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Asymptotics of exponential moments of a weighted
local time of a Brownian motion with small variance
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Abstract We prove a large deviation type estimate for the asymptotic behavior of a weighted
local time of εW as ε → 0.
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1 Introduction and the main result

Let {Wt, t ≥ 0} be a real-valued Wiener process, and μ be a σ -finite measure on R

such that

sup
x∈R

μ
([x − 1, x + 1]) < ∞. (1)

Recall that the local time L
μ
t (W) of the process W with the weight μ can be defined

as the limit of the integral functionals

L
μn
t (W) :=

∫ t

0
kn(Ws) ds, kn(x) := μn(dx)

dx
, n ≥ 1, (2)
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where μn, n ≥ 1, is a sequence of absolutely continuous measures such that∫
R

f (x)μn(dx) →
∫
R

f (x)μ(dx)

for all continuous f with compact support, and (1) holds for μn, n ≥ 1, uniformly.
The limit L

μ
t (W) exists in the mean square sense due to the general results from the

theory of W -functionals; see [3], Chapter 6. This definition also applies to εW instead
of W for any positive ε. In what follows, we will treat εW as a Markov process whose
initial value may vary, and with a slight abuse of notation, we denote by Px the law
of εW with εW0 = x and by Ex the expectation w.r.t. this law.

In this note, we study the asymptotic behavior as ε → 0 of the exponential mo-
ments of the family of weighted local times L

μ
t (εW). Namely, we prove the following

theorem.

Theorem 1. For arbitrary finite measure μ on R,

lim
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW) = t

2
sup
y∈R

μ
({y})2

. (3)

For arbitrary σ -finite measure μ on R that satisfies (1),

sup
x∈R

lim sup
ε→0

ε2 log Exe
L

μ
t (εW) = t

2
sup
y∈R

μ
({y})2

. (4)

We note that in this statement the measure μ can be changed to a signed measure;
in this case, in the right-hand side, only the atoms of the positive part of μ should
appear. We also note that, in the σ -finite case, the uniform statement (3) may fail; one
example of such a type is given in Section 3.

Let us briefly discuss the problem that was our initial motivation for the study of
such exponential moments. Consider the one-dimensional SDE

dXε
t = a

(
Xε

t

)
dt + εσ

(
Xε

t

)
dWt (5)

with discontinuous coefficients a, σ . In [7], a Wentzel–Freidlin-type large deviation
principle (LDP) was established in the case a ≡ 0 under mild assumptions on the
diffusion coefficient σ . In [8], this result was extended to the particular class of SDEs
such that the function a/σ 2 has a bounded derivative. This limitation had appeared
because of formula (7) in [8] for the rate transform of the family Xε. This formula
contains an integral functional with kernel (a/σ 2)′ of a certain diffusion process ob-
tained from εW by the time change procedure. If a/σ 2 is not smooth but is a function
of a bounded variation, this integral function still can be interpreted as a weighted lo-
cal time with weight μ = (a/σ 2)′. Thus, Theorem 1 can be used in order to study the
LDP for the SDE (5) with discontinuous coefficients. One of such particular results
can be derived immediately. Namely, if μ is a continuous measure, then by Theorem 1
the exponential moments of L

μ
t (εW) are negligible at the logarithmic scale with rate

function ε2. This, after simple rearrangements, allows us to neglect the corresponding
term in (7) of [8] and to obtain the statement of Theorem 2.1 of [8] under the weaker
condition that a/σ 2 is a continuous function of bounded variation. The problem how
to describe in a more general situation the influence of the jumps of a/σ 2 on the LDP
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for the solution to (5) still remains open and is the subject of our ongoing research.
We just remark that due to Theorem 1 the respective integral term is no longer neg-
ligible, which well corresponds to the LDP results for piecewise smooth coefficients
a, σ obtained in [1, 2, 6].

2 Proof of Theorem 1

2.1 Preliminaries
For a measure ν satisfying (1), denote by

f
ν,ε
t (x) = ExL

ν
t (εW) =

∫ t

0

∫
R

1√
2πsε2

e
− (y−x)2

2sε2 ν(dy) ds, t ≥ 0, x ∈ R, (6)

the characteristic of the local time Lν(εW) considered as a W -functional of εW ; see
[3], Chapter 6.

The following statement is a version of Khas’minskii’s lemma; see [9], Section 1.2.

Lemma 1. Suppose that

sup
x∈R

f ν,ε
s (x) ≤ 1

2
. (7)

Then
sup
x∈R

Exe
Lν

s (εW) ≤ 2.

