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Abstract We consider a finite mixture model with varying mixing probabilities. Linear re-
gression models are assumed for observed variables with coefficients depending on the mixture
component the observed subject belongs to. A modification of the least-squares estimator is
proposed for estimation of the regression coefficients. Consistency and asymptotic normality
of the estimates is demonstrated.
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1 Introduction

In this paper, we discuss a structural linear regression technique in the context of
model of mixture with varying concentrations (MVC). MVC means that the ob-
served subjects belong to M different subpopulations (mixture components). The
true numbers of components to which the subjects Oj , j = 1, . . . , N , belong, say,
κj = κ(Oj ), are unknown, but we know the probabilities

pk
j ;N

def= P{κj = k}, k = 1, . . . ,M
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(mixing probabilities or concentrations of the mixture components). MVC models
arise naturally in the description of medical, biologic, and sociologic data [1, 8, 9, 12].
They can be considered as a generalization of finite mixture models (FMM). Classical
theory of FMMs can be found in monographs [10, 13].

Let
ξ(O) = (

Y(O),X1(O), . . . , Xd(O)
)T

be a vector of observed features (random variables) of a subject O. We consider the
following linear regression model for these variables:

Y(O) =
d∑

i=1

b
(κ(O))
i Xi(O) + ε(O), (1)

where b(m) = (b
(m)
1 , . . . , b

(m)
d )T are nonrandom regression coefficients for the mth

component, ε(O) is an error term, which is assumed to be zero mean and condi-
tionally independent of the regressors vector X(O) = (X1(O), . . . , Xd(O))T given
κ(O).

Note. We consider a subject O as taken at random from an infinite population, so it
is random in this sense. The vector of observed variables ξ(O) can be considered as
a random vector even for a fixed O.

Our aim is to estimate the vectors of regression coefficients b(k), k = 1, . . . ,M ,
by the observations ΞN = (ξ1, . . . , ξN ), where ξj = ξ(Oj ). We assume that (κj , ξj )

are independent for different j .
A statistical model similar to MVC with (1) is considered in [5], where a para-

metric model for the conditional distributions of ε(O) given κ(O) is assumed. For
this case, maximum likelihood estimation is proposed in [5], and a version of EM-
algorithm is developed for numerical computation of the estimates.

In this paper, we adopt a nonparametric approach assuming no parametric models
for ε(O) and X(O) distributions. Nonparametric and semiparametric technique for
MVC was developed in [6, 7, 4]. We use the weighted empirical moment technique
to derive estimates for the regression coefficients and then obtain conditions of con-
sistency and asymptotic normality of the estimates. These results are based on general
ideas of least squares [11] and moment estimates [3].

The rest of the paper is organized as follows. In Section 2, we recall some results
on nonparametric estimation of functional moments in general MVC. The estimates
are introduced, and conditions of their consistency and asymptotic normality are pre-
sented in Section 3. Section 4 contains proofs of the statements of Section 3. Results
of computer simulations are presented in Section 5.

2 Nonparametric estimation for MVC

Let us start with some notation and definitions. We denote by Fm the distribution of
ξ(O) for O belonging to the mth component of the mixture, that is,

Fm(A)
def= P

{
ξ(O) ∈ A | κ(O) = m

}
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for all measurable sets A. Then by the definition of MVC

P{ξj ∈ A} =
M∑

k=1

pk
j ;NFk(A). (2)

In the asymptotic statements, we will consider the data Ξn = (ξ1, . . . , ξN ) as an el-
ement of (imaginary) series of data Ξ1, Ξ2, . . . , ΞN, . . . in which no link between
observations for different N is assumed. So, in formal notation, it should be more
correct to write ξj ;N instead of ξj , but we will drop the subscript N when it is in-
significant.

We consider an array of all concentrations for all data sizes

p def= (
pk

j ;N, k = 1, . . . ,M; j = 1, . . . , N; N = 1, 2, . . .
)
.

Its subarrays

pk
N

def= (
pk

1;N, . . . , pk
N;N

)T and pj ;N = (
p1

j ;N, . . . , pM
j ;N

)T

are considered as vector columns, and

pN = (
pk

j ;N, j = 1, . . . , N; k = 1, . . . , M
)

as an N × M-matrix. We will also consider a weight array a of the same structure as
p with similar notation for its subarrays.

By the angle brackets with subscript n we denote the averaging by j = 1, . . . , n:

〈
ak

〉
N

def= 1

N

N∑
j=1

ak
j ;N.

