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Abstract We study the weak limits of solutions to SDEs

dXn(t) = an

(
Xn(t)

)
dt + dW(t),

where the sequence {an} converges in some sense to (c−1x<0 +c+1x>0)/x +γ δ0. Here δ0 is
the Dirac delta function concentrated at zero. A limit of {Xn} may be a Bessel process, a skew
Bessel process, or a mixture of Bessel processes.
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1 Introduction

Consider the stochastic differential equation

dX(t) = a
(
X(t)

)
dt + dW(t), t � 0, (1)

where a is a locally integrable function.
The aim of this paper is to study convergence in distribution of the sequence of

processes {X(nt)/
√

n, t � 0} as n → ∞.
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Observe that

dXn(t) = √
na

(√
nXn(t)

)
dt + dWn(t), t � 0,

where Wn(t) = W(nt)/
√

n, t � 0 is a Wiener process, and Xn(t) = X(nt)/
√

n,
t � 0.

Hence, to study the sequence {X(nt)/
√

n}, it suffices to investigate the SDEs

dXn(t) = an

(
Xn(t)

)
dt + dW(t), t � 0,

where an(x) = na(nx).
If a ∈ L1(R), then an converges in generalized sense to αδ0, where δ0 is the Dirac

delta function at zero, where α = ∫
R

a(x) dx. It is well known that in this case the
sequence {Xn} converges weakly to a skew Brownian motion with parameter γ =
th(α) = eα−e−α

eα+e−α ; see, for example, [14, 10]. Recall that [5, 10] the skew Brownian
motion Wγ (t) with parameter γ , |γ | � 1, is a unique (strong) solution to the SDE

dWγ (t) = dW(t) + γ dL0
Wγ

(t),

where L0
Wγ

(t) = limε→0+(2ε)−1
∫ t

0 1|Wγ (s)|�ε ds is the local time of the process
Wγ at 0. The process Wγ is a continuous Markov process with transition probabil-
ity density function pt(x, y) = ϕt (x−y) + γ sign(y) ϕt (|x|+|y|), x, y ∈ R, where
ϕt (x) = 1√

2πt
e−x2/2t is the density of the normal distribution N(0, t). Note also

that Wγ can be obtained from excursions of a Wiener process pointing them (in-
dependently of each other) up and down with probabilities p = (1 + γ )/2 and
q = (1 − γ )/2, respectively.

Kulinich et al. [8, 7] considered limit theorems in the case where a is noninte-
grable function such that

lim
x→±∞

1

x

∫ x

0

∣∣va(v) − c±
∣∣ dv = 0,

∣∣xa(x)
∣∣ � C, (2)

where c± > −1/2 are constants. In this case, an(x) converges in some sense to
c−1x<0 + c+1x�0 as n → ∞.

For instance, if a(x) = c±/x for ±x > x0, then, for c− < 1/2 < c+, the se-
quence Xn converges weakly to a Bessel process. If c− = c+ > −1/2, then |Xn| also
converges weakly to a Bessel process. The problem of weak convergence of Xn for
(e.g.) c− = c+ > −1/2 or c− < c+ � 1/2 was not considered.

In this paper, we generalize the results of [14, 8] to the case

a(x) = ã(x) + c̄(x)

x
, x ∈ R,

where ã is integrable on (−∞; ∞), and

c̄(x) = c+ · 1x>1 + c− · 1x<−1, x ∈ R.

We consider all possible limit processes (depending on c+ and c−). In particular,
we show that, for c+ = c− < 1/2, the limit process is a skew Bessel process (see
Section 2).
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2 Bessel process. Skew Bessel process. Definition, properties

We recall the definition and some properties of Bessel processes.
Let δ � 0 and x0 ∈ R. Consider the SDE

Z
(
x2

0 , t
) = x2

0 + 2
∫ t

0

√∣∣Z(
x2

0 , s
)∣∣ dW(s) + δt, t � 0, (3)

where W is a Wiener process.
It is known (see [15], XI.1, (1.1)), that there exists a unique strong solution

Z(x2
0 , ·) of (3). This solution is called the squared δ-dimensional Bessel process. The

process Z(x2
0 , ·) is nonnegative a.s.