Using the Markov property, as a simple corollary, we obtain, for arbitrary t > 0,

sup
x∈R

Exe
Lν

t (εW) ≤ 21+t/s = 2e(log 2)(t/s), (8)

where s > 0 is such that (7) holds. This inequality, combined with (6), leads to the
following estimate.

Lemma 2. For a nonzero measure ν satisfying (1), denote

N(ν, γ ) = sup
x∈R

ν
([x − γ, x + γ ]), γ > 0.

For any λ ≥ 1 and γ > 0, there exists ελ,γ > 0 such that

sup
x∈R

Exe
λLν

t (εW) ≤ 2e(4 log 2)c0N(ν,γ )2tλ2ε−2
, ε ∈ (0, ελ,γ ), (9)

with

c0 = 2

π

(
1 + 2

∞∑
k=1

e− (2k−1)2
2

)2

.

Proof. If ε
√

s ≤ γ , then we have

f ν,ε
s (x) =

∑
k∈Z

∫ s

0

∫
|y−x−2kγ |≤γ

1√
2πvε2

e
− (y−x)2

2vε2 ν(dy) dv

≤ √
c0N(ν, γ )

√
s

ε2
.

Take
s = (

2N(ν, γ )
)−2

(c0)
−1λ−2ε2.
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Then the inequality ε
√

s ≤ γ holds, provided that

ε ≤ (
γ
(
2N(ν, γ )

)2
c0λ

2)1/3 =: ελ,γ .

Under this condition,

f λν,ε
s (x) = λf ν,ε

s (x) ≤ 1

2
.

Now the required inequality follows immediately from (8).

In what follows, we will repeatedly decompose μ into sums of two components
and analyze separately the exponential moments of the local times that correspond
to these components. We will combine these estimates and obtain an estimate for
L

μ
t (εW) itself using the following simple inequality. Let μ = ν + κ and p, q > 1 be

such that 1/p + 1/q = 1. Then

L
μ
t (εW) = Lν

t (εW) + Lκ
t (εW) = (1/p)L

pν
t (εW) + (1/q)L

qκ
t (εW),

and therefore by the Hölder inequality we get

EeL
μ
t (εW) ≤ (

EeL
pν
t (εW)

)1/p(
EeL

qκ
t (εW)

)1/q
. (10)

We will also use another version of this upper bound, which has the form

EeL
μ
t (εW)1A ≤ (

EeL
pμ
t (εW)

)1/p(
P(A)

)1/q
, A ∈ F . (11)

We denote
Δ = sup

x∈R
μ

({x}).
We will prove Theorem 1 in several steps, in each of them extending the class of
measures μ for which the required statement holds.

2.2 Step I: μ is a finite mixture of δ-measures

If μ = aδz is a weighted δ-measure at the point z, then we have

L
μ
t (εW) = aε−1L

(z)
t (W),

where

L
(z)
t (W) = lim

η→0

1

2η

∫ t

0
1|Ws−z|≤η ds

is the local time of a Wiener process at the point z. The distribution of L
(z)
t (W) is

well known; see, e.g., [5], Chapter 2.2 and expression (6) in Chapter 2.1. Hence, the
required statement in the particular case μ = aδz is straightforward, and we have the
following:

lim
ε→0

ε2 sup
x

log Exe
aε−1L

(z)
t (W) = ta2

2
. (12)

Note that in this formula the supremum is attained at the point x = z.
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In this section, we will extend this result to the case where μ is a finite mixture of
δ-measures, that is,

μ =
k∑

j=1

aj δzj
.

Let j∗ be the number of the maximal value in {aj }, that is, Δ = aj∗ . Then L
μ
t (εW) ≥

Δε−1L
(zj∗ )

t (W), and it follows directly from (12) that

lim inf
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW) ≥ tΔ2

2
. (13)

In what follows, we prove the corresponding upper bound

lim sup
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW) ≤ tΔ2

2
, (14)

which, combined with this lower bound, proves (3).
Observe that, for γ > 0 small enough,

N(μ, γ ) = Δ.

Then by Lemma 2, for any λ ≥ 1,

lim sup
ε→0

ε2 sup
x∈R

log Exe
λL

μ
t (εW) ≤ c1λ

2tΔ2 (15)

with

c1 = (4 log 2)c0 = 8 log 2

π

(
1 + 2

∞∑
k=1

e− (2k−1)2
2

)2

.

