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Abstract We consider a Cauchy problem for stochastic heat equation driven by a real harmo-
nizable fractional stable process Z with Hurst parameter H > 1/2 and stability index α > 1. It
is shown that the approximations for its solution, which are defined by truncating the LePage
series for Z, converge to the solution.
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1 Introduction

Partial differential equations with randomness are widely used to model physical,
chemical, biological phenomena, financial asset prices, economical processes, etc.
The popularity of such models is due to the combination of deterministic and stochas-
tic features among their characteristics.

The majority of existing literature is devoted to the case where the random noise
has some Gaussian or sub-Gaussian distribution. To mention only few papers, a heat
equation with Gaussian noise was considered in [1, 2, 8, 14], and a wave equation in
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[3, 9, 14]. Equations with sub-Gaussian measures were intensively studied in [6, 7].
The articles [10, 11] consider equations with general stochastic measures.

The research carried out in the cited articles does not allow one to consider phe-
nomena where the randomness has a heavy-tailed distribution. But heavy tails are
ubiquitous when modeling extreme risks, so it is quite important to consider equa-
tions with heavy-tailed noise.

The main object of this article is a stochastic heat equation in which the source
of randomness is a real harmonizable fractional stable process Z. The solution is
understood in the mild sense, with the integral defined pathwise as a fractional integral
[15].

We consider approximations for the solution of this equation, which are obtained
by truncating the LePage representation series of Z. The main result of this paper is
that such representations converge to the true solution.

The paper is organized as follows. Section 2 contains basic facts about stable ran-
dom variables and related processes. It also establishes an auxiliary analytical lemma.
In Section 3, we formulate and prove the main result of this article.

2 Preliminaries

2.1 Stable random variables and related processes

In this paper, we consider only symmetric α-stable (SαS) random variables with
α ∈ (1, 2). We further provide basic information about such variables and related
objects; for a more detailed exposition, we refer the reader to [13].

A random variable ξ is symmetric α-stable (SαS) with scale parameter σα, σ ≥ 0,
if it has the characteristic function

E
[
eiλξ

] = e−|σλ|α .

Given some linear space of SαS random variables, the scale parameter is a quasi-norm
on this space, denoted ‖ · ‖α .

To construct families of stable random variables, in particular, stable random pro-
cesses, one frequently uses some stable random measures. We will be interested in
the so-called complex rotationally invariant SαS measure μ on R. By definition this
is a complex-valued random measure on B(R) with the following properties:

1. for any Borel set A ∈ B(R), the random variable Re μ(A) is SαS with scale
parameter equal to λ(A), the Lebesgue measure of A;

2. for any A ∈ B(R), the random variable μ(A) is rotationally invariant, that is,
for any θ ∈ R, the distribution of eiθμ(A) coincides with that of μ(A);

3. for any disjoint sets A1, . . . , An ∈ B(R), the random variables μ(A1), . . . ,
μ(An) are independent.

For a function f : R → C with

‖f ‖α
Lα(R) =

∫
R

∣∣f (x)
∣∣αdx < ∞,
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it is possible to define the stochastic integral

I (f ) =
∫
R

f (x)μ(dx)

such that Re I (f ) is an SαS random variable with scale parameter ‖f ‖α
Lα(R)

. In other
words, ∥∥Re I (f )

∥∥α

α
= ‖f ‖α

Lα(R),

that is, the real part of the stochastic integral I (·) maps Lα(R) isometrically into some
family of SαS random variables.

Let now T be a parametric set. For a measurable function f : T × R → C such
that f (t, ·) ∈ Lα(R) for all t ∈ T, we may define the random field {Z(t), t ∈ T} by

Z(t) = Re
∫
R

f (t, x)μ(dx). (1)

This random field Z(t) has the so-called LePage series representation constructed as
follows. Let ϕ be an arbitrary positive probability density on R, and let the indepen-
dent families Γk, k ≥ 1, ξk, k ≥ 1, gk, k ≥ 1, of random variables satisfy:

1. Γk, k ≥ 1, is a sequence of Poisson arrival times with unit intensity;

2. ξk, k ≥ 1, are independent random variables having density ϕ;

3. gk, k ≥ 1, are independent complex-valued rotationally invariant Gaussian
random variables1 with E[| Re gk|α] = 1.

