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Abstract We find a multiplicative wavelet-based representation for stochastic processes that
can be represented as the exponent of a second-order centered random process. We propose
a wavelet-based model for simulation of such a stochastic process and find its rates of con-
vergence to the process in different functional spaces in terms of approximation with given
accuracy and reliability. This approach allows us to simulate stochastic processes (including
certain classes of processes with heavy tails) with given accuracy and reliability.
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1 Introduction

Simulation of random processes is a wide area nowadays, and there are many sim-
ulation methods (see, e.g., [9, 10]). There is one substantial problem: for most of
traditional simulation methods, it is difficult to measure the quality of approximation
of a process by its model in terms of “distance” between paths of the process and the
corresponding paths of the model. Therefore, models for which such distance can be
estimated are quite interesting.

There is a concept for simulation by such models called simulation with given
accuracy and reliability. Simulation with given accuracy and reliability is considered,
for example, in [7, 4, 6, 11, 12].
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Simulation with given accuracy and reliability can be described in the following
way. Suppose that an approximation X̂(t) of a random process X(t) is constructed.
The random process X̂(t) is called a model of X(t). A model depends on certain
parameters. The rate of convergence of a model to a process is given by a statement
of the following type: if numbers δ (accuracy) and ε (1 − ε is called reliability) are
given and the parameters of the model satisfy certain restrictions (for instance, they
are not less than certain lower bounds), then

P
{‖X − X̂‖ > δ

} ≤ ε. (1)

Many such results have been proved for the cases where the norm in (1) is the Lp

norm or the uniform norm. But simulation with given accuracy and reliability has
been developed so far mostly for processes with one-dimensional distributions having
tails not heavier than Gaussian tails (e.g., for sub-Gaussian processes), and such a
simulation for processes with tails heavier than Gaussian tails deserves attention.

We consider a random process Y(t) = exp{X(t)} and an f -wavelet φ(x) with the
corresponding m-wavelet ψ(x), where X(t) is a centered second-order process such
that its correlation function R(t, s) can be represented as

R(t, s) =
∫
R

u(t, λ)u(s, λ)dλ.

We prove that

Y(t) =
∏
k∈Z

exp
{
ξ0ka0k(t)

} ∞∏
j=0

∏
l∈Z

exp
{
ηjlbjl(t)

}
,

where ξ0k, ηjl are random variables, and a0k(t), bjl(t) are functions that depend on
X(t) and the wavelet.

As a model of Y(t), we take the process

Ŷ (t) =
N0−1∏

k=−(N0−1)

exp
{
ξ0ka0k(t)

} N−1∏
j=0

Mj −1∏
l=−(Mj −1)

exp
{
ηjlbjl(t)

}
.

Let us consider the case where X(t) is a strictly sub-Gaussian process. Note that
the class of processes Y(t) = exp{X(t)}, where X(t) is a strictly sub-Gaussian pro-
cess, is a rich class that includes many processes with one-dimensional distributions
having tails heavier than Gaussian tails; for example, when X(t) is a Gaussian pro-
cess, one-dimensional distributions of Y(t) are lognormal.

We describe the rate of convergence of Ŷ (t) to a process Y(t) in C([0, T ]) in
such a way: if ε ∈ (0; 1) and δ > 0 are given and the parameters N0, N,Mj are big
enough, then

P
{

sup
t∈[0,T ]

∣∣Y(t)/Ŷ (t) − 1
∣∣ > δ

}
≤ ε. (2)

A similar statement that characterizes the rate of convergence of Ŷ (t) to Y(t) in
Lp([0, T ]) is also proved for the case where (2) is replaced by the inequality

P

{(∫ T

0

∣∣Y(t) − Ŷ (t)
∣∣pdt

)1/p

> δ

}
≤ ε.
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If the process X(t) = ln Y(t) is Gaussian, then the model Ŷ (t) can be used for
computer simulation of Y(t).

One of the merits of our model is its simplicity. Besides, it can be used for simula-
tion of processes with one-dimensional distributions having tails heavier than Gaus-
sian tails.

2 Auxiliary facts

A random variable ξ is called sub-Gaussian if there exists a constant a ≥ 0 such that

E exp{λξ} ≤ exp
{
λ2a2/2

}
for all λ ∈ R.

The class of all sub-Gaussian random variables on a standard probability space
{Ω,B, P } is a Banach space with respect to the norm

τ(ξ) = inf
{
a ≥ 0 : E exp{λξ} ≤ exp

{
λ2a2/2

}
, λ ∈ R

}
.

