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Abstract This paper is devoted to investigation of supremum of averaged deviations | X (¢) —
f@® — fT(X (u) — f(w))du(u)/u(T)| of a stochastic process from Orlicz space of random
variables using the method of majorizing measures. An estimate of distribution of supremum
of deviations | X () — f(#)| is derived. A special case of the L, space is considered. As an
example, the obtained results are applied to stochastic processes from the L, space with known
covariance functions.
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1 Introduction

This paper is devoted to investigation of the supremum of averaged deviations of
stochastic processes from Orlicz spaces of random variables using the method of
majorizing measures. In particular, we estimate functionals of the following type:

sup X)) - f@) - ﬁ T(X(u) — f(w)) dp(u)

where (T, B, 1) is a measurable space with finite measure u(T) < oo, and f(u) is
some function. In particular, using the obtained with probability one estimates for
such a functional, we are able to estimate the distribution of sup;.r [X () — f ().
A special attention is devoted to the Orlicz spaces such as the L, spaces.
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The method of majorizing measures is used in the theory of Gaussian stochastic
processes to determine conditions of boundedness and sample path continuity with
probability one of these processes. Application of the method gives a possibility to
obtain estimates for the distributions of stochastic processes. Papers by Fernique [3, 4]
are among the first in this direction. In some cases, the method of majorizing mea-
sures turns out to be more effective than the entropy method exploited by Dudley [2],
Fernique [4], Nanopoulos and Nobelis [14], and Kéno [5]. For example, Talagrand
[15] proposed necessary and sufficient conditions in terms of majorizing measures
for the sample path continuity with probability one of Gaussian stochastic processes.
Such conditions in entropy terms were found by Fernique [4] for stationary Gaussian
processes only. More details on the method of majorizing measures can be found in
papers by Talagrand [15, 16], Ledoux and Talagrand [13], and Ledoux [12].

Particular cases of problems considered in this paper were investigated by Koza-
chenko and Moklyachuk [7], Kozachenko and Ryazantseva [8], Kozachenko, Vasy-
lyk, and Yamnenko [10], Kozachenko and Sergiienko [9], Yamnenko [18]. Kozachen-
ko and Ryazantseva [8] obtained conditions of boundedness and sample path conti-
nuity with probability one of stochastic processes from the Orlicz space of random
variables generated by exponential Orlicz functions. Kozachenko, Vasylyk, and Yam-
nenko [10] estimated the probability that the supremum of a stochastic process from
Orlicz spaces of exponential type exceeds some function. Kozachenko and Mokly-
achuk [7] obtained conditions of boundedness and estimates of the distribution of
the supremum of stochastic processes from the Orlicz space of random variables.
Kozachenko and Sergiienko [9] constructed tests for a hypothesis concerning the
form of the covariance function of a Gaussian stochastic process. Yamnenko [18]
obtained an estimate for distributions of norms of deviations of a stochastic process
from the Orlicz space of exponential type from a given function in L, (T).

As a simple example, we apply the obtained results to a stochastic process with
the same covariance function as that of the Ornstein—Uhlenbeck process but with tra-
jectories from the Lj space. In [17], a similar problem is considered for a generalized
Ornstein—Uhlenbeck process from the Orlicz space of exponential type Sub, (£2).

2 Orlicz spaces. Basic definitions

Definition 1 (Orlicz N-function [1]). A continuous even convex function {U (x), x €
R} is said to be an Orlicz N-function if it is strictly increasing for x > 0, U(0) = 0,
and

U U
) —-0 asx— 0 and x)
X X

— 00 asx — 00.
Any Orlicz N-function U has the following properties [11]:

a) U(ex) <aU(x) forany 0 <o < 1;

b) Ux)+U(y) = U(x|+1yD;

c¢) the function U (x)/x increases for x > 0.
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Example 1. The following functions are N-functions:
e U)=alx|?, >0, B>1;
* U(x) = expflx]} — Ix[ = L;
e Ux) =expla|x|’} =1, a >0, 8> I;

(ea/2)¥%x2, |x| < (2/a)'/e,
exp{|x|*}, x| > Q/a)/*, 0<a<1.