Then the random field Z(t), t ∈ T, defined by (1) has the same finite-dimensional
distributions as

Z′(t) = Cα Re
∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/αf (t, ξk)gk, (2)

where

Cα =
(

Γ (2 − α) cos πα
2

1 − α

)1/α

;
the series converges almost surely for all t ∈ T (see [5, Lemma 1] and [13, Theo-
rem 1.4.2]).

In the rest of our paper, C denotes a generic constant whose value may change
from line to line; Ca,b,... denotes a constant depending on a, b, . . . .

2.2 Fractional integration
We will use the pathwise fractional integration; for more detail, see [12, 15]. Let
functions f, g : [a, b] → R be such that, for some β ∈ (0, 1), the following fractional
derivatives are defined:

(
D

β
a+f

)
(x) = 1

Γ (1 − β)

(
f (x)

(x − a)β
+ β

∫ x

a

f (x) − f (u)

(x − u)1+β
du

)
1(a,b)(x),

1Note that the rotational invariance implies E[gk] = 0.
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(
D

1−β
b− g

)
(x) = 1

Γ (β)

(
g(x)

(b − x)1−β
+ (1 − β)

∫ b

x

g(x) − g(u)

(x − u)2−β
du

)
1(a,b)(x).

Provided that D
β
a+f ∈ L1[a, b] and D

1−β
b− gb− ∈ L∞[a, b], where gb−(x) = g(x) −

g(b), the fractional integral is defined as
∫ b

a

f (x)dg(x) =
∫ b

a

(
D

β
a+f

)
(x)

(
D

1−β
b− gb−

)
(x)dx.

It is worth mentioning that for f ∈ Cν[a, b] and g ∈ Cμ[a, b] with μ + ν > 1, the
fractional integral

∫ b

a
f (x)dg(x) is well defined for any β ∈ (1 − ν, μ) and equals

the limit of Riemann sums.

2.3 Estimates of Fourier-type integrals

The following result specifies the rate of convergence in the Riemann–Lebesgue
lemma. It may be known that, for example, for periodic functions and integer pa-
rameter, this is Zygmund’s theorem; however, we failed to find it in the literature.
Moreover, a similar reasoning will be used later in the proof of our main results, so
we found it suitable to present its proof.

Lemma 1. Let f ∈ C[a, b] and h : [0,+∞) → [0,+∞) be a nondecreasing func-
tion such that |f (x)−f (y)| ≤ h(|x − y|) for all x, y ∈ [a, b]. Then, for any nonzero
λ ∈ R, ∣∣∣∣

∫ b

a

f (x)eiλxdx

∣∣∣∣ ≤ 3(b − a)h
(|λ|−1) + 2|λ|−1 sup

x∈[a,b]
∣∣f (x)

∣∣.
Proof. If |λ| ≤ (b − a)−1, then

∣∣∣∣
∫ b

a

f (x)eiλxdx

∣∣∣∣ ≤
∫ b

a

∣∣f (x)eiλx
∣∣dx

≤ sup
x∈[a,b]

∣∣f (x)
∣∣(b − a) ≤ |λ|−1 sup

x∈[a,b]
∣∣f (x)

∣∣.
Otherwise, set n = [|λ|(b − a)] + 1, so that |λ|(b − a) ≤ n ≤ 2|λ|(b − a). Consider
the equipartition of [a, b] by points xk = a + (b − a)k/n, k = 0, . . . , n. Then, for
any |λ| ≥ (b − a)−1, the following relations hold:
∣∣∣∣
∫ b

a

f (x)eiλxdx

∣∣∣∣
≤

∣∣∣∣
n∑

k=1

∫ xk

xk−1

f (xk)e
iλxdx

∣∣∣∣ +
∣∣∣∣

n∑
k=1

∫ xk

xk−1

(
f (x) − f (xk)

