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Abstract This paper deals with the discrete-time risk model with nonidentically distributed
claims. We suppose that the claims repeat with time periods of three units, that is, claim dis-
tributions coincide at times {1, 4, 7, . . .}, at times {2, 5, 8, . . .}, and at times {3, 6, 9, . . .}. We
present the recursive formulas to calculate the finite-time and ultimate ruin probabilities. We
illustrate the theoretical results by several numerical examples.
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1 Introduction

The discrete-time risk model is a classical collective risk model for insurance. In the
homogeneous version of this model, the insurer’s surplus at each time n ∈ N0 =
{0, 1, 2, . . .} is defined by the following equality:

Wu(n) = u + n −
n∑

i=1

Zi, (1)
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where u ∈ N0 is the initial insurer’s surplus, and the claim amounts Z1, Z2, . . . are
assumed to be independent copies of a nonnegative integer-valued random variable Z.
This random variable and the initial surplus u generate the homogeneous discrete-
time risk model. A typical path of the surplus process Wu(n) is shown in Fig. 1.
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Fig. 1. Behavior of the surplus sequence Wu(n)

The claim amount generator Z can be characterized by the probability mass func-
tion (p.m.f.)

zk = P(Z = k), k ∈ N0,

or by the cumulative distribution function (c.d.f.)

FZ(x) =
�x�∑
k=0

zk, x ∈ R,

where �x� denotes the integer part of x.
The homogeneous discrete-time risk model has been extensively investigated by

De Vylder and Goovaerts [5, 6], Dickson [7, 8], Gerber [10], Seal [17], Shiu [19, 18],
Picard and Lefèvre [15, 16], Lefèvre and Loisel [11], Leipus and Šiaulys [12], Tang
[20], and other authors. The ruin time, the ultimate ruin probability, and the finite-
time ruin probability are the main extremal characteristics of any risk model. The
first time Tu when the surplus Wu(n) becomes negative or null is called the ruin time,
that is,

Tu =
{

inf{n ∈ N : Wu(n) � 0},
∞ if Wu(n) > 0 for all n ∈ N.

The ruin probability until time T ∈ N is called the finite-time ruin probability and is
defined by

ψ(u, T ) = P(Tu � T ).

The infinite-time or ultimate ruin probability is defined by

ψ(u) = P(Tu < ∞).
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So, for the ultimate survival probability, we have

ϕ(u) = 1 − ψ(u) = P(Tu = ∞).

The presented definitions imply that

ψ(u, T ) = P

( T⋃
n=1

{
u + n −

n∑
i=1

Zi � 0

})
= P

(
max

1�n�T

n∑
i=1

(Zi − 1) � u

)
,

ψ(u) = P

( ∞⋃
n=1

{
u + n −

n∑
i=1

Zi � 0

})
= P

(
sup
n�1

n∑
i=1

(Zi − 1) � u

)
,

ϕ(u) = P

( ∞⋂
n=1

{
u + n −

n∑
i=1

Zi > 0

})
,

lim
T ↗∞ ψ(u, T ) = ψ(u).

Several formulas and procedures for computing finite-time ruin probability and
ultimate ruin probability have been proposed in the literature. Here we present some
of them having the recursive form.

• For the homogeneous discrete-time risk model, we have (see, for instance, [5,
8, 9]):

ψ(u, 1) = 1 − FZ(u), u ∈ N0,

ψ(u, T ) = ψ(u, 1) +
u∑

k=0

ψ(u + 1 − k, T − 1)zk, u ∈ N0, T ∈ {2, 3, . . .}.

• If model (1) is generated by the claim generator Z such that EZ < 1, then the
ultimate ruin probability can be calculated by the formulas (see, for instance,
[8, 9, 18]):

ψ(0) = EZ, (2)

ψ(u) =
u−1∑
j=1

(
1 − FZ(j)

)
ψ(u − j) +

∞∑
j=u

(
1 − FZ(j)

)
, u ∈ N. (3)

If the homogeneous discrete-time risk model is generated by Z satisfying condi-
tion EZ � 1, then we say that the net profit condition does not hold, and, in such a
case, we have that ψ(u) = 1 for all u ∈ N0 according to the general renewal theory
(see, e.g., [14] and the references therein).

The formulas presented enable us to calculate ψ(u) and ψ(u, T ) for u ∈ N0
and T ∈ N. Nevertheless, there exist many other methods that allow us to calculate
or estimate the finite-time and the ultimate ruin probabilities. Some of them can be
found in [1, 13, 16].

The assumption for claim amounts {Z1, Z2, . . .} to be nonidentically distributed
random variables is a natural generalization of the homogeneous model. If r.v.s
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{Z1, Z2, . . .} are independent but not necessarily identically distributed, then the
model defined by Eq. (1) is called the inhomogeneous discrete-time risk model. For
such a model, a recursive procedure for calculation of finite-time ruin probabilities
can be found in [2, 3]. For the finite-time ruin probabilities

ψ(j)(u, T ) = P

( T⋃
n=1

{
u + n −

n∑
i=1

Zi+j � 0

})
, j ∈ N0,

we have the following theorem.