A centered Gaussian random variable and a random variable uniformly distributed
on [−b, b] are examples of sub-Gaussian random variables.

A sub-Gaussian random variable ξ is called strictly sub-Gaussian if

τ(ξ) = (
Eξ2)1/2

.

For any sub-Gaussian random variable ξ ,

E exp{λξ} ≤ exp
{
λ2τ 2(ξ)/2

}
, λ ∈ R, (3)

and

E|ξ |p ≤ 2

(
p

e

)p/2(
τ(ξ)

)p
, p > 0. (4)

A family Δ of sub-Gaussian random variables is called strictly sub-Gaussian if
for any finite or countable set I of random variables ξi ∈ Δ and for any λi ∈ R,

τ 2
(∑

i∈I

λiξi

)
= E

(∑
i∈I

λiξi

)2

.

A stochastic process X = {X(t), t ∈ T} is called sub-Gaussian if all the random
variables X(t), t ∈ T, are sub-Gaussian and supt∈T τ(X(t)) < ∞. We call a sub-
Gaussian stochastic process X = {X(t), t ∈ T} strictly sub-Gaussian if the fam-
ily {X(t), t ∈ T} is strictly sub-Gaussian. Any centered Gaussian process X =
{X(t), t ∈ T} for which supt∈T E(X(t))2 < ∞ is strictly sub-Gaussian.

Details about sub-Gaussian random variables and sub-Gaussian and strictly sub-
Gaussian random processes can be found in [1] and [3].

We will use wavelets (see [2] for details) for an expansion of a stochastic process.
Namely, we use a father wavelet φ(x) and the corresponding mother wavelet ψ(x)
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(we will use the terms “f -wavelet” and “m-wavelet” instead of the terms “father
wavelet” and “mother wavelet,” respectively). Set

φ0k(x) = φ(x − k), k ∈ Z,

ψjl(x) = 2j/2ψ
(
2j x − l

)
, j, l ∈ Z.

Note that {φ0l , ψjk, l ∈ Z, k ∈ Z, j = 0, 1, . . .} is an orthonormal basis in L2(R).
We will further consider only wavelets for which both φ(x) and ψ(x) are real-valued.

We denote by f̂ the Fourier transform of a function f ∈ L2(R):

f̂ (y) =
∫
R

e−ixyf (x)dx.

The following statement is crucial for us.

Theorem 1. ([5]) Let X = {X(t), t ∈ R} be a centered random process such that
E|X(t)|2 < ∞ for all t ∈ R. Let R(t, s) = EX(t)X(s) and suppose that there exists
a Borel function u(t, λ), t ∈ R, λ ∈ R, such that∫

R

∣∣u(t, λ)
∣∣2

dλ < ∞ for all t ∈ R

and

R(t, s) =
∫
R

u(t, λ)u(s, λ)dλ.

Let φ(x) be an f -wavelet, and ψ(x) the corresponding m-wavelet. Then the process
X(t) can be presented as the following series, which converges for any t ∈ R in
L2(Ω):

X(t) =
∑
k∈Z

ξ0ka0k(t) +
∞∑

j=0

∑
l∈Z

ηjlbjl(t), (5)

where

a0k(t) = 1√
2π

∫
R

u(t, y)φ̂0k(y)dy = 1√
2π

∫
R

u(t, y)φ̂(y)eiykdy, (6)

bjl(t) = 1√
2π

∫
R

u(t, y)ψ̂jl(y)dy = 1√
2π

∫
R

u(t, y)2−j/2 exp

{
i

y

2j
l

}
ψ̂

(
y

2j

)
dy,

(7)

and ξ0k, ηjl are centered random variables such that

Eξ0kξ0l = δkl, Eηmkηnl = δmnδkl, Eξ0kηnl = 0 .

Remark 1. There have been obtained explicit formulae for random variables ξ0k, ηjl

from an expansion more general than (5) under certain restrictions on the process
X(t) (see [8], Theorem 2.1). It seems that getting explicit formulae for ξ0k and ηjl in
the general case is either impossible or quite nontrivial.
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Definition. Condition RC holds for stochastic process X(t) if it satisfies the con-
ditions of Theorem 1, u(t, ·) ∈ L1(R) ∩ L2(R), and the inverse Fourier transform
ũx(t, x) of the function u(t, x) with respect to x is a real function.

Remark 2. Condition RC guarantees that the coefficients a0k(t), bjl(t) of expansion
(5) are real. Indeed, this follows from the formulae

a0k(t) = √
2π

∫
R

ũy(t, y)φ0k(y)dy,

bjk(t) = √
2π

∫
R

ũy(t, y)ψjk(y)dy.