)
eiλxdx

∣∣∣∣

≤
∣∣∣∣

n∑
k=1

f (xk)
eiλxk − eiλxk−1

iλ

∣∣∣∣ +
n∑

k=1

∫ xk

xk−1

∣∣f (x) − f (xk)
∣∣dx

≤
∣∣∣∣

n∑
k=1

f (xk)
eiλxk

λ
−

n−1∑
k=0

f (xk+1)
eiλxk

λ

∣∣∣∣ + h

(
b − a

n

)
(b − a)
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≤
∣∣∣∣f (b)

eiλb

λ
− f (a)

eiλa

λ

∣∣∣∣ +
∣∣∣∣
n−1∑
k=1

(
f (xk) − f (xk+1)

)eiλxk

λ

∣∣∣∣ + h

(
b − a

n

)
(b − a)

≤ 2 supx∈[a,b] |f (x)|
|λ| +

n−1∑
k=1

1

|λ|h
(

b − a

n

)
+ h

(
b − a

n

)
(b − a)

≤ 2 supx∈[a,b] |f (x)|
|λ| +

n−1∑
k=1

2(b − a)

n
h

(
1

|λ|
)

+ h

(
1

|λ|
)

(b − a)

≤ 2 supx∈[a,b] |f (x)|
|λ| + 3(b − a)h

(
1

|λ|
)

.

3 Stochastic heat equation with stable noise and its approximations

Consider a Cauchy problem for the one-dimensional heat equation
⎧⎨
⎩dtU(t, x) = 1

2

∂2

∂x2
U(t, x)dt + σ(t, x)dZ(t), t > 0, x ∈ R,

U(0, x) = U0(x).

(3)

Here σ(t, x) is a bounded function that is jointly Hölder continuous of order γ ∈
(1/2, 1), that is,∣∣σ(t1, x1) − σ(t2, x2)

∣∣ ≤ C
(|t1 − t2|γ + |x1 − x2|γ

)
, (4)

and U0 is a bounded measurable function. The random force in this equation is a real
harmonizable fractional stable process

Z(t) = Re
∫
R

eitx − 1

|x|1/α+H
M(dx),

where M is a complex rotationally invariant SαS measure μ on R, defined in Sec-
tion 2.1, and H ∈ (1/2, 1) is the Hurst parameter of the process. In what follows, we
denote

f (t, x) = eitx − 1

|x|1/α+H
.

It is well known (see, e.g., [13]) that Z is an H -self-similar process having a contin-
uous modification; henceforth, we assume that Z itself is continuous. Moreover, it is
almost surely pathwise Hölder continuous with any exponent γ ∈ (0,H) (see [5]).

We consider Eq. (3) in the mild sense. We recall that a mild solution is given by
the variation-of-constants formula

U(t, x) =
∫
R

ρ(t, x − y)U0(y)dy +
∫ t

0
dZ(s)

∫
R

ρ(t − s, x − y)σ (s, y)dy, (5)

where ρ(t, x) = (4πt)−1/2 exp{− |x|2
4t

}.
Theorem 2. The Cauchy problem (3) has a solution given by (5), where the integral
with respect to Z is understood as a fractional integral.
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Proof. Take some β ∈ (1 − H, γ ). Fix t > 0 and x ∈ Rd and denote f (s) =∫
R

ρ(t − s, x − y)σ (s, y)dy, s ∈ [0, t]. In view of the Hölder continuity of Z, the

fractional derivative D
1−β
t− Zt− is almost surely bounded on [0, t]. So in order to prove

the claim, we only need to show that D
β

0+f is integrable on [0, t]. To this end, write

∫ t

0

∣∣Dβ

0+f (s)
∣∣ds ≤ C

∫ t

0

( |f (s)|
sβ

+
∫ s

0

|f (s) − f (u)|
(s − u)1+β

du

)
ds.

