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Abstract We show that every multiparameter Gaussian process with integrable variance
function admits a Wiener integral representation of Fredholm type with respect to the Brownian
sheet. The Fredholm kernel in the representation can be constructed as the unique symmetric
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1 Introduction

In this article, we consider multiparameter processes, that is, our time is multidimen-
sional. Throughout the paper, the dimension of time n ≥ 1 is arbitrary but fixed.

We use the following notation throughout this article: t, s, u ∈ R
n are n-dimen-

sional multiparameters of time: t = (t1, . . . , tn), s = (s1, . . . , sn), u = (u1, . . . , un);
0 is an n-dimensional vector of 0s, and 1 is an n-dimensional vector of 1s. We denote
s ≤ t if sk ≤ tk for all k ≤ n. For s ≤ t, the set [s, t] ⊂ R

n is the n-dimensional
rectangle {u ∈ R

n; s ≤ u ≤ t}.
Let X = (Xt)t∈[0,1] be a real-valued centered Gaussian multiparameter process

or field defined on some complete probability space (Ω,F ,P). We assume that the
Gaussian field X is separable, that is, its linear space, or the 1st chaos,

H1 = cl
(
span

{
Xt ; t ∈ [0, 1]})

is separable. Here cl means closure in L2(Ω,F ,P).
Our main result, Theorem 1, shows when the Gaussian field X can be represented

in terms of the Brownian sheet. Recall that the Brownian sheet W = (Wt)t∈[0,1] is the
centered Gaussian field with the covariance

E[WtWs] =
n∏

k=1

min(tk, sk).

The Brownian sheet can also be considered as the Gaussian white noise on [0, 1]
with the Lebesgue control measure. This means that dW is a random measure on
([0, 1],B([0, 1]), Leb([0, 1])) characterized by the following properties:

1.
∫
A

dWt ∼ N (0, Leb(A)),

2.
∫
A

dWt and
∫
B

dWs are independent if A ∩ B = ∅.

Then, if f, g : [0, 1] → R are simple functions, then we have the Wiener–Itô isometry

E

[∫
[0,1]

f (t) dWt

∫
[0,1]

g(s) dWs

]
=

∫
[0,1]

f (t)g(t) dt. (1)

Consequently, the integral
∫
[0,1] f (t) dWt can be extended for all f ∈ L2([0, 1]) by

using the isometry (1), and the isometry (1) will also hold for this extended integral.
In this article, we show the Fredholm representation for Gaussian fields satisfying

the trace condition (3) in Section 2, Theorem 1. In Section 3, we apply the Fredholm
representation to give a representation for Gaussian fields that are equivalent in law,
and in Section 4, we show how to generate series expansions for Gaussian fields
by using the Fredholm representation. The Fredholm representation of Theorem 1
can also be used to provide a transfer principle that builds stochastic analysis and
Malliavin calculus for Gaussian fields from the corresponding well-known theory for
the Brownian sheet. We do not do that in this article, although it would be quite
straightforward given the results for the one-dimensional case provided in [9].
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2 Fredholm representation

Recall that X is a separable centered Gaussian field with covariance function R and
W is a Brownian sheet. Suppose that X is defined on a complete probability space
(Ω,F ,P) that is rich enough to carry Brownian sheets.

The following theorem states that the field X can be realized as a Wiener inte-
gral with respect to a Brownian sheet. Let us note that it is not always possible to
construct the Brownian sheet W directly from the field X. Indeed, consider the triv-
ial field X ≡ 0 to see this. As a consequence, the Karhunen representation theorem
(see, e.g., [2, Thm. 41]) cannot be applied here. Consequently, the Brownian sheet in
representation (2) is not guaranteed to exist on the same probability space with X.

In any case, representation (2) holds in law. This means that for a given Brownian
sheet W , the field given by (2) is a Gaussian field with the same law as X.

Theorem 1 (Fredholm representation). Let (Ω,F ,P) be a probability space such
that σ {ξk; k ∈ N} ⊂ F , where ξk , k ∈ N, are i.i.d. standard normal random variables.
Let X be a separable centered Gaussian field defined on (Ω,F ,P). Let R be the
covariance of X.

Then there exist a kernel K ∈ L2([0, 1]) and a Brownian sheet W , possibly,
defined on a larger probability space, such that the representation

Xt =
∫

[0,1]
K(t, s) dWs (2)

holds if and only if R satisfies the trace condition∫
[0,1]

R(t, t) dt < ∞. (3)

Proof. From condition (3) it follows that the covariance operator

Rf (t) =
∫

[0,1]
f (s)R(t, s) ds

is Hilbert–Schmidt. Indeed, the Hilbert–Schmidt norm of the operator R satisfies, by
the Cauchy–Schwarz inequality,

‖R‖HS =
√∫

[0,1]

∫
[0,1]

R(t, s)2 dt ds

≤
√∫

[0,1]

∫
[0,1]

R(t, t)R(s, s) dt ds

=
∫

[0,1]
R(t, t) dt.

