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Abstract We consider the Black–Scholes model of financial market modified to capture the
stochastic nature of volatility observed at real financial markets. For volatility driven by the
Ornstein–Uhlenbeck process, we establish the existence of equivalent martingale measure in
the market model. The option is priced with respect to the minimal martingale measure for the
case of uncorrelated processes of volatility and asset price, and an analytic expression for the
price of European call option is derived. We use the inverse Fourier transform of a characteristic
function and the Gaussian property of the Ornstein–Uhlenbeck process.

Keywords Financial markets, stochastic volatility, Ornstein–Uhlenbeck process, option
pricing
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1 Introduction

One of the promising directions of enhancement of the classical Black–Scholes model
is construction and research of diffusion models with volatility of risky asset governed
by a stochastic process. Empirical studies [7, 11] evidence in favor of the fact that
the classical model with constant volatility is unable to capture important features
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of volatility observed in real financial markets. This drawback of the Black–Scholes
model has been widely investigated and to some extent eliminated by the extension
of the theory in three directions: models with time-dependent deterministic volatility,
models with state-dependent volatility, and models with stochastic volatility. The first
and second of these categories may be viewed as intermediate between the classical
model and third category, although equipping the market with certain constraints (the
most essential is the limiting time period under consideration) allow less complex
models to produce results of acceptable precision.

Despite recent popularity of the stochastic volatility modification of the Black–
Scholes theory, the range of models under consideration is quite narrow. One of the
first models of such a type is presented in [6], where the authors assume the volatility
of the price of risky asset to be governed by the square root of the geometric Brow-
nian motion. An expression for the price of European call option is derived under
the following assumption: the volatility process is driven by a Brownian motion in-
dependent of the Brownian motion governing the price of risky asset. In [16], the
authors choose the Ornstein-Uhlenbeck (OU) process to drive the volatility. The OU
process is mean-reverting, and there is a strong evidence that the volatility in real fi-
nancial markets has such a feature [4, 3]. Under this assumption, the authors of [16]
describe the distribution of the price of risky asset and apply it to derive an estimate
of the price of European call option. As an alternative, there is an option to choose the
Cox–Ingersoll–Ross process to govern the volatility process [4, 3]. It is worth men-
tioning that although all cited works contain some significant results, they rely upon
simplified models of real-world volatility process (e.g., ignoring the mean-reversion
property). We remark that there is a vast amount of further investigations that con-
sider more sophisticated and thus more realistic models. An extensive overview of
these results is given in [14].

Nonnegativity is another desirable feature of the process modeling volatility. One
of possible choices is to use the exponential function of the OU process (see [10, 13],
and references therein).

Questions of existence of equivalent (local) martingale measures are investigated
in different frameworks and different generality in [3, 5, 8, 17]. Often, after spec-
ifying the model, the authors state that a risk-neutral measure exists and continue
investigation in the risk-neutral world without defining the measure.

A significant part of works (including aforementioned) use the Fourier transform
to derive an analytical representation of the price of European call option. A great
deal of information about developments in application of the Fourier transform to
option pricing problems can be found in [12].

Our work investigates the market defined by a diffusion model with stochastic
volatility being an arbitrary function governed by the Ornstein–Uhlenbeck process.
Under general setting and quite mild assumptions, we prove that the market satisfies
two distinct no-arbitrage properties for different classes of trading strategies. For the
special case of uncorrelated Wiener processes, we derive an analytical expression for
the price of European call option.

This paper is structured as follows: in Section 2, we define a general model. In
Section 3, we present definitions and preliminary results necessary for further analy-
sis. In Section 4, we investigate matters of existence of equivalent (local) martingale
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measures and arbitrage properties of the general model. In Section 5, we define a
particular case of the general model and raise the problem of pricing European call
option. Section 6 covers the derivation of an analytical expression for the option price.

2 Diffusion model with stochastic volatility governed by Ornstein–Uhlenbeck
process

Let {Ω,F , F = {F (B,W)
t , t ≥ 0},P} be a complete probability space with filtration

generated by correlated Wiener processes {Bt , Wt , 0 ≤ t ≤ T }. We consider the
model of the market where one risky asset is traded, its price evolves according to
the geometric Brownian motion {St , 0 ≤ t ≤ T }, and its volatility is driven by a
stochastic process. More precisely, the market is described by the pair of stochastic
differential equations

dSt = μStdt + σ(Yt )StdBt , (1)

dYt = −αYtdt + kdWt . (2)

Denote by S0 = S and Y0 = Y the deterministic initial values of the processes
specified by Eqs. (1)–(2).