Since σ is bounded, so is f , supplying the finiteness of the first integral. To establish
that of the second one, use the change of variable y = x + z

√
t − s and note that

ρ(t, x) = ρ(1, x/
√

t)/
√

t to represent f as

f (s) =
∫
R

ρ(1, z)σ (s, x + z
√

t − s)dz.

Therefore, for any u < s < t ,

∣∣f (s) − f (u)
∣∣ ≤

∫
R

ρ(1, z)
∣∣σ(s, x + z

√
t − s) − σ(s, x + z

√
t − u)

∣∣dz

+
∫
R

ρ(1, z)
∣∣σ(s, x + z

√
t − u) − σ(u, x + z

√
t − u)

∣∣dz

=: I1 + I2.

Thanks to (4), I2 ≤ C(s − u)γ and

I1 ≤
∫
R

ρ(1, z)|z√t − s − z
√

t − u|γ dz ≤ C|√t − s − √
t − u|γ

= C

(
s − u√

t − s + √
t − u

)γ

≤ C(t − u)−γ /2(s − u)γ .

Consequently,
∫ t

0

∫ s

0

|f (s) − f (u)|
(s − u)1+β

du ds ≤ C

∫ t

0

∫ s

0
(t − u)−γ /2(s − u)γ−1−βdu ds

≤ C

∫ t

0
(t − s)−γ /2sγ−βds < ∞,

which concludes the proof.

The process Z is a particular example of a random field given by (1). In view of
this, we assume that Z is given by its LePage series representation (2) corresponding
to the density

ϕ(x) = Kη|x|−1
∣∣log |x| + 1

∣∣−1−η
,

where η is some positive number, and Kη = (
∫
R

|x|−1| ln |x| + 1|−1−ηdx)−1 is a
normalizing constant.

To simplify the following reasoning, we assume that

(Ω,F , P) = (ΩΓ ⊗ Ωξ ⊗ Ωg,FΓ ⊗ Fξ ⊗ Fg, PΓ ⊗ Pξ ⊗ Pg)
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and
Γk(ω) = Γk(ωΓ ), ξk(ω) = ξk(ωξ ), gk(ω) = gk(ωg)

for all ω = (ωΓ , ωξ , ωg) ∈ Ω, k ≥ 1.
Let us consider the approximation of the process Z by partial sums of its LePage

series (2). Specifically, define

ZN(t) = Cα Re
N∑

k=1

Γ
−1/α
k ϕ(ξk)

−1/αf (t, ξk)gk.

The following result establishes a uniform, in N , Hölder continuity of the family
{ZN,N ≥ 1}.
Proposition 3. For any θ ∈ (0,H) and T > 0, there is an almost surely finite
random variable C = Cθ,T (ω) such that, for all N ≥ 1 and t, s ∈ [0, T ], we have
the following inequality:∣∣ZN(t) − ZN(s)

∣∣ ≤ Cθ(ω)|t − s|θ .
Proof. For fixed ωΓ ∈ ΩΓ , ωξ ∈ Ωξ , and t > 0, the sequence{

ZN(t) = ZN

(
t, (ωΓ , ωξ , ωg)

)
, N ≥ 1

}
is a martingale on (Ωg, Fg, Pg). Then, for any N0 ≥ 1 and t, s > 0, the Doob
inequality yields

Eg

[
sup

1≤N≤N0

(
ZN(t) − ZN(s)

)2
]

≤ CEg

[(
ZN0(t) − ZN0(s)

)2]
.

Letting N0 → ∞ and applying the Fatou lemma, we get

Eg

[
sup
N≥1

(
ZN(t) − ZN(s)

)2
]

≤ CEg

[(
Z(t) − Z(s)

)2]
.

Using further a reasoning similar to that used in [5, Theorem 1], we get, for any
t, s ∈ [0, T ],

Eg

[
sup
N≥1

(
ZN(t) − ZN(s)

)2
]

≤ CT (ω)|t − s|2H
∣∣log |t − s| + 1

∣∣a

with some a > 0. Consequently, for any θ ∈ (0,H),

sup
N≥1

∣∣ZN(t) − ZN(s)
∣∣ ≤ Cθ,T (ω)|t − s|θ ,

as required.