Suppose that X(t) is a process that satisfies the conditions of Theorem 1. Let us
consider the following approximation (or model) of X(t):

X̂(t) = X̂(N0, N,M0, . . . , MN−1, t)

=
N0−1∑

k=−(N0−1)

ξ0ka0k(t) +
N−1∑
j=0

Mj −1∑
l=−(Mj −1)

ηjlbjl(t), (8)

where ξ0k, ηjl, a0k(t), bjl(t) are defined in Theorem 1.
Approximation of Gaussian and sub-Gaussian processes by model (8) has been

studied in [5] and [13].

Remark 3. If X(t) is a Gaussian process, then we can take as ξ0k, ηjl in (8) indepen-
dent random variables with distribution N(0; 1).

3 A multiplicative representation

We will obtain a multiplicative representation for a wide class of stochastic processes.

Theorem 2. Suppose that a random process Y(t) can be represented as Y(t) =
exp{X(t)}, where the process X(t) satisfies the conditions of Theorem 1. Then the
equality

Y(t) =
∏
k∈Z

exp
{
ξ0ka0k(t)

} ∞∏
j=0

∏
l∈Z

exp
{
ηjlbjl(t)

}
(9)

holds, where product (9) converges in probability for any fixed t , and ξ0k, ηjl,

a0k(t), bjl(t) are defined in Theorem 1.

The statement of the theorem immediately follows from Theorem 1.

Remark 4. It was shown in [5] that any centered second-order wide-sense stationary
process X(t) that has the spectral density satisfies the conditions of Theorem 1. The
process Y(t) = exp{X(t)} can be represented as product (9), and therefore the class
of processes that satisfy the conditions of Theorem 2 is wide enough.

It is natural to approximate a stochastic process Y(t) = exp{X(t)} that satisfies
the conditions of Theorem 2 by the model
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Ŷ (t) = Ŷ (N0, N,M0, . . . ,MN−1, t)

=
N0−1∏

k=−(N0−1)

exp
{
ξ0ka0k(t)

} N−1∏
j=0

Mj −1∏
l=−(Mj −1)

exp
{
ηjlbjl(t)

} = exp
{
X̂(t)

}
.

(10)

Remark 5. If X(t) = ln Y(t) is a Gaussian process, then we can use the model
Ŷ (t) for computer simulation of Y(t), taking as ξ0k, ηjl in (10) independent random
variables with distribution N(0; 1).

4 Simulation with given relative accuracy and reliability in C([0, T ])
Let us study the rate of convergence in C([0, T ]) of model (10) to a process Y(t). We
will need several auxiliary facts.

Lemma 1. ([13]) Let X = {X(t), t ∈ R} be a centered stochastic process that
satisfies the requirements of Theorem 1, T > 0, φ be an f -wavelet, ψ be the cor-
responding m-wavelet, the function φ̂(y) be absolutely continuous on any interval,
the function u(t, y) be absolutely continuous with respect to y for any fixed t , there
exist the derivatives u′

λ(t, λ), φ̂′(y), ψ̂ ′(y), the inequalities |ψ̂ ′(y)| ≤ C, |u(t, λ)| ≤
|t |u1(λ), |u′

λ(t, λ)| ≤ |t |u2(λ) hold,∫
R

u1(y)|y|dy < ∞,

∫
R

u1(y)dy < ∞,

∫
R

u1(y)
∣∣φ̂′(y)

∣∣dy < ∞, (11)∫
R

u1(y)
∣∣φ̂(y)

∣∣dy < ∞,

∫
R

u2(y)|y|dy < ∞,

∫
R

u2(y)
∣∣φ̂(y)

∣∣dy < ∞,

(12)

lim|y|→∞ u(t, y) ψ̂
(
y/2j

) = 0 ∀j = 0, 1, . . . , ∀t ∈ [0, T ],

and

lim|y|→∞ u(t, y)φ̂(y) = 0 ∀t ∈ [0, T ],

E1 = 1√
2π

∫
R

u1(y)|φ̂(y)|dy,

E2 = 1√
2π

(∫
R

u1(y)|φ̂′(y)|dy +
∫
R

u2(y)|φ̂(y)|dy

)
,

F1 = C√
2π

∫
R

u1(y)|y|dy,

F2 = C√
2π

∫
R

(
u1(y) + |y|u2(y)

)
dy.