Multiplication, summation, and other operations in the angle brackets are made ele-
mentwise:

〈
akpm

〉
N

= 1

N

N∑
j=1

ak
j ;Npm

j ;N ; 〈(
ak

)2〉
N

= 1

N

N∑
j=1

(
ak
j ;N

)2
.

We define 〈pm〉 def= limN→∞〈pm〉N if this limit exists. Let Γ N = (〈plpm〉N)Ml,m=1

= 1
N

pT
NpN be an M × M matrix, and γlm;N be its (l,m)th minor. The matrix Γ N

can be considered as the Gramian matrix of vectors (p1, . . . , pM) in the inner product
〈pipk〉N , so that it is nonsingular if these vectors are linearly independent.

In what follows,
P−→ means convergence in probability, and

W−→ means weak
convergence.

Assume now that model (2) holds for the data ΞN . Then the distribution Fm of
the mth component can be estimated by the weighted empirical measure

F̂m;N(A)
def= 1

N

N∑
j=1

am
j ;N1{ξj ∈ A}, (3)
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where

am
j ;N = 1

det Γ N

M∑
k=1

(−1)k+mγmk;Npk
j ;N. (4)

It is shown in [8] that if Γ N is nonsingular, then F̂m;N is the minimax unbiased
estimate for Fm. The consistency of F̂m;N is demonstrated in [6] (see also [8]).

Consider now functional moment estimation based on weighted empirical mo-
ments. Let g : Rd+1 → R

k be a measurable function. Then to estimate

ḡ(m) = E
[
g
(
ξ(O)

) ∣∣ κ(O) = m
] =

∫
g(x)Fm(dx),

we can use

ĝ
(m)
;N =

∫
g(x)F̂m;N(dx) = 1

N

N∑
j=1

am
j ;Ng(ξj ).

Lemma 1 (Consistency). Assume that

1. E[|g(ξ(O))| | κ(O) = k] < ∞ for all k = 1, . . . ,M .

2. There exists C > 0 such that det Γ N > C for all N large enough.

Then ĝ
(m)
;N

P−→ ḡ(m) as N → ∞.
This lemma is a simple corollary of Theorem 4.2 in [8]. (See also Theorem 3.1.1

in [7]).

Lemma 2 (Asymptotic normality). Assume that

1. E[|g(ξ(O))|2 | κ(O) = k] < ∞ for all k = 1, . . . ,M .

2. There exists C > 0 such that det Γ N > C for all N large enough.

3. There exists the limit
Σ = lim

N→∞ N Cov
(
ĝ

(m)
;N

)
.

Then √
N

(
ĝ

(m)
;N − ḡ(m)

) W−→ N(0,Σ).

For univariate ĝ
(m)
;N , the statement of the lemma is contained in Theorem 4.2 from [8]

(or Theorem 3.1.2 in [7]). The multivariate case can be obtained from the univariate
one applying the Cramér–Wold device (see [2], p. 382).

3 Estimate for bm and its asymptotics

In view of Lemma 1, we expect that, under suitable assumptions,

Jm;N(b)
def= 1

N

N∑
j=1

am
j ;N

(
Yj ;N −

d∑
i=1

biX
i
j :N

)2

=
∫ (

y −
d∑

i=1

bix
i

)2

F̂m;N
(
dy, dx1, . . . , dxd

)
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converges to

∫ (
y −

d∑
i=1

bix
i

)2

Fm

(
dy, dx1, . . . , dxd

)

= E
[(

Y(O) −
d∑

i=1

biX
i(O)

)2 ∣∣∣∣ κ(O) = m

]
def= Jm;∞(b)

as N → ∞.
Since Jm;∞(b) attains its minimal value at b(m), it is natural to suggest the argmin

of Jm;N(b) as an estimate for b(m). If the weights am were positive, then this argmin
would be

b̂(m)
;N

def= (
XT AX

)−1XT AY, (5)

where X def= (Xi
j )j=1,...,N; i=1,...,d is the N × d matrix of observed regressors, Y def=

(Y1, . . . , YN)T is the vector of observed responses, and A def= diag(am
1;N, . . . , am

N;N) is
the diagonal weight matrix for estimation of mth component. (Obviously, A depends
on m, but we do not show it explicitly by a subscript since the number m of the
component for which bm is estimated will be further fixed.)

Generally speaking, by (4) am
j ;N must be negative for some j , so b̂(m)

;N is not nec-

essarily an argmin of Ĵm;N(b). But we will take b̂(m)
;N as an estimate for bm and call it

a modified least-squares estimate for bm in MVC model (MVC-LS estimate).
Let

D(k) def= E
[
X(O)XT (O)

∣∣ κ(O) = k
]

be the matrix of second moments of the regressors for subjects belonging to the kth
component. Denote the variance of the kth component’s error term by

(
σ (k)

)2 = E
[(

ε(O)
)2 ∣∣ κ(O) = k

]
.