Taking into account that the processes ZN approximate Z, it is natural to consider
corresponding approximations of a mild solution to (3):

UN(t, x) =
∫
R

ρ(t, x − y)U0(y)dy +
∫ t

0
dZN(s)

∫
R

ρ(t − s, x − y)σ (s, y)dy.

The following theorem is the main result of this paper.
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Theorem 4. For any t ≥ 0 and x ∈ R, we have the convergence

UN(t, x) → U(t, x), N → ∞,

almost surely.

Proof. Fix arbitrary numbers t > 0 and x ∈ R. Let us define the functions vk(t, x)

corresponding to the terms of LePage series:

vk(t, x) = CαΓ
−1/α
k ϕ(ξk)

−1/α Re
∫ t

0
dsf (s, ξk)

∫
R

ρ(t − s, x − y)σ (s, y)dy.

Then

UN(t, x) =
∫
R

ρ(t, x − y)U0(y)dy +
N∑

k=1

vk(t, x).

As the first step of our proof, we establish the almost sure convergence of the series∑∞
k=1 vk(t, x) for all t ∈ [0, T ] and x ∈ R.
Let us transform the differential

dsf (s, ξk) = ds

(
eisξk − 1

|ξk|1/α+H

)
= eisξk · iξk

|ξk|1/α+H
dt = ieisξk sign ξk

|ξk|1/α+H−1
dt.

Then we have

vk(t, x) = CαΓ
−1/α
k Re

[
i
ϕ(ξk)

−1/α sign ξk

|ξk|1/α+H−1
gk

×
∫ t

0

∫
R

ρ(t − s, x − y)σ (s, y)dy eisξk ds

]
.

Hence,

Eg

[∣∣vk(t, x)
∣∣2] ≥ C2

αΓ
−2/α
k

ϕ(ξk)
−2/α

|ξk|2/α+2H−2

×
∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)σ (s, y)dy eisξk ds

∣∣∣∣
2

.

Let us estimate the last integral:∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)σ (s, y)dy eisξk ds

∣∣∣∣
≤

∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)σ (s, x)dy eisξk ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)
(
σ(s, y) − σ(s, x)

)
dy eisξk ds

∣∣∣∣ =: I1 + I2.

Since
∫
R

ρ(t − s, x − y)dy = 1, we have

I1 =
∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)σ (s, x)dy eisξk ds

∣∣∣∣ =
∣∣∣∣
∫ t

0
σ(s, x)eisξk ds

∣∣∣∣.
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First, assume that |ξk| ≥ t−1. Using Lemma 1, the last expression admits the follow-
ing estimate:∣∣∣∣

∫ t

0
σ(s, x)eisξk ds

∣∣∣∣ ≤ 3tC|ξk|−γ + 2|ξk|−1 sup
s∈[0,t]

∣∣σ(s, x)
∣∣ ≤ C|ξk|−γ .

Let us now estimate I2, taking into account that ρ(t, x) = ρ(1, x/
√

t)/
√

t :∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)
(
σ(s, y) − σ(s, x)

)
dyeisξk ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫
R

ρ

(
1,

x − y√
t − s

)(
σ(s, y) − σ(s, x)

) dy√
t − s

eisξk ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫
R

ρ(1, z)
(
σ(s, x + z

√
t − s) − σ(s, x)

)
dzeisξk ds

∣∣∣∣
=

∣∣∣∣
∫ t

0
τ(s)eisξk

∣∣∣∣ =: I3,

where

τ(s) =
∫
R

ρ(1, z)
(
σ(s, x + z

√
t − s) − σ(s, x)

)
dz.

