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Abstract We study properties of distributions of random variables with independent identi-
cally distributed symbols of generalized Lüroth series (GLS) expansions (the family of GLS-
expansions contains Lüroth expansion and Q∞- and G2∞-expansions). To this end, we explore
fractal properties of the family of Cantor-like sets C[GLS, V ] consisting of real numbers whose
GLS-expansions contain only symbols from some countable set V ⊂ N ∪ {0}, and derive ex-
act formulae for the determination of the Hausdorff–Besicovitch dimension of C[GLS, V ].
Based on these results, we get general formulae for the Hausdorff–Besicovitch dimension of
the spectra of random variables with independent identically distributed GLS-symbols for the
case where all but countably many points from the unit interval belong to the basis cylinders
of GLS-expansions.
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1 Introduction

During the last 20 years, many authors studied singularly continuous probability mea-
sures generated by different expansions of real numbers (see, e.g., [2, 9, 10, 12–15]).
All these measures are the distributions of random variables of the form

ξ = ΔF
ξ1ξ2...ξk ...

,

where {ξk} are independent or Markovian, and F stands for some expansion of real
numbers. For the case of expansions over finite alphabets, fractal properties of the
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spectra of the corresponding measures are relatively well studied. For the case of infi-
nite alphabets, the situation is essentially more complicated. In [8] and [9], it has been
shown that even for self-similar Q∞-expansion and for i.i.d. case, the Hausdorff–
Besicovitch dimension of the corresponding spectra cannot be calculated in a tradi-
tional way (as a root of the corresponding equation), and formulae for the Hausdorff
dimension of the measure μξ are also unknown.

In this paper, we generalize results from [8] and [9] for the case of distributions
of random variables with independent identically distributed GLS digits

ξ = ΔGLS
ξ1ξ2...ξk ...

and get general formulae for the determination of the Hausdorff–Besicovitch dimen-
sion of spectra of ξ for the case where all but countably many points from the unit
interval belong to the basis cylinders of GLS-expansion.

2 On GLS-expansion and fractal properties of related probability measures

Let Q∞ = (q0, q1, . . . , qn, . . . ) be an infinite stochastic vector with positive coor-
dinates. Let us consider a countable sequence Δi = [ai, bi] of intervals such that
Int(Δi) ∩ Int(Δj ) = ∅ (i �= j) and |Δi | = qi . The sets Δi are said to be cylinders of
GLS-expansion (generalized Lüroth series).

Let us remark that the placement of cylinders of rank 1 is completely determined
by the preselected procedure.

For every cylinder Δi1 of rank 1, we consider a sequence of nonoverlapping
closed intervals Δi1i2 ⊂ Δi1 such that

|Δi1i2 |
|Δi1 |

= qi2

and the placement of Δi1i2 in Δi1 is the same as Δi1 in [0; 1]. The closed intervals
Δi1i2 are said to be cylinders of rank 2 of the GLS-expansion.

Similarly, for every cylinder of rank (n − 1) Δi1i2...in−1 , we consider the sequence
of nonoverlapping closed intervals Δi1i2...in ⊂ Δi1i2...in−1 such that

|Δi1i2...in |
|Δi1i2...in−1 |

= qin, i ∈ N ∪ {0},

and the placement of Δi1i2...in in Δi1i2...in−1 is the same as Δi1 in [0; 1].
The closed intervals Δi1i2...in are said to be cylinders of rank n of the GLS-

expansion. From the construction it follows that

|Δi1i2...in | = qi1 · qi2 · . . . · qin ≤ (qmax)
n → 0 (n → ∞),

where qmax := maxi qi .
So, for any sequence of indices {ik} (ik ∈ N ∪ {0}), there exists the sequence of

embedded closed intervals

Δi1 ⊂ Δi1i2 ⊂ Δi1i2i2 ⊂ · · · ⊂ Δi1i2...ik ⊂ · · ·
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with |Δi1i2...ik | → 0, k → ∞. Therefore, there exists a unique point x ∈ [0, 1] that
belongs to all these cylinders.

Conversely, if x ∈ [0, 1] belongs to some cylinder of rank k for any k ∈ N and
x is not an end-point for any cylinder, then there exists a unique sequence of the
cylinders

Δi1(x) ⊃ Δi1(x)i2(x) ⊃ Δi1(x)i2(x)i3(x) ⊃ · · · ⊃ Δi1(x)i2(x)...ik(x) ⊃ · · ·
containing x, and

x =
∞⋂

k=1

Δi1(x)i2(x)...ik(x) = Δi1(x)i2(x)...ik(x)....