In Sections 2–4, we impose the following assumptions:

(A1) The Wiener processes B and W are correlated with correlation coefficient ρ ∈
[−1; 1], that is, dBtdWt = ρdt ;

(A2) the volatility function σ : R → R+ is measurable, bounded away from zero by
a constant c, that is,

σ(x) ≥ c > 0, x ∈ R,

and satisfies the conditions
∫ T

0 σ 2(Yt )dt < ∞ a.s.;

(A3) the coefficients α, μ, and k are positive.

For example, the conditions mentioned in assumption (A2) are satisfied for a mea-
surable function σ(x) such that c ≤ σ 2(x) ≤ C for x ∈ R and some constants
0 < c < C. Moreover, given the square integrability of σ(Ys), the solution of the
differential equation (1) is given by

St = S0 exp

(
μt − 1

2

∫ t

0
σ 2(Ys)ds +

∫ t

0
σ(Ys)dBs

)
, (3)

which yields that St is continuous. Hence, the product σ(Ys)St is square integrable:∫ T

0 σ 2(Yt )S
2
t dt < ∞ a.s.

The unique solution of the Langevin equation (2) Yt is the so-called Ornstein–
Uhlenbeck (OU) process. Its properties make it a suitable tool for modeling the
volatility in financial markets. One of the most important features is the mean-rever-
sion property. The OU process is Gaussian with the following characteristics:

E[Yt ] = Y0 e−αt , Var[Yt ] = k2

2α

(
1 − e−2αt

)
.
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Moreover, the OU process is Markov and admits the explicit representation

Yt = Y0 e−αt +k

∫ t

0
e−α(t−s) dWs.

We can represent the process W in the form

Wt = ρBt +
√

1 − ρ2Zt ,

where Z is a Wiener process independent of B. In what follows, we will use this
representation. Notice that F (B,W) = F (B,Z), where the filtration {F (B,Z)

t , 0 ≤ t ≤
T } is generated by independent Wiener processes B and Z.

3 Definitions and preliminary results

Most of the information presented in this section can be found in more detail in [1, 15]
(and other references below).

We consider the market with one risky asset and one risk-free asset. Evolutions of
prices of both assets are given by a semimartingale process (Ŝt )

T
t=0 and deterministic

process (Bt )
T
t=0 = ert , respectively, where r is a constant risk-free rate of return. We

introduce the discounted price process (St )
T
t=0 = e−rt Ŝt .

Agents acting in the market may buy or sell risky asset and make their decisions
concerning the structure of their portfolios basing upon the information available at
the moment of decision. This principle can be formalized by the following definition.

Definition 3.1. A trading strategy is a predictable process (πt )
T
t=0. The value πt of

this process represents the amount of asset Ŝ in a portfolio at time t .

Certain amount of preliminary concepts is necessary in order to introduce the es-
sential notion of admissible self-financing strategy. Let a semimartingale S admit the
decomposition S = S0 + A + M , where A is a bounded-variation process, and M

is a local martingale. According, for example, to [15], p. 635, there is a nondecreas-
ing adapted (to the filtration (Ft )t≥0) process C = (Ct )t≥0, C0 = 0, and adapted
processes c = (ct )t≥0 and ĉ = (ĉt )t≥0 such that

At =
∫ t

0
csdCs, t > 0,

and the quadratic variation equals

[M,M]t =
∫ t

0
ĉsdCs.

Definition 3.2. Let π be a predictable process. We shall say that:

• π ∈ Lvar(A) if for all ω ∈ Ω , we have
∫ t

0 πscsdCs < ∞, t > 0;

• π ∈ L
q

loc(M), q ≥ 1, if there exists a sequence of stopping times τn approach-
ing ∞ as n → ∞ such that

E

[∫ τn

0
π2ĉsdCs

]q/2

< ∞;
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• π ∈ Lq(S) if there exists a representation S = S0 + A + M such that π ∈
Lvar(A) ∩ L

q

loc(M).

Definition 3.3. A trading strategy is called admissible (relative to the price process
S) if π ∈ L1(S).

Definition 3.4. An admissible strategy is said to be self-financing (relative to the price
process S) or, equivalently, π ∈ SF(S) if its value Sπ

t = πtSt has a representation
Sπ

t = Sπ
0 + ∫ t

0 πsdSs .

