 + 𝑇2,𝑁 ,

with 𝐴1,𝑁 , 𝐴2,𝑁 defined by (26) and (27), respectively. It has been shown in Proposition 
3 in [1] (see also Theorem 3.3 in [21]) that, for 𝐻 ∈

(︁ 1
2 ,

2
3
)︁
,

𝐸𝐻,2𝑁
𝐻− 1

2

(︂
𝐾𝐻,2𝑁

1−𝐻𝑉𝑁 (𝑍𝐻,𝑞) − 𝑍𝐻,2
1

)︂
→

(𝑑)
𝑁→∞

𝑁 (0, 1),

where 𝐸𝐻,2 > 0 is a constant. To deduce the limit (35), it remains to show that, for 
𝑖 = 1, 2, with 𝑇1,𝑁 , 𝑇2,𝑁 defined by (36), and with 𝐴𝑖,𝑁 given by (26), (27),

𝑁𝐻− 1
2 𝐴𝑖,𝑁 and 𝑁𝐻− 1

2𝑇𝑖,𝑁 →𝑁→∞ 0 in probability. (37)

By using the estimates (28) and (29) with 𝑝 = 1, 𝑞 = 2, we obtain

(E|𝐴1,𝑁 | + E|𝐴2,𝑁 |) ≤ 𝐶𝑁2𝐻− 3
2 ,

and this converges to zero as 𝑁 → ∞ for 𝐻 < 3
4 . By writing

∫ 1

0
𝑋𝑠𝑑𝑠 −

1 
𝑁

𝑁−1∑︂
𝑖=0 

𝑋𝑡𝑖+1 =
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

(𝑋𝑠 − 𝑋𝑡𝑖+1)𝑑𝑠,
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we get

E
⃓⃓⃓
𝑁𝐻− 1

2𝑇1,𝑁

⃓⃓⃓2
= E

⃓⃓⃓
⃓⃓𝑁𝐻− 1

2

(︄∫ 1

0
𝑋𝑠𝑑𝑠 −

1 
𝑁

𝑁−1∑︂
𝑖=0 

𝑋𝑡𝑖+1

)︄⃓⃓⃓
⃓⃓
2

≤ 𝐶𝑁2𝐻−1
𝑁−1∑︂
𝑖=0 

∫ 𝑡𝑖+1

𝑡𝑖

E(𝑋𝑠 − 𝑋𝑡𝑖+1 )
2𝑑𝑠.

By (14), we obtain

E
⃓⃓⃓
𝑁𝐻− 1

2𝑇1,𝑁

⃓⃓⃓2
≤ 𝐶𝑁2𝐻−1 × 𝑁−2𝐻 = 𝐶𝑁−1.

Next, by (34),

E
⃓⃓⃓
𝑁𝐻− 1

2𝑇2,𝑁

⃓⃓⃓2

= E

⃓⃓⃓
⃓⃓𝑁𝐻− 1

2

(︄∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠 −

1 
𝑁

𝑁−1∑︂
𝑖=0 

𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1)

)︄⃓⃓⃓
⃓⃓
2

≤ 𝐶𝑁2𝐻−1 × 𝑁−2𝐻 = 𝐶𝑁−1,

and therefore (37) holds also for 𝑖 = 2. We then obtain (37) and we conclude the proof 
of (35). To get the stated result, we write

𝐸𝐻,2𝑁
𝐻− 1

2

∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠

(︂ˆ︁𝜃𝑁 − 𝜃
)︂

= 𝐸𝐻,2𝑁
𝐻− 1

2𝑈𝑁

(︂ˆ︁𝜃𝑁 − 𝜃
)︂

+ 𝐸𝐻,2𝑁
𝐻− 1

2

(︃∫ 1

0
𝑋𝑠 (2 − 𝑠)𝑑𝑠 −𝑈𝑁

)︃(︂ˆ︁𝜃𝑁 − 𝜃
)︂
.