We further estimate

∣∣τ(s1) − τ(s2)
∣∣ =

∣∣∣∣
∫
R

ρ(1, z)
(
σ(s1, x + z

√
t − s1) − σ(s1, x)

)

− (
σ(s2, x + z

√
t − s2) − σ(s2, x)

)
dz

∣∣∣∣
≤

∣∣∣∣
∫
R

ρ(1, z)
(
σ(s1, x + z

√
t − s1) − σ(s1, x + z

√
t − s2)

)
dz

∣∣∣∣
+

∣∣∣∣
∫
R

ρ(1, z)
(
σ(s1, x + z

√
t − s2) − σ(s2, x + z

√
t − s2)

)
dz

∣∣∣∣
+

∫
R

ρ(1, z)
∣∣σ(s1, x) − σ(s2, x)

∣∣dz =: J1 + J2 + J3.

Thanks to the Hölder continuity (4), J3 ≤ C(s1 − s2)
γ for s2 < s1. Further, similarly

to the proof of Theorem 2, J1 ≤ C(s1 − s2)
γ (t − ss)

−γ /2 and J2 ≤ C(s1 − s2)
γ .

Consequently, for s2 < s1,∣∣τ(s1) − τ(s2)
∣∣ ≤ C(s1 − s2)

γ (t − s2)
−γ /2.

Similarly to J1, |τ(s)| ≤ C(t − s)γ /2.
Further, recall that |ξk| ≥ t−1. As in the proof of Lemma 1, set n = [|ξk|t]+ 1, so

that |ξk|t ≤ n ≤ 2|ξk|t , and define the equidistant partition of [0, t]: tj = tj/n, j =
0, . . . , n. Then

I3 =
∣∣∣∣

n∑
j=1

∫ tj

tj−1

τ(s)eisξk ds

∣∣∣∣
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≤
∣∣∣∣

n∑
j=1

∫ tj

tj−1

τ(tj−1)e
isξk ds

∣∣∣∣ +
n∑

j=1

∫ tj

tj−1

∣∣τ(s) − τ(tj−1)
∣∣ds

≤
∣∣∣∣

n∑
j=1

τ(tj−1)

(
eitj ξk

ξk

− eitj−1ξk

ξk

)∣∣∣∣ + C

n∑
j=1

∫ tj

tj−1

(t − tj−1)
−γ /2(s − tj−1)

γ ds

≤
∣∣∣∣τ(0)

ξk

∣∣∣∣ +
∣∣∣∣τ(t)

ξk

∣∣∣∣ +
∣∣∣∣

n∑
j=1

eitj ξk

ξk

(
τ(tj ) − τ(tj−1)

)∣∣∣∣

+ C

n∑
j=1

(t − tj−1)
−γ /2(tj − tj−1)

γ t

n

≤ C

(
|ξk|−1 + |ξk|−1

n∑
j=1

(
t

n

)γ

+
(

t

n

)γ )
≤ C|ξk|−1(1 + n1−γ

)

≤ C|ξk|−1(1 + |ξk|1−γ
) ≤ C|ξk|−γ .

Otherwise, if |ξk| ≤ t−1, then

I3 ≤
∣∣∣∣
∫ t

0
τ(s)eisξk ds

∣∣∣∣ ≤
∫ t

0

∣∣τ(s)
∣∣ds ≤ C.

Then, for |ξk| ≥ t−1,

Eg

[∣∣vk(t, x)
∣∣2] ≤ C2

αΓ
−2/α
k

ϕ(ξk)
−2/α

|ξk|2/α+2H−2

∣∣∣∣
∫ t

0

∫
R

ρ(t − s, x − y)σ (s, y)dy eisξk ds

∣∣∣∣
2

≤ CΓ
−2/α
k |ξk|2−2H−2γ

∣∣ln |ξk| + 1
∣∣2(1+η)/α

,

whereas, for |ξk| < t−1,

Eg

[∣∣vk(t, x)
∣∣2] ≤ CΓ

−2/α
k |ξk|2−2H

∣∣ln |ξk| + 1
∣∣2(1+η)/α

.