Theorem 1. Let us consider the inhomogeneous discrete-time risk model defined by
Eq. (1) in which u ∈ N0, z

(j)
k = P(Z1+j = k), k, j ∈ N0, and F

(j)
Z (x) = P(Z1+j �

x), x ∈ R. Then

ψ(j)(u, 1) = 1 − F
(j)
Z (u),

ψ(j)(u, T ) = ψ(j)(u, 1) +
u∑

k=0

ψ(j+1)(u + 1 − k, T − 1)z
(j)
k

for all u ∈ N0 and T ∈ {2, 3, . . .}.
According to this theorem, we can calculate the finite-time ruin probability

ψ(0)(u, T ) of the initial model for all u ∈ N0 and T ∈ N. Unfortunately, it is im-
possible to get formulas for ψ(u) similar to formulas (2) and (3) in the general case
because in the case of nonidentically distributed claims, the future of model behav-
ior at each time can be completely new. In paper [4], the general discrete-time risk
model was restricted to the model with two kinds of claims. In this model, there
are two differently distributed claim amounts that are changing periodically. We call
such a model the bi-seasonal discrete-time risk model. In [4] (see Theorem 2.3), the
following statement is proved for the calculation of the ultimate ruin probability.

Theorem 2. Let us consider a bi-seasonal discrete-time risk model generated by

independent random claim amounts X and Y , that is, Z2k+1
d= X for k ∈ {0, 1, . . .}

and Z2k
d= Y for k ∈ {1, 2, . . .}. Denote S = X + Y and xn = P(X = n), yn =

P(Y = n), sn = P(S = n) for n ∈ N0 = {0, 1, . . .}.
• If EX + EY < 2, then

lim
u→∞ ψ(u) = 0.

• If s0 = x0y0 	= 0, then:

ψ(0) = 1 − (2 − ES) lim
n→∞

bn+1 − bn

an − an+1
,

1 − ψ(u) = αu

(
1 − ψ(0)

) + βu(2 − ES), u ∈ N,

where {αn}, {βn}, n ∈ N0, are two sequences of real numbers defined recur-
sively by formulas:

α0 = 1, α1 = − 1

y0
,
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αn = 1

s0

(
αn−2 −

n−1∑
i=1

siαn−i − xn−1

)
, n � 2,

β0 = 0, β1 = 1

y0
,

βn = 1

s0

(
βn−2 −

n−1∑
i=1

siβn−i + xn−1

)
, n � 2.

• If s0 	= 0, then

ψ(1) = 1 − (
1 + ψ(0) − ES

)
/y0,

ψ(u) = 1 + 1

s0

(
ψ(u − 2) − 1 +

u−1∑
k=1

sk
(
1 − ψ(u − k)

))

− xu−1(1 − ψ(1))

x0
, u ∈ {2, 3, . . .}.

• If x0 = 0, y0 	= 0, then s1 	= 0 and ψ(0) = 1.

• If x0 	= 0, y0 = 0, then s1 	= 0 and ψ(0) = ES − 1.

• If s0 = 0, then, for u ∈ N,

ψ(u) = 1 − 1

s1

(
1 − ψ(u − 1) −

u∑
k=2

sk
(
1 − ψ(u − k + 1)

))
.

In this paper, we consider the discrete-time risk model with three seasons. We
obtain a list of formulas similar to those in Theorem 2 to calculate the ultimate ruin
probability in such a model. In Section 2, we present a precise definition of the three-
seasonal discrete-time risk model and our main statements, whereas in Sections 3
and 4, we give detailed proofs. Finally, Section 5 deals with some numerical exam-
ples.

2 Main results

We now present the model under consideration.

Definition 1. We say that the insurer’s surplus Wu(n) follows the three-seasonal risk
model if Wu(n) is given by Eq. (1) for each n ∈ N0 and the following assumptions
hold:

• the initial insurer’s surplus u ∈ N0,

• the random claim amounts Z1, Z2, . . . are nonnegative integer-valued indepen-
dent r.v.s,

• for all k ∈ N0, we have Z3k+1
d= Z1, Z3k+2

d= Z2, and Z3k+3
d= Z3.
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Let us define p.m.f.s and p.d.f.s by the following equalities:

ak = P(Z1 = k), bk = P(Z2 = k),

ck = P(Z3 = k), sk = P(S = k), k ∈ N0,

where S = Z1 + Z2 + Z3,

A(x) =
�x�∑
k=0

ak, B(x) =
�x�∑
k=0

bk,

C(x) =
�x�∑
k=0

ck, D(x) =
�x�∑
k=0

sk, x � 0.

It is not difficult to see that the definitions of ruin time, finite-time ruin probabil-
ity, ultimate ruin probability, and ultimate survival probability remain the same. All
expressions of these quantities are the same as in the homogeneous discrete-time risk
model. However, the procedures to calculate the finite-time or the ultimate probabil-
ities are more complex than in the homogeneous or be-seasonal discrete-time risk
models.

Our first result immediately follows from Theorem 1. The obtained formulas al-
low us to calculate the finite-time ruin probabilities ψ(u, T ) = ψ(0)(u, T ) in the
three-seasonal risk model for all u ∈ N0 and all T ∈ N.

Theorem 3. In the three-seasonal discrete-time risk model, for each u ∈ N0, we have

ψ(0)(u, 1) =
∑
k>u

ak, ψ(1)(u, 1) =
∑
k>u

bk, ψ(2)(u, 1) =
∑
k>u

ck,

and for all u ∈ N0 and T ∈ {2, 3, . . .}, we have the following recursive formulas:

ψ(0)(u, T ) = ψ(0)(u, 1) +
u∑

k=0

ψ(1)(u + 1 − k, T − 1)ak,

ψ(1)(u, T ) = ψ(1)(u, 1) +
u∑

k=0

ψ(2)(u + 1 − k, T − 1)bk,

ψ(2)(u, T ) = ψ(2)(u, 1) +
u∑

k=0

ψ(0)(u + 1 − k, T − 1)ck.

Our second result describes the meaning of the net profit condition in the three-
seasonal discrete-time risk model. The proof of the theorem is presented in Section 3.

