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Abstract We consider the simulation of sample paths of a fractional Brownian motion with
small values of the Hurst index and estimate the behavior of the expected maximum. We prove
that, for each fixed N , the error of approximation E maxt∈[0,1] BH (t)−E max

i=1,N
BH (i/N)

grows rapidly to ∞ as the Hurst index tends to 0.

Keywords Fractional Brownian motion, Monte Carlo simulations, expected maximum,
discrete approximation

2010 MSC 65C50, 60G22

1 Introduction

A fractional Brownian motion {BH (t), t ≥ 0} is a centered Gaussian stochastic pro-
cess with covariance function

E
[
BH (t)BH (u)

] = 1

2

(
t2H + u2H − |t − u|2H

)
, t, u ≥ 0,

where H ∈ (0, 1) is the Hurst index. The fractional Brownian motion is a self-similar
process with index H , that is, for any a > 0,

{
BH (t), t ≥ 0

} d= {
a−H BH (at), t ≥ 0

}
,

where
d= means the equality of finite-dimensional distributions.
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Due to self-similarity, we have that, for all T > 0,

{
BH (t), t ∈ [0, T ]} d= {

T H BH
(
T −1t

)
, t ∈ [0, T ]} = {

T H BH (s), s ∈ [0, 1]}.
Based on such a invariance of distributions, it is appropriate to investigate the prop-
erties of the fractional Brownian motion only over the time interval [0, 1].

In this paper, we consider the behavior of the maximum functional
maxt∈[0,1] BH (t) with small values of Hurst index.

It should be noted that the fractional Brownian motion process with H = 1/2
is the Wiener process {W(t), t ≥ 0}. The distribution of maxt∈[0,1] W(t) is known.
Namely,

P
(

max
t∈[0,1]

W(t) ≤ x
)

=
√

2

π

∫ x

0
e−y2/2dy, x ≥ 0,

and, therefore,

E
[

max
t∈[0,1]

W(t)
]

=
√

2

π
.

Many papers are devoted to the distribution of the maximum functional of the
fractional Brownian motion, where usually asymptotic properties for large values of
time horizon T are considered. For example, Molchan [5] has found an asymptotic
behavior of small-ball probabilities for the maximum of the fractional Brownian mo-
tion. Talagrand [8] obtained lower bounds for the expected maximum of the fractional
Brownian motion. In several works, the distribution of the maximum is investigated
when the Hurst index H is close to 1/2. In particular, this case was considered by
Sinai [6] and recently by Delorme and Weise [4].

Currently, an analytical expression for the distribution of the maximum of the
functional Brownian motion remains unknown. Moreover, the exact value of the ex-
pectation of such a functional is unknown too.

From the paper of Borovkov et al. [1] we know the following bounds:

1

2
√

Hπe ln 2
≤ E max

t∈[0,1]
BH (t) <

16.3√
H

. (1)

On the other hand, we may get an approximate value of the expected maximum using
Monte Carlo simulations. That is, for sufficiently large N ,

E max
t∈[0,1]

BH (t) ≈ E max
i=1,N

BH (i/N). (2)

The authors of [1] obtain an upper bound for the error ΔN of approximation (2).
Namely, for N ≥ 21/H ,

0 ≤ ΔN := E max
t∈[0,1]

BH (t) − E max
i=1,N

BH (i/N) (3)

≤ 2
√

ln N

NH

(
1 + 4

NH
+ 0.0074

(ln N)3/2

)
. (4)
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The implementation of approximation (2) has technical limitations. Due to mod-
ern computer capabilities, we assume that N ≤ 220 ≈ 106. Under such conditions,
inequality (4) is true when H ≥ 0.05, and ΔN < 11.18.

In this article, we make Monte Carlo simulations and estimate
E maxi=1,N BH (i/N). Also, we investigate the behavior of ΔN with small values of
the Hurst index H and show that, for a fixed N , the approximation error ΔN → +∞
as H → 0. For the rate of this convergence, when N = 220, we prove the inequality
ΔN > c1H

−1/2 − c2, H ∈ (0, 1), where the constants c1 = 0.2055 and c2 = 3.4452
are calculated numerically. Thus, when the values of H are small, approximation (2)
is not appropriate for evaluation of E maxt∈[0,1] BH (t).