Let the process X̂(t) be defined by (8), δ > 0. If N0, N, Mj (j = 0, 1, . . . , N − 1)

satisfy the inequalities

N0 >
6

δ
E2

2T 2 + 1,
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N > max

{
1 + log2

(
72F 2

2 T 2

5δ

)
, 1 + log8

(
18F 2

1 T 2

7δ

)}
,

Mj > 1 + 12

δ
F 2

2 T 2,

then
sup

t∈[0,T ]
E

∣∣X(t) − X̂(t)
∣∣2 ≤ δ. (13)

Lemma 2. ([13]) Let X = {X(t), t ∈ R} be a centered stochastic process satisfying
the requirements of Theorem 1, T > 0, φ be an f -wavelet, ψ be the corresponding

m-wavelet, S(y) = ψ̂(y), Sφ(y) = φ̂(y). Suppose that φ(y), u(t, λ), S(y), Sφ(y)

satisfy the following conditions: the function u(t, y) is absolutely continuous with
respect to y, the function φ̂(y) is absolutely continuous,∣∣S′(y)

∣∣ ≤ M < ∞,

lim|y|→∞ u(t, y)S
(
y/2j

) = 0, j = 0, 1, . . . , t ∈ [0, T ],
lim|y|→∞ u(t, y)Sφ(y) = 0, t ∈ [0, T ],

there exist functions v(y) and w(y) such that∣∣u′
y(t1, y) − u′

y(t2, y)
∣∣ ≤ |t2 − t1|v(y),∣∣u(t1, y) − u(t2, y)
∣∣ ≤ |t2 − t1|w(y),

and ∫
R

|y|v(y)dy < ∞,

∫
R

v(y)
∣∣Sφ(y)

∣∣dy < ∞,∫
R

w(y)
∣∣S′

φ(y)
∣∣dy < ∞,

∫
R

w(y)dy < ∞,∫
R

w(y)|y|dy < ∞,

∫
R

w(y)
∣∣Sφ(y)

∣∣dy < ∞;

a0k(t) and bjl(t) are defined by Eqs. (6) and (7),

A(1) = 1√
2π

(∫
R

v(y)
∣∣Sφ(y)

∣∣dy +
∫
R

w(y)
∣∣S′

φ(y)
∣∣dy

)
,

B(0) = M√
2π

∫
R

w(y)|y|dy,

B(1) = M√
2π

∫
R

(
w(y) + |y|v(y)

)
dy,

CΔX =

√√√√√2(A(1))2

N0 − 1
+ (B(0))2

7 · 8N−1
+ (B(1))2

2N−3
+ (

B(1)
)2

N−1∑
j=0

1

2j−1(Mj − 1)
.
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Then, for t1, t2 ∈ [0, T ] and N > 1, N0 > 1,Mj > 1, we have the inequality

∑
|k|≥N0

∣∣a0k(t1) − a0k(t2)
∣∣2 +

∑
j≥N

∑
l∈Z

∣∣bjl(t1) − bjl(t2)
∣∣2

+
N−1∑
j=0

∑
|l|≥Mj

∣∣bjl(t1) − bjl(t2)
∣∣2

≤ C2
ΔX(t2 − t1)

2. (14)

Remark 6. It is easy to see that the functions a0k(t) and bjl(t) are continuous under
the conditions of Lemma 2.

Lemma 3. If

N0 ≥ 1 + 8(A(1))2

ε2
,

N ≥ max

{
1 + log8

4(B(0))2

7ε2
, 3 + log2

4(B(1))2

ε2

}
,

Mj ≥ 1 + 16
(B(1))2

ε2

for some ε > 0, then
CΔX ≤ ε,

where A(1), B(0), B(1), CΔX are defined in Lemma 2.

We omit the proof due to its simplicity.

Definition. We say that a model Ŷ (t) approximates a stochastic process Y(t) with
given relative accuracy δ and reliability 1 − ε (where ε ∈ (0; 1)) in C([0, T ]) if

P
{

sup
t∈[0,T ]

∣∣Y(t)/Ŷ (t) − 1
∣∣ > δ

}
≤ ε.