Definition 1. The process Bc(x0, t) =
√

Z(x2
0 , t) with x0 � 0 is called the (nonneg-

ative) Bessel process with parameter c = (δ−1)/2.

We will call the process B−
c (x0, t) = −Bc(x0, t) = −

√
Z(x2

0 , t) with x0 � 0 the
nonpositive Bessel process.

Recall the following properties of the Bessel process (see [15, Chap. XI]).
The Bessel process ξ(t) = Bc(x0, t) satisfies the SDE

dξt = dWt + c

ξt

dt, t < T0,

where T0 is the first hitting time of 0. If δ � 2 (i.e., c � 1/2), then the Bessel process
with probability 1 does not hit 0.

If 0 < δ < 2 (i.e., −1/2 < c < 1/2), then with probability 1 the Bessel process
hits 0 but spends zero time at 0. In particular, if δ = 1 (i.e., c = 0), then the Bessel
process is a reflecting Brownian motion.

If δ = 0 (i.e., c = −1/2), then with probability 1 the process attains 0 and remains
there forever.

The scale function of the Bessel process Bc equals

ψc(x) =

⎧⎪⎨⎪⎩
−x−2c+1 if c > 1/2,

ln x if c = 1/2,

x−2c+1 if c < 1/2,

(4)

that is,

Px(Ta < Tb) = ψc(b) − ψc(x)

ψc(b) − ψc(a)
for any 0 < a < x < b,

where Ty = inf{t � 0 : Bc(t) = y}.
The transition density for c > −1/2, x, y > 0, and t > 0 equals

pc
t (x, y) = t−1(y/x)νy exp

(−(
x2 + y2)/2t

)
Iν(xy/t),

where Iν is a Bessel function of index ν = c − 1/2.
Let c ∈ (−1/2, 1/2), and let p

0,c
t (x, y) be the transition density of the Bessel

process Bc killed at 0.
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Set

pskew
t (x, y) = p

0,c
t

(|x|, |y|) · 1xy>0

+ 1 + γ sign y

2

(
pc

t

(|x|, |y|) − p
0,c
t

(|x|, |y|)), x, y ∈ R.

It is easy to verify that this function satisfies the Chapman–Kolmogorov equation, is
nonnegative, and

∫
R

pskew
t (x, y) dy = 1, x ∈ R.

Definition 2. A time-homogeneous Markov process with the transition density pskew
t

is called the skew Bessel process Bskew
c,γ with parameters c and γ ∈ [−1, 1].

Remark 1. We do not consider the skew Bessel process for c � 1/2 because Bc(x0, ·)
does not hit 0 if x0 �= 0.
Remark 2. The skew Bessel process Bskew can be obtained from a nonnegative Bessel
process by pointing its excursions up with probability p = 1+γ

2 and down with prob-

ability q = 1−γ
2 , similarly to the case of a skew Brownian motion; see arguments in

[1], Section 2.
Thus, the scale function of the skew Bessel process equals

ψskew(x) = (q1x�0 − p1x<0)|x|−2c+1, x ∈ R. (5)

For other properties of the skew Bessel process, we refer to [2].
Remark 3. If x0 > 0 and p = 1 (i.e., γ = 1), then Bskew

c,γ (x0, ·) is a (nonnegative)

Bessel process Bc(x0, ·) with parameter c: Bskew
c,1 (x0, ·) d= Bc(x0, ·).

Also, the absolute value of the skew Bessel process |Bskew
c,γ | is a (nonnegative)

Bessel process Bc(x0, ·) with parameter c: |Bskew
c,γ (x0, ·)| d= Bc(x0, ·).

If c = 0, then Bskew
c,γ is a skew Brownian motion: Bskew

0,γ (·) d= Wγ (·).

3 Main results

Let

a(x) = ã(x) + c̄(x)

x
, x ∈ R,

where ã ∈ L1(R) and

c̄(x) = c+ · 1x>1 + c− · 1x<−1, x ∈ R.

Let Xn(t), t � 0, be the solution of the SDE⎧⎪⎪⎪⎨⎪⎪⎪⎩
dXn(t) = na

(
nXn(t)

)
dt + dW(t)

=
(

ña
(
nXn(t)

) + c̄
(
nXn(t)

)
Xn(t)

)
dt + dW(t), t � 0,

Xn(0) = x0.