Definition 2 (Class A, [11]). An N-function U (x) belongs to the class A, if there
exist a constant xo > 0 and an increasing function K (x) > 0, x > 0, such that

. U(x):{

U@x) < K@U(x) forz=>1, x = xp.

Example 2. The following functions are from the class A:

e Ux) = |x|%a, a > 1;

s U) =xI"(In|x|[+ 1), « > 1;

* Ux) =+ [xD(IIn(1 + |x]) + 1) — |x].
The function U (x) = exp{|x|} — |x| — 1 increases faster than any power function, and
therefore it does not belong to the class A,.
Definition 3 (Class E [1, 6]). An N-function U (x) belongs to the class E if there
exist constants zg > 0, B > 0, and D > 0 such that, for all x > zp and y > zo,

Ux)U(y) = BU(Dxy).

Example3. (i) Let U(x) = c¢|x|”,c > 0, p > 1. Then U belongs to the class E
with constants B = ¢, z9o = 0, and D = 1.

(ii) The function U (x) = |x|ﬂ/(log(c + |x]))* belongs to the class E if ¢ is a
number large enough such that the function U (x) be convex. In this case, zo =
max {0, exp{2~1/¢} — ¢}.

We will further also consider functions that belong to the intersection of the
classes A and E.

Example 4. Let U(x) = |x|9,q > 1.ThenU € A, N E.

Example 5. There exist functions from the class E that do not belong to the class
Aj, for example, U (x) = exp{|x|*} — 1, ¢ > 1, and U (x) = exp{¢(x)} — 1, where
¢ (x) is an N-function.

Let (T, B, n) be a measurable space with finite measure w(T).

Definition 4 (Orlicz space). The space L’;, (T) of measurable functions on (T, B, 1)
such that, for every f € L’;](']I‘), there exists a constant r ¢ such that

/ U(&) du(t) < o0
T ry

is called the Orlicz space.
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The space L/’ v (T) is a Banach space with the Luxembourg norm

IIfIIg,M:inf{r>0:/T (f()>du(t)<l} M

We will also consider the Orlicz space L’ljx” (T x T) of measurable functions on
(Tx T, BxB, ux ), where B x B is the tensor-product sigma-algebra on the product
space, and o x u is the product measure on the measurable space (T x T, B x B),
that is, for every f € L}, (T x T), there exists a constant r s such that

/ f (f(t )d(moxu(s)) < o0

Definition 5 (Young—Fenchel transform). Let {U (x), x € R} be an Orlicz N-function.
The function {U*(x), x € R} for which

U*(x) = sup(xy — U(y))
yeR

is called the Young—Fenchel transform of the function U.

Remark 1. If x > 0, then

U*(x) = su%(xy — U(y)), U*(—x) =U*(x).
y>

Theorem 1 (Fenchel-Moreau [1]). Suppose that U is an N-function. Then
U"H* =

Let us give two examples of convex conjugate functions.

Example 6. (i) Suppose that p > 1 and ¢ is the conjugate exponent of p: 1/p +
1/g =1.Let U(x) = |x|?/p. Then U*(x) = |x?|/q.

(i) Assume that U(x) = ¢®! — |x| — 1, x € R. Then
U*(x) = (1+Ix)(Ind + |x) + 1) — x|, x€eR.

Let U be an N-function, and f be a function from the space L% v (T). Consider

st:0) = [ U(r0) du) < .

In the space L‘{] (T), we can introduce a different norm equivalent to the Luxembourg
norm. This is the Orlicz norm

@

Iy, = sup /T f@du@)|.

v:s(v;U*)<I

where U* is the Young—Fenchel transform of the function U.
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Lemma 1 (Holder inequality [11]). Let {f(¢),t € T} be a function from the space
L’Z,(']T) endowed with the Luxembourg norm (1), and let {¢(t),t € T} be a function
from the space LéLU*) (T) endowed with the Orlicz norm (2). Then

/T | Oe®]du® < 17T, 1@l .- 3)

Lemma 2 (Krasnoselskii and Rutitskii [11]). Let U (x) be an N-function, let U*(x)
be the Young—Fenchel transform of U (x), and let x 4(t) be the indicator function of a
set A C B. Then

_ 1
xall{yey 0 = m(AU ”(m). )

Let (£2, F, P) be a standard probability space.