Since Hilbert–Schmidt operators are compact operators, it follows from, for example,
[7, p. 233] that the operator R admits the eigenfunction representation

Rf (t) =
∞∑

k=1

λk

∫
[0,1]

f (s)φk(s) ds φk(t). (4)
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Here (φk)
∞
k=1, the eigenfunctions of R, form an orthonormal system on L2([0, 1]). In

particular, this means that

R(t, s) =
∞∑

k=1

λk φk(t)φk(s). (5)

From this it follows that the square root of the covariance operator R admits a kernel
K if and only if

∞∑
k=1

λk < ∞. (6)

Note that condition (6) is equivalent to condition (3). Consequently, we can define

K(t, s) =
∞∑

k=1

√
λk φk(t)φk(s) (7)

since the series in the right-hand side of (7) converges in L2([0, 1]), and the eigenval-
ues (λk)

∞
k=1 of a positive-definite operator R are nonnegative.

Now,

R(t, s) =
∞∑

k=1

λk φk(t)φk(s)

=
∞∑

k=1

∞∑
�=1

√
λk

√
λ�φk(t)φ�(s)

∫
[0,1]

φk(u)φ�(u) du

=
∫

[0,1]

( ∞∑
k=1

√
λkφk(t)φk(u)

∞∑
�=1

√
λ�φ�(s)φ�(u)

)
du

=
∫

[0,1]
K(t, u)K(s, u) du,

where the interchange of summation and integration is justified by the fact that series
(7) converges in L2([0, 1]). From this calculation and from the Wiener–Itô isometry
(1) of the integrals with respect to the Brownian sheet it follows that the centered
Gaussian processes on the left-hand side and the right-hand side of Eq. (2) have the
same covariance function. Consequently, since they are Gaussian fields, they have the
same law. This means that representation (2) holds in law.

Finally, we need to construct a Brownian sheet W associated with the field X such
that representation (2) holds in L2(Ω,F ,P). Let (φ̃k)

∞
k=1 be any orthonormal basis

on L2([0, 1]). Set

φk(t) =
∫

[0,1]
φ̃k(s)K(t, s) ds.

Then (φk)
∞
k=1 is an orthonormal basis (possibly finite or even empty!) on the repro-

ducing kernel Hilbert space (RKHS) of the Gaussian field X (see further for a defi-
nition). Let Θ be an isometry from the RKHS to L2(Ω, σ(X),P). Set ξk = Θ(φk).
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Then ξk are i.i.d. standard normal random variables, and by the reproducing property
we have that

Xt =
∞∑

k=1

φk(t) ξk

in L2(Ω,F ,P). Now, it may be that there are only finitely many ξk developed this
way. If this is the case, then we augment the finite sequence (ξk)

n
k=1 with independent

standard normal random variables. Then set

Wt =
∞∑

k=1

∫
[0,t]

φ̃k(s) ds ξk.

For this Brownian sheet, representation (2) holds in L2(Ω,F ,P). Indeed,

∫
[0,1]

K(t, s) dWs =
∫

[0,1]
K(t, s) d

∞∑
k=1

∫
[0,t]

φ̃k(s) ds ξk

=
∞∑

k=1

∫
[0,1]

K(t, s)φ̃k(s) ds ξk

=
∞∑

k=1

φk(t) ξk

= Xt.

Here the change of summation, differentiation, and integration is justified by the fact
that the everything is square integrable.

Remark 1. 1. The eigenfunction expansion (5) for the kernel (t, s) → K(t, s) is
symmetric in t and s. Consequently, it is always possible to have a symmetric
kernel in representation (2), that is, in principle it is always possible to transfer
from a given representation

Xt =
∫

[0,1]
K(t, s) dWs

to

Xt =
∫

[0,1]
K̃(t, s) dW̃s

where W̃ is some other Brownian sheet, and the kernel K̃ is symmetric. Unfor-
tunately, for a given kernel K and Brownian sheet W , the authors do not know
how to do this analytically.

2. In general, it is not possible to choose a Volterra kernel K in (2). By a Volterra
kernel we mean a kernel that satisfies K(t, s) = 0 if sk > tk for some k. To
see why a Volterra representation is not always possible, consider the following
simple counterexample: Xt ≡ ξ , where ξ is a standard normal random variable.
This field cannot have a Volterra representation since Volterra fields vanish in
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the origin. A Fredholm representation for this field is simply Xt = ∫
[0,1] dWs

(with suitable Brownian sheet W depending on ξ).

For a more complicated counterexample (with X0 = 0) see [9, Example 3.2].

Consequently, in general, it is not possible to generate a Gaussian field X on
the rectangle [0, t] from the noise W on the same rectangle [0, t]. Instead, the
whole information on the cube [0, 1] may be needed.

3. If the family {K(t, · ) ; t ∈ [0, 1]} is total in L2([0, 1]), then a Brownian sheet
in representation (2) exists on the same probability space (Ω,F ,P). Moreover,
in this case, it can be constructed from the Gaussian field X. Indeed, in this
case, we can apply the Karhunen representation theorem [2, Thm. 41].