We show that the last summand from above goes to zero in probability as 𝑁 → ∞. By 

Lemma 2, 𝑁𝐻− 1
2

(︂∫ 1
0 𝑋𝑠 (2 − 𝑠)𝑑𝑠 −𝑈𝑁

)︂
→𝑁→∞ 0 in 𝐿2(Ω) and by Proposition 3, 

ˆ︁𝜃𝑁 − 𝜃 converges to zero almost surely as 𝑁 tends to infinity. □

5 Modified quadratic variation and Gaussian estimators for the Hurst param
eter

In this section, we deal with the estimation of the Hurst parameter of the OU-HOU 
process. In fact, we propose another approach in order to avoid Rosenblatt-type esti
mator for the Hurst index which can be difficult to use for real applications. Instead, 
we rigorously adapt the Ayache–Tudor [3] modified quadratic variation method to 
the Ornstein–Uhlenbeck process driven by Hermite–Ornstein--Uhlenbeck (OU-HOU) 
noise. We first construct the statistic, then prove a central limit theorem (CLT) with an 
explicit rate for the Wasserstein distance by using the known results for the Hermite 
process. Using these results, we derive a strongly consistent and asymptotically normal 
estimator of the Hurst parameter 𝐻 and discuss the implications for the estimation 
of 𝜃.
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5.1 The modified quadratic variation
The construction proposed in [3] is based on some special increments of the Hermite 
process along the dyadic partition of the interval [0, 1]. We now introduce the dyadic 
discretization that will be used to construct localized increments of the OU-HOU 
process. This discretization is designed to isolate the diagonal singularity of the 
Hermite kernel and to produce independent contributions across disjoint windows.
Definition 1 (Dyadic anchors and index sets). Fix parameters 𝛽 ∈ (0, 1) and 𝛾 ∈

(0, 𝛽). For each integer 𝑁 ≥ 1, define

𝐿𝑁 :=
{︂

0, 1, . . . ,
⌊︁
2𝑁 (1−𝛽)⌋︁ − 1

}︂
, 𝐿𝑁,𝛾 := 𝐿𝑁 ∩

[︂
1, 

⌊︁
2𝑁𝛾

⌋︁]︂
. (38)

For 𝑙 ∈ 𝐿𝑁 , the dyadic anchor is

𝑒𝑙,𝑁 ,𝛽 := 2−𝑁
⌊︁
2𝑁𝛽

⌋︁
· 𝑙. (39)

Thus 𝐿𝑁 indexes the admissible anchors at resolution 2−𝑁 , and 𝐿𝑁,𝛾 selects the first 
of them, ⌊2𝑁𝛾⌋. Note that |𝐿𝑁,𝛾 | ≍ 2𝑁𝛾 as 𝑁 → ∞.
Definition 2 (Localized increments). For each 𝑙 ∈ 𝐿𝑁,𝛾 , define the increment of the 
OU-HOU process 𝑋 of length 2−𝑁 anchored at 𝑒𝑙,𝑁 ,𝛽 by

Δ𝑋𝑙,𝑁 := 𝑋𝑒𝑙,𝑁,𝛽+2−𝑁 − 𝑋𝑒𝑙,𝑁,𝛽 . (40)

Similarly, define the corresponding increment of the Hermite driver 𝑍𝐻,𝑞 by

Δ𝑍𝑙,𝑁 := 𝑍𝐻,𝑞

𝑒𝑙,𝑁,𝛽+2−𝑁 − 𝑍𝐻,𝑞
𝑒𝑙,𝑁,𝛽

. (41)

By construction, if 𝑙 ≠ 𝑘 then the intervals [𝑒𝑙,𝑁 ,𝛽 , 𝑒𝑙,𝑁 ,𝛽+2−𝑁 ] and [𝑒𝑘,𝑁 ,𝛽 , 𝑒𝑘,𝑁 ,𝛽+

2−𝑁 ] are disjoint.
With these localized increments, we compose the modified quadratic variation of 

the OU-HOU process 𝑋 . We set, for each 𝑁 ≥ 1,

𝑉𝑁,mod (𝑋) =
22𝐻𝑁√︁
|𝐿𝑁,𝛾 |

∑︂
𝑙∈𝐿𝑁,𝛾

(︁
(Δ𝑋𝑙,𝑁 )