Hence,

Eξ,g

[∣∣vk(t, x)
∣∣2] ≤ CΓ

−2/α
k

[∫
|y|≥t−1

|y|2−2H−2γ
(∣∣ln |y|∣∣ + 1

)2(1+η)/α
ϕ(y)dy

+
∫

|y|<t−1
|y|2−2H

(∣∣ln |y|∣∣ + 1
)2(1+η)/α

ϕ(y)dy

]

= CΓ
−2/α
k

[∫
|y|≥t−1

|y|1−2H−2γ
(∣∣ln |y|∣∣ + 1

)(−1+2/α)(1+η)
dy

+
∫

|y|<t−1
|y|1−2H

(∣∣ln |y|∣∣ + 1
)(−1+2/α)(1+η)

dy

]
.

The first integral converges since 1 − 2H − 2γ < −1, whereas the second one
converges since 1 − 2H > −1. Therefore,

∞∑
k=1

Eξ,g

[∣∣vk(t, x)
∣∣2] ≤

∞∑
k=1

CkΓ
−2/α
k .
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By the strong law of large numbers, Γk ∼ 1
k
, k → +∞, PΓ -almost surely.

Therefore,
∑∞

k=1 Eξ,g[|vk(t, x)|2] < ∞ PΓ -almost surely.

In particular,
∑∞

k=1 Eg[|vk(t, x)|2] converges Pξ ⊗ PΓ -almost surely. For fixed
ωξ ∈ Ωξ and ωΓ ∈ ΩΓ , the random variables {vk(t, x), k ≥ 1} are independent
centered Gaussian random variables; moreover,

∞∑
k=1

E
[∣∣vk(t, x)

∣∣2]
< ∞.

Then, by the Kolmogorov theorem,
∑∞

k=1 vk(t, x) converges Pξ ⊗ PΓ ⊗ Pg-almost
surely, as claimed.

It remains to prove that the sum U0(t, x) + ∑∞
k=1 vk(t, x) is equal to U(t, x). We

first show that ZN(t) → Z(t), N → ∞, almost surely in Cθ [0, T ] for any T > 0,
θ ∈ (0,H). Taking into account that, for any t ∈ [0, T ], ZN(t) → Z(t),N → ∞,
almost surely, we get that there is a set Ω0 ⊂ Ω such that P(Ω0) = 1 and ZN(t) →
Z(t), N → ∞, for any t ∈ [0, T ] ∩ Q, ω ∈ Ω0. Thanks to Proposition 3, the
sequence {ZN,N ≥ 1} is almost surely bounded in Cθ [0, T ] for any θ ∈ (0,H) and
T > 0. Therefore, it is precompact in each of these spaces. Take arbitrary θ ∈ (0,H).
Without loss of generality, the sequence {ZN,N ≥ 1} is precompact in Cθ [0, T ] for
any ω ∈ Ω0. Fix ω ∈ Ω0 and let {ZNk

, k ≥ 1} be any subsequence of {ZN,N ≥ 1}.
In view of precompactness, it must contain a subsequence convergent in Cθ ; to avoid
cumbersome notation, we assume that ZNk

→ Y , k → ∞. In particular, ZNk
(t) →

Y(t), k → ∞, t ∈ [0, T ] ∩ Q. In view of continuity, Z(t) = Y(t) for any t ∈ [0, T ].
Since any subsequence of {ZN,N ≥ 1} contains a subsequence convergent to Z in
Cθ [0, T ], the sequence itself converges to Z.

Now, thanks to the integrability of the fractional derivative of f (s) = ∫
R

ρ(t −
s, x − y)σ (s, y)dy, which was shown in the proof of Theorem 2, the convergence
established in the previous paragraph yields
∫ t

0
dZN(s)

∫
R

ρ(t − s, x − y)σ (s, y)dy →
∫ t

0
dZ(s)

∫
R

ρ(t − s, x − y)σ (s, y)dy

as n → ∞, concluding the proof.

Remark 5. It is possible to consider (3) with Z being a real harmonizable multifrac-
tional stable motion considered in [4]. Making some minor changes, one can show
that Theorem 4 is valid in this case as well.
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