The article is organized as follows. The first section presents the methodology
of computing. The second section presents the results of computing of the expected
maximum of the fractional Brownian motion. In the third section, we obtain a lower
bound for the error ΔN and calculate the constants c1 and c2.

2 Methods of approximate calculations

2.1 Simulation of a vector (BH (i/N))1≤i≤N

Let us consider briefly the method proposed by Wood and Chan [9]. Let G be the
autocovariance matrix of (BH (1/N), . . . , BH (N/N)). Embed G in a circulant m×m

matrix C given by

C =

⎛
⎜⎜⎜⎝

c0 c1 · · · cm−1
cm−1 c0 · · · cm−2

...
...

. . .
...

c1 c2 · · · c0

⎞
⎟⎟⎟⎠ ,

where

cj =
{

1
N2H (|j − 1|2H − 2j2H + (j + 1)2H ), 0 ≤ j ≤ m

2 ,

1
N2H ((m − j − 1)2H − 2(m − j)2H + (m − j + 1)2H ), m

2 < j ≤ m − 1.

Proposition 1. Let m = 21+ν , where 2ν is the minimum power of 2 not less than N .
Then the matrix C allows a representation C = QJQT , where J is a diagonal matrix
of eigenvalues of the matrix C, and Q is the unitary matrix with elements

(Q)j,k = 1√
m

cj exp

(
−2iπ

jk

m

)
, j, k = 0,m − 1.

The eigenvalues λk of the matrix C are equal to

λk =
m−1∑
j=0

exp

(
2iπ

jk

m

)
, k = 0,m − 1.

Since Q is unitary, we can set Y = QJ 1/2QT Z, where Z ∼ N(0, Im). Therefore,
we get Y ∼ N(0, C). Thus, the distributions of the vectors (Y0, Y0 + Y1, . . . , Y0 +
· · · + YN−1) and (BH (1/N), . . . , BH (N/N)) coincide.
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The method of Wood and Chan is exact and has complexity O(N log(N)). A more
detailed description of the algorithm, a comparison with other methods of simulation
of the fractional Brownian motion, and a program code are contained in the paper [3].
For reasons of optimization of calculations, simulations in the present paper are made
by the method of Wood and Chan.

The estimate of the mean value E maxi=1,N BH (i/N) is a sample mean over the
sample of size n. That is why the total complexity of the algorithm is O(nN log(N)).

2.2 Clark’s method

Instead of generating samples and computing sample means, there exists a method of
Clark [2] for approximating the expected maximum.

Due to this method, the first four moments of the random variable max{ξ1, . . . ,

ξN }, where (ξ1, . . . , ξN ) is a Gaussian vector, are calculated approximately. Since the
fractional Brownian motion is a Gaussian process, we put (ξ1, . . . , ξN ) =
(BH (1/N), . . . , BH (N/N)) and apply Clark’s method for approximate computing
of E maxi=1,N BH (i/N).

Let us illustrate the basic idea of Clark’s method of calculating
E max{ξ, η, τ }, where ξ, η, τ are Gaussian distributed.

Proposition 2. Let ξ, η, τ be Gaussian random variables. Put a = Var(ξ)+Var(η)−
Cov(ξ, η) and let a > 0. Denote α := (Eξ − Eη)/a. Then we have

E max{ξ, η} = Φ(α)Eξ + Φ(−α)Eη + aϕ(α);
E

(
max{ξ, η})2 = Φ(α)Eξ2 + Φ(−α)Eη2 + aϕ(α)(Eξ + Eη), (5)

where ϕ(x) = 1√
2π

exp(− x2

2 ) and Φ(x) = ∫ x

−∞ φ(t)dt .

So, the exact value of E max{ξ, η} is obtained from the previous proposition.

Proposition 3. Let ξ, η, τ be Gaussian random variables. Let Corr(τ, ξ) and
Corr(τ, η) be known. Then

Corr
(
τ, max{ξ, η}) =

√
Var(ξ)Corr(τ, ξ)Φ(α) + √

Var(η)Corr(τ, η)Φ(−α)√
E(max{ξ, η})2 − (E max{ξ, η})2

.

For approximate computing E max{ξ, η, τ } = E max{τ, max{ξ, η}}, we assume
that max{ξ, η} has a Gaussian distribution. In fact, this is not true, but it allows us
to apply formula (5) for random variables τ and max{ξ, η}. Thus, iteratively, we can
calculate the approximate mean for any finite number of Gaussian random variables.