In particular, taking λ = 1, we obtain an upper bound of the form (14), but with a
worse constant c1 instead of required 1/2. We will improve this bound by using the
large deviations estimates for εW , the Markov property, and the “individual” identi-
ties (12).

Denote μj = aj δzj
, j = 1, . . . , k. Then

L
μ
t (εW) =

k∑
j=1

L
μj

t (εW).

Fix some family of neighborhoods Oj of zj , j = 1, . . . , k, such that the minimal
distance between them equals ρ > 0, and denote

Oj = R \
⋃
i �=j

Oi.

For some N ≥ 1 whose particular value will be specified later, consider the partition
tn = t (n/N), n = 0, . . . , N , of the segment [0, t] and denote

Bn,j = {
f ∈ C(0, t) : fs ∈ Oj , s ∈ [tn−1, tn]

}
, j ∈ {1, . . . , k}, n ∈ {1, . . . , N},
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Cj1,...,jN
=

N⋂
n=1

Bn,jn, j1, . . . , jN ∈ {1, . . . , k}.

Observe that if the process εW does not visit Oj on the time segment [u, v], then
Lμj (εW) on this segment stays constant. This means that, on the set {εW ∈ Cj1,...,jN

},
we have

L
μ
t (εW) =

N∑
n=1

(
L

μjn
tn

(εW) − L
μjn
tn−1

(εW)
)
.

Because Lμj (εW) is a time-homogeneous additive functional of the Markov process
εW , we have

Ex

[
e
L

μjn
tn

(εW)−L
μjn
tn−1

(εW)∣∣Ftn−1

] = Eye
L

μjn
t/N (εW)

∣∣∣
y=εWtn−1

.

Then by (12), for any j1, . . . , jN ∈ {1, . . . , k},

lim sup
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW)1εW∈Cj1,...,jN

≤ t

2N

N∑
n=1

(ajn)
2 ≤ tΔ2

2
.

Because we have a fixed number of sets Cj1,...,jN
, this immediately yields

lim sup
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW)1εW∈C ≤ tΔ2

2
(16)

with
C =

⋃
j1,...,jN∈{1,...,k}

Cj1,...,jN
.

Hence, to get the required upper bound (14), it suffices to prove an analogue of (16)
with the set C replaced by its complement D = C(0, t) \ C. Using (11) with p = 2,
A = {εW ∈ D}, and (15) with λ = 2, we get

lim sup
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW)1εW∈D ≤ 2c1tΔ

2 + 1

2
lim sup

ε→0
ε2 sup

x∈R
log Px(εW ∈ D).

By the LDP for the Wiener process ([4], Chapter 3, §2),

lim sup
ε→0

ε2 sup
x∈R

log Px(εW ∈ D) = − inf
f ∈closure(D)

I (f ),

where

I (f ) =
{

(1/2)
∫ t

0 (f ′
s )

2 ds, f is absolutely continuous on [0, t];
+∞ otherwise.

For any trajectory f ∈ D, there exists n such that f visits at least two sets Oj on the
time segment [tn−1, tn]. Therefore, any trajectory f ∈ closure(D) exhibits an oscil-
lation ≥ ρ on this time segment. On the other hand, for an absolutely continuous f ,

|fu − fv| =
∣∣∣∣
∫ v

u

f ′
s ds

∣∣∣∣ ≤ |u − v|1/2
(∫ t

0

(
f ′

s

)2
ds

)1/2

.
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This means that, for any f ∈ closure(D),

I (f ) ≥ ρ2N

2t
,

which yields

lim sup
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW)1εW∈D ≤ 2c1tΔ

2 − ρ2N

2t
.

If in this construction, N was chosen such that

N ≥ (4c1 − 1)ρ−2t2Δ2,

then the latter inequality guarantees the analogue of (16) with D instead of C. This
completes the proof of (14).

2.3 Step II: μ is finite
Exactly the same argument as that used in Section 2.2 provides the lower bound
(13). In this section, we prove the upper bound (14) for a finite measure μ and thus
complete the proof of the first assertion of the theorem. For finite μ and any χ > 0,
we can find γ > 0 and decompose μ = μ0 + ν in such a way that μ0 is a finite
mixture of δ-measures and N(ν, γ ) < χ . Let p, q > 1 be such that 1/p + 1/q = 1.
The measure pμ0 has the maximal weight of an atom equal to pΔ. Since we have
already proved the required statement for finite mixtures of δ-measures, we have

lim sup
ε→0

ε2 sup
x∈R

log
(
Exe

L
pμ0
t (εW)

)1/p ≤ t

2
pΔ2. (17)

On the other hand, we have N(ν, γ ) < χ and then by Lemma 2

lim sup
ε→0

ε2 sup
x∈R

log
(
Exe

L
qν
t (εW)

)1/q ≤ c1qtχ2.

