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Abstract We consider a multivariate functional measurement error model AX ≈ B. The er-
rors in [A, B] are uncorrelated, row-wise independent, and have equal (unknown) variances.
We study the total least squares estimator of X, which, in the case of normal errors, coincides
with the maximum likelihood one. We give conditions for asymptotic normality of the esti-
mator when the number of rows in A is increasing. Under mild assumptions, the covariance
structure of the limit Gaussian random matrix is nonsingular. For normal errors, the results can
be used to construct an asymptotic confidence interval for a linear functional of X.
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1 Introduction

We deal with overdetermined system of linear equations AX ≈ B, which is com-
mon in linear parameter estimation problem [9]. If the data matrix A and observation
matrix B are contaminated with errors, and all the errors are uncorrelated and have
equal variances, then the total least squares (TLS) technique is appropriate for solv-
ing this system [9]. Kukush and Van Huffel [5] showed the statistical consistency of
the TLS estimator X̂tls as the number m of rows in A grows, provided that the errors
in [A,B] are row-wise i.i.d. with zero mean and covariance matrix proportional to a
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unit matrix; the covariance matrix was assumed to be known up to a factor of pro-
portionality; the true input matrix A0 was supposed to be nonrandom. In fact, in [5]
a more general, element-wise weighted TLS estimator was studied, where the errors
in [A,B] were row-wise independent, but within each row, the entries could be ob-
served without errors, and, additionally, the error covariance matrix could differ from
row to row. In [6], an iterative numerical procedure was developed to compute the
elementwise-weighted TLS estimator, and the rate of convergence of the procedure
was established.

In a univariate case where B and X are column vectors, the asymptotic normality
of X̂tls was shown by Gallo [4] as m grows. In [7], that result was extended to mixing
error sequences. Both [4] and [7] utilized an explicit form of the TLS solution.

In the present paper, we extend the Gallo’s asymptotic normality result to a mul-
tivariate case, where A, X, and B are matrices.

Now a closed-form solution is unavailable, and we work instead with the cost
function. More precisely, we deal with the estimating function, which is a matrix
derivative of the cost function. In fact, we show that under mild conditions, the nor-
malized estimator converges in distribution to a Gaussian random matrix with non-
singular covariance structure. For normal errors, the latter structure can be estimated
consistently based on the observed matrix [A,B]. The results can be used to construct
the asymptotic confidence ellipsoid for a vector Xu, where u is a column vector of
the corresponding dimension.

The paper is organized as follows. In Section 2, we describe the model, refer to
the consistency result for the estimator, and present the objective function and corre-
sponding matrix estimating function. In Section 3, we state the asymptotic normality
of X̂tls and provide a nonsingular covariance structure for a limit random matrix. The
latter structure depends continuously on some nuisance parameters of the model, and
we derive consistent estimators for those parameters. Section 4 concludes. The proofs
are given in Appendix. There we work with the estimating function and derive an ex-
pansion for the normalized estimator using Taylor’s formula. The expansion holds
with probability tending to 1.

Throughout the paper, all vectors are column ones, E stands for the expectation
and acts as an operator on the total product, cov(x) denotes the covariance matrix of
a random vector x, and for a sequence of random matrices {Xm,m ≥ 1} of the same
size, the notation Xm = Op(1) means that the sequence {‖Xm‖} is stochastically

bounded, and Xm = op(1) means that ‖Xm‖ P−→ 0. By Ip we denote the unit matrix
of size p.

2 Model, objective, and estimating

2.1 The TLS problem

Consider the model AX ≈ B. Here A ∈ R
m×n and B ∈ R

m×d are observations, and
X ∈ R

n×d is a parameter of interest. Assume that

A = A0 + Ã, B = B0 + B̃, (2.1)
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and that there exists X0 ∈ R
n×d such that

A0X0 = B0. (2.2)

Here A0 is the nonrandom true input matrix, B0 is the true output matrix, and Ã, B̃

are error matrices. The matrix X0 is the true value of the parameter.
We can rewrite the model (2.1)–(2.2) as a classical functional errors-in-variables

(EIV) model with vector regressor and vector response [3]. Denote by aT
i , aT

0i , ãT
i ,

bT
i , bT

0i , and b̃T
i the rows of A, A0, Ã, B, B0, and B̃, respectively, i = 1, . . . , m. Then

the model considered is equivalent to the following EIV model:

ai = a0i + ãi , bi = b0i + b̃i , boi = XT
0 a0i , i = 1, . . . , m.