The reproducing kernel Hilbert space (RKHS) of the Gaussian field X is the
Hilbert space H that is isometric to the linear space H1, and the defining isometry is
R(t, ·) → Xt. In other words, the RKHS is the Hilbert space of functions over [0, 1]
extended and closed linearly by the relation〈

R(t, ·), R(s, ·)〉H = R(t, s).

The RKHS is of paramount importance in the analysis of Gaussian processes. In this
respect, the Fredholm representation (2) is also very important. Indeed, if the kernel K
of Theorem 1 is known, then the RKHS is also known as the following reformulation
of Lifshits [6, Prop. 4.1] states.

Proposition 1. Let X admit representation (2). Then

H =
{
f ; f (t) =

∫
[0,1]

f̃ (s)K(t, s) ds, f̃ ∈ L2([0, 1])}.

Moreover, the inner product in H is given by

〈f, g〉H = inf
f̃ ,g̃

∫
[0,1]

f̃ (t)g̃(t) dt,

where the infimum is taken over all such f̃ and g̃ that

f (t) =
∫

[0,1]
f̃ (s)K(t, s) ds,

g(t) =
∫

[0,1]
g̃(t)K(t, s) ds.

3 Application to equivalence in law

Two random objects ξ and ζ are equivalent in law if, their distributions satisfy P[ξ ∈
B] > 0 if and only if P[ζ ∈ B] > 0 for all measurable sets B. On the contrary, the
random objects ξ and ζ are singular in law if there exists a measurable set B such
that P[ξ ∈ B] = 1 but P[ζ ∈ B] = 0. For centered Gaussian random objects there is
the well-known dichotomy that two centered Gaussian objects are either equivalent
or singular in law; see [4, Thm. 6.1].
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There is a complete characterization of the equivalence by any two Gaussian pro-
cesses due to Kallianpur and Oodaira; see [5, Thms. 9.2.1 and 9.2.2]. It is possible to
extend this to Gaussian fields and formulate it in terms of the operator K. The result
would remain quite abstract, though. Therefore, we due not pursue in that direction.
Instead, the following Proposition 2 gives a partial solution to the problem what do
Gaussian fields equivalent to a given Gaussian field X look like. Proposition 2 uses
only the Hitsuda representation theorem, which is, unlike the Kallianpur–Oodaira
theorem, quite concrete.

Let X̃ = (X̃t)t∈[0,1] be a centered Gaussian field with covariance function R̃, and
let X = (Xt)t∈[0,1] be a centered Gaussian field with covariance function R.

Proposition 2 (Representation of equivalent Gaussian fields). Suppose that X has
representation (2) with kernel K and Brownian sheet W . If

X̃t =
∫

[0,1]
K(t, s) dWs −

∫
[0,1]

∫
[s,1]

K(t, s)L(s, u) dWu ds (8)

for some L ∈ L2([0, 1]), then X̃ is equivalent in law to X.

Proof. By [8, Prop. 4.2] we have the following multiparameter version of the Hitsuda
representation theorem: A centered Gaussian field W̃ = (W̃t)t∈[0,1] is equivalent in
law to a Brownian sheet if and only if it admits the representation

W̃t = Wt −
∫

[0,t]

∫
[0,s]

L(s, u) dWu ds (9)

for some Volterra kernel L ∈ L2([0, 1]).
Let then X have the Fredholm representation

Xt =
∫

[0,1]
K(t, s) dWs. (10)

Then X̃ is equivalent to X if it admits the representation

X̃t =
∫

[0,1]
K(t, s) dW̃s, (11)

where W̃ is related to W by (9). But Eq. (8) implies precisely this.

Remark 2. On the kernel level, Eq. (8) states that

K̃(t, s) = K(t, s) −
∫

[s,1]
K(t, u)L(u, s) du

for some Volterra kernel L ∈ L2([0, 1]).
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4 Application to series expansions

The Mercer square root (7) can be used to build the Karhunen–Loève expansion for
the Gaussian process X. But the Mercer form (7) is seldom known. However, if we
can somehow find any kernel K such that representation (2) holds, then we can con-
struct a series expansion for X by using the Fredholm representation of Theorem 1 as
follows.

Proposition 3 (Series expansion). Let X be a separable Gaussian process with repre-
sentation (2), and let (φk)

∞
k=1 be any orthonormal basis on L2([0, 1]). Then X admits

the series expansion

Xt =
∞∑

k=1

∫
[0,1]

φk(s)K(t, s) ds · ξk, (12)

where the (ξk)
∞
k=1 is a sequence of independent standard normal random variables.

The series (12) converges in L2(Ω,F ,P) and also almost surely uniformly if and
only if X is continuous.

The proof below uses reproducing kernel Hilbert space technique. For more de-
tails on this, we refer to [3], where the series expansion is constructed for fractional
Brownian motion by using the transfer principle.

Proof. The Fredholm representation (2) implies immediately that the reproducing
kernel Hilbert space of X is the image KL2([0, 1]) and K is actually an isometry
from L2([0, 1]) to the reproducing kernel Hilbert space of X. Indeed, this is what
Proposition 1 states.

The L2-expansion (12) follows from this due to [1, Thm. 3.7] and the equiva-
lence of almost sure convergence of (12), and the continuity of X follows from [1,
Thm. 3.8].
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