The latter expression is called the GLS-expansion of x (see, e.g., [1, 3, 4, 6, 7] for
details).

Let us remark that the Lüroth expansion and Q∞-expansion [8, 9] are particular
cases of the GLS-expansion. For the case where the ratio of lengths of two embedded

cylinders of successive ranks depends on the last index and it is a power of ϕ = 1+√
5

2 ,
we get the G2∞-expansion of x [11].

Let Q∞ = (q0, q1, . . . , qn, . . . ) be a stochastic vector with positive coordinates,
and let x = ΔGLS

i1(x)i2(x)...ik(x)... be the GLS-expansion of x ∈ [0, 1].
Let {ξk} be a sequence of independent identically distributed random variables:

P(ξk = i) := pi ≥ 0,

where ∞∑
i=0

pi = 1.

Using the sequence {ξk} and a given GLS-expansion, let us consider the random
variable

ξ = ΔGLS
ξ1ξ2...ξk ...

,

which is said to be the random variable with independent identically distributed GLS-
symbols. Let μξ be the corresponding probability measure.

To investigate metric, topological, and fractal properties of the spectrum of the
random variable with independent identically distributed GLS-symbols, let us study
properties of the following family of sets. Let V be a subset of N0 := {0, 1, 2, . . . },
and let

C[GLS, V ] = {
x : x = ΔGLS

α1(x)...αk(x)..., αk ∈ V
}
.

If the set V is finite, then C[GLS, V ] is a self-similar set satisfying the open set
condition (see, e.g., [5]). So, its Hausdorff–Besicovitch dimension coincides with the
root of the equation ∑

i∈V

qx
i = 1. (1)

If the set V is countable, then the situation is essentially more complicated. In
particular, there exist stochastic vectors Q∞ and subsets V such that equation (1) has
no roots on the unit interval.
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For example, if qi = A

(i+2) ln2(i+2)
and V = N , then the equation

∑
i∈V qx

i = 1

has no roots on [0; 1].
Theorem 1. If a stochastic vector Q∞ and a set V ⊂ N0 are such that the equation∑

i∈V qx
i = 1 has a root α0 on [0, 1], then

dimH

(
C[GLS, V ]) = α0.

Proof. First, let us show that for any k ∈ N , the set C[GLS, V ] can be covered by
cylinders of rank k and that the α0-volume of this covering is equal to 1.

For k = 1, the set C[GLS, V ] can be covered by cylinders of rank 1. It easy to see
that the α0-volume is equal to 1:∑

i1∈V

|Δi1 |α0 =
∑
i1∈V

q
α0
i1

= 1.

Suppose that for k = n − 1, the α0-volume of the covering of C[GLS, V ] by
cylinders of rank n− 1 is equal to 1. Let us show that for k = n, the α0-volume of the
covering of C[GLS, V ] by cylinders of rank n will not change. We have∑

ij ∈V

|Δi1i2...in−1in |α0 =
∑
ij ∈V

(qi1qi2 . . . qn−1qn)
α0

=
∑
i1∈V

q
α0
i1

·
∑
ij ∈V

(qi1qi2 . . . qn−1)
α0 = 1.

So, for any ε > 0, we get

Hα0
ε

(
C[GLS, V ]) ≤ 1.

Hence,
Hα0

(
C[GLS, V ]) ≤ 1.

By the definition of the Hausdorff–Besicovitch dimension we get

dimH

(
C[GLS, V ]) ≤ α0.

Let us show that dimH (C[GLS, V ]) ≥ α0. To this end, let us consider sets V =
{i1, . . . , ik, . . . }, Vk = {i1, . . . , ik}, k ≥ 2, k ∈ N , and the sequence C[GLS, Vk] of
subsets of C[GLS, V ]. For all k ≥ 2, k ∈ N , we have

C[GLS, Vk] ⊂ C[GLS, Vk+1],
and, therefore,

dimH

(
C[GLS, Vk]

) ≤ dimH

(
C[GLS, Vk+1]

)
.