Now we can state a result on the rate of convergence in C([0, T ]).
Theorem 3. Suppose that a random process Y = {Y(t), t ∈ R} can be repre-
sented as Y(t) = exp{X(t)}, where a separable strictly sub-Gaussian random pro-
cess X = {X(t), t ∈ R} is mean-square continuous, satisfies the condition RC and
the conditions of Lemmas 1 and 2 together with an f -wavelet φ and the corre-
sponding m-wavelet ψ , the random variables ξ0k, ηjl in expansion (5) of the pro-
cess X(t) are independent strictly sub-Gaussian, X̂(t) is a model of X(t) defined by
(8), Ŷ (t) is defined by (10), θ ∈ (0; 1), δ > 0, ε ∈ (0; 1), T > 0, the numbers
A(1), B(0), B(1), E2, F1, F2 are defined in Lemmas 1 and 2,

ε̂ = δ
√

ε,

A(θ) =
∫ ∞

1/(2θ)

√
v + 1

v2
dv,
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τ1 = e1/2 ε̂

27/4(64 + ε̂2)1/4
,

τ2 = (
32 ln

(
1 + ε̂2/60

))1/2
,

τ3 =
√

ln
(
1 + ε̂3/8

)
/
√

2,

τ∗ = min{τ1, τ2, τ3},

Q = e1/2ε̂ θ(1 − θ)

29/4A(θ)T (1 + ε̂3/8)
,

N∗
0 = 1 + 8(A(1))2

Q2
,

N∗ = max

{
1 + log8

4(B(0))2

7Q2
, 3 + log2

4(B(1))2

Q2

}
,

M∗ = 1 + 16
(B(1))2

Q2
,

N∗∗
0 = 6

τ 2∗
E2

2T 2 + 1,

N∗∗ = max

{
1 + log2

(
72F 2

2 T 2

5τ 2∗

)
, 1 + log8

(
18F 2

1 T 2

7τ 2∗

)}
,

M∗∗ = 1 + 12

τ 2∗
F 2

2 T 2.

Suppose also that

sup
t∈[0,T ]

E
(
X(t) − X̂(t)

)2
> 0. (15)

If

N0 > max
{
N∗

0 , N∗∗
0

}
, (16)

N > max
{
N∗, N∗∗}, (17)

Mj > max
{
M∗,M∗∗} (j = 0, 1, . . . , N − 1), (18)

then the model Ŷ (t) approximates the process Y(t) with given relative accuracy δ

and reliability 1 − ε in C([0, T ]).
Proof. Denote

ΔX(t) = X(t) − X̂(t),

U(t) = Y(t)/Ŷ (t) − 1 = exp
{
ΔX(t)

} − 1,

ρU (t, s) = ∥∥U(t) − U(s)
∥∥

L2(Ω)
,

τΔX = sup
t∈[0,T ]

τ
(
ΔX(t)

)
.

Let us note that ρU is a pseudometric. Let N(u) be the metric massiveness of [0, T ]
with respect to ρU , that is, the minimum number of closed balls in the space ([0, T ],
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ρU) with diameters at most 2u needed to cover [0, T ],
ε0 = sup

t,s∈[0,T ]
ρU(t, s).

We will denote the norm in L2(Ω) by ‖ · ‖2.
Since U(t) ∈ L2(Ω), t ∈ [0, T ], using Theorem 3.3.3 from [1] (see p. 98), we

obtain

P
{

sup
t∈[0,T ]

∣∣U(t)
∣∣ > δ

}
≤ S2

2

δ2
, (19)

where

S2 = sup
t∈[0,T ]

(
E

∣∣U(t)
∣∣2)1/2 + 1

θ(1 − θ)

∫ θε0

0
N1/2(u)du.

We will prove that S2 ≤ δ
√

ε = ε̂.
First, let us estimate E|U(t)|2for t ∈ [0, T ].
Using the inequality∣∣ea − eb

∣∣ ≤ |a − b| max
{
ea, eb

} ≤ |a − b|(ea + eb
)

(20)

(we set b = 0) and the Cauchy–Schwarz inequality, we obtain

E
∣∣U(t)

∣∣2 = E
(
exp

{
ΔX(t)

} − 1
)2 ≤ (

E
∣∣ΔX(t)

∣∣4)1/2(E(
exp

{
ΔX(t)

} + 1
)4)1/2

.