Based on observations ai , bi , i = 1, . . . , m, we have to estimate X0. The vectors a0i

are nonrandom and unknown, and the vectors ãi , b̃i are random errors.
We state a global assumption of the paper.

(i) The vectors z̃i with z̃T
i = [ãT

i , b̃T
i ], i = 1, 2, . . . , are i.i.d., with zero mean and

variance–covariance matrix

Sz̃ := cov(z̃1) = σ 2 In+d , (2.3)

where the factor of proportionality σ 2 is positive and unknown.

The TLS problem consists in finding the values of disturbances �Â and �B̂

minimizing the sum of squared corrections

min
(X∈Rn×d , �A, �B)

(‖�A‖2
F + ‖�B‖2

F

)
(2.4)

subject to the constraints

(A − �A)X = B − �B. (2.5)

Here in (2.4), for a matrix C = (cij ), ‖C‖F denotes the Frobenius norm, ‖C‖2
F =∑

i,j c2
ij . Later on, we will also use the operator norm ‖C‖ = supx �=0

‖Cx‖
‖x‖ .

2.2 TLS estimator and its consistency
It may happen that, for some random realization, problem (2.4)–(2.5) has no solution.
In such a case, put X̂tls = ∞. Now, we give a formal definition of the TLS estimator.

Definition 1. The TLS estimator X̂tls of X0 in the model (2.1)–(2.2) is a measurable
mapping of the underlying probability space into R

n×d ∪ {∞}, which solves problem
(2.4)–(2.5) if there exists a solution, and X̂tls = ∞ otherwise.

We need the following conditions for the consistency of X̂tls.

(ii) E ‖z̃1‖4 < ∞, where z̃1 satisfies condition (i).

(iii) 1
m

AT
0 A0 → VA as m → ∞, where VA is a nonsingular matrix.

The next consistency result is contained in Theorem 4(a) of [5].

Theorem 2. Assume condition (i) to (iii). Then X̂tls is finite with probability tending
to one, and X̂tls tends to X0 in probability as m → ∞.
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2.3 The objective and estimating functions

Denote

q(a, b; X) = (
aTX − bT)(

Id +XTX
)−1(

XTa − b
)
, (2.6)

Q(X) =
m∑

i=1

q(ai, bi; X), X ∈ R
n×d . (2.7)

The TLS estimator is known to minimize the objective function (2.7); see [8] or for-
mula (24) in [5].

Lemma 3. The TLS estimator X̂tls is finite iff there exists an unconstrained minimum
of the function (2.7), and then X̂tls is a minimum point of that function.

Introduce an estimating function related to the loss function (2.6):

s(a, b; X) := a
(
aTX − bT) − X

(
Id +XTX

)−1(
XTa − b

)(
aTX − bT)

. (2.8)

Corollary 4. (a) Under conditions (i) to (iii), with probability tending to one X̂tls

is a solution to the equation

m∑
i=1

s(ai, bi; X) = 0, X ∈ R
n×d .

(b) Under assumption (i), the function s(a, b; X) is unbiased estimating function,
that is, for each i ≥ 1, EX0 s(ai, bi; X0) = 0.

Expression (2.8) as a function of X is a mapping in R
n×d . Its derivative s′

X is a
linear operator in this space.

Lemma 5. Under condition (i), for each H ∈ R
n×d and i ≥ 1, we have

EX0

[
s′
X(ai, bi; X0) · H ] = a0ia

T
0iH. (2.9)

Therefore, we can identify EX0 s′
X(ai, bi; X0) with the matrix a0ia

T
0i .