Further, we define two particular classes of trading strategies along with the cor-
responding classes of FT -measurable pay-off functions ψ = ψ(ω) that can be ma-
jorized by returns of strategies belonging to each class.

Definition 3.5. For each a ≥ 0, define

Πa(S) = {
π ∈ SF(S) : Sπ

t ≥ −a, t ∈ [0, T ]}

and

Ψ+(S) =
{
ψ ∈ L∞(Ω,FT ,P) : ψ ≤

∫ T

0
(πs, dSs) for some π ∈ Π+(S)

}
,

where Π+(S) = ⋃
a≥0 Πa(S).

Definition 3.6. Let g(St ) = g0 + g1St , g0 ≥ 0, g1 ≥ 0. Define

Πg(S) = {
π ∈ SF(S) : Sπ

t ≥ −g(St ), t ∈ [0, T ]}

and

Ψg(S) =
{
ψ ∈ Lg(Ω,FT ,P) : ψ ≤

∫ T

0
(πs, dSs) for some π ∈ Πg(S)

}
,

where Lg(Ω,FT ,P) is the set of FT -measurable random variables ψ such that |ψ | ≤
g(ST ).

We denote the closures of the sets Ψ+(S) and Ψg(S) with respect to norms ‖ · ‖∞
and ‖ · ‖g (see [15], p. 648, for definitions of these norms) by Ψ +(S) and Ψ g(S),
respectively.

Now following the notation presented in [15], we proceed to the main definitions
of absence of arbitrage.

Definition 3.7. We say that the property NA+ (or equivalently that the market is
NA+) holds if

Ψ +(S) ∩ L+∞(Ω,FT ,P) = {0},
where L+∞(Ω,FT ,P) is the subset of nonnegative random variables in L∞(Ω,FT ,P).

Definition 3.8. We say that the property NAg holds (or equivalently that the market
is NAg) if

Ψ g(S) ∩ L+∞(Ω,FT ,P) = {0}.
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There are two theorems that establish necessary and sufficient conditions for the
absence of arbitrage in the market in terms of equivalent (local) martingale measures.
An important condition that will be addressed further is the local boundedness of the
price process.

Definition 3.9. A probability measure Q, which is equivalent to the objective mea-
sure P, is called an equivalent (local) martingale measure if the discounted price pro-
cess is a (local) martingale under the measure Q.

Definition 3.10. A stochastic process S is called locally bounded if there exists a
sequence (τn)

∞
n=1 of stopping times increasing a.s. to +∞ and such that the stopped

processes S
τn
t = St∧τn are uniformly bounded for each n ∈ N.

Theorem 3.1. ([15]) Let a semimartingale S be locally bounded. Then the market is
NA+ if and only if there exists an equivalent local martingale measure (ELMM).

Theorem 3.2. ([15]) Let a semimartingale S be locally bounded. Then the market is
NAg if and only if there exists an equivalent martingale measure (EMM).

The following theorem is a corollary of Proposition 6.1 from [5] and defines the
construction of ELMM in the model (1)–(2).

Theorem 3.3. A probability measure Q, which is equivalent to the objective measure
P on FT , is an ELMM for the process S defined by the model (1)–(2) on FT if and
only if there exists a progressively measurable process ν = (νt )0≤t≤T ,

∫ T

0 ν2
s ds < ∞

P-a.s., such that the local martingale (Lt )0≤t≤T defined by

Lt = dQ/dP|Ft
= exp

(∫ t

0
(r − μ)/σ(Ys)dBs +

∫ t

0
νsdZs

− 1

2

∫ t

0

(
(r − μ)2/σ 2(Ys) + ν2

s

)
ds

)
(4)

satisfies ELT = 1.

Denote by LMS(P) and MS(P) the sets of ELMM and EMM in the market
modeled by (1)–(2). It is obvious that MS(P) ⊂ LMS(P).

Recall that there is a decomposition of a P-semimartingale S into the sum of a
local P-martingale M and an adapted finite-variation process A: S = S0 + M + A.

Definition 3.11. A probability measure Q, which is equivalent to the objective mea-
sure P, is called a minimal martingale measure (MMM) if Q = P on F0 and any
square-integrable P-martingale strictly orthogonal to the process M is a local Q-
martingale.

A minimal martingale measure is unique (see [2]).