3 Computing the expected maximum

In this section, we present results of approximate computing E maxi=1,N BH (i/N)

by generating random samples and applying Clark’s method. Also, we compare the
computational results obtained by these two methods.

The values of the Hurst index are taken from the set {10−4(1 + 4i), i = 0, 24} ∪
{10−2i, i = 1, 9}. The values of N are chosen from the set {2j , j = 8, 19}. The
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Fig. 1. Sample means of 1
N

∑N
i=0 BH (i/N)

Fig. 2. Sample variances of 1
N

∑N
i=0 BH (i/N)

values of (BH (1/N), BH (2/N), . . . , BH (N/N)) are simulated by the method of
Wood and Chan for each pair N,H with the sample size n = 1000. For each element
in the sample, we calculate the following functionals:

max
i=1,N

BH (i/N), (6)

1

N

N∑
i=1

BH (i/N). (7)

3.1 Approximation error of 1
N

∑N
i=0 BH (i/N)

We compute the sample mean and variance of (7). The values of theoretical moments
of (7) are known:

E
1

N

N∑
i=0

BH (i/N) = 0,

E
(

1

N

N∑
i=0

BH (i/N)

)2

= 1

N2H+2

N∑
i=1

i2H+1 → 1

(2H + 2)
, N → ∞.

The sample moments of (7) when H = {10−4(1 + 4i), i = 0, 24} and N =
{2j , j = 8, 19} are presented in Figs. 1 and 2. In the figures, the lines indicate the
theoretical moments and confidence intervals corresponding to the reliability of 95%.
The data confirm the correctness of calculations of (7) with the reliability of 95%
even for small values of H .
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Table 1. The approximate values of the expected maximum

Sample means of (6) Values due to Clark’s method
N�H 0.0900 0.0100 0.0013 0.0001 0.0900 0.0100 0.0013 0.0001
28 1.7017 2.0019 1.9897 1.9769 1.1738 1.8691 1.9696 1.9839
29 1.7693 2.0875 2.1602 2.1360 1.1903 1.9991 2.1194 2.1366
210 1.9487 2.2504 2.3047 2.2854 1.1971 2.1193 2.2604 2.2806
211 2.0138 2.4203 2.4446 2.4184 1.1966 2.2310 2.3939 2.4174
212 2.0886 2.5086 2.5948 2.5334 1.1910 2.3351 2.5208 2.5476
213 2.1938 2.6396 2.6934 2.6885 1.1822 2.4327 2.6420 2.6723
214 2.2591 2.7612 2.7829 2.7940 1.1714 2.5242 2.7579 2.7919
215 2.3327 2.8837 2.9452 2.9258 1.1586 2.6104 2.8693 2.9070
216 2.4050 2.9973 3.0526 3.0464 1.1436 2.6917 2.9765 3.0181
217 2.4620 3.0791 3.1386 3.1121 1.1263 2.7685 3.0798 3.1256
218 2.5328 3.1900 3.2102 3.2421 1.1068 2.8412 3.1798 3.2297
219 2.5597 3.3481 3.3487 3.3663 1.0855 2.9101 3.2766 3.3307

3.2 Computing functional maxi=1,N BH (i/N)

For each pair N,H , we obtain the sample of values of the maximum functional (6)
with sample size 1000. For some values of H , the sample means and approximate
values of the expected maximum, obtained by Clark’s method, are presented in Ta-
ble 1.

Within the data obtained by the different methods, we get that the approximate
values obtained by Clark’s algorithm differ from the sample means at most by 57.6%
when H = 0.09, by 13.08% when H = 0.01, by 2.85% when H = 0.0013, and
by 1.06% when H = 0.0001. Thus, when H ≤ 0.0013, the values of the expected
maximum, obtained by these completely different methods, are numerically identical.
This indicates that the sample mean is approximately equal to E maxi=1,N BH (i/N).

4 Bounds for the approximation error

In this section, we find bounds for the error of approximation (2). As noted before,
E maxt∈[0,1] BH (t) ≥ (4Hπe ln 2)−1/2. It is expected that obtained sample means
of the maximum functional (6) also satisfies this constraint. In Fig. 3, the sample
means and the values of (4Hπe ln 2)−1/2 are presented. As one can see, the inequality
E maxi=1,N BH (i/N) ≥ (4Hπe ln 2)−1/2 is false for small values of H .