3 Main results

Introduce further assumptions to state the asymptotic normality of X̂tls. We need a bit
higher moments compared with conditions (ii) and (iii) in order to use the Lyapunov
CLT. Recall that z̃i satisfies condition (i).

(iv) For some δ > 0, E ‖z̃1‖4+2δ < ∞.

(v) For δ from condition (iv),

1

m1+δ/2

m∑
i=1

‖a0i‖2+δ → 0 as m → ∞.

(vi) 1
m

∑m
i=1 a0i → μa as m → ∞, where μa ∈ R

n×1.

(vii) The distribution of z̃1 is symmetric around the origin.
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Introduce a random element in the space of systems consisting of five matrices:

Wi = (
a0i ã

T
i , a0i b̃

T
i , ãi ã

T
i − σ 2 In, ãi b̃

T
i , b̃i b̃

T
i − σ 2 Id

)
. (3.1)

Hereafter
d−→ stands for the convergence in distribution.

Lemma 6. Assume conditions (i) and (iii)–(vi). Then

1√
m

m∑
i=1

Wi
d−→ Γ = (Γ1, . . . , Γ5) as m → ∞, (3.2)

where Γ is a Gaussian centered random element with matrix components.

Lemma 7. In assumptions of Lemma 6, replace condition (vi) with condition (vii).
Then the convergence (3.2) still holds with independent components Γ1, . . . , Γ5.

Now, we state the asymptotic normality of X̂tls.

Theorem 8. (a) Assume conditions (i) and (iii)–(vi). Then

1√
m

(X̂tls − X0)
d−→ V −1

A Γ (X0) as m → ∞, (3.3)

Γ (X) := Γ1X−Γ2+Γ3X−Γ4−X
(
Id +XTX

)−1(
XTΓ3X−XTΓ4−Γ T

4 X+Γ5
)
,

(3.4)
where VA satisfies condition (iii), and Γi satisfy relation (3.2).

(b) In the assumption of part (a), replace condition (vi) with condition (vii). Then
the convergence (3.3) still holds, and, moreover, the limit random matrix X∞ :=
V −1

A Γ (X0) has a nonsingular covariance structure, that is, for each nonzero
vector u ∈ R

d×1, cov(X∞u) is a nonsingular matrix.

Remark 9. Conditions of Theorem 8(a) are similar to Gallo’s conditions [4] for the
asymptotic normality in the univariate case; see also, [9], pp. 240–243. Compared
with Theorems 2.3 and 2.4 of [7], stated for univariate case with mixing errors, we
need not the requirement for entries of the true input A0 to be totally bounded.

In [7], Section 2, we can find a discussion of importance of the asymptotic nor-
mality result for X̂tls. It is claimed there that the formula for the asymptotic covariance
structure of X̂tls is computationally useless, but in case where the limit distribution is
nonsingular, we can use the block-bootstrap techniques when constructing confidence
intervals and testing hypotheses.

However, in the case of normal errors z̃i , we can apply Theorem 8(b) to construct
the asymptotic confidence ellipsoid, say, for X0u, u ∈ R

d×1, u �= 0. Indeed, relations
(3.1)–(3.4) show that the nonsingular matrix

Su := cov
(
V−1

A Γ (X0)u
)

is a continuous function Su = Su(X0, VA, σ 2) of unknown parameters X0, VA, and
σ 2. (It is important here that now the components Γj of Γ are independent, and
the covariance structure of each Γj depends on σ 2 and VA, not on some other limit
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characteristics of A0; see Lemma 6.) Once we possess consistent estimators V̂A and
σ̂ 2 of VA and σ 2, the matrix Ŝu := Su(X̂tls, V̂A, σ̂ 2) is a consistent estimator for the
covariance matrix Su.

Hereafter, a bar means averaging for rows i = 1, . . . , m, for example, abT =
m 1

m

∑m
i=1 aib

T
i .

Lemma 10. Assume the conditions of Theorem 2. Define

σ̂ 2 = 1

d
tr
[(

bbT − 2X̂T
tlsabT + X̂T

tlsaaTX̂tls
)(

Id +X̂T
tlsX̂tls

)−1]
, (3.5)

V̂A = aaT − σ̂ 2 In .