Definition 6. The space LE(.Q) = Ly (£2) of random variables & = {£(w), w € 2}
is called an Orlicz space of random variables, that is, the Orlicz space Ly (£2) is the
family of random variables & for which that there exists a constant r¢ > 0 such that

EU(E> < 0Q.
Te

The Luxembourg norm in this space is denoted by || & ||y, that is,

lEllu = inf{r > 0: EU(%)f 1}.

Example 7. Suppose that U(x) = [x|”,x € R, p > 1. Then Ly (£2) is the space
L,($2), and the Luxembourg norm |[&||y coincides with the norm [£&|, =
(Elg1")/P.

The following lemma follows from the Chebyshev inequality.

Lemma 3 (Buldygin and Kozachenko [1]). Let & be a random variable from Ly (S2).

Then, for all x > 0,
X -1
P{|€|>x}§(U( )) . 5)
&Nl

Definition 7. Let {X(¢),7 € T} be a random process. The process X belongs to the
Orlicz space Ly (£2) if all random variables X (¢), t € T, belong to the space Ly (£2)
and sup,x [|X (1)]|y < oo,

Example 8. Suppose that there exists a nonnegative function c(¢), ¢t € T, such that
P{IX(®)| < c(®)} = 1,t € T. Then X is an Ly (§£2)-process for any Orlicz space
Ly (£2).

3 Distribution of deviations of stochastic processes from Orlicz spaces

Let (T, p) be a compact separable metric space equipped with the metric p, and let B
be the Borel o -algebra on (T, p).

Consider a separable stochastic process X = {X(¢), ¢t € T} from the Orlicz space
Ly (82), thatis, X(t) € Ly (£2),t € T, is continuous in the norm || - ||y.
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Assumption 1. Consider such a function ¢ = {o(h), h > 0}, ¢ € T, such that
co(h)=0,
¢ o(h) increases in h > 0,
e o(h) > 0ash — 0,
e o (h) is continuous, and

* Sup,( gy<p 1X (@) = X($) v < o(h).

Note that at least one such function exists, for example,

o(h)y= sup [X(@®)— X,
p(t.5)<h

Denote by oD (h) the generalized inverse to o (h), that is, o) =
sup{s: o(s) < h}. Put
d(u,v) = | X@w) - X@)|,

and
dy(u,v) = | X@w) — X@) — f@)+ fO)|,

and let S be a set from 3 such that

(1 x w{,v) € S xS: pu,v) #0} > 0. (6)

Consider a sequence €x(t) > 0 such that €x(t) > €xy1(?), €x(t) — 0 as k — oo,
and €1 (1) = supseg p(7,5). Put Cr(u) = {s: p(t,s) < u}, Crkx = Cr(€x (1)), pi(t) =
W(CriNS).

Assumption 2. Assume that, for a continuous function f = {f(¢),t € T}, there
exists a continuous increasing function §(y) > 0, y > 0, such that §(y) — 0 as
y — 0 and the following condition is satisfied:

|f) — f)] <8(|Xw) — XW|,) <d,v).

Throughout the paper, we will assume that, for all B € B,
[ 1xw = £l <.
B

Lemma 4. Suppose that X = {X (¢t),t € T} is a separable stochastic process from
the Orlicz space Ly (§2) that satisfies Assumption 1. Let f be a function satisfying
Assumption 2, let £(y),y > 0, be an arbitrary continuous increasing function such
that {(y) — Oasy — 0, and let

Xw) —X@) = fu) + f)
¢(dy(u, v))

e LI"(T x T).
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Then, for any S € B satisfying (6), we have the following inequality with proba-
bility one:

1
X(0) = f() = — | (X@) — f(w)) du(u)

sup
res 1(S) Js
X(u)—X()— f)+ f () |55 — <1>< 1 )
2 U —_ .
= H C(dy(u, v)) U,Mxﬂfgg,;;( 7(a®)) PG

(N

Proof. Let V be the set of separability of the process X, and let ¢ be an arbitrary
point from S N V. Put
xc,,ns (@)
i (1)
where x4 (u) is the indicator function of A. Then