(Recall that E[(ε(O)) | κ(O) = k] = 0). In what follows, we assume that these
moments and variances exist for all components.

Theorem 1 (Consistency). Assume that

1. D(k) and (σ (k))2 are finite for all k = 1, . . . ,M .

2. D(m) is nonsingular.

3. There exists C > 0 such that det Γ N > C for all N large enough.

Then b̂(m)
;N

P−→ b(m) as N → ∞.

Note. Assumption 3 can be weakened. Applying Theorem 4.2 from [8], we can show
that b̂(m)

;N is consistent if the vector pm
N is asymptotically linearly independent from

the vectors pi
N , i 	= m, as N → ∞. To avoid complexities in this presentation, we do

not formulate the strict meaning of this statement.
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Denote Dik(s) def= E
[
Xi(O)Xk(O)

∣∣ κ(O) = s
]
,

Lik(s) def= (
E

[
Xi(O)Xk(O)Xq(O)Xl(O)

∣∣ κ(O) = s
])d

l,q=1,

Mik(s,p) def= (
Dil(s)Dkq(p)

)d

l,q=1.

Theorem 2 (Asymptotic normality). Assume that

1. E[(Xi(O))4 | κ(O) = k] < ∞ and E[(ε(O))4 | κ(O) = k] < ∞ for all
k = 1, . . . ,M .

2. Matrix D = D(m) is nonsingular.

3. There exists C > 0 such that det Γ N > C for all N large enough.

4. For all s,p = 1, . . . ,M , there exist 〈(am)2pspp〉.
Then

√
N(b̂(m)

;N − b(m))
W−→ N(0, V), where

V def= D−1ΣD−1 (6)

with

Σ = (
Σik

)d

ik=1,

Σik =
M∑

s=1

〈(
am

)2ps
〉(
Dik(s)

(
σ (s)

)2 + (
b(s) − b(m)

)T Lik(s)
(
b(s) − b(m)

))

−
M∑

s=1

M∑
p=1

〈(
am

)2pspp
〉(

b(s) − b(m)
)T Mik(s,p)

(
b(p) − b(m)

)
. (7)

4 Proofs

Proof of Theorem 1. Note that if D(m) is nonsingular, then

b(m) = argminb∈Rd Jm;∞(b) = (
D(m)

)−1 E
[(

Y(O)X(O)
) ∣∣ κ(O) = m

]
.

By Lemma 1,

XT AX = 1

N

N∑
j=1

am
j ;N X(Oj )XT (Oj )

P−→ D(m)

and

XT AY = 1

N

N∑
j=1

am
j ;NY(Oj )X(Oj )

P−→ E
[(

Y(O)X(O)
) ∣∣ κ(O) = m

]

as N → ∞. This implies the statement of the theorem.
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Proof of Theorem 2. Let us introduce a set of random vectors ξ
(k)
j = (Y

(k)
j , X

1(k)
j ,

. . . , X
d(k)
j )T , j = 1, 2, . . . , with distributions Fk that are independent for different j

and k and independent from κj . Denote δ
(k)
j = 1{κj = k},

ξ ′
j

def=
M∑

k=1

δ
(k)
j ξ

(k)
j .

Then the distribution of Ξ ′
N = (ξ ′

1, . . . , ξ
′
N) is the same as that of ΞN . Since in

this theorem we are interested in weak convergence only, without loss of generality,
let us assume that ΞN = Ξ ′

N . By F we denote the sigma-algebra generated by

ξ
(k)
j , j = 1, . . . , N, k = 1, . . . , M .

Let us show that
√

N(b̂(m)
;N −b(m)) converges weakly to N(0, V). It is readily seen

that

√
N

(
b̂(m)

;N − b(m)
) =

[
1

N

(
XT AX

)]−1[ 1√
N

(
XT AY − XT AXb(m)

)]
.

Since 1
N

(XT AX)
P−→ D, we need only to show week convergence of the random

vectors 1√
N

(XT AY − XT AXb(m)) to N(0,Σ).
Denote

g(ξj )
def=

(
Xi

j

(
Yj −

d∑
l=1

Xl
jb

(m)
l

))d

i=1

,

γ i
j

def= 1√
N

a
(m)
j ;NXi

j

(
Yj −

d∑
l=1

Xl
jb

(m)
l

)
.