Let dimH (C[GLS, Vk]) = αk . The sets C[GLS, Vk] are self-similar and satisfy
the open set condition (OSC). Hence, the Hausdorff–Besicovitch dimension αk of
C[GLS, Vk] coincides with the solution of the equation∑

i∈Vk

qx
i = 1.
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It is clear that α2 < α3 < · · · < αk < · · · and αk < α0. So, the sequence {αk} is
increasing and bounded. Therefore, there exists a limit limk→∞ αk = α∗.

It is clear that α∗ ≤ α0 because αk < α0 (∀k ∈ N). Let us prove that α∗ = α0.
Assume the opposite: let α∗ < α0. Then there exists α′ such that α∗ < α′ < α0.

Then
∑

i∈Vk
qα′
i < 1 for all k ∈ N . Since

∑
i∈Vk

q
αk

i = 1, we get
∑

i∈Vk
qα′
i < 1 for

all k ∈ N . Let us consider the series
∑∞

k=1 qα′
ik

. It is clear that
∑n

k=1 qα′
ik

< 1 for all

n ∈ N . So limn→∞
∑n

k=1 qα′
ik

≤ 1. Therefore,
∑

i∈V qα′
i ≤ 1.

Since qα′
i > q

α0
i for all i ∈ V and

∑
i∈V q

α0
i = 1, we get

∑
i∈V qα′

i >
∑

i∈V q
α0
i =

1, which contradicts the already proven inequality
∑

i∈V qα′
i ≤ 1. This proves that

α∗ = α0.
Since for any k ≥ 2, k ∈ N ,

αk = dimH

(
C[GLS, Vk]

) ≤ dimH

(
C[GLS, V ]),

we get
α0 ≤ dimH

(
C[GLS, V ]).

Thus,
α0 = dimH

([GLS, V ]).
Theorem 2. If the matrix Q∞ and the set V = {i1, i2, . . . , ik, ik+1, . . . } are such
that equation

∑
i∈V qx

i = 1 has no roots on [0, 1], then

dimH

(
C[GLS, V ]) = lim

k→∞ dimH

([GLS, Vk]
)
,

where Vk = {i1, i2, . . . , ik}, k ∈ N, k ≥ 2.

Proof. The sets C[GLS, Vk] are self-similar and satisfy the OSC. Thus the dimension
αk can be obtained as a solution of the equation

∑
i∈Vk

qx
i = 1. It is easy to see that

α2 < α3 < · · · < αk−1 < αk < 1.

Therefore, there exists the limit

lim
k→∞ αk = α∗.

It is clear that α∗ ≤ dimH (C[GLS, V ]) because C[GLS, Vk] ⊂ C[GLS, V ] for all
k ≥ 2. Suppose that α∗ < dimH (C[GLS, V ]). Then there exists a number α′ such
that α∗ < α′ < dimH (C[GLS, V ]). It is clear that

∑
i∈V2

qα′
i <

∑
i∈V3

qα′
i < · · · <

∑
i∈Vk

qα′
i < 1.

So,
∑

i∈V qα′
i ≤ 1.

On the other hand, Hα′
(C[GLS, V ]) = ∞ by the definition of the Hausdorff–

Besicovitch dimension (because α′ < dimH (C[GLS, V ])). Then the α′-dimensional
Hausdorff measure of the set C[GLS, V ] with respect to the family Φ of coverings
that are generated by the GLS-expansion of the unit segment is equal to Hα′

(C[GLS,
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Φ]) = ∞ (where the family Φ is a locally fine system of the coverings of the unit
segment, i.e., for any ε > 0, there exists such a covering of [0, 1] by the subsets
Ej ∈ Φ such that |Ej | < ε and [0, 1] = ⋃

j Ej ). Since the set C[GLS, V ] can
be covered by cylindrical segments of the GLS-expansion with indices from V , we
deduce that for any M > 0, there exists k(M) such that for all k > k(M), we have
the inequality

∑
iq∈V,q∈{1,...,k}

|Δi1i2...ik |α
′
> M,

∑
iq∈V,q∈{1,...,k}

|Δi1i2...ik |α
′ =

∑
iq∈V,q∈{1,...,k−1}

|Δi1i2...ik−1 |α
′ ·

∑
ik∈V

Δα′
ik

<
∑

iq∈V,q∈{1,...,k−1}
|Δi1i2...ik−1 |α

′

=
∑

iq∈V,q∈{1,...,k−2}
|Δi1i2...ik−2 |α

′ ·
∑

ik−1∈V

qα′
ik−1

<
∑

iq∈V,q∈{1,...,k−2}
|Δi1i2...ik−2 |α

′
< · · ·

<
∑
i1∈V

|Δi1 |α
′ =

∑
i1∈V

qα′
i1

< 1.