T(u) =

X(0) — f(1) — fs (X () — £0)) () daw)

v
< /S [(X@) = X@) = (F@) — @)y 7100) dai)
< /S | X @ = X, 76w du) + /S | (@) = f )|z () du(u)
<o (a®) +8(o(@)) — 0 ®)
as [ — oo. If follows from Lemma 3 and (8) that
/S (X @) = f@)T@) du) — X (@) — f(t)
in probability as / — oco. Therefore, there exists a sequence /,, such that
fs (X @) = £@)7, @) du@) — X (@) — £(1)

with probability one as [, — oo. It is easy to see that

X)) — f) - /S(X(u) — f)(u) dp(u)

= ‘X(t) — [ - /S(X(u) — f@)w, (u) dpe(u)

I,—1 ‘

+ Z (fS(X(M) — @) T1 () du(u) — fS(X(u) - f(u))fz(u)du(u))
=1

=<

X(@) - f@) - /S(X(M) — f@)z, () du(u)

Ip—1

2
=1

/S (X () = £0)) 21 ) dpau) — /S (X ) — £u)) () dpen)

®
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It follows from (9) that the following inequality holds with probability one:

1
‘X(I) f@) - 5 J (X @) — f (@) du(u)

Me

/S(X(u) — @)1 () du(u) — /S(X(u) — f@) ) dp(u)

~

1

||Mg

X(u) X () = f@) + f () u+1) 7 ) du) du(v)

- Xu)— X)) — fw)+ f(v)
~ Jsxs ¢(dyf(u, v))
X <Z T 1 ()T () (dy (u, v))) d(u(u) x w(v)). (10

=1

From Lemma 1 and (10) we have the inequality

1
’X(t) —f) - —= (X(M) — fw)) du(u)

11(S)
Xw)—X@) — f)+ ¥ | & o
d s
< H EICRD) b ;WH(M)U(UK( ru ”)) i
(11)

Also, we have

T (@@ (dw, v)) < 1 7 (dp(u, 1) +dy(u, 1))
< 1 n @i (o(e®) + o(e+1(1)))
< g1 T (20 (e(1))). (12)

From (11) and (12) we have that with probability one the following inequality
holds:

1
‘X(t) - fO-—= (X(M) — f@)) du(u)

n(s)
- H X))~ X@) = fo) + f) |7
- C(df(u’ v)) U,iux it

x Y ¢ o (@) [rn@n®| 5 (13)

=1
It follows from Lemma 2 that

Iz @ 3 ey = x5 X105 ) 5oy

i () 1 (1)

= U(—l)( o ) < U(—‘)<71 ) (14)
w1 (1))~ i ()
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Sincet € SNV and S NV is a countable set, (14) holds with probability one for
allt € SN V. The process X is separable, and therefore

1
X(t)— f(t) — — (X(u) — fw)dp(u)

es u(S)
1
= sup | X(1) — f(1) — —= (X(u)—f(u))d,u(u)
tesSnNv wn(S)
with probability one. O

Remark 2. If the right side of (7) is finite, then the measure p is called a majorizing
measure on S for the process X.

Corollary 1. Let the assumptions of Lemma 4 be satisfied. Put

a0 = £ 20 (am)) = £ (20 (supp(t.9)) )

seS

and

v () = pu(Cr (e (TP wy/2)) N ).

Then, for any 0 < p < 1, we have the inequality

1
X)) = ft) — —= (X(u) — f ) du(u)

?161? ) <nsCp (15)
with probability one, where
_ ”X(u)—X(v)—f(u)Jrf(v) 5 16)
C(dfu, v)) Ui
and
c pei(n) U 7
p=s s U ) a

Proof. Let the sequence €;(t), k > 1, be defined as

&) = mpT).
Then
£ (20 (€(n)) = c1()p' !
and
w1 @) = p(Cier1(®) N S) = v(a1@)p').

Therefore, from (7) and the following inequality we obtain the assertion of the corol-
lary:
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WK

;(2o(ez<r>))U“”(4> =Y awr U (e w) )

2
=1 Mig1 (0 =1
a®p
< Z# Hop U(*l)(v (u)*2)du
= (1—p) 141 !
I>1 p p fl(f)PJr

&p
< / U (v (u)™?) du. O
0

Remark 3. We will further find additional conditions on 1 ¢ and C, from (16) and (17)
such that the constant C), is finite and the random variable 7 ; is finite with probability
one. In this case, we get that u is a majorizing measure on S for X. In Theorems 3
and 4, these conditions will be formulated for processes from the class A, and space
L,(£2).