The existence and uniqueness of a strong solution of this SDE follows from [3,
Thm. 4.53].



A limit theorem for singular stochastic differential equations 227

Theorem 1. If c+ and c− > −1/2, then the sequence of processes {Xn} converges
weakly to a limit process X∞. In particular:

A1. If

(a) x0 > 0 and c+ � 1/2, or

(b) x0 � 0 and c− < c+ < 1/2, or

(c) x0 = 0 and c− < 1/2 � c+,

then
X∞(t) = B+

c+(x0, t), t � 0.

A2. Similarly, if

(a) x0 < 0 and c− � 1/2, or

(b) x0 � 0 and c+ < c− < 1/2, or

(c) x0 = 0 and c+ < 1/2 � c−,

then
X∞(t) = B−

c−(x0, t), t � 0.

A3. If x0 < 0, c− < 1/2, and c− < c+, then the limiting process evolves as B−
c−

until hitting 0 and then proceeds as B+
c+ indefinitely, that is,

X∞(t) = B−
c−(x0, t) · 1t�τ + B+

c+(0, t − τ) · 1t>τ , t � 0,

where τ = inf{t : X∞(t) � 0} and B±
c± are independent (positive and negative)

Bessel processes.

A4. Similarly, if x0 > 0, c+ < 1/2, and c+ < c−, then

X∞(t) = B+
c+(x0, t) · 1t�τ + B−

c−(0, t − τ) · 1t>τ , t � 0,

where τ = inf{t : X∞(t) � 0}.
A5. If c+ = c− =: c < 1/2, then, for any x0,

X∞(t) = Bskew
c,γ (x0, t), t � 0,

where γ = th(
∫ +∞
−∞ ã(z) dz) = 1−exp{−2

∫ +∞
−∞ ã(z) dz}

1+exp{−2
∫ +∞
−∞ ã(z) dz} .

A6. Finally, if x0 = 0, c+ � 1/2, and c− � 1/2, then the distribution of the limit
process X∞ equals

p · PB+
c+

+ (1 − p) · PB−
c−

,

where

p =
∫ ∞

0 A(−y)(y ∨ 1)−2c− dy∫ ∞
0 (A(−y)(y ∨ 1)−2c− + A(y)(y ∨ 1)−2c+) dy

, (6)

A(y) = exp{−2
∫ y

0 ã(z) dz}, and PB±
c±

are the distributions of positive and

negative Bessel processes B±
c±(0, ·) starting from 0.
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Remark 4. Some results of the theorem follow from [8]. However, we apply here the
general approach applicable to all cases simultaneously. Condition (2) is somewhat
weaker than ã ∈ L1(R). However, we do not assume that supx |xã(x)| < ∞, contrary
to the paper [8].

4 Proof

It follows from [9, Section 3] or [11, Section 3.7] that if A1 is satisfied, then, for any
α > 0, we have the convergence

Xn

(· ∧ τn,α
) ⇒ B+

c+
(
x0, · ∧ τ 0,α

)
, n → ∞,

where τn,α = inf{t � 0 : Xn(t) � α} and τ 0,α = inf{t � 0 : B+
c+(x0, t) � α}. Since

the process B+
c+(x0, ·) does not hit 0, this yields the proof. Case A2 is considered

similarly.
To prove all other items of Theorem 1, we use the method proposed in [13].
Let {ξ (n), n � 0} be a sequence of continuous homogeneous strong Markov pro-

cesses. For α > 0, set

τn,α := inf
{
t � 0 : ∣∣ξ (n)(t)

∣∣ � α
}
, σ n,α := inf

{
t � 0 : ∣∣ξ (n)(t)

∣∣ � α
}
.

We denote by ξ
(n)
x0 a process that has the distribution of ξ (n) conditioned by

ξ (n)(0) = x0.
The next statement is a particular case of Theorem 2 of [13].