2 − E(Δ𝑍𝑙,𝑁 )
2)︁

=
22𝐻𝑁√︁
|𝐿𝑁,𝛾 |

∑︂
𝑙∈𝐿𝑁,𝛾

(︁
(Δ𝑋𝑙,𝑁 )

2 − 2−2𝐻𝑁
)︁
. (42)

Similarly, we define the modified quadratic variation of the Hermite process

𝑉𝑁,mod (𝑍
𝐻,𝑞) =

22𝐻𝑁√︁
|𝐿𝑁,𝛾 |

∑︂
𝑙∈𝐿𝑁,𝛾

(︁
(Δ𝑍𝑙,𝑁 )

2 − 2−2𝐻𝑁
)︁
.

We will use the Wasserstein metric to evaluate the distance between probability 
distributions. Let us recall its definition. Let

𝒜 = {ℎ : ℝ → ℝ, ℎ is Lipschitz continuous with ∥ℎ∥Lip ≤ 1}
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and let 𝐹, 𝐺 be random variables such that ℎ(𝐹), ℎ(𝐺) ∈ 𝐿1(Ω) for every ℎ ∈ 𝒜. 
Then the Wasserstein distance between the probability distributions of 𝐹 and 𝐺 is 
defined by

𝑑𝑊 (𝑃𝐹 , 𝑃𝐺) = sup 
ℎ∈𝒜

|Eℎ(𝐹) − Eℎ(𝐺) | . (43)

We denoted by ∥ℎ∥Lip the Lipschitz norm of ℎ given by

∥ℎ∥Lip = sup 
𝑥,𝑦∈ℝ,𝑥≠𝑦

|ℎ(𝑥) − ℎ(𝑦) |

|𝑥 − 𝑦 | 
.

The behavior of the sequence (𝑉𝑁,mod (𝑍
𝐻,𝑞), 𝑁 ≥ 1) has been analyzed in [3]. 

We have the following result:

𝑉𝑁,mod (𝑍
𝐻,𝑞) →(𝑑) 𝑁

(︂
0,E|𝑍𝐻,𝑞

1 |4 − 1
)︂
, (44)

and for 𝑁 large enough,

𝑑𝑊

(︂
𝑉𝑁,mod (𝑍

𝐻,𝑞), 𝑁
(︂

0,E|𝑍
𝐻,𝑞
1 |4 − 1

)︂)︂
≤ 𝐶2− 𝑁𝛾

2 . (45)

From the above result, we deduce the behavior of the modified variation of the 
OU-HOU process.
Proposition 4. Let 𝑋 be given by (8), and let us consider the sequence (𝑉𝑁,mod (𝑋),
𝑁 ≥ 1) given by (42). Then

𝑉𝑁,mod (𝑋) →
(𝑑) 𝑁

(︂
0,E|𝑍

𝐻,𝑞
1 |4 − 1

)︂
,

and for 𝑁 large enough,

𝑑𝑊

(︂
𝑉𝑁,mod (𝑋), 𝑁

(︂
0,E|𝑍𝐻,𝑞

1 |4 − 1
)︂)︂

≤ 𝐶2− 𝑁𝛾

2 .

Proof. We follow the idea of the proof of Proposition 2, based on the decomposition 
(20). From the formula (20), we get

𝑉𝑁,mod (𝑋) = 𝑉𝑁,mod (𝑍
𝐻,𝑞) + 𝐵1,𝑁 + 𝐵2,𝑁 ,

where
𝐵1,𝑁 =

22𝐻𝑁√︁
|𝐿𝑁,𝛾 |

∑︂
𝑙∈𝐿𝑁,𝛾

(Δ𝑌𝑙,𝑁 )
2,

and
𝐵2,𝑁 = 2

22𝐻𝑁√︁
|𝐿𝑁,𝛾 |

∑︂
𝑙∈𝐿𝑁,𝛾

(Δ𝑌𝑙,𝑁 )(Δ𝑍𝑙,𝑁 ),

with the notation Δ𝑌𝑙,𝑁 := 𝑌𝑒𝑙,𝑁,𝛽+2−𝑁 − 𝑌𝑒𝑙,𝑁,𝛽 , where 𝑌 is given by (23). Next, the 
asymptotic behavior of 𝑉𝑁,mod (𝑍