Theorem 2. Let assumptions of Lemma 4 be satisfied, and let the following condi-
tions hold:

Q1) D)
a) sup/ U(_l)((vt(u)) )du < 00,
0

teS

b) there exists a constant r > 0 such that

X (w) — X))+ |fw) — f(v)]
/S/;EU< £ Gt v)r ) d(M(u) X /L(U)) < o00. (18)

Then, for all x > 0, we have the inequality

P{sup|X() — ()] > x|
tes

o dye(u) -
§O<12f<10<12f<1|:(U (‘”/ H[S(X(”)_f ©)%s) U))

el - G220 (19)
p

where ny and C), are defined in (16) and (17), respectively.

Proof. Using Fubini’s theorem and (18), we obtain that with probability one

X@w) = X(@) — f) + f(v)
v d
/s/s < c(dy(u, v)r ) (n@) x p(v))

1X () — X)| + | f W) — )]
: /stU ( ¢(dy(u, v)r > d((u) x u(v)) < oo,

that is, the process
X(w)— X)) — fu)+ fv)
¢(dy(u,v))
with probability one belongs to the space L};*"(S x ). Therefore, with probability
one

SxS§

_ HX(M) —X@W) = f(u)+ f(v)
¢(dy(u,v))

U,puxp
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is a finite random variable. It follows from (15) that
sup |[X (1) — f(1)] < ‘/ (X () — f@)du@)| +nsCp (20)
teS (S)

with probability one. Since X (1) € Ly($2) for u € S, we have X(u) — f(u) €
Ly(£2) foru € S and

1
—5 (X = @) duw € Ly

Moreover,

X(u) — fw) du(u)

< —5 [ 1x0 = @], ducw

5 sup |X @) — fa), < oo

|7

It follows from Lemma 3 that, for any y > 0,

du() } Y
(X@) ~ f@) <1/U
W WO sy |7 =Y (nﬁfs(m)—

f(u))du(u)nU) '
1)

It follows from (20) that, forany 0 < « < 1 and x > 0,

P{sup |X(1) - f@)] > x}
tesS

<p{

The statement of the theorem follows from (21) and (22). O

(X(u) — f@)) du(u)

> ax} +P{npr > (1 —a)x}. 22)

4 Distribution of deviations of stochastic processes from classes A; and A, N E

Definition 8. A stochastic process X = {X(¢),t € T} belongs to the class A, if
X € Ly(82), where U is an Orlicz function from the class A».

Theorem 3. Suppose that X = {X(t),t € T} is a separable stochastic process from
the class Ay that satisfies Assumption 1. Let f be a function satisfying Assumption 2,
where U is the Orlicz N-function from the class Ay, let £ (y), y > 0, be an arbitrary
continuous increasing function such that {(y) — 0 asy — 0, and let

Xw)— X)) — fw)+ f(v)
¢(dyf(u, v))

€ LI"(T x T).

Suppose that the following conditions are satisfied:
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a) there exists a constant r > 0 such that

// ( ACHCE ””) d(p () x p(v)) < oo, (23)

where K and xo are introduced in Definition 2 of the class Ay and y(u) =

u/&(u);
10} )
b) sup/ U (v w) ") du < o0, (24)
0

teS

where 1(t) and v (u) are defined in Corollary 1.

Then, for any 0 < p < 1, the following inequality holds with probability one:

du(u)
n(S)

) gi()
ﬁ”?/ U () ) a (25)
- te

sup
teS

X(t)—f(t)—fS(X(u)—f(u))

where
SxS§

_ ” X@W =X = f0) + [ ()
£(dy(u,v)

is a finite with probability one random variable.

U,puxp

Proof. It is easy to see that the assumptions of Lemma 4 are satisfied. Consider the
function 1 7. In order to show that it is finite with probability one, it suffices to prove
that the random function

(X(u) = X(v) = fu)+ f(v)
¢(dy(u,v))

belongs to the space L’Z,X“ (S x S) with probability one. For this, it suffices to show
that there exists a number » > 0 such that

//U(X(u) —X() = fw)+ fv)
r¢(dy(u, v))

)d(u(u) x (v)) < o0

with probability one. It follows from Fubini’s theorem that it suffices to prove that

(X)) — X)) — fu)+ f(v)
/S/SEU< D) )d(u(u) X u(v)) < 00. (26)

Since U € Aj, using Assumption 2, we have

<(X(u) —X() - f@w+ f(v)))
r&(dy(u, v))

=Exxw- XO= [ 1 Xy @)
f u, U '7.