Then
σ̂ 2 P−→ σ 2, V̂A

P−→ VA. (3.6)

Remark 11. Estimator (3.5) is a multivariate analogue of the maximum likelihood
estimator (1.53) in [2] in the functional scalar EIV model.

Finally, for the case z̃1 ∼ N(0, σ 2 In+d), based on Lemma 10 and the relations

1√
m

(X̂tlsu − X0u)
d−→ N(0, Su), Su > 0, Ŝu

P−→ Su,

we can construct the asymptotic confidence ellipsoid for the vector X0u in a standard
way.

Remark 12. In a similar way, a confidence ellipsoid can be constructed for any finite
set of linear combinations of X0 entries with fixed known coefficients.

4 Conclusion

We extended the result of Gallo [4] and proved the asymptotic normality of the TLS
estimator in a multivariate model AX ≈ B. The normalized estimator converges in
distribution to a random matrix with quite complicated covariance structure. If the
error distribution is symmetric around the origin, then the latter covariance structure
is nonsingular. For the case of normal errors, this makes it possible to construct the
asymptotic confidence region for a vector X0u, u ∈ R

d×1, where X0 is the true value
of X.

In future papers, we will extend the result for the elementwise weighted TLS
estimator [5] in the model AX ≈ B, where some columns of the matrix [A,B] may
be observed without errors, and, in addition, the error covariance matrix may differ
from row to row.

Appendix

Proof of Corollary 4

(a) For any n and d , the space R
n×d is endowed with natural inner product

〈A,B〉 = tr(ABT) and the Frobenius norm. The matrix derivative q ′
X of the func-

tional (2.6) is a linear functional on R
n×d , which can be identified with certain matrix

from R
n×d based on the inner product.
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Using the rules of matrix calculus [1], we have for H ∈ R
n×d :

〈
q ′
X,H

〉 = aTH
(
Id +XTX

)−1(
XTa − b

)
− (

aTX − bT)(
Id +XTX

)−1(
HTX + XTH

)(
Id +XTX

)−1(
XTa − b

)
+ (

aTX − bT)(
Id +XTX

)−1
HTa.

Collecting similar terms, we obtain:

1

2

〈
q ′
X,H

〉 = (
aTX − bT)(

Id +XTX
)−1

HTa

− (
aTX − bT)(

Id +XTX
)−1

HTX
(
Id +XTX

)−1(
XTa − b

)
,

and

1

2

〈
q ′
X,H

〉 = tr
[
a
(
aTX − bT)(

Id +XTX
)−1

HT]
− tr

[
X

(
Id +XTX

)−1(
XTa − b

)(
aTX − bT)(

Id +XTX
)−1

HT]
.

Using the inner product in R
n×d , we get 1

2q ′
X = s(x)(Id +XTX)−1, where s(x)

is the left-hand side of (2.8). In view of Theorem 2 and Lemma 3, this implies the
statement of Corollary 4(a).

(b) Now, we set

a = a0 + ã, b = b0 + b̃, b0 = XTa0, (4.1)

where a0 is a nonrandom vector, and, like in (2.3),

cov
([

ã

b̃

])
= σ 2 In+d , E

[
ã

b̃

]
= 0. (4.2)

Then
EX a

(
aTX − bT) = E a

(
ãTX − b̃T) = σ 2X, (4.3)

EX

(
XTa − b

)(
aTX − bT) = E

(
XTã − b̃

)(
ãTX − b̃T) = σ 2(Id +XTX

)
. (4.4)

Therefore (see (2.8)),

EX s(a, b; X) = σ 2X − σ 2X
(
Id +XTX

)−1(Id +XTX
) = 0.

This implies the statement of Corollary 4(b).