It follows from (4) that

E|ΔX(t)|4 ≤ 32

e2
τ 4
ΔX. (21)

Let us estimate G = E(exp{ΔX(t)} + 1)4. Since

E exp
{
kΔX(t)

} ≤ exp
{
k2τ 2(ΔX(t)

)
/2

} = Ak2 ≤ A16, 1 ≤ k ≤ 4,

where A = exp{τ 2
ΔX/2}, we have

G ≤
4∑

k=1

(
4

k

)
A16 + 1 = 15A16 + 1. (22)

It follows from Lemma 1 and (16)–(18) that

τΔX = sup
t∈[0,T ]

E
(∣∣ΔX(t)

∣∣2)1/2 ≤ τ∗. (23)

Using (21)–(23), we obtain (
E

∣∣U(t)
∣∣2)1/2 ≤ ε̂/2. (24)

Let us estimate now

I (θ) = 1

θ(1 − θ)

∫ θε0

0
N1/2(u)du.
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First, we will find an upper bound for N(u). For this, we will prove that∥∥U(t1) − U(t2)
∥∥

2 ≤ CU |t1 − t2|, (25)

where
CU = (

29/4/e1/2)CΔX exp
{
2τ 2

ΔX

}
with CΔX defined in Lemma 2.

Using (20) and the Cauchy–Schwarz inequality, we have:∥∥U(t1) − U(t2)
∥∥2

2

= E
∣∣ exp

{
ΔX(t1)

} − exp
{
ΔX(t2)

}∣∣2

≤ E
∣∣ΔX(t1) − ΔX(t2)

∣∣2(exp
{
ΔX(t1)

} + exp
{
ΔX(t2)

})2

≤ (
E

(
ΔX(t1) − ΔX(t2)

)4)1/2(E(
exp

{
ΔX(t1)

} + exp
{
ΔX(t2)

})4)1/2
.

Applying (4), we obtain(
E

(
ΔX(t1) − ΔX(t2)

)4)1/2 ≤ (
25/2/e

)
C2

ΔX|t2 − t1|2. (26)

Let us find an upper bound for

H = E
(
exp

{
ΔX(t1)

} + exp
{
ΔX(t2)

})4
.

Since

E exp
{
kΔX(t1) + lΔX(t2)

}
≤ exp

{
τ 2(kΔX(t1) + lΔX(t2)

)
/2

} ≤ exp
{(

kτ
(
ΔX(t1)

) + lτ
(
ΔX(t2)

))2
/2

}
≤ exp

{
8τ 2

ΔX

}
,

where k + l = 4, we have

H ≤
4∑

k=0

(
4

k

)
exp

{
8τ 2

ΔX

} = 16 exp
{
8τ 2

ΔX

}
, (27)

and (25) follows from (26) and (27).
Using inequality (25), simple properties of metric entropy (see [1], Lemma 3.2.1,

p. 88), and the inequality
Nρ1(u) ≤ T/(2u) + 1

(where Nρ1 is the entropy of [0, T ] with respect to the Euclidean metric), we have

N(u) ≤ T CU

2u
+ 1.

Since ε0 ≤ CUT , we obtain∫ θε0

0
N1/2(u)du ≤

∫ θε0

0

(
T CU/(2u) + 1

)1/2
du
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= T CU

2

∫ ∞

T CU /(2θε0)

√
v + 1

v2
dv ≤ T CUA(θ)/2. (28)

It is easy to check using Lemma 3 that, under the conditions of the theorem,

CΔX ≤ Q. (29)

It follows from (23) and (29) that

CU ≤ ε̂ θ(1 − θ)

T A(θ)
,

and therefore, using (28), we obtain

I (θ) ≤ ε̂/2. (30)

Now the statement of the theorem follows from (19), (24), and (30).

Example. Let us consider the function u(t, λ) = t/(1 + t2 + λ2)4 and an arbitrary
Daubechies wavelet with the corresponding f -wavelet φ and m-wavelet ψ . We will
use the notations

a0k(t) = 1√
2π

∫
R

u(t, y)φ̂0k(y)dy, bjl(t) = 1√
2π

∫
R

u(t, y)ψ̂jl(y)dy

and consider the stochastic process

X(t) =
∑
k∈Z

ξ0ka0k(t) +
∞∑

j=0

∑
l∈Z

ηjlbjl(t),

where ξ0k, ηjl (k, l ∈ Z, j = 0, 1, . . .) are independent uniformly distributed over
[−√

3,
√

3]. It can be checked that the process Y(t) = exp{X(t)} and the Daubechies
wavelet satisfy the conditions of Theorem 3.

5 Simulation with given accuracy and reliability in Lp([0, T ])
Now we will consider the rate of convergence in Lp([0, T ]) of model (10) to a process
Y(t).