There are two possible explanations of this fact: either there is a significant error
in calculations, or the approximation error ΔN grows rapidly as H → 0. Let us verify
these two explanations.

From [1, Theorem 4.2] we get that the expectation of the maximal functional (6)
grows as H → 0 and has the limit

lim
H→0

E max
i=1,N

BH (i/N) = 1√
2

E
(

max
i=1,N

ξi

)+
, (8)

where ξ1, . . . , ξN are i.i.d. r.v.s, ξ1 ∼ N(0, 1), and x+ := max{0, x}.
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Fig. 3. Sample means of the maximal functional

Table 2. Values of limit (8)

Sample means of 1√
2
(max

i=1,N
ξi )

+ N
∫ 1

0.5 erf(−1)(2z − 1)zN−1dz

N�n 1000 5000 10000 15000 20000
28 1.9908 1.9908 1.9957 1.9965 1.9961 1.9989
29 2.1462 2.1506 2.1520 2.1526 2.1525 2.1524
210 2.3071 2.3033 2.3006 2.3004 2.2994 2.2969
211 2.4409 2.4362 2.4360 2.4371 2.4351 2.4337
212 2.5712 2.5657 2.5648 2.5635 2.5643 2.5640
213 2.6824 2.6847 2.6877 2.6874 2.6867 2.6887
214 2.8150 2.8066 2.8065 2.8060 2.8078 2.8082
215 2.9190 2.9259 2.9235 2.9248 2.9244 2.9232
216 3.0301 3.0372 3.0353 3.0340 3.0348 3.0343
217 3.1387 3.1372 3.1424 3.1418 3.1414 3.1417
218 3.2394 3.2456 3.2469 3.2460 3.2461 3.2458
219 3.3402 3.3442 3.3450 3.3458 3.3460 3.3469

Moreover, the rate of convergence in (8) is also obtained in [1]:

0 ≤ 1√
2

E
(

max
i=1,N

ξi

)+ − E max
i=1,N

BH (i/N) ≤ 1 − 1

N2H
. (9)

The right-hand side of (9) does not exceed 0.1 when N = 220 and H < 0.0038.
We apply two approaches to calculate 1√

2
E(maxi=1,N ξi)

+. The first one is Monte
Carlo simulations.

The sample means of 1√
2
(maxi=1,N ξi)

+ are presented in Table 2 for several sam-
ple sizes n.

As we see, with increasing sample size 20 times, the sample means differ at most
by 0.33% for each N . Therefore, to ensure the accuracy of calculations, it suffices to
put n = 1000. Under such conditions, technical resources allow us to calculate the
sample means for larger values of N . In Table 3, the values of the sample means are
presented for N = {220, 221, 222, 223, 224, 225} .
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Table 3. Values of limit (8) for N ≥ 220

N 220 221 222 223 224 225

Sample means of 1√
2
(max

i=1,N
ξi )

+ 3.4516 3.536 3.627 3.724 3.816 4.073

N
∫ 1

0.5 erf(−1)(2z − 1)zN−1dz 3.4452 3.541 3.634 3.726 3.815 3.902

Instead of generating random samples, we may calculate the value of
1√
2

E(maxi=1,N ξi)
+ as an integral.

Proposition 4. Let ξ1, . . . , ξN be i.i.d. r.v.s, ξ1 ∼ N(0, 1). Then

1√
2

E
(

max
i=1,N

ξi

)+ = N√
2

∫ 1

1/2
Φ(−1)(z)zN−1dz

= N

∫ 1

1/2
erf(−1)(2z − 1)zN−1dz, (10)

where Φ(−1) is the inverse function of Φ(x) = ∫ x

−∞
e−y2/2√

2π
dy, x ∈ R, and erf(−1) is

the inverse function of the error function erf.

Proof. The proposition follows straightforwardly by quantile transformation.

We immediately get the following corollary.

Corollary 1. For any H ∈ (0, 1) and N ≥ 1, we have

E max
i=1,N

BH (i/N) ≤ N

∫ 1

1/2
erf(−1)(2z − 1)zN−1dz. (11)

The integrand in (11) is not an elementary function, but its values are tabulated,
and there exist methods for its numerical computing. For the present paper, the inte-
gral N

∫ 1
0.5 erf(−1)(2z − 1)zN−1dz is calculated numerically, and the corresponding

values are presented in Tables 2 and 3. By maintaining the accuracy of calculations,
the maximum possible value of N is 231, and the value of the integral reaches 4.390.