Theorem 4. Consider the three-seasonal discrete time risk model generated by inde-
pendent random claim amounts Z1, Z2, and Z3. If ES > 3, then ψ(u) = 1 for each
initial surplus u ∈ N0. If ES = 3, then we have the following possible cases:

• ψ(0) = ψ(1) = ψ(2) = 1 and ψ(u) = 0 for u ∈ {3, 4, . . .} if {a3 = b0 =
c0 = 1};
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• ψ(0) = ψ(1) = 1 and ψ(u) = 0 for u ∈ {2, 3, . . .} if {a0 = b3 = c0 = 1},
{a2 = b1 = c0 = 1}, {a1 = b2 = c0 = 1}, or {a2 = b0 = c1 = 1};

• ψ(0) = 1 and ψ(u) = 0 for all u ∈ N if {a0 = b0 = c3 = 1}, {a0 = b2 =
c1 = 1}, {a0 = b1 = c2 = 1}, {a1 = b0 = c2 = 1}, or {a1 = b1 = c1 = 1};

• ψ(u) = 1 for all u ∈ N0 = {0, 1, 2, . . .} if s3 < 1.

Our last statement proposes a recursive procedure for calculation of the ultimate
survival probabilities ϕ(u) = 1 − ψ(u), u ∈ N0. The proof of the formulas is given
in Section 4.

Theorem 5. Consider the three-seasonal discrete-time risk model generated by in-
dependent random claim amounts Z1, Z2, and Z3. Denote S = Z1 + Z2 + Z3,
sn = P(S = n) for n ∈ N0, and suppose that ES < 3. Then the following statements
hold.

• lim
u→∞ ϕ(u) = 1.

• If s0 	= 0, then

ϕ(n) = αnϕ(0) + βnϕ(1) + γn(3 − ES), n ∈ N0, (4)

where {
α0 = 1, α1 = 0, α2 = − 1

b0c0
,

αn = 1
s0

(αn−3 − ∑n−1
k=1 skαn−k − an−2), n � 3;

{
β0 = 0, β1 = 1, β2 = − c1

c0
− 1

b0
,

βn = 1
s0

(βn−3 − ∑n−1
k=1 skβn−k − an−2c0 + c0

∑n−1
k=0 akbn−1−k), n � 3;

{
γ0 = 0, γ1 = 0, γ2 = 1

b0c0
,

γn = 1
s0

(γn−3 − ∑n−1
k=1 skγn−k + an−2), n � 3.

• If {a0 = 0, b0 	= 0, c0 	= 0, a1 	= 0}, then

{
ϕ(0) = 0,

ϕ(n) = β̂nϕ(1) + γ̂n(3 − ES), n ∈ N,
(5)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β̂1 = β1, β̂2 = β2, γ̂1 = γ1, γ̂2 = γ2,

β̂n = 1
s1

(β̂n−2 − ∑n
k=2 skβ̂n−k+1

− an−1c0 − c0ϕ(1)
∑n

k=1 akbn−k), n � 3,

γ̂n = 1
s1

(γ̂n−2 − ∑n
k=2 skγ̂n−k+1 + an−1), n � 3.
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• If {a0 	= 0, b0 = 0, c0 	= 0, b1 	= 0} then

ϕ(n) = α̃nϕ(0) + γ̃n(3 − ES), n ∈ N, (6)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α̃1 = −1/c0, α̃2 = c1/c
2
0 + 1/(a0b1c0),

γ̃1 = 1/c0, γ̃2 = −c1/c
2
0,

α̃n = 1
s1

(α̃n−2 − ∑n
k=2 skα̃n−k+1 − ∑n−1

k=0 akbn−k), n � 3,

γ̃n = 1
s1

(γ̃n−2 − ∑n
k=2 skγ̃n−k+1 + ∑n−1

k=0 akbn−k), n � 3.

• If {a0 	= 0, b0 	= 0, c0 = 0, c1 	= 0}, then

ϕ(n) = ᾰnϕ(0) + γ̆n(3 − ES), n ∈ N0, (7)

where⎧⎪⎪⎨
⎪⎪⎩

ᾰ0 = 1, ᾰ1 = −1/(b0c1), γ̆0 = 0, γ̆1 = 1/(b0c1),

ᾰn = 1
s1

(ᾰn−2 − ∑n
k=2 skᾰn−k+1 − ∑n−1

k=0 akbn−k), n � 2,

γ̆n = 1
s1

(γ̆n−2 − ∑n
k=2 skγ̆n−k+1 + ∑n−1

k=0 akbn−k), n � 2.

• If {a0 = 0, b0 = 0, c0 	= 0}, then ϕ(0) = 0, ϕ(1) = (3 − ES)/c0, and

ϕ(u + 1) = 1

s2

(
(1 − s3)ϕ(u) −

u−1∑
k=1

ϕ(k)su+3−k

+ c0ϕ(1)

u+2∑
k=0

akbu+2−k

)
, u ∈ N. (8)

• If {a0 = 0, b0 	= 0, c0 = 0}, then ϕ(0) = s2ϕ(1), ϕ(1) = (3−ES)/(s2 +b0c1),
and

ϕ(u + 1) = 1

s2

(
(1 − s3)ϕ(u) −

u−1∑
k=1

ϕ(k)su+3−k

+ au+1b0c1ϕ(1)

)
, u ∈ N. (9)

• If {a0 	= 0, b0 = 0, c0 = 0}, then ϕ(0) = 3 − ES, ϕ(1) = (3 − ES)/s2, and

ϕ(u + 1) = 1

s2

(
(1 − s3)ϕ(u) +

u−1∑
k=1

ϕ(k)su+3−k

)
, u ∈ N. (10)

• If {a0 = a1 = 0, b0 	= 0, c0 	= 0}, then ϕ(0) = 0, ϕ(1) = (3−ES)/(1/a2+c0),
and the recursion formula (8) is satisfied.
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• If {a0 	= 0, b0 = b1 = 0, c0 	= 0}, then ϕ(0) = 0, ϕ(1) = (3 −ES)/c0, and the
same recursion formula (8) holds.