4 Absence of arbitrage in the general model

In this section, we investigate the absence of arbitrage in the model (1)–(2). Notice
that we further deal with an undiscounted process S defined in Section 2.
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Theorem 4.1. The market defined by the model (1)–(2) with assumptions (A1)–(A3):

(i) satisfies NA+ property;

(ii) satisfies NAg property, provided that for some ELMM Q,

EQ

∫ T

0
σ 2(Ys)X

2
s ds < ∞. (5)

Proof. (i) Since S is locally bounded due to its continuity, Theorem 3.1 yields that in
order to prove the first part of the theorem, it suffices to show that LMS(P) �= ∅.

Consider the process Lt defined by (4) with ν = (νt )0≤t≤T = 0. Let LT =
dQ/dP|FT

. In view of Theorem 3.3, it suffices to show that, under such a choice
of ν, we have

ELT = 1. (6)

It suffices to verify the Novikov condition

E exp

(
1

2

∫ T

0

(
(r − μ)2/σ 2(Ys) + ν2

s

)
ds

)
< ∞. (7)

It follows from the boundedness away from zero of the function σ (assumption
(A2)) and our choice of ν that inequality (7) holds. Hence, Q ⊂ LMS(P), which
proves part (i) of the theorem.

(ii) Now let us show that the measure Q from (i) is an EMM. Denote α(s) :=
(r − μ)/σ(Ys). Knowing that the measure Q is equivalent to the measure P and is
defined by the Radon–Nikodym derivative LT = dQ

dP
|T , we may apply the Girsanov

theorem to derive that the processes B
Q
t := Bt−

∫ t

0 α(s)ds, ZQ
t := Zt , 0 ≤ t ≤ T , are

Wiener processes w.r.t. Q. The asset price process under the measure Q is a solution
of the stochastic differential equation

dSt = rStdt + σ(Yt )StdB
Q
t ,

which yields the following representation for the discounted price process Xt :=
e−rt St :

Xt = S +
∫ t

0
σ(Ys)XsdBQ

s . (8)

Hence, provided that assumption (A2), as mentioned before, yields the square
integrability of σ(Ys)Xs on [0, T ], Xt is a martingale. Therefore, Q ⊂ MS(P), and
by Theorem 3.2 we deduce that the market (S, Y ) is NAg .

In order to prove NAg and NA+ properties of the market, we have proved the
existence of one EMM. However, we actually have a family of equivalent martingale
measures in the market. The discounted price process is of the form (8) and thus is
always a martingale given the square integrability of σ(Ys)Xs and any admissible
choice of process ν.
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Lemma 4.1. Let the market defined by (1)–(2) with assumptions (A1)–(A3) and ad-
ditional condition (5), and let the measure Q be such that

EQ exp

(
1

2

∫ T

0
ν2
s ds

)
< ∞.

Then Q ⊂ MS(P).

Since we have more than one equivalent martingale measure in the market, it is
straightforward that the market is incomplete. Each EMM in the market is defined
by the process ν(s) = ν(s, Ys, Ss) associated with it. In the financial literature, the
process νs is called the market price of volatility risk.

Under the EMM Qν , the pair of processes (St , Yt ) has the following representa-
tion:

dSt = rStdt + σ(Yt )StdB
Q
t ,

dYt =
(

− αYt − k

(
ρ

μ − r

σ (Yt )
+ ν(t)

√
1 − ρ2

))
dt + kdW

Q
t , (9)

where the processes

B
Q
t = Bt +

∫ t

0

μ − r

σ (Ys)
ds,

W
Q
t = ρB

Q
t +

√
1 − ρ2Z

Q
t , and

Z
Q
t = Zt +

∫ t

0
ν(s)ds

are Wiener processes w.r.t. Q according to the Girsanov theorem, and BQ and ZQ are
independent.

In the risk-neutral model (9), the volatility process is not the Ornstein–Uhlenbeck
process anymore. So, generally speaking, there is no analytic solution to the corre-
sponding differential equation. Therefore, we further consider a particular case of the
general model, which is defined by a set of assumptions concerning the form and
behavior of certain parameters of the model.

5 Case of uncorrelated processes

Let us define a modified set of assumptions:
(B1) The Wiener processes B and W are independent, that is, ρ = 0;
(B2) = (A2);
(B3) = (A3).
Assumption (B1) simplifies the risk-neutral model to the following form:

dSt = rStdt + σ(Yt )StdB
Q
t ,

dYt = ( − αYt − kν(t)
)
dt + kdZ

Q
t , (10)
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where

B
Q
t = Bt +

∫ t

0

μ − r

σ (Ys)
ds and

Z
Q
t = Zt +

∫ t

0
ν(s)ds

are independent Wiener processes w.r.t. Q.
Our purpose is to price a European call option in the model (10). We limit further

investigation to the valuation w.r.t. the minimal martingale measure.