Proof of Lemma 5

The derivative s′
X of the function (2.8) is a linear operator in R

n×d . For
H ∈ R

n×d , we have:

s′
XH = aaTH − H

(
Id +XTX

)−1(
XTa − b

)(
aTX − bT)

+ X
(
Id +XTX

)−1(
HTX + XTH

)(
Id +XTX

)−1(
XTa − b

)
× (

aTX − bT) − X
(
Id +XTX

)−1(
HTa

(
aTX − bT) + (

XTa − b
)
aTH

)
.

(4.5)
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As before, we set (4.1), (4.2) and use relations (4.3), (4.4), and the relation
E aaT = a0a

T
0 + σ 2 In. We obtain:

EX s′
XH = (

a0a
T
0 + σ 2 In

)
H − σ 2H + σ 2X

(
Id +XTX

)−1(
HTX + XTH

)
− σ 2X

(
Id +XTX

)−1(
HTH + XTH

) = a0a
T
0 H.

This implies (2.9).

Proof of Lemma 6

The random elements Wi , i ≥ 1, in (3.1) are independent and centered. We want to
apply the Lyapunov CLT for the left-hand side of (3.2).

(a) All the second moments of m− 1
2
∑m

i=1 Wi converge to finite limits. For exam-
ple, for the first component, we have

1

m

m∑
i=1

E
(〈

a0i ã
T
i , H1

〉)2 = 1

m

m∑
i=1

E
(
tr a0i ã

T
1 HT

1

)2
,

and this has a finite limit due to assumption (iii). Here H1 ∈ R
n×n, and we use the

inner product introduced in the proof of Corollary 4.
For the fifth component,

1

m

m∑
i=1

E
(〈
b̃i b̃

T
i − σ 2 Id,H2

〉)2 = E
[
tr
((

b̃1b̃
T
1 − σ 2 Id

)
H2

)]2
< ∞,

because the fourth moments of b̃i are finite. Here H2 ∈ R
d×d .

For mixed moments of the first and fifth components, we have

1

m

m∑
i=1

E
〈
a0i ã

T
i , H1

〉 · 〈
b̃i b̃

T
i − σ 2 Id ,H2

〉

= E
〈(

1

m

m∑
i=1

a0i

)
ãT

1 ,H1

〉
· 〈b̃1b̃

T
1 − σ 2 Id ,H2

〉
, (4.6)

and this, due to condition (vi), converges toward

E
〈
μaã

T
1 ,H1

〉 · 〈
b̃1b̃

T
1 − σ 2 Id,H2

〉
.

Other second moments can be considered in a similar way.

(b) The Lyapunov condition holds for each component of (3.1). Let δ be the quan-
tity from assumptions (iv), (v). Then

1

m1+δ/2

m∑
i=1

E
∥∥a0i ã

T
i

∥∥2+δ ≤ E ‖ã1‖2+δ

m1+δ/2

m∑
i=1

‖a0i‖2+δ → 0
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as m → ∞ by condition (v). For the fifth component,

1

m1+δ/2

m∑
i=1

E
∥∥b̃i b̃

T
i − σ 2 Id

∥∥2+δ = 1

mδ/2
E

∥∥b̃1b̃
T
1 − σ 2 Id

∥∥2+δ

≤ const

mδ/2
E ‖b̃1‖4+2δ → 0 as m → ∞.

The latter expectation is finite by condition (iv).
The Lyapunov condition for other components is considered similarly.

(c) Parts (a) and (b) of the present proof imply (3.2) by the Lyapunov CLT.

Proof of Lemma 7

Under conditions (vii) and (i), all the five components of Wi , which is given in (3.1),
are uncorrelated (e.g., the cross-correlation like (4.6) equals zero, and condition (vi)
is not needed). As in proof of Lemma 6, the convergence (3.2) still holds. The com-
ponents Γ1, . . . , Γ5 of Γ are independent because the components of Wi are uncor-
related.

Proof of Theorem 8(a)

Our reasoning is typical for theory of generalized estimating equations, with specific
feature that a matrix parameter rather than vector one is estimated.

By Corollary 4(a), with probability tending to 1 we have
m∑

i=1

s(ai, bi; X̂tls) = 0. (4.7)

Now, we use Taylor’s formula around X0 with the remainder in the Lagrange
form; see [1], Theorem 5.6.2. Denote

�̂ = √
m(X̂tls − X0), ym =

m∑
i=1

s(ai, bi; X0), Um =
m∑

i=1

s′
X(ai, bi; X0).