• If {a0 	= 0, b0 	= 0, c0 = c1 = 0}, then ϕ(0) = 3 − ES, ϕ(1) = (3 − ES)/s2,
and the recursion formula (10) is satisfied.

We observe that all formulas presented in Theorem 5 can be used to calculate
numerical values of survival or ruin probabilities for an arbitrary three-seasonal risk
model and for an arbitrary initial surplus value u. The algorithms based on the derived
relations work quite quickly and accurately. A few numerical examples for calculating
ruin probability in the various versions of the three-seasonal risk model are presented
in Section 5.

3 Net profit condition

In this section, we present a proof of Theorem 4. We recall that we denote the ultimate
survival probability by ϕ(u).

Proof of Theorem 4. For an arbitrary u ∈ N0, we have

ϕ(u) = P

( ∞⋂
n=1

{
u + n −

n∑
i=1

Zi > 0

})

= P

( ∞⋂
n=3

{
u + n −

n∑
i=1

Zi > 0

}
∩ {Z1 � u + 1} ∩ {Z1 + Z2 � u + 2}

)

− P

( ∞⋂
n=3

{
u + n −

n∑
i=1

Zi > 0

}
∩ {Z1 � u + 1}

)

− P

( ∞⋂
n=3

{
u + n −

n∑
i=1

Zi > 0

}
∩ {Z1 + Z2 � u + 2}

)

+ P

( ∞⋂
n=3

{
u + n −

n∑
i=1

Zi > 0

})
. (11)

Since the model is three-seasonal, the last probability in (11) can be expressed by the
sum

u+2∑
k=0

sk P

( ∞⋂
n=1

{
u + n + 3 − k −

n∑
i=1

Zi > 0

})
=

u+2∑
k=0

sk ϕ(u + 3 − k), (12)

where, as before, sk = P(Z1 + Z2 + Z3 = k) for k ∈ N0.
The second probability in (11) is equals

∞∑
k=u+1

ak P

(⋂
n�3

{
u + n − k − Z2 − Z3 −

n∑
i=4

Zi > 0

})
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= au+2 P(Z2 + Z3 = 0) P

( ∞⋂
n=4

{
n − 2 −

n∑
i=4

Zi > 0

})

+ au+1 P(Z2 + Z3 = 0) P

( ∞⋂
n=4

{
n − 1 −

n∑
i=4

Zi > 0

})

+ au+1 P(Z2 + Z3 = 1) P

( ∞⋂
n=4

{
n − 2 −

n∑
i=4

Zi > 0

})

= au+2b0c0ϕ(1) + au+1b0c0ϕ(2) + au+1b0c1ϕ(1) + au+1b1c0ϕ(1). (13)

Similarly, the third probability in (11) is

P(Z1 + Z2 = u + 2) P(Z3 = 0) P

( ∞⋂
n=4

{
n − 2 −

n∑
i=4

Zi > 0

})

= c0ϕ(1)

u+2∑
k=0

akbu+2−k, (14)

and, finally, the first probability in (11) is

P(Z1 = u + 1) P(Z2 = 1) P(Z3 = 0) P

( ∞⋂
n=4

{
n − 2 −

n∑
i=4

Zi > 0

})

+ P(Z1 = u + 2) P(Z2 = 0) P(Z3 = 0) P

( ∞⋂
n=4

{
n − 2 −

n∑
i=4

Zi > 0

})

= au+1b1c0ϕ(1) + au+2b0c0ϕ(1). (15)

Substituting (12)–(15) into (11), we get that

ϕ(u) =
u+2∑
k=0

sk ϕ(u + 3 − k) − au+1b0c0ϕ(2)

− au+1b0c1ϕ(1) − c0ϕ(1)

u+2∑
k=0

akbu+2−k (16)

for all u ∈ N0.
Therefore, for v ∈ N0, we have

v∑
u=0

ϕ(u) =
v∑

u=0

u+2∑
k=0

skϕ(u + 3 − k)

− b0c0ϕ(2)
(
A(v + 1) − a0

) − b0c1ϕ(1)
(
A(v + 1) − a0

)
− c0ϕ(1)

v∑
u=0

u+2∑
k=0

akbu+2−k. (17)
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We observe that the sum
v∑

u=0

u+2∑
k=0

akbu+2−k

can be rewritten in the form

a0

v∑
u=0

bu+2 + a1

v∑
u=0

bu+1 + a2

v∑
u=0

bu +
v+2∑
k=3

ak

v∑
u=k−2

bu+2−k

= a0
(
B(v + 2) − b0 − b1

) + a1
(
B(v + 1) − b0

) + a2B(v)

+
v+2∑
k=3

akB(v + 2 − k)

=
v+2∑
k=0

akB(v + 2 − k) − a0b0 − a0b1 − a1b0. (18)

Similarly, the sum
v∑

u=0

u+2∑
k=0

skϕ(u + 3 − k)

equals

v+3∑
k=1

ϕ(k)D(v + 3 − k) − s0ϕ(1) − s1ϕ(1) − s0ϕ(2), (19)

where

D(x) =
�x�∑
k=0

sk =
�x�∑
k=0

P(Z1 + Z2 + Z3 = k).