Lemma 1. Assume that the sequence {ξ (n), n � 0} satisfies the following conditions:

ξ (n)(0) ⇒ ξ (0)(0); (7)

∀T > 0 ∀ε > 0 ∃δ > 0 ∃n0 ∀n � n0

P
(

sup
|s−t |<δ,
s,t∈[0,T ]

∣∣ξ (n)(t) − ξ (n)(s)
∣∣ � ε

)
� ε; (8)

∀T > 0 lim
ε→0+ sup

n
E

∫ T

0
1|ξ (n)(t)|�ε dt = 0; (9)∫ ∞

0
1ξ (0)(t)=0 dt = 0 a.s. (10)

Assume that, for any α > 0, x0 ∈ R, and any sequence {xn} such that limn→∞ xn =
x0, we have(

ξ (n)
xn

(· ∧ τn,α
)
, τ n,α

) ⇒ (
ξ (0)
x0

(· ∧ τ 0,α
)
, τ 0,α

)
, n → ∞; (11)

ξ (n)
xn

(
σn,α

) ⇒ ξ (0)
x0

(
σ 0,α

)
, n → ∞. (12)

Then ξ (n) ⇒ ξ (0) in C([0,∞)) as n → ∞.

We apply this lemma for ξ (n) = Xn, n � 1, and ξ (0) = X∞ in cases A1–A5 of
the theorem. Case A6 will be considered separately.
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Remark 5. Condition (12) is the only condition that is not true in case A6. It fails if
x0 = 0. Indeed, for any x > 0, the process B+

c+(x, ·) does not hit 0. So, we may select
a sequence {xn} ⊂ (0,∞) that converges to 0 sufficiently slowly and such that, given
Xn(0) = xn, we have Xn(·) ⇒ B+(0, ·) and limn→∞ P(∃t ≥ 0 : Xn(t) = 0) =
0. The concrete selection of {xk} can be done using formulas (15) and (16). Since
B+(0, σ 0,α) = α a.s., we get Xn(σ

n,α) ⇒ α. However, if all xn were negative, then
the limit might be −α.

Conditions (7) and (10) are obvious.
The convergence

∀α > 0 ξ (n)
xn

(· ∧ τn,α
) ⇒ ξ (0)

x0

(· ∧ τ 0,α
)
, n → ∞, (13)

follows from [9, Section 3] or [11, Section 3.7]. Since

P
(∀ε > 0 ∃t ∈ (

τ 0,α, τ 0,α + ε
) : ∣∣ξ (0)

x0
(t)

∣∣ < α | τ 0,α < ∞) = 1,

convergence (13) yields the convergence of pairs (11).
Let us check condition (8). Set

A(y) = exp

{
−2

∫ y

0
ã(z) dz

}
,

An(y) = exp

{
−2

∫ y

0
ña(nz) dz

}
= A(ny), y ∈ R,

Φn(x) =
∫ x

0
An(y) dy, x ∈ R.

Observe that Φn : R → R is a bijection, Φn(0) = 0, and

∃L > 0 ∀n ∀x, y ∈ R L−1|x − y| � ∣∣Φn(x) − Φn(y)
∣∣ � L|x − y|.

Itô’s formula yields

dΦn

(
Xn(t)

) = A
(
nXn(t)

)( c̄(nXn(t))

Xn(t)
dt + dW(t)

)
.

So∣∣Xn(t) − Xn(s)
∣∣ � L

∣∣Φn

(
Xn(t)

) − Φn

(
Xn(s)

)∣∣
� L

∣∣∣∣∫ t

s

A
(
nXn(z)

) c̄(nXn(z))

Xn(z)
dz

∣∣∣∣ + L

∣∣∣∣∫ t

s

A
(
nXn(z)

)
dW(z)

∣∣∣∣.
Let |s − t | < δ, and let Δ > 0 be fixed. Denote fn(t) := ∫ t

0 A(nXn(z)) dW(z).
a) Assume that |Xn(z)| > Δ, z ∈ [s, t]. Then∣∣∣∣∫ t

s

A
(
nXn(z)

) c̄(nXn(z))

Xn(z)
dz

∣∣∣∣ � Cδ/Δ,

where C = ‖A‖∞ max(|c−|, |c+|) < ∞. Hence, we have the estimate∣∣Xn(t) − Xn(s)
∣∣ � LCδ/Δ + Lωfn(δ),

where ωf (δ) = sup|s−t |<δ, s,t∈[0,T ] |f (t) − f (s)| is the modulus of continuity.
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b) Assume that |Xn(z0)| � Δ for some z0 ∈ [s, t].
Denote τ := inf{z � s : |Xn(z)| � Δ} and σ := sup{z � t : |Xn(z)| � Δ}. Then∣∣Xn(t) − Xn(s)

∣∣ � ∣∣Xn(s) − Xn(τ)
∣∣ + ∣∣Xn(σ) − Xn(t)

∣∣ + 2Δ

� 2LCδ/Δ + 2Lωfn(δ) + 2Δ.