𝐻,𝑞) is given by (44) and (45). On the other hand, 
by using the calculations in the proof of Proposition 7 in [3], we can prove that

E|𝐵1,𝑁 | ≤ 𝐶2(2𝐻−2)𝑁+ 𝑁𝛾

2 and E|𝐵2,𝑁 | ≤ 𝐶2(𝐻−1)𝑁+ 𝑁𝛾

2 . (46)

The estimate (46), combined with (44) and (45), gives the conclusion. □
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5.2 On the estimation of the Hurst and drift parameters

Using Proposition 4 and a standard procedure, we can define an estimator for the Hurst 
index of the OU-HOU process which solves the stochastic differential equation (1). 
That is, we let

𝑆𝑁 (𝑋) =
1 

|𝐿𝑁,𝛾 |

∑︂
𝑙∈𝐿𝑁,𝛾

(Δ𝑋𝑙,𝑁 )
2, 𝑁 ≥ 1,

and ˆ︁𝐻𝑁 (𝑋) = −
log 𝑆𝑁 (𝑋)

2𝑁 log(2) 
, 𝑁 ≥ 1. (47)

Since the OU-HOU process has a structure similar to that of the standard HOU process 
(in the sense that both can be written as the sum of the Hermite process plus another 
process with nice simple paths, see (20) and (24)), we can follow Section 6 in [3] to get 
the asymptotic properties of the estimator (47). We will have that ˆ︁𝐻𝑁 (𝑋) is strongly 
consistent, i.e., ˆ︁𝐻𝑁 (𝑋) →𝑁→∞ 𝐻 almost surely, (48)

and
2𝑁 log(2)

√︂
|𝐿𝑁,𝛾 |

(︂
𝐻 − ˆ︁𝐻𝑁 (𝑋)

)︂
→

(𝑑)
𝑁→∞

𝑁
(︂

0,E|𝑍
𝐻,𝑞
1 |4 − 1

)︂
.

From the above considerations and the expression of the estimator (32), we can deduce 
a new estimator for the drift parameter 𝜃 in the model (1) when the Hurst parameter 
is unknown. We just have to plug in the Hurst estimator (47) into (32). That is, we set, 
for every 𝑁 ≥ 1,

ˆ︁𝜃1,𝑁 =
𝐾 ˆ︁𝐻𝑁 ,2𝑁

1− ˆ︁𝐻𝑁𝑉𝑁 (𝑋) − 𝑋1 −
1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1

1 
𝑁

∑︁𝑁−1
𝑖=0 𝑋𝑡𝑖+1 (2 − 𝑡𝑖+1) 

. (49)

We observe that the above estimator (49) can be constructed from the observation 
of the OU-HOU process 𝑋 at discrete times. In practice, we need the data 𝑋𝑡𝑖 , 𝑖 =
1, . . . , 𝑁 , with 𝑡𝑖 = 𝑖

𝑁 and the observation of 𝑋 at the dyadic anchors given by 
(39). It can be observed, by following the proofs in [21], that the constant 𝐾𝐻,2
depends continuously on the Hurst parameter 𝐻. Thus, by taking into account (48) 
and Proposition 3, we deduce that ˆ︁𝜃1,𝑁 given by (49) is a consistent estimator for 𝜃
when 𝐻 is unknown, i.e., it converges in probability, as 𝑁 → ∞, to the drift parameter 
𝜃.

Acknowledgments

We would like to thank an anonymous referee for helping us to improve the paper.

Funding

C. Tudor acknowledges support from the ANR project SDAIM 22-CE40-0015, Math
AMsud project 240037 EXPLORE-SDE and by the Ministry of Research, Innovation 
and Digitalization (Romania), grant CF-194-PNRR-III-C9-2023.