From the obtained contradiction it follows that

lim
k→∞ αk = dimH

(
C[GLS, V ]),

where αk = dimH (C[GLS, Vk]).
Remark 1. Theorems 1 and 2 can be considered as natural generalizations of results
from [8].

Theorem 3. The Hausdorff–Besicovitch dimension can be calculated as follows:

dimH

(
C[GLS, V ]) = sup

{
x :

∑
i∈V

qx
i ≥ 1

}

for any Q∞ and V = {i1, i2, . . . , ik, ik+1, . . . }.
Proof. Let α0 = dimH (C[GLS, V ]). Show that sup{x : ∑

i∈V qx
i ≥ 1} ≥ α0. Let us

consider the function
ϕ(x) =

∑
i∈V

qx
i

and denote the set
A+ = {

x : ϕ(x) ≥ 1
}
.

Let αk and αk+1 be the solutions of the equations∑
i∈Vk

qx
i = 1
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and ∑
i∈Vk+1

qx
i = 1,

respectively.
Let us show that αk < αk+1 < α0. If α0 is the solution of

∑
i∈V qx

i = 1, then it is
easy to see that αk < αk+1 < α0. If

∑
i∈V qx

i = 1 has no roots on [0, 1], then

α0 = lim
k→∞ αk

and αk < αk+1, so that αk < αk+1 < α0.
Express the function ϕ(x) as follows:

ϕ(x) = qx
i1

+ · · · + qx
ik

+ qx
ik+1︸ ︷︷ ︸

≥1

+
∞∑

j=k+1

qx
ij
.

It is easy to see that for all x ∈ [αk, αk+1] (x < α0, k ∈ N), ϕ(x) ≥ 1. Then
A+ ⊃ (−∞; α0) and sup A+ ≥ α0.

Let us show that sup A+ ≤ α0. Suppose the opposite. If sup A+ > α0, then there
exists x1 such that x1 ∈ (α0; sup A+], x1 ∈ A+, and ϕ(x1) ≥ 1. So∑

i∈V

q
x1
i ≥ 1.

Since αk is a solution of
∑

i∈Vk
qx
i = 1 and αk < α0, we get∑

i∈Vk

q
αk

i = 1

and ∑
i∈Vk

q
α0
i ≤ 1.

It is clear that ∑
i∈V

q
α0
i < 1

and ∑
i∈V

q
x1
i ≤ 1.

So, from the obtained contradiction it follows that sup A+ = α0.

Let ΔGLS∞ be the set of those x ∈ [0; 1] that do not belong to any cylinder of
the first rank of the GLS-expansion. The set ΔGLS∞ can be empty, countable, or of
continuum cardinality.

Let us recall that the nonempty and bounded set E is called N -self-similar if
it can be represented as a union of a countably many sets Ej (dimH (Ei ∩ Ej) <

dimH E, i �= j) such that the set E is similar to the sets Ej with coefficient kj .
Since the spectrum Sξ of the distribution of a random variable ξ with independent

identically distributed GLS-symbols is a self-similar or N -self-similar set and Sξ =
(C[GLS, V ])cl, we can apply the above results to calculate the Hausdorff–Besicovitch
dimension of the spectrum Sξ for the case where ΔGLS∞ is an at most countable set.
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So, we get the following theorem, which can be considered as a corollary of The-
orems 1 and 2.

Theorem 4. Let V := {i : pi > 0}. If ΔGLS∞ is at most countable, then the Hausdorff–
Besicovitch dimension of the spectrum of the distribution of a random variable ξ with
independent identically distributed GLS-symbols can be calculated in the following
way.

1) If the equation
∑

i∈V qx
i = 1 has one root α0 on [0, 1], then

dimH Sξ = α0.

2) If the equation
∑

i∈V qx
i = 1 has no roots on [0, 1], then

dimH Sξ = lim
k→∞ αk,

where αk are the roots of the equations
∑

i∈Vk
qx
i = 1, Vk = {i1, i2, . . . , ik} ⊂ V .
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