Theorem 5.1. The EMM Q in the market defined by the model (10) is minimal iff the
process ν corresponding to Q is identically zero.

Proof. Suppose ν(t) = 0, t ∈ [0, T ]. Let B and BQ be Ft -adapted Wiener processes
w.r.t. measures P and Q, respectively. If Nt is a square-integrable P-martingale, then
we can apply the Kunita–Watanabe decomposition to derive

Nt = N0 +
∫ t

0
ludBu +

∫ t

0
lQu dBQ

u + Zt ,

where
〈B,Z〉 = 〈

BQ, Z
〉 = 0.

Let N be strictly orthogonal to
∫ t

0 σ(u)dBu. Then

0 =
〈
N,

∫ ·

0
σudBu

〉
t

=
∫ t

0
luσudu,

where lt = 0, t ∈ [0, T ], a.s.. Then for Lt = dQ/dP|t and γt := (r − μ)/σt ,

d(NtLt ) = NtdLt + LtdNt + d〈N,L〉t
= NtdLt + LtdNt + γt lt dt

= NtdLt + LtdNt .

The process NtLt is a local P-martingale; hence, Nt is a local Q-martingale. By
definition Q is MMM.

The converse statement of the theorem comes straightforward from the unique-
ness of MMM.

The solution of the differential equation defining the evolution of the price of asset
has the following representation:

St = S exp

{
rt +

∫ t

0
σ(Ys)dBQ

s − 1

2

∫ t

0
σ 2(Ys)ds

}
, 0 ≤ t ≤ T . (11)

For a fixed trajectory of Ys , the argument of the exponential function in the right-
hand side of (11) is a Gaussian process, and St , 1 ≤ t ≤ T , has the log-normal distri-
bution with ln St ∼ N(ln S+(r− 1

2 σ̄ 2
t )t, σ̄ 2

t t), where σ̂ 2
t = σ̂ 2

t (Ys) := 1
t

∫ t

0 σ 2(Ys)ds,
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0 ≤ t ≤ T . This fact is crucial for the derivation of expression for the value of Euro-
pean call option.

The value of European call option at time 0 w.r.t. the MMM is defined by the
general formula

V0 = e−rT EQ
(
S
Q
T − K

)+
.

We apply the telescopic property of mathematical expectation to transform the
previous expression as follows:

V0 = e−rT EQ
{
EQ

{(
S
Q
T − K

)+∣∣Ys, 0 ≤ s ≤ T
}}

. (12)

The inner expectation is conditional on the path of Ys, 0 ≤ s ≤ T , and therefore,
it is actually the Black–Scholes price for a model with deterministic time-dependent
volatility. According to Lemma 2.1 in [9], the inner expectation in (12) has the fol-
lowing representation:

EQ
{(

S
Q
T − K

)+|Ys, 0 ≤ s ≤ T
}

= eln S+rT Φ

(
ln S + (r + 1

2 σ̄ 2
0 )T − ln K

σ̄0
√

T

)

− KΦ

(
ln S + (r − 1

2 σ̄ 2
0 )T − ln K

σ̄0
√

T

)
, (13)

where σ̄t :=
√

1

T

∫ T

t
σ 2(Ys)ds ≥ 0, and Φ is the standard normal distribution func-

tion. Notice that σ̄ 2
0 (Ys) = σ̂ 2

T (Ys). The former notation may be viewed as the volatil-
ity averaged from the current moment to maturity, whereas the latter is the volatility
averaged from the initial moment to the current one.

Notice that the inner conditional expectation is an increasing function of σ̄ 2
0 (see

Lemma 3.1 in [9]), which is the type of behavior one may expect to be exhibited by
the Black–Scholes price of European call option.

Taking into account the form of inner integral, in order to derive an analytic ex-
pression for the price of an option V0, it is necessary to deal with expectation of Φ.
Instead of trying to evaluate the integral analytically, it is possible to use the Monte
Carlo method.

6 Derivation of analytic expression for the option price

From Eqs. (12)–(13) we can see that in order to derive the formula for the option
price, it is necessary to present the exact formula for the expectation of Φ. In this
section, we apply the inverse Fourier transform after rearranging of the right-hand
side of (13).