EU

>1
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y U<X(u) —X() — f(u) + f(v)>K<)/(df(us v)))
dr(u,v) r

y(dys(u,v))
+EXxw-xw-rw+rwl _ Xyd e Ul xo——
df(u,v) =X0 f>1 r

X - X _
- Xy(d_m,,l,))qEU( () 2;)(“ {:)(u)+ f(v))

< EU(X(M) - X)) — f)+ f(v))K<V(df(u, v)))
ds(u,v) r

y(dy(u,v))
+ U(xo)K<f>

X - X _
+XM<1EU< @) 2;)(“ {:)(M)Jrf(v))

< <K<y(df(u’ v)))+xy<df(u,u)> I)EU<X(u)—X(v)—f(u)+f(v))
r rere df(u, v)

y(dy(u,v))
+ U(xo)K<f)

d 9
< K(M)(l + UG0) + Xpuagun - =

Therefore, for all » such that inequality (23) holds, we have the relation

Xw) = X@) = fu) + f)
E U d
/S[S ( oy, ) ) (n@) x p(v))

Sf/xy<df<u,u>><ld(u(u) X pn(v))
sJs =

7

o) [ [ K(M) A x p@) <00 (@8)

Inequality (26) and the statement of Theorem 3 follows from the last relation. O

Corollary 2. Let the assumptions of Theorem 3 be satisfied. Let r be a number such
that condition (23) holds. Then, for any x > r, we have the inequality

P{ns > x} < Z(x),

where

dyf(u,
Z(x) = fS/S[xyuf«u,v»fl +(1+ UO@V((W)] d(n@) x p(v).

x

Proof. It follows from (25) and Chebyshev’s inequality that

P(i; > x)

= X = X@) = f@) + f@)
_P{/S/SU< x¢(ds(u, v)) )d(M(u) x () > 1}
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X)) —X() — f) + f(v))
E U d
: /s/s ( xt(dy(u, v)) (@) x 1(v))

< Z(x). (29)
O

Corollary 3. Let the assumptions of Theorem 3 be satisfied. Let U(x) € A N E and
zo = 0 in Definition 3. Then, for any x > 0, we have the inequality

p - Z(r)B
{ny>x} < W7

where B and D are the constants from Definition 3, and r is a constant such that
condition (23) holds, Z(r) is defined in Corollary 2, and

y(dy(u, v)
r

Z(r) < p?(8) + (1 + U(x0)) ﬁ /S K( )d(u(u) x w() = Zi(r).

Proof. It follows from (28), the definition of class E, and Chebyshev’s inequality
that

P{ns > x}

_ X)) —X©W) — fu)+ fv)

b [ [u(ROTEO 0 0 ) )

dy(u,v)
— E//U(X(u)_x(v)_f(“)+f(v))/(df(u,v)))
Ulpp) Jss dy(u,v) X
x U (Di) d(pe(u) x ()
B

= Ut/(Dr)
fo/U<X(“)_X(U)—f(u)+f(v)y(df(u,v))
SIS dyf(u,v) -

) d(p() x u(v)

Z(r)B

_, 30
= UG/ (D) 0

O

Corollary 4. Let the assumptions of Theorem 3 be satisfied. Then
a) for all x > r, we have the inequality

P{sup|X(t) —f0)| > x}
teS

o, (70 5 )e(757))
< inf inf (1/U +Z )
O<a<10<p<l1 || fS(X(u)— f(u)) dM(”)/M(S)”U Cl’

(€29

where Z(x) is determined in Corollary 2, C), is determined in Theorem 2, and r is a
constant such that condition (23) holds;
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b)ifU € Ay N E with zg = 0, then, for all x > 0, we have the inequality

P{sup|X(t) —f0] > x}
teS

< inf inf (1/U( e )
O<a<10<p<l [I fS(X(u) — f@)du@)/u(S Il

+ zmwu(M)), (32)
DGC

where B and D are the constants determined in Definition 3, r is a constant such that
condition (23) holds true and Z(x) is determined in Corollary 2.