Then (4.7) implies the relation(
1

m
Um

)
�̂ = − 1√

m
ym + rest1,

‖rest1‖ ≤ ‖�̂‖ · ‖X̂tls − X0‖ · Op(1).

(4.8)

Here Op(1) is a factor of the form

1

m

m∑
i=1

sup
(‖X‖≤‖X0‖+1)

∥∥s′′
x (ai, bi; X)

∥∥. (4.9)

Relation (4.8) holds with probability tending to 1 because, due to Theorem 2, X̂tls
P−→

X0; expression (4.9) is indeed Op(1) because the derivative s′′
x is quadratic in ai , bi

(cf. (4.5)), and the averaged second moments of [aT
i , bT

i ] are assumed to be bounded.
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Now, ‖rest1‖ ≤ ‖�̂‖ · op(1). Next, by Lemma 5 and condition (iii),

1

m
Um = 1

m
E Um + op(1) = VA + op(1).

Therefore, (4.8) implies that

VA�̂ = − 1√
m

ym + rest2, (4.10)

‖rest2‖ ≤ ‖�̂‖ · op(1). (4.11)

Now, we find the limit in distribution of ym/
√

m. The summands in ym have zero
expression due to Corollary 4(b). Moreover (see (2.8)),

s(ai, bi; X0) = (a0i + ãi )
(
ãT
i X0 − b̃T

i

)−X0
(
Id +XT

0 X0
)−1(

XT
0 ãi − b̃i

)(
ãT
i X0 − b̃T

i

)
,

s(ai, bi; X0) = Wi1X0 − Wi2 + Wi3X0 − Wi4 − X0
(
Id +XT

0 X0
)−1

× (
XT

0 Wi3X0 − XT
0 Wi4 − WT

i4X0 + Wi5
)
.

Here Wij are the components of (3.1). By Lemma 6 we have (see (3.4))

1√
m

ym
d−→ Γ (X0) as m → ∞. (4.12)

Finally, relations (4.10), (4.11), (4.12) and the nonsingularity of VA imply that
�̂ = Op(1), and by Slutsky’s lemma we get

VA�̂
d−→ Γ (X0) as m → ∞. (4.13)

By condition (iii) the matrix VA is nonsingular. Thus, the desired relation (3.3) follows
from (4.13).

Proof of Theorem 8(b)

The convergence (3.3) is justified as before, but using Lemma 7 instead of Lemma 6.
It suffices to show that cov(Γ (X0)u) is nonsingular for u ∈ R

d×1, u �= 0.
Now, the components Γ1, . . . , Γ5 are independent. Then (see (3.4))

cov
(
Γ (X0)u

) ≥ cov(Γ2u) = lim
m→∞

1

m

m∑
i=1

E
(
uTb̃ia

T
0ia0i b̃

T
i u

)

= trVA · E
∥∥b̃T

1 u
∥∥2 = σ 2trVA · ‖u‖2 > 0.

Proof of Lemma 10

By condition (i) we have

E aia
T
i = a0ia

T
0i + σ 2 In, E aib

T
i = ai0a

T
i0X0,

E bib
T
i = XT

0 a0ia
T
0iX0 + σ 2 Id,



Asymptotic normality of total least squares estimator 57

E bib
T
i − 2XT

0 E aib
T
i + XT

0

(
E aia

T
i

)
X0 = σ 2(Id +XT

0 X0
)
. (4.14)

Equality (4.14) implies the first relation in (3.6) because X̂tls
P−→ X0 and aaT −

E aaT P−→ 0, abT − E abT P−→ 0, bbT − E bbT P−→ 0,
Finally,

V̂A = E aaT + op(1) − σ̂ 2 In = a0a
T
0 + (σ 2 − σ̂ 2) In +op(1),

V̂A
P−→ lim

m→∞ a0a
T
0 = VA.
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