Relations (17), (18), and (19) imply that

v∑
k=0

ϕ(k) =
v+3∑
k=1

ϕ(k)D(v + 3 − k)

− b0c0ϕ(2)A(v + 1) − b0c1ϕ(1)A(v + 1)

− c0ϕ(1)

v+2∑
k=0

akB(v + 2 − k)

or, equivalently,
v+3∑
k=0

ϕ(k)
(
1 − D(v + 3 − k)

)
= ϕ(v + 1) + ϕ(v + 2) + ϕ(v + 3) − ϕ(0)D(v + 3) − b0c0ϕ(2)A(v + 1)

− b0c1ϕ(1)A(v + 1) + c0ϕ(1)

(v+2∑
k=0

akB(v + 2 − k) + A(v + 2)

)
. (20)



432 A. Grigutis et al.

For each K ∈ [1, v + 2), we have

v+2∑
k=0

akB(v + 2 − k) =
K∑

k=0

akB(v + 2 − k) +
v+2∑

k=K+1

akB(v + 2 − k).

Therefore,

lim sup
v→∞

v+2∑
k=0

akB(v + 2 − k) �
∞∑

k=K+1

ak

for each K � 1, and so

lim
v→∞

v+2∑
k=0

akB(v + 2 − k) = 0. (21)

The sequence ϕ(u), u ∈ N0, is bounded and nondecreasing. So, the limit ϕ(∞) :=
lim

u→∞ ϕ(u). Similarly to the derivation of (21), we can get that

lim sup
v→∞

v+3∑
k=0

(
ϕ(∞) − ϕ(k)

)(
1 − D(v + 3 − k)

)
� sup

k�K+1

(
ϕ(∞) − ϕ(k)

)
ES

for each fixed K � 1. Therefore,

lim
v→∞

v+3∑
k=0

ϕ(k)
(
1 − D(v + 3 − k)

) = ϕ(∞) lim
v→∞

v+3∑
k=0

(
1 − D(k)

)
= ϕ(∞)ES. (22)

Relations (20), (21), and (22) imply that

ϕ(∞)(3 − ES) = ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1). (23)

Now we consider the last equality and examine all possible cases.

(I) If ES > 3, then (23) implies that ϕ(∞) = 0 because the left side of (23) is
nonnegative in all cases. So, in this case, ψ(u) = 1 for all u ∈ {0, 1, 2, . . .}.

(II) If ES = 3, then (23) implies that

ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1) = 0.

Additionally, in this situation we have that s3 = 1 or s3 < 1.

(II-A) If s3 = 1, then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0b0c0 = 0,

a1b0c0 + a0b1c0 + a0b0c1 = 0,

a0b0c2 + a0b2c0 + a2b0c0 + a1b1c0 + a0b1c1 + a1b0c1 = 0,

a0b0c3 + a0b3c0 + a3b0c0 + a1b2c0 + a2b1c0

+a0b1c2 + a0b2c1 + a1b0c2 + a2b0c1 + a1b1c1 = 1,

ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1) = 0.
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Taking into account that all numbers ak , bk , and ck are local probabilities for all
k ∈ N0, the last system implies the following possible cases.

(a) {a3 = b0 = c0 = 1} and ϕ(0) = ϕ(1) = ϕ(2) = 0. In this case, ψ(0) = ψ(1) =
ψ(2) = 1 and ψ(u) = 0, u ∈ {3, 4, . . .} because

Wu(n) =

⎧⎪⎨
⎪⎩

u − 2 if n ≡ 1 mod 3,

u − 1 if n ≡ 2 mod 3,

u if n ≡ 0 mod 3.

(b) {a0 = b3 = c0 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1 and
ψ(u) = 0 for u ∈ {2, 3, . . .} because

Wu(n) =

⎧⎪⎨
⎪⎩

u + 1 if n ≡ 1 mod 3,

u − 1 if n ≡ 2 mod 3,

u if n ≡ 0 mod 3.

(c) {a0 = b0 = c3 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .} because

Wu(n) =

⎧⎪⎨
⎪⎩

u + 1 if n ≡ 1 mod 3,

u + 2 if n ≡ 2 mod 3,

u if n ≡ 0 mod 3.

(d) {a2 = b1 = c0 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1 and
ψ(u) = 0 for u ∈ {2, 3, . . .}.

(e) {a1 = b2 = c0 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1 and
ψ(u) = 0 for u ∈ {2, 3, . . .}.

(f) {a0 = b2 = c1 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .}.

(g) {a0 = b1 = c2 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .}.

(h) {a2 = b0 = c1 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1 and
ψ(u) = 0 for u ∈ {2, 3, . . .}.

(i) {a1 = b0 = c2 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .}.

(j) {a1 = b1 = c1 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .}.

(II-B) If s3 < 1 and ES = 3, then it is necessary that s0 	= 0 or s1 	= 0 or s2 	= 0
because, on the contrary, ES = 3s3 + 4s4 + 5s5 + · · · > 3(s3 + s4 + · · · ) = 3.
In this situation, it suffices to consider the following cases:

{s0 	= 0}, {s0 = 0, s1 	= 0}, {s0 = 0, s1 = 0, s2 	= 0}.
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(k) If s0 = a0b0c0 	= 0, then (23) implies that ϕ(0) = ϕ(1) = ϕ(2) = 0, and from
(16) we obtain ϕ(u) = 0 for all u ∈ {3, 4, . . .}. So, ψ(u) = 1 if u ∈ {0, 1, . . .}
in this case.

(l) If s0 = a0b0c0 = 0 and s1 = a0b0c1 + a0b1c0 + a1b0c0 	= 0, then we have the
following possible cases.

(l-1) {a0 = 0, a1 	= 0, b0 	= 0, c0 	= 0}. In this situation, Eq. (23) implies that ϕ(0) =
ϕ(1) = ϕ(2) = 0, whereas (16) implies that ϕ(u) = 0 for all u ∈ {3, 4, . . .}.
So, ψ(u) = 1 for all u ∈ {0, 1, . . .} in this case.