Obviously,

ζN
def= 1√

N

(
XT AY − XT AXb(m)

) = √
Nĝ

(m)
;N =

( N∑
j=1

γ i
j

)d

i=1

.

We will apply Lemma 2 to show that
√

Nĝ
(m)
;N

W−→ N(0,Σ).

First, let us show that ḡ(m) = E ĝ
(m)
;N = 0. It is equivalent to E

∑N
j=1 γ i

j = 0 for
all i = 1, . . . , d . In fact,

E
N∑

j=1

γ i
j

= E
[
E

1√
N

N∑
j=1

a
(m)
j ;N

M∑
s=1

δ
(s)
j X

i(s)
j

( M∑
s=1

δ
(s)
j Yj (s) −

d∑
l=1

M∑
s=1

δ
(s)
j X

l(s)
j b

(m)
l

)∣∣∣∣F
]

= 1√
N

E
N∑

j=1

a
(m)
j ;N

M∑
s=1

ps
j ;NX

i(s)
j

(
Y

(s)
j −

d∑
l=1

X
l(s)
j b

(m)
l

)
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= √
N

M∑
s=1

〈
a(m)ps

〉
N︸ ︷︷ ︸

1{m=s}

E
[
X

i(s)
1

(
Y

(s)
1 −

d∑
l=1

X
l(s)
1 b

(m)
l

)]

= √
N E

[
X

i(m)
1

(
Y

(m)
1 −

d∑
l=1

X
l(m)
1 b

(m)
l

)
︸ ︷︷ ︸

ε
(m)
1

]
= √

N E X
i(m)
1 E ε

(m)
1 = 0.

So

ζN =
( N∑

j=1

γ i
j

)d

i=1

=
( N∑

j=1

γ i
j − E γ i

j

)d

i=1

.

In view of Lemma 2, to complete the proof, we only need to show thatCov(ζN) → Σ .
Denote

ζ
i(s)
j = δ

(s)
j X

i(s)
j

( d∑
l=1

X
l(s)
j

(
b

(s)
l − b

(m)
l

) + ε
(s)
j

)

and

η
i(s)
j = δ

(s)
j

( d∑
l=1

Dil(s)
(
b

(s)
l − b

(m)
l

))

Then

ζN =
(

1√
N

N∑
j=1

a
(m)
j

M∑
s=1

((
ζ

i(s)
j − η

i(s)
j

) + (
η

i(s)
j − E ζ

i(s)
j

)))d

i=1

= (
Si

1 + Si
2

)d

i=1,

where

Si
1 = 1√

N

N∑
j=1

a
(m)
j

M∑
s=1

(
ζ

i(s)
j − η

i(s)
j

)
, Si

2 = 1√
N

N∑
j=1

a
(m)
j

M∑
s=1

(
η

i(s)
j − E ζ

i(s)
j

)
.

Note that
E

(
ζ

i(s)
j − η

i(s)
j

) = E E
[(

ζ
i(s)
j − η

i(s)
j

) ∣∣ κj

] = 0.

Now

Cov
(
Si

1, S
k
2

)

= 1

N

N∑
j=1

(
a

(m)
j ;N

)2
M∑

s=1

M∑
p=1

E
(
ζ

i(s)
j − η

i(s)
j

)
η

k(p)
j

= 1

N

N∑
j=1

(
a

(m)
j ;N

)2
M∑

s=1

M∑
p=1

E δ
(s)
j

[ d∑
l=1

(
X

i(s)
j X

l(s)
j − Dil(s)

)(
b

(s)
l − b

(m)
l

)

+ X
i(s)
j ε

i(s)
j

]
· δ

(p)
j

( d∑
q=1

Dkq(p)
(
b

(p)
q − b(m)

q

))
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= 1

N

N∑
j=1

(
a

(m)
j

)2
M∑

s=1

ps
j ;N

( d∑
l=1

(
Dil(s) − Dil(s)︸ ︷︷ ︸

0

)(
b

(s)
l − b

(m)
l

) + E X
i(s)
j E ε

(s)
j︸ ︷︷ ︸

0

)

×
( d∑

q=1

Dkq(s)
(
b(s)
q − b(m)

q

)) = 0; (8)

Cov
(
Si

1, S
k
1

) = 1

N

N∑
j=1

(
a

(m)
j ;N

)2
M∑

s=1

ps
j ;N

d∑
q=1

d∑
l=1

(
b

(s)
l − b

(m)
l

)
E

((
X

i(s)
j X

l(s)
j − Dil(s)