We introduce the following deterministic functions σi = σi(s), i = 1, 4:

σ1,2(s) = s√
T

∓
√

s2T − 2T (ln (S/K) + rT )

T
, (14)
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σ3,4(s) = −s√
T

∓
√

s2T + 2T (ln (S/K) + rT )

T
. (15)

We define the domains of each of these functions to guarantee the nonnegativity of
the expressions under square root, that is, s2T ≥ 2T (ln (S/K) + rT for σ1, σ2, and
s2T ≥ −2T (ln (S/K) + rT for σ3, σ4.

Lemma 6.1. Suppose that the market is defined by the model (10) with assumptions
(B1)–(B3), Q is MMM, and V0 is the price of European call option at time 0. Then
we have the following representations:

1) for ln (S/K) + rT ≥ 0 and k = √
2(ln (S/K) + rT ),

V0 = S erT

(
Φ(k) + 1√

2π

∫ ∞

k

(
Q

(
σ̄0 < σ1(s)

) + Q
(
σ̄0 > σ2(s)

))
e−s2/2 ds

)

− K

(
Φ(0) + 1√

2π

(∫ ∞

0
Q

(
σ̄0 < σ4(s)

)
e−s2/2 ds

−
∫ 0

−∞
Q

(
σ̄0 > σ4(s)

)
e−s2/2 ds

))
; (16)

2) for ln (S/K) + rT < 0 and l = √−2(ln (S/K) + rT ),

V0 = S erT

(
1

2
+ 1√

2π

(∫ ∞

0
Q

(
σ̄0 > σ2(s)

)
e−s2/2 ds

−
∫ 0

−∞
Q

(
σ̄0 < σ2(s)

)
e−s2/2 ds

))

− K

(
Φ(−l) − 1√

2π

∫ −l

−∞
(
Q

(
σ̄0 < σ3(s)

)

+ Q
(
σ̄0 > σ4(s)

))
e−s2/2 ds

)
. (17)

Proof. From (12) and (13) we have:

V0 = S erT EQ
(
Φ(d1)

) − KEQ
(
Φ(d2)

)
,

where d1 and d2 are defined as follows:

d1 = ln S + (r + 1
2 σ̄ 2

0 )T − ln K

σ̄0
√

T
, d2 = d1 − σ̄0

√
T . (18)

Since

Φ(d1) = 1√
2π

∫ d1

−∞
e−s2/2 ds

= 1

2
+ 1√

2π
I{d1>0}

∫ d1

0
e−s2/2 ds − 1√

2π
I{d1<0}

∫ 0

d1

e−s2/2 ds, (19)



244 S. Kuchuk-Iatsenko, Yu. Mishura

we have

EQ
(
Φ(d1)

) = 1

2
+ 1√

2π

∫ ∞

0
Q(s < d1) e−s2/2 ds

− 1√
2π

∫ 0

−∞
Q(s > d1) e−s2/2 ds.

The probabilities in the integrands may be represented as follows:

Q(s < d1) = Q

(
1

2
σ̄ 2

0 T − sσ̄0
√

T + ln (S/K) + rT > 0

)
,

Q(s > d1) = Q

(
1

2
σ̄ 2

0 T − sσ̄0
√

T + ln (S/K) + rT < 0

)
.

Similarly, for Φ(d2), we have

Φ(d2) = 1√
2π

∫ d2

−∞
e−s2/2 ds

= 1

2
+ 1√

2π
I{d2>0}

∫ d2

0
e−s2/2 ds − 1√

2π
I{d2<0}

∫ 0

d2

e−s2/2 ds.

Hence,

EQ
(
Φ(d2)

) = 1

2
+ 1√

2π

∫ ∞

0
Q(s < d2) e−s2/2 ds

− 1√
2π

∫ 0

−∞
Q(s > d2) e−s2/2 ds.

The probabilities from the integrands may be represented as follows:

Q(s < d2) = Q

(
1

2
σ̄ 2

0 T + sσ̄0
√

T − ln (S/K) − rT < 0

)
,

Q(s > d2) = Q

(
1

2
σ̄ 2

0 T + sσ̄0
√

T − ln (S/K) − rT > 0

)
.