18 C.P. Diez, C.A. Tudor

References

[1] Assaad, O., Tudor, C.A.: Parameter identification for the Hermite Ornstein–Uhlenbeck 
process. Stat. Inference Stoch. Process. 23, 251--270 (2020) MR4123924. https://doi.org/
10.1007/s11203-020-09219-z

[2] Assaad, O., Diez, C.-P., Tudor, C.A.: Generalized Wiener–Hermite integrals and rough 
non-Gaussian Ornstein–Uhlenbeck process. Stoch. Int. J. Probab. Stoch. Process. 95(7), 
1--20 (2023) MR4557678. https://doi.org/10.1080/17442508.2022.2068955

[3] Ayache, A., Tudor, C.A.: Asymptotic normality for a modified quadratic variation of 
the Hermite process. Bernoulli 30(2), 1154--1176 (2024) MR4699548. https://doi.org/10.
3150/23-bej1627

[4] Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models 
and some of their uses in financial economics. J. R. Stat. Soc., Ser. B Stat. Methodol. 63(2), 
167--241 (2001) MR1841412. https://doi.org/10.1111/1467-9868.00282

[5] Barndorff-Nielsen, O.E., Veraart, A.: Stochastic volatility of volatility and variance risk 
premia. J. Financ. Econom. 11(1), 1--46 (2013) 

[6] Beghin, L., Cristofaro, L., Mishura, Y.: A class of processes defined in the white noise 
space through generalized fractional operators. Stoch. Process. Appl. 178, 104494 (2024) 
MR4799860. https://doi.org/10.1016/j.spa.2024.104494

[7] Bercu, B., Proia, F., Savy, N.: On Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck 
processes. Stat. Probab. Lett. 85, 36--44 (2014) MR3157879. https://doi.org/10.1016/j.
spl.2013.11.002

[8] Bock, W., Cristofaro, L.: Characterization and analysis of generalized grey incom
plete gamma noise. Stochastics,97(8) 1--17 (2024) MR4994219. https://doi.org/10.1080/
17442508.2024.2383619

[9] Bock, W., Desmettre, S., da Silva, J.L.: Integral representation of generalized grey Brow
nian motion. Stochastics 92(4), 552--565 (2020) MR4115989. https://doi.org/10.1080/
17442508.2019.1641093

[10] Coupek, P., Kriz, P., Maslowski, B.: Parameter estimation and singularity of laws on the 
path space for sdes driven by Rosenblatt processes. Stoch. Process. Appl. 179, 104499 
(2025) MR4810212. https://doi.org/10.1016/j.spa.2024.104499

[11] Diez, C.-P., Tudor, C.A.: Non-central limit theorem for large Wishart matrices with Her
mite entries. J. Stoch. Anal. 2(1), 2 (2021) MR4213892

[12] El Onsy, B., Es-Sebaiy, K., Viens, F.G.: Parameter estimation for a partially observed 
Ornstein–Uhlenbeck process with long-memory noise. Stochastics 89(2), 431--468 (2017) 
MR3590429. https://doi.org/10.1080/17442508.2016.1248967

[13] Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 
933--949 (2018) MR3805308. https://doi.org/10.1080/14697688.2017.1393551

[14] Heston, S.: A closed-form solution for options with stochastic volatility with applications 
to bond and currency options. Rev. Financ. Stud. 6(2), 327--343 (1993) MR3929676. 
https://doi.org/10.1093/rfs/6.2.327

[15] Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s 
Method to Universality. Cambridge University Press (2012) MR2962301. https://doi.org/
10.1017/CBO9781139084659

[16] Nourdin, I., Tran, D.: Statistical inference for Vasicek-type model driven by Hermite 
processes. Stoch. Process. Appl. 129(10), 3774--3791 (2019) MR3997661. https://doi.
org/10.1016/j.spa.2018.10.005