(l-2) {a0 	= 0, b0 = 0, b1 	= 0, c0 	= 0}. In this situation, Eq. (23) implies that
ϕ(0) = ϕ(1) = 0, and (16) implies that ϕ(u) = 0 for all u ∈ {2, 3, . . .}.
Therefore, ψ(u) = 1 for all u ∈ {0, 1, . . .} again.

(l-3) {a0 	= 0, b0 	= 0, c0 = 0, c1 	= 0}.
Equality (23) implies that ϕ(0) = ϕ(1) = 0, and (16) implies that ϕ(u) = 0
for all u ∈ {2, 3, . . .}. So, in this case, ψ(u) = 1 for all u ∈ {0, 1, . . .}.

(m) If s0 = a0b0c0 = 0, s1 = a0b0c1 + a0b1c0 + a1b0c0 = 0 and s2 = a0b0c2 +
a0b2c0 +a2b0c0 +a1b1c0 +a1b0c1 +a0b1c1 	= 0, then there exist the following
possible cases.

(m-1) {a0 = 0, a1 = 0, a2 	= 0, b0 	= 0, c0 	= 0};
(m-2) {a0 	= 0, b0 = 0, b1 = 0, b2 	= 0, c0 	= 0};
(m-3) {a0 	= 0, b0 	= 0, c0 = 0, c1 = 0, c2 	= 0};
(m-4) {a0 = 0, a1 	= 0, b0 = 0, b1 	= 0, c0 	= 0};
(m-5) {a0 = 0, a1 	= 0, b0 	= 0, c0 = 0, c1 	= 0};
(m-6) {a0 	= 0, b0 = 0, b1 	= 0, c0 = 0, c1 	= 0}.
In all cases, Eqs. (23) and (16) imply that ϕ(u) = 0, and so ψ(u) = 1 for all u ∈ N0.
Theorem 4 is proved.

4 Recursive formulas

In this section, we prove Theorem 5. Equality (23) from the previous section plays a
crucial role.

Proof of Theorem 5. Let we consider the case ES < 3. First, we prove that
ϕ(∞) = 1. According to the definition

ϕ(∞) = lim
u→∞P

( ∞⋂
n=1

{ n∑
i=1

(Zi − 1) < u

})
= lim

u→∞P

(
sup
u�1

ηn < u
)
,

where
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ηn =
n∑

i=1

(Zi − 1), n ∈ N.

If n = 3N , N ∈ N, then

ηn

n
= η3N

3N
= 1

3

(
1

N

N∑
i=1

(Z3i−2 − 1) + 1

N

N∑
i=1

(Z3i−1 − 1) + 1

N

N∑
i=1

(Z3i − 1)

)
.

If n = 3N + 1, N ∈ N, then

ηn

n
= η3N+1

3N + 1
= N + 1

3N + 1

1

N + 1

N+1∑
i=1

(Z3i−2 − 1)

+ N

3N + 1

(
1

N

N∑
i=1

(Z3i−1 − 1) + 1

N

N∑
i=1

(Z3i − 1)

)
.

If n = 3N + 2, N ∈ N, then

ηn

n
= η3N+2

3N + 2
= N

3N + 2

1

N

N∑
i=1

(Z3i − 1)

+ N + 1

3N + 2

(
1

N + 1

N+1∑
i=1

(Z3i−2 − 1) + 1

N + 1

N+1∑
i=1

(Z3i−1 − 1)

)
.

Hence, the strong law of large numbers implies that

ηn

n
→

n→∞
1

3
(EZ1 − 1 + EZ2 − 1 + EZ3 − 1) = ES − 3

3

almost surely.
From this it follows that

P

(
sup
m�n

∣∣∣ηm

m
+ μ

∣∣∣ <
μ

2

)
→

n→∞ 1 (24)

with μ := (ES − 3)/3 > 0.
For arbitrary positive u and N ∈ N, we have

P

(
sup
n�1

ηn < u
)
� P

(( N⋂
n=1

{
ηn � u

2

})
∩

( ∞⋂
n=N+1

{
ηn � u

2

}))

� P

( N⋂
n=1

{
ηn � u

2

})
+ P

( ∞⋂
n=N+1

{ηn � 0}
)

− 1

� P

( N⋂
n=1

{
ηn � u

2

})
+ P

(
sup

m�N+1

∣∣∣ηm

m
+ μ

∣∣∣ <
μ

2

)
− 1.
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The last inequality implies that

lim
u→∞P

(
sup
n�1

ηn < u
)
� P

(
sup

m�N+1

∣∣∣ηm

m
+ μ

∣∣∣ <
μ

2

)

for arbitrary N ∈ N.
Hence, according to (24), we have that ϕ(∞) = 1.
Substituting this into (23), we get

3 − ES = ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1). (25)

In addition, Eq. (16) can be rewritten as follows:

ϕ(u) =
u+2∑
k=0

su+2−k ϕ(k + 1) − au+1b0c0ϕ(2) − au+1b0c1ϕ(1)

− c0ϕ(1)

u+2∑
k=0

akbu+2−k, u ∈ N0. (26)

Now we consider the last two formulas to get a suitable recursion procedure described
in Theorem 5.

• First, let s0 = a0b0c0 	= 0, and let the sequences αn, βn, γn be defined in the
statement of Theorem 5.

We prove (4) by induction. We observe that relation (25) implies immediately:

ϕ(0) = α0ϕ(0) + β0ϕ(1) + γ0(3 − ES),

ϕ(1) = α1ϕ(0) + β1ϕ(1) + γ1(3 − ES),

ϕ(2) = α2ϕ(0) + β2ϕ(1) + γ2(3 − ES).