Solutions of the quadratic equations, which correspond to the above quadratic
inequalities, do not necessarily exist; therefore, we consider different cases:

1) The discriminant D12 := s2T −2T (ln (S/K)+rT ) is a quadratic form w.r.t. s.
There are two possibilities:

1.1) ln (S/K) + rT > 0. Then for k = √
2(ln (S/K) + rT ): D12 < 0, s ∈

(−k; k); D12 > 0, s ∈ (−∞; −k) ∪ (k; ∞); so

EQ
(
Φ(d1)

) = 1

2
+ 1√

2π

(∫ k

0
e−s2/2 ds +

∫ ∞

k

(
Q

(
σ̄0 < σ1(s)

)

+ Q
(
σ̄0 > σ2(s)

))
e−s2/2 ds

)

− 1√
2π

∫ −k

−∞
(
Q

(
σ̄0 < σ2(s)

) −Q
(
σ̄0 < σ1(s)

))
e−s2/2 ds.
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1.2) ln (S/K) + rT ≤ 0. Then for any s ∈ (−∞; ∞), D12 > 0, So

EQ
(
Φ(d1)

) = 1

2
+ 1√

2π

∫ ∞

0

(
Q

(
σ̄0 < σ1(s)

)

+ Q
(
σ̄0 > σ2(s)

))
e−s2/2 ds

− 1√
2π

∫ 0

−∞
(
Q

(
σ̄0 < σ2(s)

) −Q
(
σ̄0 < σ1(s)

))
e−s2/2 ds.

2) The discriminant D34 := s2T +2T (ln (S/K)+rT ) is a quadratic form w.r.t. s.
There are two possibilities:

2.1) ln (S/K) + rT < 0. Then for l = √−2(ln (S/K) + rT ), D34 < 0,
s ∈ (−l; l); D34 > 0, s ∈ (−∞; −l) ∪ (l; ∞). So

EQ
(
Φ(d2)

) = 1

2
+ 1√

2π

∫ ∞

l

(
Q

(
σ̄0 < σ4(s)

)

− Q
(
σ̄0 < σ3(s)

))
e−s2/2 ds − 1√

2π

(∫ 0

−l

e−s2/2 ds

+
∫ −l

−∞
(
Q

(
σ̄0 < σ3(s)

) + Q
(
σ̄0 > σ4(s)

))
e−s2/2 ds

)
.

2.2) ln (S/K) + rT ≥ 0. Then for any s ∈ (−∞; ∞), D34 > 0. So

EQ
(
Φ(d2)

) = 1

2
+ 1√

2π

∫ ∞

0

(
Q

(
σ̄0 < σ4(s)

)

− Q
(
σ̄0 < σ3(s)

))
e−s2/2 ds

− 1√
2π

∫ 0

−∞
(
Q

(
σ̄0 < σ3(s)

) +Q
(
σ̄0 > σ4(s)

))
e−s2/2 ds.

Combining these cases, we get the following expressions for the option price:

1) for ln (S/K) + rT ≥ 0,

V0 = S erT

(
Φ(k) + 1√

2π

(∫ ∞

k

(
Q

(
σ̄0 < σ1(s)

)

+ Q
(
σ̄0 > σ2(s)

))
e−s2/2 ds

−
∫ −k

−∞
(
Q

(
σ̄0 < σ2(s)

) − Q
(
σ̄0 < σ1(s)

))
e−s2/2 ds

))

− K

(
1

2
+ 1√

2π

(∫ ∞

0

(
Q

(
σ̄0 < σ4(s)

) − Q
(
σ̄0 < σ3(s)

))
e−s2/2 ds

−
∫ 0

−∞
(
Q

(
σ̄0 < σ3(s)

) + Q
(
σ̄0 > σ4(s)

))
e−s2/2 ds

))
; (20)
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2) for ln (S/K) + rT < 0,

V0 = S erT

(
1

2
+ 1√

2π

(∫ ∞

0

(
Q

(
σ̄0 < σ1(s)

)

+ Q
(
σ̄0 > σ2(s)

))
e−s2/2 ds

−
∫ 0

−∞
(
Q

(
σ̄0 < σ2(s)

) − Q
(
σ̄0 < σ1(s)

))
e−s2/2 ds

))

− K

(
Φ(−l) + 1√

2π

(∫ ∞

l

(
Q

(
σ̄0 < σ4(s)

)

− Q
(
σ̄0 < σ3(s)

))
e−s2/2 ds

−
∫ −l

−∞
(
Q

(
σ̄0 < σ3(s)

) + Q
(
σ̄0 > σ4(s)

))
e−s2/2 ds

))
. (21)

Recalling that σ̄0 ≥ 0 and noticing that some of the probabilities presented
are identically zero, we simplify (20) and (21) to the forms (16) and (17), respec-
tively.

Let Si ⊂ R be the domains of positivity of functions σi(s), i = 1, 4. It is easy
to check that the functions appearing in the integrals (16)–(17) are positive on the
integration domains.