Proof. Statement a) follows from Theorem 2 and Corollary 2. Statement b) follows
from Theorem 2 and Corollary 3. O

Theorem 4. Suppose that X = {X (t),t € T} is a separable stochastic process from
the space Ly(£2), g > 1, satisfying Assumption 1. Let f € Lg(S) be a function sat-
isfying Assumption 2, let {(y), y > 0, be an arbitrary continuous increasing function
such that £ (y) — 0 as 'y — 0, and let the following conditions hold:

2= [ | iy ) a(uew x 1) < o,

Q1) vy
supf (v @) du < oo,
0

teS

where y(y) = y/¢(y), ¢1(t) and v;(u) are defined in Corollary 1. Then, for any
0 < p < 1andx > 0, we have the inequality

1

P[SUP|X(I) - f(f)| > x} < x—q(FqT + (Dq A )ﬁ)qﬂ 33)

teS

where

d q
Q=E(/Qﬁ0—ﬂw)igv,

{1(t)1? ) 2/q
D, , =su / v (u) du. (34)
pa teg P(l -p) '

Proof. Consider inequality (31). In this case,

dp(u) 1
Hﬁawrﬁwnﬂw =",
B=D=1,x=0,K()=y%,r >0,
p&1(®) 2
Cr=sp oy [ )

and Z(r)r¢ — A, asr — 0, where
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Z(r)yrd =rd / / Xy(df(u,v))<1 d(u(u) X ,u(v))
sJIS T =

+/st(y(df(u,v)))q d(pe() x p(v)).

It follows from (31) that, forany 0 < p < 1,

q
P[sup|X(t)—f(t)]>x]§ inf ( Iy n Cpr4y )

fes O<a<i\a?x? (1 —a)ix4

Inequality (33) follows from the last inequality after taking the infimum with respect
to a. O

5 Example of existence of majorizing measure for L;($2)-process

In this section, we show that the Lebesgue measure is majorizing on S for some
process X from the space L,(£2).
Let S =T = [0, T]. Assume that p(u, v) = dg(u, v) = |u — v| and let u be the
Lebesgue measure, that is, u(S) = T'. Then
Ci(u) = {s: [t —s| fu} =t —u,t+ul
and
C; NS =min{T,t 4+ u} — max{0, t — u}.

The function ¢(u) = u®*, o > 0, satisfies the condition of Lemma 4; therefore,
y () = u'~* and the expressions in Theorem 4 take the following form:

1 1
v (1) = min {T, t+oCD (EM]/“)} — max {0, t—oh (Eul/"‘>} , (3%

() = {(20 (sup It — s|>) = (20 (max{r, T —1}))“,

seS

and

T T (e
quj(; /0 (df(u,v)) M dy dv.

Let g = 2, that is, X (¢) is a stochastic process from L;(£2). Assume that X is
a centered process with covariance function Ry (u, v) = EX(u)X (v). Then using
Fubini’s theorem, we obtain the following representation of I';, from Theorem 4:

E(/()T(X(u)—f(u))%>

1 T T
= _2f f E(Xu) — f()(X() — f(v))dvdu
T=Jo Jo

1 T T 1 T 2
ﬁ/(; /0 RX(u,v)dudv+ﬁ</(; f(v)dv).

Consider the following stochastic process.

2
Fl]

Definition 9. A stochastic process X = {X(¢),r € T} is called the generalized
Ornstein—Uhlenbeck process from the space L,(§2) if X is an L, (§2)-process with
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the covariance function
Rx(t,s) =e "I >0,
Then from Theorem 4 we can state conditions for a majorizing measure on [0, T']

for the process X.