Lemma 4. Suppose that a centered stochastic process X = {X(t), t ∈ R} satisfies
the conditions of Theorem 1, φ is an f -wavelet, ψ is the corresponding m-wavelet,
φ̂ and ψ̂ are the Fourier transforms of φ and ψ , respectively, φ̂(y) is absolutely con-
tinuous, u(t, y) is defined in Theorem 1 and is absolutely continuous for any fixed t ,
there exist the derivatives u′

y(t, y), φ̂′(y), ψ̂ ′(y) and |ψ̂ ′(y)| ≤ C, |u(t, y)| ≤ u1(y),
|u′

y(t, y)| ≤ |t |u2(y), Eqs. (11) and (12) hold,

lim|y|→∞ u(t, y)
∣∣ψ̂(

y/2j
)∣∣ = 0 ∀j = 0, 1, . . . , ∀t ∈ R,

lim|y|→∞ u(t, y)
∣∣φ̂(y)

∣∣ = 0 ∀t ∈ R;
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S1 = 1√
2π

∫
R

u1(y)
∣∣φ̂′(y)

∣∣dy, S2 = 1√
2π

∫
R

u2(y)
∣∣φ̂(y)

∣∣dy,

Q1 = C√
2π

∫
R

u1(y)dy, Q2 = C√
2π

∫
R

u2(y)|y|dy.

Then the following inequalities hold for the coefficients a0k(t), bjl(t) in expansion
(5) of the process X(t):

∣∣a00(t)
∣∣ ≤ 1√

2π

∫
R

u1(y)
∣∣φ̂(y)

∣∣dy, (31)

∣∣bj0(t)
∣∣ ≤ C√

2π 23j/2

∫
R

u1(y)|y|dy, j = 0, 1, . . . , (32)

∣∣a0k(t)
∣∣ ≤ S1 + S2|t |

|k| , k 
= 0, (33)

∣∣bjl(t)
∣∣ ≤ Q1 + Q2|t |

2j/2|l| , l 
= 0, j = 0, 1, . . . . (34)

The proof of inequalities (31)–(34) is analogous to the proof of similar inequali-
ties for the coefficients of expansion (5) of a stationary process in [5].

Lemma 5. Suppose that a random process X = {X(t), t ∈ R} satisfies the conditions
of Theorem 1, an f -wavelet φ and the corresponding m-wavelet ψ together with the
process X(t) satisfy the conditions of Lemma 4, C,Q1,Q2, S1, S2, u1(y) are defined
in Lemma 4, T > 0, p ≥ 1, δ ∈ (0; 1), ε > 0,

δ1 = min

{
ε2

2T 2/p ln(2/δ)
,

ε2

pT 2/p

}
, D = C√

2π

∫
R

u1(y)|y|dy.

If

N0 >
6

δ1
(S1 + S2T )2 + 1,

N > max

{
1 + log2

(
72(Q1 + Q2T )2

5δ1

)
, 1 + log8

(
18D2

7δ1

)}
,

Mj > 1 + 12

δ1
(Q1 + Q2T )2

(
1 − 1

2N

)
,

then
sup

t∈[0,T ]
E

∣∣X(t) − X̂(t)
∣∣2 ≤ δ1.

Proof. We have

E
∣∣X(t) − X̂(t)

∣∣2 =
∑

k:|k|≥N0

∣∣a0k(t)
∣∣2 +

N−1∑
j=0

∑
l:|l|≥Mj

∣∣bjl(t)
∣∣2 +

∞∑
j=N

∑
l∈Z

∣∣bjl(t)
∣∣2

.

It remains to apply inequalities (31)–(34).
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Definition. We say that a model Ŷ (t) approximates a stochastic process Y(t) with
given accuracy δ and reliability 1 − ε (where ε ∈ (0; 1)) in Lp([0, T ]) if

P

{(∫ T

0

∣∣Y(t) − Ŷ (t)
∣∣pdt

)1/p

> δ

}
≤ ε.

Theorem 4. Suppose that a random process Y = {Y(t), t ∈ R} can be repre-
sented as Y(t) = exp{X(t)}, where a separable strictly sub-Gaussian random pro-
cess X = {X(t), t ∈ R} is mean-square continuous, satisfies the condition RC and
the conditions of Lemma 5 together with an f -wavelet φ and the corresponding m-
wavelet ψ , the random variables ξ0k, ηjl in expansion (5) of the process X(t) are
independent strictly sub-Gaussian, X̂(t) is a model of X(t) defined by (8), Ŷ (t) is
defined by (10), D,Q1,Q2, S1, S2 are defined in Lemmas 4 and 5, δ > 0, ε ∈ (0; 1),
p ≥ 1, T > 0.