Assume that the probability density function of σ̄ 2
0 is piecewise continuous on R.

Then due to the Fourier inversion theorem, for almost all s ∈ Si , the probabilities in
the integrands in (16)–(17) have the following representation:

Q
(
σ̄0 < σi(s)

) = Q
(
σ̄ 2

0 < σ 2
i (s)

)

= lim
ε→0

1

2π

∫ σ 2
i (s)

−∞

(∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)du

)
dy, (22)

where φ(u) = EQ(eiuσ̄ 2
0 ) is the characteristic function of σ̄ 2

0 .
We are now in a position to state the main result of this section.

Theorem 6.1. Suppose that the market is defined by the model (10) with assumptions
(B1)–(B3), Q is the MMM, and V0 is the price at time 0 of European call option. Let
the probability density function of σ̄ 2

0 be piecewise continuous on R. Then we have
the following representations:

1) for ln (S/K) + rT ≥ 0 and k = √
2(ln (S/K) + rT ),

V0 = lim
ε→0

(
S erT

(
Φ(k) + 1

(2π)3/2

×
(∫ ∞

k

(∫ σ 2
1 (s)

−∞

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy

+
∫ ∞

σ 2
2 (s)

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy

)
e−s2/2 ds

))
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− K

(
1

2
+ 1

(2π)3/2

×
(∫ ∞

0

∫ σ 2
4 (s)

−∞

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy e−s2/2 ds

+
∫ 0

−∞

∫ ∞

σ 2
4 (s)

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy e−s2/2 ds

)))
;

2) for ln (S/K) + rT < 0 and l = √−2(ln (S/K) + rT ),

V0 = lim
ε→0

(
S erT

(
1

2
+ 1

(2π)3/2

×
(∫ ∞

0

∫ ∞

σ 2
2 (s)

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy e−s2/2 ds

−
∫ 0

−∞

∫ σ 2
2 (s)

−∞

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy e−s2/2 ds

))

− K

(
Φ(−l)− 1

(2π)3/2

∫ −l

−∞

(∫ σ 2
3 (s)

−∞

∫ ∞

−∞
exp

(
iyu− ε2u2

2

)
φ(u)dudy

+
∫ ∞

σ 2
4 (s)

∫ ∞

−∞
exp

(
iyu − ε2u2

2

)
φ(u)dudy

)
e−s2/2 ds

))
,

where φ(u) = EQ(eiuσ̄ 2
0 ) is the characteristic function of the random variable σ̄ 2

0 ,

and σi = σi(s), i = 1, 4, are of the form (14)–(15).

Remark 6.1. If σ̄0 ∈ L2(R), then the limit in Theorem 6.1 may be moved inside the
integrals. Thus, ε may be equated to zero, and the expression for the option price is
simplified.

Remark 6.2. Under the assumption that σ is bounded, we can rewrite the analytical
expression in terms of moments of σ̄ 2

0 .

Indeed, in this case, σ̄ 2
0 is bounded as well, so the characteristic function φ(u)

admits the Taylor series expansion around zero:

φ(u) = 1 +
∞∑

j=1

ij uj

j ! mj , (23)

where mn is the nth moment of the random variable σ̄ 2
0 , and i = √−1.

The moments of the random variable σ̄ 2
0 can be represented by applying the fact

that the finite-dimensional distributions of the Ornstein–Uhlenbeck process are Gaus-
sian vectors. Bearing in mind that the covariance matrix of the process Ys is nonde-
generate and consists of the elements of the form

(
Σi,l

)j

i,l=1 = k2

2α
exp

(−α(ti + tl)
)(

exp
(
2α min(ti , tl)

) − 1
)
, (24)
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we get the following representation for the moments of the random variable σ̄ 2
0 :

mj = 1

T j

∫ T

0
. . .

∫ T

0

∫
Rj

σ 2(y1) . . . σ 2(yj )

(2π)j/2|Σ |1/2
e− 1

2 (y−μ)�Σ−1(y−μ) dydt1 . . . dtj ,

(25)

where

y = (y1, . . . , yj ), dy = dy1 × · · · × dyj , μ = (Y0 e−αy1 , . . . , Y0 e−αyj ).

We have demonstrated that there is an analytic solution to the problem of pricing
of European call option in the model. However, the resulting formula is complicated
and cumbersome. Therefore, our further investigation will be aimed at comparison of
numeric results produced by it with approximate calculations and possible simplifi-
cations.
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