Thus, in any case, we have the following estimate of the modulus of continuity:

ωXn(δ) � 2LCδ/Δ + 2Lωfn(δ) + 2Δ.

Let Δ � ε/6. Then, for δ � εΔ
6LC

, we have

sup
n

P
(
ωXn(δ) � ε

)
� sup

n
P
(
ε/3 + 2Lωfn(δ) + ε/3 � ε

)
= sup

n
P
(
ωfn(δ) � ε/6L

) → 0, δ → 0 + .

The last convergence follows from the fact that the sequence of distributions of
{fn(·) = ∫ .

0 A(nXn(z)) dW(z)}n�1 in the space of continuous functions is weakly
relatively compact because the function A is bounded.

Let us prove (12) in cases A1–A5.
Remark 6. The proof below yields that condition (12) is true if xn = 0 for all n � 0.

Let |x| < α. It is easy to see that Px(σ
n,α < ∞) = 1, n ∈ N ∪ {∞}. Since the

process Xn is continuous, we have |Xn(σ
n,α)| = α a.s.

By pn
x = Px(Xn(σ

n,α) = α), n ∈ N∪ {∞}, we denote the probability to reach α

before reaching −α when starting from x.
Using formulas (4) and (5) for the scale of a Bessel process and a skew Bessel

process, it is easy to check that

p∞
x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1x�0 − (

1 − ψc− (−x)

ψc− (α)

)
1x<0 in cases A1, A3,

ψc+ (x)

ψc+ (α)
· 1x>0 in cases A2, A4,

ψc(|x|)
ψc(α)

(q1x�0 − p1x<0) + p in case A5,

(14)

where ψc is given in (4).
For n ∈ N, we have (see [4, Section 15] and [15])

pn
x = ϕn(x) − ϕn(−α)

ϕn(α) − ϕn(−α)
, (15)

where

ϕn(x) =
∫ x

0
exp

{
−2

∫ y

0
an(z) dz

}
dy =

∫ x

0
exp

{
−2

∫ y

0
na(nz) dz

}
dy

= 1

n

∫ nx

0
exp

{
−2

∫ y

0
a(z) dz

}
dy = 1

n
ϕ(nx), (16)

ϕ(x) :=
∫ x

0
exp

{
−2

∫ y

0
a(z) dz

}
dy.
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The function ϕ is increasing. It follows from the definition of a that ϕ is bounded
from above (below) iff c+ > 1/2 (c− > 1/2). The function ϕ has the following
asymptotic behavior:

ϕ(x) ∼
{

±A(±∞)
|x|1−2c±
1−2c± if c± < 1/2,

±A(±∞) ln |x| if c± = 1/2,
x → ±∞, (17)

where

A(y) = exp

{
−2

∫ y

0
ã(z) dz

}
, y ∈ R,

and
lim

x→±∞ ϕ(x) = ϕ(±∞) ∈ R if c± > 1/2. (18)

Condition (12) follows from (14), (15), (16), (17), (18) in cases A1–A5 (and in
case A6 if xn = 0, n � 0).

Set τn = inf{t � 0 : |Xn(t)| � 1}.
Lemma 2. Assume that

lim
ε→0+ sup

|x|�1
sup
n

Ex

∫ τn

0
1|Xn(t)|�ε dt = 0. (19)

Then (9) is satisfied, that is,

∀T > 0 lim
ε→0+ sup

n
E

∫ T

0
1|Xn(t)|�ε dt = 0.

Proof. Introduce the notations

S0
n,± := 0, T k

n,± := inf
{
t ≥ Sk−1

n,± : Xn(t) = ±1
}
,

Sk
n,± := inf

{
t ≥ T k

n,± : Xn(t) = ±ε
}
,

T̃ k
n,± := inf

{
t ≥ Sk

n,± : ∣∣Xn(t)
∣∣ = 1

}
,

βk
n,± :=

∫ T̃ k
n,±

Sk
n,±

1|Xn(t)|�ε dt, αk
n,± := Sk

n,± − T k
n,±, k � 1.