Theorem 5. Let X = {X(),t € [0,T]} be a centered separable generalized
Ornstein—Uhlenbeck stochastic process from the space Ly(S2) satisfying Assump-
tion 1, and let a function f satisfy Assumption 2 with the function 5(t), t > 0, such
that

T T
/ f (8(@ — v)P172))* 7 dudv < oo, (36)
0 0

where o € (2/B2,1/B1+1) with B1, B2 € (0, 1) such that2/B, < 1/B1+ 1. Then the
Lebesgue measure is majorizing on [0, T for the process X, and, forany 0 < p < 1
and x > 0, we have the inequality

1 3
P{ sup |X(0) = £(1)| >x} §x72(1“23 + inf (Dl%zAz)%) T
te[0,T] ae(0,1) ’
where
2
2Tt +e T —1) 1 r
FZ == T2T2 + ﬁ [) f(v) dU )
rorr 212y 1
Ay = / / (2(r|u - v|)ﬂl + (8((21(u — v))ﬁ'/ )) ) % du dv,
o Jo
1 <2r/(r/min{t, T — t})h2/2-1
Dpr=——— sup
P(L = p) tefo.1] 1 =2/a
p23¢/2 (v max{t, T — t)*P2/? — (¢ min{r, T — t})“ﬂZ/z)
+ 9
T
where T/ = 123/P2,
Proof. Let us apply the inequality
l—exp{—x}<xf, 0<p<1, x>0. (38)

It is easy to see that, for all 0 < x < 1, we have 1 —exp{—x} < x < xP. Also,
1 —exp{—x} <1< xP forall x > 1.
Then, using (38), we have that

dt,s) = |X@0) = X®) ,, = BX0) - X())*)"

= (EX(1)? +EX(s)® — 2Rx(t,5))"* = (2 — 2exp {—1lt — 51})
S 21/2(7:'[ _ S|)ﬁ/2,

1/2

that is, the function o (h) = 2'/2(zh)#/? > SUpy;_g1< d(t,5), h > 0, satisfies As-
sumption 1. Then
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o) =

s h>o. (39)

Also, it is easy to see that, for the centered process X,

172 _ 12

dp(t,s) = (d*(t,s) + (f(©) — f(s)) )7 < (2l —s|)’31 +82(d(t,)))

for any 81 € (0, 1] and

//Rx(s Ndsdr = /f —Tl- X)dsdt—i—// TG0 ds dy

—tT
:_/ (1= e — 7T 4 1)ar = 2Tr+e " —1).
0

T 72
(40)
From (34) it follows that
et 12412y 1—
Ay =/ / 2(zlr = s) + (6(2rw - v))"*)*) ™ dudv < o0
0 0
if 1(1 —a) +1 > 0, thatis, if« < 1/81 + 1. Then
T T
/ / ((8(u - v))ﬁ'/z)z_h du dv < co.
0 Jo
Applying (39) to (35) for some B, € (0, 1], we have that
2 2
u‘xﬁz uaﬁz
v(u) = mln{T t+ —— R } —max{O,t— W}
& s
Put v/ = t23/P2 1tis easy to see that v, (u) = 2,
2 2
that is, if u > (t/ max{r, T — t})*P2/2; v, (u - (t - ”i/z) = ”;ZB,E if

u < (¢'min{t, T — t)H*P>/2; and v;(u) = max{t, T — 1} + “ ﬂz

theP2/2 <y < (¢/ max{t, T — t})*P2/2.
Consider

if (t/min{t, T —

p23/2(x max{t, T—1)*2/2 4
D,, = /
! p)

p P —
1€[0,T] P(l - v (u)

For o > 2/, we have

/p23"‘/2(r max{r,T —1})*2/2 du

0 v (u)

(4t min{r, T —1})*/?
= / 27/ u=% @) qy
0
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(z/ max{r,T—t})2P2/2 du
T / ;
(¢ min{r,7T—1)*22 max{t, T — 1} + w
p232 (x max{t, T—1)*2/?
+/ — du
(¢/ max{t,T—t})*P2/2 T
27’ -
< —(t’min{t, T — t})aﬁz/2 !
1 —=2/(aB2)

(v max{r, T —t})*2/2 — (" min{z, T — 1})*P2/2
max{t, T —t} 4+ min{t, T — t}
N p23/2 (v max{t, T — t)*?/? — (¢ max{t, T — 1})*P2/?

T
_2¢(¢' min{t, T — 1})*F2/2~!
- 1 -2/a
p23a/2 (tmax{t, T — [})aﬁ2/2 — (¢'min{t, T — t})aﬂz/Z
+ T . 41)
O
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