)

× (
X

k(s)
j X

q(s)
j − Dkq(s)

))(
b(s)
q − b(m)

q

)

+ 1

N

N∑
j=1

(
a

(m)
j ;N

)2
M∑

s=1

ps
j ;NDik(s))

(
σ (s)

)2;

Cov
(
Si

2, S
k
2

) = 1

N

N∑
j=1

(
a

(m)
j ;N

)2
M∑

s=1

ps
j ;N

d∑
q=1

d∑
l=1

(
b

(s)
l − b

(m)
l

)
Dil(s)

×
[(

b(s)
q − b(m)

q

)
Dkq(s) −

M∑
r=1

pr
j ;N

(
b(r)
q − b(m)

q

)
Dkq(r)

]
.

Thus,

Cov ζN = 1

N

N∑
j=1

(
a

(m)
j ;N

)2
M∑

s=1

ps
j ;NDik(s)

(
σ (s)

)2

+ 1

N

N∑
j=1

(
a

(m)
j

)2
M∑

s=1

ps
j ;N

d∑
q=1

d∑
l=1

(
b

(s)
l − b

(m)
l

)[(
b(s)
q − b(m)

q

)

× E X
i(s)
j X

k(s)
j X

l(s)
j X

q(s)
j︸ ︷︷ ︸

L
ik(s)
lq

−Dil(s)
M∑

r=1

pr
j ;N

(
b(r)
q − b(m)

q

)
Dkq(r)

])d

i,k=1

.

From the last equation we get Cov(ζN) → Σ as N → ∞.

5 Results of simulation

To assess the accuracy of the asymptotic results from Section 3, we performed a
small simulation study. We considered a two-component mixture (M = 2) with mix-
ing probabilities p1

j ;N = j/N and p2
j ;N = 1 − p1

j ;N . For each subject, there were
two observed variables X and Y , which were simulated based on the simple linear
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Table 1. Simulation results

First component

n E b̂1
0 E b̂1

1 N Var b̂1
0 N Var b̂1

1 N Cov(b̂1
0, b̂1

1)

500 3.0014 0.5235 47.61 45.83 − 42.27
1000 3.0033 0.512 41.19 37.50 −35.04
2000 3.0011 0.5032 38.84 34.71 −32.87
5000 3.0003 0.5016 39.54 34.49 −32.83

∞ 3 0.5 39.13 33.96 −32.53
Second component

n E b̂2
0 E b̂2

1 N Var b̂2
0 N Var b̂2

1 N Cov(b̂2
0, b̂2

1)

500 −2.0243 1.0084 67.37 7.94 −22.17
1000 −42.0100 1.0027 63.04 7.57 −20.90
2000 −2.0039 1.0016 63.57 7.52 −20.95
5000 −2.0074 1.0025 62.41 7.32 −20.48

∞ −2 1 62.20 7.34 −20.47

regression model

Yj = b
κj

0 + b
κj

1 X
(κj )

j + ε
(κj )

j ,

where κi is the number of component the j th observation belongs to, X
(1)
j was sim-

ulated as N(1, 1), X
(2)
j as N(2, 2.25), and ε

(k)
j were zero-mean Gaussians with stan-

dard deviations 0.01 for the first component and 0.05 for the second one. The values
of the regression coefficients were b1

0 = 3, b1
1 = 0.5, b2

0 = −2, b2
1 = 1.

The means and covariances of the estimates were calculated over 2000 replica-
tions.

The results of simulation are presented in Table 1. The true values of parameters
and asymptotic covariances are placed in the last rows of the tables.

The presented data show good concordance with the asymptotic theory for n >

1000.

6 Conclusions

We considered a modification of least-squares estimators for linear regression co-
efficients in the case where observations are obtained from a mixture with varying
concentrations. Conditions of consistency and asymptotic normality of the estima-
tors were derived, and dispersion matrices were evaluated. The results of simulations
confirm good concordance of estimators covariances with the asymptotic formulas
for sample sizes larger then 1000 observations.

In real-life data analysis, concentrations (mixing probabilities) are usually not
known exactly but estimated. So, to apply the proposed technique, we also need to
analyze sensitivity of the estimates to perturbations of the concentrations model. (We
are thankful to the unknown referee for this observation). It is worth noting that per-
formance of these estimates will be poor if the true concentrations of the components
are nearly linearly dependent (det Γ N ≈ 0). We also expect stability of the estimates
w.r.t. concentration perturbations if det Γ N is bounded away from zero. More deep
analysis of sensitivity will be a part of our further work.
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