Then∫ T

0
1|Xn(t)|�ε dt

�
∫ τn

0
1|Xn(t)|�ε dt +

∑
k

(
β1

n,+ + · · · + βk
n,+

)
1

α1
n,+<T,...,αk

n,+<T,αk+1
n,+ �T

+
∑

k

(
β1

n,− + · · · + βk
n,−

)
1

α1
n,−<T,...,αk

n,−<T,αk+1
n,− �T

.

It follows from the strong Markov property that∑
k

E
(
β1

n,+ + · · · + βk
n,+

)
1

α1
n,+<T,...,αk

n,+<T,αk+1
n,+ �T
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=
∑

k

kEε

∫ τn

0
1|Xn(t)|�ε dt (1 − pn,+)kpn,+ = (pn,+)−1Eε

∫ τn

0
1|Xn(t)|�ε dt,

where pn,+ = P1(S
1
n,+ � T ).

Considering the last term similarly, we get the inequality

E
∫ T

0
1|Xn(t)|�ε dt �

(
1 + (pn,+)−1 + (pn,−)−1) sup

|x|�1
sup
n

Ex

∫ τn

0
1|Xn(t)|�ε dt.

It is not difficult to see that supn(pn,±)−1 < ∞. The lemma is proved.

Let us verify (19). It is known [6, Chap. 4.3] that

un,ε(x) := Ex

∫ τn

0
1|Xn(t)|�ε dt

is of the form

un,ε(x) =
∫ 1

−1
Gn(x, y)1|y|�ε mn(dy), (20)

where Green’s function Gn equals

Gn(x, y) =
{

(ϕn(x)−ϕn(−1))(ϕn(1)−ϕn(y))
ϕn(1)−ϕn(−1)

, x � y,

Gn(y, x), x � y,

with ϕn given by formula (16), and

mn(dx) = exp

{
2

∫ x

0
an(z) dz

}
dx.

The function un,ε(x) is a generalized solution (because an may be discontinuous) of
the equation

1/2 u′′
n,ε(x) + an(x)u′

n,ε(x) = −1|x|�ε(x), |x| � 1,

with boundary conditions un,ε(±1) = 0.
A direct verification of the condition limε→0+ sup|x|�1 supn un,ε(x) = 0 is possi-

ble but cumbersome. We prove the corresponding convergence using the comparison
theorem. We consider only the case where an satisfies the Lipschitz condition. The
general case follows by approximation.

It follows from the Itô–Tanaka formula that

d
∣∣Xn(t)

∣∣ = sign
(
Xn(t)

)
an

(
Xn(t)

)
dt + sign

(
Xn(t)

)
dW(t) + dln(t)

= sign
(
Xn(t)

)
an

(
Xn(t)

)
dt + dWn(t) + dln(t),

where Wn is a new Wiener process, and ln is the local time of Xn at zero.
Let −1/2 < c < min(c−, c+, 0). It follows from the arguments of [12] on com-

parison of reflecting SDEs that |Xn(t)| � Yn(t), t � 0, where Yn satisfies the fol-
lowing SDE with reflection at zero:

dYn(t) = ān

(
Yn(t)

)
dt + dWn(t) + dl̃n(t).
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Here Wn(t) = ∫ t

0 sign(Xn(s)) dW(s) is a Wiener process, l̃n is the local time of Yn

at 0, ān(x) = nā(nx), ā(x) = −(|a(x)| + |a(−x)|) − c
x
1|x|>1 + r(x), and r is any

nonpositive function such that ā satisfies Lipschitz condition. We will also assume
that

∫
R

|r(x)| dx �
∫
R

|b(x)| dx. The Lipschitz property is used only for application
of comparison theorem.