The values of 1√
2

E(maxi=1,N ξi)
+, obtained by the two methods, differ at most

by 0.44 % when N ≤ 224. When N = 220, the absolute error of numerical computing
of (10) is less than 1.3 × 10−5. Thereafter, for N = 220, inequality (11) becomes

E max
i=1,N

BH (i/N) ≤ 3.4452,H ∈ (0, 1). (12)

Let us return to the lower bound for E maxi=1,N BH (i/N). By Sudakov’s inequal-
ity [1, 7] we have

E max
i=1,N

BH (i/N) ≥
√

ln(N + 1)

N2H 2π ln 2
. (13)

Moreover, the maximum of the right-hand side of (13) equals (4Hπe ln 2)−1/2

and is reached when N = [e1/2H ]. The values of the lower bound are presented in
Table 4.
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Table 4. Lower bounds

H 0.5000 0.0900 0.0100 0.0013 0.0001

(2
√

Hπe ln 2)−1 0.5811 1.3696 4.1089 11.396 41.089
e1/2H 2.7183 258.67 5.18 ×1021 1.1 ×10167 2.97 × 102171

N

28 0.0705 0.6853 1.0679 1.1207 1.1282
29 0.0529 0.6828 1.1246 1.1873 1.1963
210 0.0394 0.6761 1.1772 1.2503 1.2608
211 0.0292 0.6662 1.2260 1.3101 1.3222
212 0.0216 0.6537 1.2717 1.3671 1.3808

(
ln(N+1)

N2H 2π ln 2
)1/2 213 0.0159 0.6393 1.3145 1.4217 1.4371

214 0.0117 0.6233 1.3547 1.4740 1.4913
215 0.0085 0.6061 1.3925 1.5244 1.5435
216 0.0062 0.5881 1.4283 1.5729 1.5940
217 0.0045 0.5696 1.4620 1.6199 1.6429
218 0.0033 0.5507 1.4940 1.6653 1.6905
219 0.0024 0.5315 1.5244 1.7094 1.7367

Combining Tables 1, 2, and 4, we get that all obtained sample means for
E maxi=1,N BH (i/N) satisfy the constraint(

ln(N + 1)

N2H 2π ln 2

)1/2

≤ E max
i=1,N

BH (i/N) ≤ N

∫ 1

1/2
erf(−1)(2z − 1)zN−1dz.

Therefore, even with small values of the parameter H , the simulation does not lead
to contradiction.

Now let us find a lower bound for the approximation error ΔN . We prove the
following proposition.

Proposition 5. Let ΔN be defined by (3). Then, for any H ∈ (0, 1) and N ≥ 1, we
have

ΔN ≥ 1

2
√

Hπe ln 2
− N

∫ 1

1/2
erf(−1)(2z − 1)zN−1dz. (14)

Proof. The statement follows from inequalities (1) and (11).

From this it follows that, for a fixed N , the approximation error ΔN → +∞ as
H → 0. We also have the following evident corollaries.

Corollary 2. Let N = 220. Then

ΔN ≥ 0.2055√
H

− 3.4452, H ∈ (0, 1). (15)

Proof. The statement follows from inequalities (13) and (14).

Corollary 3. Let N = 220. Then for the relative error, we have

δH := ΔN

E maxt∈[0,1] BH (t)
≥ 1 − 16.765

√
H, H ∈ (0, 1). (16)

Proof. The statement follows from inequalities (1) and (12).
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When N = 220, from inequalities (15) and (16) we get the following conclusions:

• if H < 0.00022, then the relative error δH ≥ 75%, and ΔN > 10.34;

• if H < 0.00089, then the relative error δH ≥ 50%, and ΔN > 3.45;

• if H < 0.0020, then the relative error δH ≥ 25%, and ΔN > 1.15;

• if H < 0.0028, then the relative error δH ≥ 10%, and ΔN > 0.38;

• if H < 0.0032, then the relative error δH ≥ 5%, and ΔN > 0.18;

• if H < 0.0035, then the relative error δH ≥ 1%, and ΔN > 0.03.

Thus, we conclude that the estimation of E maxt∈[0,1] BH (t) by Monte Carlo sim-
ulations leads to significant errors for small values of the parameter H .
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