Now suppose that Eq. (4) holds for all n = 0, 1, . . . , N − 1, and we will prove that
(4) holds for n = N . By (26) we have

ϕ(N − 3) =
N−1∑
k=0

sN−1−k ϕ(k + 1) − aN−2b0c0ϕ(2) − aN−2b0c1ϕ(1)

− c0ϕ(1)

N−1∑
k=0

akbN−1−k.

Therefore, using the induction hypothesis, we get

s0ϕ(N) = ϕ(N − 3) −
N−1∑
k=1

skϕ(N − k) + aN−2b0c0ϕ(2)

+ aN−2b0c1ϕ(1) + c0ϕ(1)

N−1∑
k=0

akbN−1−k
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= αN−3ϕ(0) + βN−3ϕ(1) + γN−3(3 − ES)

−
N−1∑
k=1

sk
(
αN−kϕ(0) + βN−kϕ(1)

+ γN−k(3 − ES)
) + aN−2b0c0ϕ(2) + aN−2b0c1ϕ(1)

+ c0ϕ(1)

N−1∑
k=0

akbN−1−k. (27)

Since

ϕ(2) = − 1

b0c0
ϕ(0) − c1

c0
ϕ(1) − 1

b0
ϕ(1) + 3 − ES

b0c0

due to (25), we obtain from (27) that

ϕ(N) = ϕ(0)
1

s0

(
αN−3 −

N−1∑
k=1

skαN−k − aN−2

)

+ ϕ(1)
1

s0

(
βN−3 −

N−1∑
k=1

skβN−k − aN−2c0 + c0

N−1∑
k=0

akbN−1−k

)

+ (3 − ES)
1

s0

(
γN−3 −

N−1∑
k=1

skγN−k + aN−2

)

= αNϕ(0) + βNϕ(1) + γN(3 − ES).

Hence, the desired relation (4) holds for all n ∈ N0 by induction.

• If {a0 = 0, b0 	= 0, c0 	= 0, a1 	= 0}, then s0 = 0 and s1 	= 0. Equality (26)
with u = 0 implies that ϕ(0) = 0. The recursive relation (5) can be derived
from the basic equalities (25) and (26) in the same manner as relation (4).

• If {a0 	= 0, b0 = 0, c0 	= 0, b1 	= 0}, then it follows from Eq. (25) that
3 −ES = ϕ(0) + c0ϕ(1). Hence, ϕ(1) = α̃1ϕ(0) + γ̃1(3 −ES). This is Eq. (6)
for n = 1. The validity of (6) for the other n can be derived from (26) using the
induction arguments.

• In the case {a0 	= 0, b0 	= 0, c0 = 0, c1 	= 0}, formula (7) follows from (25)
if n = 1. For the other n, formula (7) follows from (26) again by using the
induction arguments.

• In the case {a0 = 0, b0 = 0, c0 	= 0}, we have that s0 = s1 = 0 and s2 	= 0
because of ES < 3. It follows immediately from (26) that ϕ(0) = 0, whereas
from (25) it follows that ϕ(1) = (3 −ES)/s2. Finally, we can get the recursive
formula (8) from (26) using the same induction procedure.

• In the case {a0 = 0, b0 	= 0, c0 = 0}, similarly as in the previous one, we
derive that ϕ(0) = s2ϕ(1) from (26), we derive that 3−ES = ϕ(0)+b0c1ϕ(1)

from (25), and we derive the desired formula (9) again from (26).
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• The case {a0 	= 0, b0 = 0, c0 = 0} is considered completely analogously as
both previous cases. Here we omit details.

We have that ES < 3. So, it remains to study the following possible cases:

{a0 = a1 = 0, b0 	= 0, c0 	= 0}, {a0 	= 0, b0 = b1 = 0, c0 	= 0},
{a0 	= 0, b0 	= 0, c0 = c1 = 0}.

In all these cases, the presented recursion relations follow from Eq. (26), and the
initial values of survival probability ϕ(0) and ϕ(1) can be obtained using Eq. (25)
together with Eq. (26) with u = 0 or u = 1. Theorem 5 is proved.

5 Numerical examples

In this section, we present three examples of computing numerical values of the finite-
time ruin probability and the ultimate ruin probability. All calculations are carried out
using software MATHEMATICA. In all presented tables, the numbers are rounded up
to three decimal places.

First example. Suppose that the three-seasonal discrete-time risk model is generated
by the r.v.s

Z1 0 1 2
P 0.5 0.25 0.25

,
Z2 0 1 2
P 0.4 0.3 0.3

,
Z3 0 1 2
P 0.3 0.35 0.35

.

In Table 1, we give the finite-time ruin probabilities for initial surpluses u ∈
{0, 1, . . . 10, 20} and times T ∈ {1, 2, . . . , 10, 20} together with the ultimate ruin
probabilities for the same u.