To prove (19), it suffices to verify that

lim
ε→0

sup
x∈[0,1]

sup
n

ūn,ε(x) := lim
ε→0

sup
x∈[0,1]

sup
n

Ex

∫ τ̄n

0
1Yn(s)∈[0,ε] ds = 0,

where τ̄n is the entry time of Yn into [1,∞).
It is known [6] that

ūn,ε(x) = 2
∫ 1

x

exp

{
−2

∫ y

1
ān(z) dz

} ∫ y

0
1[0,ε](z) exp

{
2

∫ y

1
ān(z) dz

}
dy

is a (generalized) solution of the equation

1/2 ū′′
n,ε(x) + ān(x)ū′

n,ε(x) = −1[0,ε], x ∈ [0, 1],
with boundary conditions u′

n,ε(0) = 0, un,ε(1) = 0. So

sup
x∈[0,1]

sup
n

ūn,ε(x)

= ūn,ε(0)

= 2
∫ 1

0
exp

{
−2

∫ y

1
ān(z) dz

} ∫ y

0
1[0,ε](z) exp

{
2

∫ y

1
ān(z) dz

}
dy

� K

∫ 1

0
exp

{∫ y

0
ȳ−2c dz

}∫ y

0
1[0,ε](z) y2c dy, (21)

where K is a constant that depends only on
∫
R

|b(x)| dx and c (and is independent
of n). By our choice, c ∈ (−1/2, 0), so the right-hand side of (21) tends to 0 as
ε → 0+ by the Lebesgue dominated convergence theorem.

The theorem is proved in cases A1–A5.
Consider case A6. Note that conditions (7)–(11) are satisfied for ξ (n) = Xn,

n � 1, and ξ (0) = X∞, where X∞ is given in the theorem. In particular, this implies
that the sequence of distributions of stochastic processes {Xn} in the space of contin-
uous functions is weakly relatively compact. Choosing an arbitrary convergent subse-
quence, without loss of generality, we may assume that {Xn} itself converges weakly
to a continuous process X. Let δ > 0, and let σn,δ = inf{t � 0 : Xn(t) = δ}, σ δ =
inf{t � 0 : X(t) = δ}. It follows from formulas for the scale function of the processes
{Xn} that limn→∞ P(Xn(σ

n,δ) = δ) = p, limn→∞ P(Xn(σ
n,δ) = −δ) = 1 − p,

where p is given by (6). Formulas (9) and (11) imply that the limit process exits from
the interval [−δ, δ] with probability 1.

Observe that, for almost all δ > 0, with respect to the Lebesgue measure, the dis-
tribution of Xn(σ

n,δ +·) converges weakly as n → ∞ to the distribution of X(δ +·).
Indeed, by the Skorokhod theorem on a single probability space (see [16]), without
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loss of generality, we may assume that the sequence {Xn} converges to X uniformly
on compact sets with probability 1. For simplicity, we will assume that the conver-
gence holds for all ω and that also σn,δ, σ δ < ∞ for all ω, n, δ > 0. So we show
convergence

Xn

(
σn,δ + ·) → X

(
σ δ + ·) (22)

if we prove that
σn,δ → σ δ, n → ∞. (23)

Convergence (23) may fail only if σ δ is a point of a local maximum of X. It follows
from the definition that σ δ is a point of a strict local maximum of X from the left.
The set of points of local maximums that are strict maximums from the left is at most
countable. This yields that, for almost all ω and almost all δ > 0 with respect to the
Lebesgue measure, we have convergence (23) and hence (22).

On the other hand, the distribution of Xn(σ
n,δ+ ·) converges weakly as n → ∞ to

the distribution of the process 1Ω−B−
c−(−δ, ·) + 1Ω+B+

c+(δ, ·), where P(Ω−) = 1 −
p, P (Ω+) = p, and the σ -algebra {∅,Ω−,Ω+,Ω} is independent of σ(B±

c±(±δ, t),

t � 0).
Recall that assumptions of the theorem yield

P
(∃t � 0 : B±

c±(±δ, t) = 0
) = 0.

It follows from (9) that

P

(∫ ∞

0
1X(s)=0 ds = 0

)
= 1.

Thus, we have the almost sure convergence in C([0,∞))

X
(
σ δ + ·) → X(·), δ → 0.

The processes 1Ω−B−
c−(−δ, ·) + 1Ω+B+

c+(δ, ·) converge in distribution to

1Ω−B−
c−(0, ·) + 1Ω+B+

c+(0, ·),
where the σ -algebras {∅,Ω−,Ω+,Ω} and σ(B±

c±(0, t), t � 0) are independent.
This completes the proof of Theorem 1.
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