Hence, by (10),

lim sup
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW) ≤ t

2
pΔ2 + c1qtχ2.

Now we can finalize the argument. Fix Δ1 > Δ := maxx∈R μ({x})2 and choose
p, q > 1 such that 1/p + 1/q = 1 and pΔ2 < Δ2

1. Then there exists χ > 0 small
enough such that

pΔ2 + 2c1qtχ2 < Δ2
1.

Taking the decomposition μ = μ0+ν that corresponds to this value of χ and applying
the previous calculations, we obtain an analogue of the upper bound (14) with Δ

replaced by Δ1. Since Δ1 > Δ is arbitrary, the same inequality holds for Δ.

2.4 Step III: μ is σ -finite
In this section, we prove the second assertion of the theorem. As before, the lower
bound can be obtained directly from the case μ = aδz, and hence we concentrate
ourselves on the proof of the upper bound

lim sup
ε→0

ε2 log Exe
L

μ
t (εW) ≤ tΔ2

2
, x ∈ R. (18)
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We will use an argument similar to that from the previous section and decompose μ

into a sum μ = μ0 + ν with finite μ0 and ν, which is negligible in a sense. However,
such a decomposition relies on the initial value x, and this is the reason why we obtain
an individual upper bound (18) instead of the uniform one (14).

Namely, for a given x, we define μ0, ν by restricting μ to [x − R, x + R] and its
complement, respectively. Without loss of generality, we assume that for each R, the
corresponding ν is nonzero. Since we have already proved the required statement for
finite measures, we get (17).

Next, denote M = supx∈R μ([x −1, x +1]) and observe that N(ν, 1) ≤ M . Then
by Lemma 2 with γ = 1 and the strong Markov property, for any stopping time τ , the
exponential moment of L

qν
t (εW) conditioned by Fτ is dominated by 2ec1M

2tq2ε−2
.

This holds for ε ≤ ε
x,R
q,1 , where we put the indices x,R in order to emphasize that this

constant depends on ν, which, in turn, depends on x,R. Since we have assumed that,
for any x,R, the respective ν is nonzero, the constants ε

x,R
q,1 are strictly positive.

Now we take by τ the first time moment when |εWτ − x| = R. Observe that
Lν

t (εW) equals 0 on the set {τ > t} and it is well known that

Px(τ < t) ≤ 4Px(εWt > R) ≤ Ce−tR2ε−2/2.

Summarizing the previous statements, we get

Exe
L

qν
t (εW) ≤ 1 + 2Cetε−2(c1M

2q2−R2/2), ε ≤ ε
x,R
λ,1 ,

which implies

lim sup
ε→0

ε2 log
(
Exe

L
qν
t (εW)

)1/q ≤ t
(
c1M

2q − R2/(2q)
)
+, (19)

where we denote a+ = max(a, 0). By (10) inequalities (17) and (19) yield

lim sup
ε→0

ε2 log Exe
L

μ0
t (εW) ≤ t

2
pΔ2 + t

(
c1M

2q − R2/(2q)
)
+.

Now we finalize the argument in the same way as we did in the previous section.
Fix Δ1 > Δ and take p > 1 such that pΔ2 ≤ Δ2

1. Then take R large enough so that,
for the corresponding q,

c1M
2q − R2/(2q) ≤ 0.

Under such a choice, the calculations made before yield (18) with Δ replaced by Δ1.
Since Δ1 > Δ is arbitrary, the same inequality holds for Δ.

3 Example

Let

μ =
∞∑

k=1

(δk2 + δk2+2−k ).

Then μ satisfies (1) and Δ = 1. However, it is an easy observation that when the
initial value x is taken in the form xk = k2, the respective exponential moments
satisfy

Exk
eL

μ
t (εW) → E0e

Lν
t (εW), k → ∞,
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with ν = 2δ0. Then

lim inf
ε→0

ε2 sup
x∈R

log Exe
L

μ
t (εW) ≥ lim inf

ε→0
ε2 log E0e

Lν
t (εW) = 2t >

t

2
,

and therefore (3) fails.
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