[17] Nualart, D.: Malliavin Calculus and Related Topics, 2nd edn. Springer, New York (2006) 
MR2200233

http://www.ams.org/mathscinet-getitem?mr=4123924
https://doi.org/10.1007/s11203-020-09219-z
https://doi.org/10.1007/s11203-020-09219-z
http://www.ams.org/mathscinet-getitem?mr=4557678
https://doi.org/10.1080/17442508.2022.2068955
http://www.ams.org/mathscinet-getitem?mr=4699548
https://doi.org/10.3150/23-bej1627
https://doi.org/10.3150/23-bej1627
http://www.ams.org/mathscinet-getitem?mr=1841412
https://doi.org/10.1111/1467-9868.00282
http://www.ams.org/mathscinet-getitem?mr=4799860
https://doi.org/10.1016/j.spa.2024.104494
http://www.ams.org/mathscinet-getitem?mr=3157879
https://doi.org/10.1016/j.spl.2013.11.002
https://doi.org/10.1016/j.spl.2013.11.002
http://www.ams.org/mathscinet-getitem?mr=4994219
https://doi.org/10.1080/17442508.2024.2383619
https://doi.org/10.1080/17442508.2024.2383619
http://www.ams.org/mathscinet-getitem?mr=4115989
https://doi.org/10.1080/17442508.2019.1641093
https://doi.org/10.1080/17442508.2019.1641093
http://www.ams.org/mathscinet-getitem?mr=4810212
https://doi.org/10.1016/j.spa.2024.104499
http://www.ams.org/mathscinet-getitem?mr=4213892
http://www.ams.org/mathscinet-getitem?mr=3590429
https://doi.org/10.1080/17442508.2016.1248967
http://www.ams.org/mathscinet-getitem?mr=3805308
https://doi.org/10.1080/14697688.2017.1393551
http://www.ams.org/mathscinet-getitem?mr=3929676
https://doi.org/10.1093/rfs/6.2.327
http://www.ams.org/mathscinet-getitem?mr=2962301
https://doi.org/10.1017/CBO9781139084659
https://doi.org/10.1017/CBO9781139084659
http://www.ams.org/mathscinet-getitem?mr=3997661
https://doi.org/10.1016/j.spa.2018.10.005
https://doi.org/10.1016/j.spa.2018.10.005
http://www.ams.org/mathscinet-getitem?mr=2200233


OU process driven by the HOU process 19

[18] Pipiras, V., Taqqu, M.S.: Long-Range Dependence and Self-Similarity. Cambridge Se
ries in Statistical and Probabilistic Mathematics. Cambridge University Press (2017) 
MR3729426

[19] Slaoui, M., Tudor, C.A.: Behavior with respect to the Hurst index of the Wiener--
Hermite integrals and application to spdes. J. Math. Anal. Appl. 479(1), 350--383 (2019) 
MR3987039. https://doi.org/10.1016/j.jmaa.2019.06.031

[20] Tudor, C.A.: Non-Gaussian Selfsimilar Stochastic Processes. SpringerBriefs in Probability 
and Mathematical Statistics. Springer (2023) MR4647498. https://doi.org/10.1007/978-
3-031-33772-7

[21] Tudor, C.A., Viens, F.G.: Variations and estimators for self-similarity parameters via 
Malliavin calculus. Ann. Probab. 37, 2093--2134 (2009) MR2573552. https://doi.org/10.
1214/09-AOP459

[22] Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian motion. Phys. Rev. 36, 
823--841 (1930) 

[23] Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5, 
177--188 (1977) 

http://www.ams.org/mathscinet-getitem?mr=3729426
http://www.ams.org/mathscinet-getitem?mr=3987039
https://doi.org/10.1016/j.jmaa.2019.06.031
http://www.ams.org/mathscinet-getitem?mr=4647498
https://doi.org/10.1007/978-3-031-33772-7
https://doi.org/10.1007/978-3-031-33772-7
http://www.ams.org/mathscinet-getitem?mr=2573552
https://doi.org/10.1214/09-AOP459
https://doi.org/10.1214/09-AOP459

	Introduction
	Hermite processes and Hermite–Ornstein–Uhlenbeck processes
	Quadratic variation of the OU-HOU process
	Estimation of the drift parameter
	The definition and the consistency of the estimator
	The limit distribution of the estimator

	Modified quadratic variation and Gaussian estimators for the Hurst parameter
	The modified quadratic variation
	On the estimation of the Hurst and drift parameters