Numerical values of the finite-time ruin probabilities are calculated using the al-
gorithm presented in Theorem 3, whereas the values of the ultimate ruin probabil-
ities are obtained using the formulas of Theorem 5. Namely, first, we observe that
ES = 2.7 and s0 	= 0 in this case. So, Eq. (4) holds for an arbitrary n ∈ N0. In

Table 1. Ruin probabilities for the first model

T u

0 1 2 3 4 5 6 7 8 9 10 20
1 0.5 0.25 0 0 0 0 0 0 0 0 0 0
2 0.65 0.325 0.075 0 0 0 0 0 0 0 0 0
3 0.703 0.404 0.128 0.026 0 0 0 0 0 0 0 0
4 0.733 0.445 0.169 0.046 0.007 0 0 0 0 0 0 0
5 0.751 0.475 0.2 0.066 0.014 0.002 0 0 0 0 0 0
6 0.768 0.503 0.233 0.089 0.026 0.005 0.001 0 0 0 0 0
7 0.779 0.523 0.256 0.106 0.035 0.009 0.002 0 0 0 0 0
8 0.788 0.538 0.275 0.122 0.045 0.014 0.003 0.001 0 0 0 0
9 0.796 0.554 0.295 0.139 0.056 0.019 0.006 0.001 0 0 0 0
10 0.802 0.566 0.310 0.152 0.065 0.024 0.008 0.002 0 0 0 0
20 0.836 0.632 0.402 0.243 0.138 0.075 0.038 0.018 0.008 0.003 0.001 0
∞ 0.877 0.722 0.541 0.404 0.301 0.224 0.167 0.125 0.093 0.069 0.052 0.003
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Table 2. Ruin probabilities for the Poison model

T u

0 1 2 3 4 5 6 7 8 9 10 20
1 0.393 0.09 0.014 0.002 0 0 0 0 0 0 0 0
2 0.481 0.152 0.037 0.008 0.001 0 0 0 0 0 0 0
3 0.535 0.205 0.066 0.019 0.005 0.001 0 0 0 0 0 0
4 0.549 0.221 0.075 0.023 0.006 0.002 0 0 0 0 0 0
5 0.562 0.236 0.086 0.028 0.009 0.002 0.001 0 0 0 0 0
6 0.576 0.254 0.099 0.036 0.012 0.004 0.001 0 0 0 0 0
7 0.581 0.26 0.103 0.038 0.013 0.004 0.001 0 0 0 0 0
8 0.585 0.266 0.109 0.042 0.015 0.005 0.002 0.001 0 0 0 0
9 0.591 0.274 0.115 0.046 0.017 0.006 0.002 0.001 0 0 0 0
10 0.593 0.277 0.118 0.048 0.018 0.007 0.002 0.001 0 0 0 0
20 0.605 0.295 0.134 0.059 0.026 0.011 0.005 0.002 0.001 0.0003 0.0001 0
∞ 0.609 0.3 0.139 0.064 0.029 0.013 0.006 0.003 0.001 0.001 0.0002 0

particular, {
ϕ(250) = α250ϕ(0) + β250ϕ(1) + 0.3γ250,

ϕ(251) = α251ϕ(0) + β251ϕ(1) + 0.3γ251,

According to the first statement of Theorem 5, we can suppose that ϕ(250) =
ϕ(251) = 1. So, we get ϕ(0) and ϕ(1) from this system after calculating the val-
ues of {α0, α1, . . . α251}, {β0, β1, . . . , β251}, and {γ0, γ1, . . . , γ251}. Now it remains
to use Eq. (4) again to obtain the values ϕ(u) = 1 − ψ(u) for initial surplus values
u ∈ {2, 3, . . . , 10, 20}.
Second example. Suppose now that the three-seasonal discrete-time risk model is gen-
erated by three Poison distributions: Z1 with parameter 1/2, Z2 with parameter 2/3,

and Z3 with parameter 4/5. In Table 2, we present the finite-time ruin probabilities
for u ∈ {0, 1, . . . 10, 20}, T ∈ {1, 2, . . . , 10, 20} and the ultimate ruin probabilities
for u ∈ {0, 1, . . . 10, 20}. All calculations are made similarly as in the first example.

Third example. We write ξ ∼ G(p) if ξ is a r.v. having the geometric distribution
with parameter p ∈ (0, 1), that is, P(ξ = k) = p(1 − p)k, k ∈ N0. Suppose that the

Table 3. Ruin probabilities for the geometric model

T u

0 1 2 3 4 5 6 7 8 9 10 20
1 0.25 0.063 0.016 0.004 0.001 0 0 0 0 0 0 0
2 0.333 0.111 0.037 0.012 0.004 0.001 0 0 0 0 0 0
3 0.556 0.34 0.218 0.143 0.094 0.063 0.042 0.028 0.019 0.012 0.008 0
4 0.566 0.35 0.226 0.149 0.099 0.066 0.044 0.029 0.019 0.013 0.009 0
5 0.576 0.362 0.236 0.156 0.104 0.069 0.046 0.031 0.021 0.014 0.009 0
6 0.653 0.461 0.334 0.243 0.176 0.127 0.091 0.065 0.046 0.033 0.023 0.001
7 0.657 0.466 0.338 0.247 0.18 0.13 0.093 0.067 0.048 0.034 0.024 0.001
8 0.661 0.471 0.344 0.252 0.184 0.133 0.096 0.069 0.049 0.035 0.025 0.001
9 0.703 0.529 0.406 0.312 0.239 0.181 0.137 0.102 0.076 0.056 0.042 0.002
10 0.705 0.532 0.409 0.315 0.241 0.184 0.139 0.104 0.078 0.057 0.042 0.002
20 0.774 0.635 0.528 0.438 0.363 0.298 0.243 0.197 0.159 0.127 0.101 0.008
∞ 0.927 0.879 0.84 0.803 0.769 0.736 0.705 0.675 0.647 0.619 0.593 0.385
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three-seasonal risk model is generated by r.v.s Z1 ∼ G(3/4), Z2 ∼ G(2/3), and Z3 ∼
G(1/3). In Table 3, we present the finite-time and infinite-time ruin probabilities for
this geometric model. The values of initial surpluses u and times T are the same as in
the previous examples.

The presented tables show that the behavior of ruin probabilities is closely related
to the structure of generating r.v.s and not only to the global model characteristic ES.
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