Let

m = εδp

22p(p/e)p/2 T supt∈[0,T ](E exp{2pX(t)})1/2
,

h(t) = tp
(
1 + exp

{
8p2t2})1/4

, t ≥ 0,

and xm be the root of the equation

h(x) = m.

If

N0 >
6

x2
m

(S1 + S2T )2 + 1, (35)

N > max

{
1 + log2

(
72(Q1 + Q2T )2

5x2
m

)
, 1 + log8

(
18D2

7x2
m

)}
, (36)

Mj > 1 + 12

x2
m

(Q1 + Q2T )2
(

1 − 1

2N

)
(j = 0, 1, . . . , N − 1), (37)

then the model Ŷ (t) defined by (10) approximates Y(t) with given accuracy δ and
reliability 1 − ε in Lp([0, T ]).
Proof. We will use the following notations:

ΔX(t) = X̂(t) − X(t),

τX = sup
t∈[0,T ]

τ
(
X(t)

)
,

τΔX = sup
t∈[0,T ]

τ
(
ΔX(t)

)
,

cp = 2(4p/e)2p.

We will denote the norm in Lp([0, T ]) by ‖ · ‖p.
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Let us estimate P{‖Y − Ŷ‖p > δ}. We have

P
{‖Y − Ŷ‖p > δ

} ≤ E‖Y − Ŷ‖p
p

δp

= E
∫ T

0 | exp{X(t)} − exp{X̂(t)}|pdt

δp
. (38)

Denote
Δ(t) = E

∣∣ exp
{
X(t)

} − exp
{
X̂(t)

}∣∣p.

An application of the Cauchy–Schwarz inequality yields

Δ(t) = E exp
{
pX(t)

}∣∣1 − exp
{
ΔX(t)

}∣∣p
≤ (

E exp
{
2pX(t)

})1/2(E∣∣1 − exp
{
ΔX(t)

}∣∣2p)1/2
. (39)

We will need two auxiliary inequalities. Using the power-mean inequality

a + b

2
≤

(
ar + br

2

)1/r

,

where r ≥ 1, and setting a = ec and b = 1, we obtain(
ec + 1

)r ≤ 2r−1(ecr + 1
)
. (40)

It follows from (20) that ∣∣ea − 1
∣∣q ≤ |a|q(

ea + 1
)q (41)

for q ≥ 0.
Now let us estimate E|1 − exp{ΔX(t)}|2p, where t ∈ [0, T ], using (41):

E
∣∣1 − exp

{
ΔX(t)

}∣∣2p ≤ E
∣∣ΔX(t)

∣∣2p(
1 + exp

{
ΔX(t)

})2p

≤ (
E

∣∣ΔX(t)
∣∣4p)1/2(E(

1 + exp
{
ΔX(t)

})4p)1/2
. (42)

Applying (40), we obtain:

E
(
1 + exp

{
ΔX(t)

})4p ≤ 24p−1E
(
exp

{
4pΔX(t)

} + 1
)
. (43)

It follows from (39), (42), and (43) that, for t ∈ [0, T ],

Δ(t) ≤ 2p−1/4(E exp
{
2pX(t)

})1/2(E∣∣ΔX(t)
∣∣4p)1/4(1 + E exp

{
4pΔX(t)

})1/4
.

(44)
Since, for t ∈ [0, T ],

E
∣∣ΔX(t)

∣∣4p ≤ cpτ
4p
ΔX

(see (4)) and
E exp

{
4pΔX(t)

} ≤ exp
{
8p2τ 2

ΔX

}
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(see (3)), we have

Δ(t) ≤ 2p−1/4c
1/4
p sup

t∈[0,T ]
(
E exp

{
2pX(t)

})1/2
h(τΔX), t ∈ [0, T ]. (45)

It follows from Lemma 5 and inequalities (35)–(37) that

τΔX = sup
t∈[0,T ]

(
E

(
X(t) − X̂(t)

)2)1/2 ≤ xm.

We obtain using (45) that

Δ(t) ≤ εδp/T , t ∈ [0, T ],
and hence

E‖Y − Ŷ‖p
p =

∫ T

0
Δ(t)dt ≤ εδp. (46)

Now the statement of the theorem follows from (38) and (46).

Example. Let us consider a centered Gaussian process X(t) with correlation function

R(t, s) =
∫
R

u(t, y)u(s, y)dy,

where

u(t, y) = t

1 + t2 + exp{y2} ,

and an arbitrary Battle–Lemarié wavelet. It can be checked that the process Y(t) =
exp{X(t)} and the Battle–Lemarié wavelet satisfy the conditions of Theorem 4.
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