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Abstract The notion of the transportation distance on the set of the Lévy measures on ℝ is
introduced. A Lévy-type process with a given symbol (state dependent analogue of the char-
acteristic triplet) is proved to be well defined as a strong solution to a stochastic differential
equation (SDE) under the assumption of Lipschitz continuity of the Lévy kernel in the symbol
w.r.t. the state space variable in the transportation distance. As examples, we construct Gamma-
type process and u�-stable like process as strong solutions to SDEs.
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1 Introduction

Recently a wide variety of models were proposed in physics, chemistry, biology and
econometrics, where the stochastic fluctuations are distributed according to the Lévy
law, instead of the more traditional Gaussian one (see for example [1] and the list of
references therein). If the parameters in such models are state dependent, then one
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should deal with a Lévy-type process. A typical example here is model with so-called
Lévy flights, where the correspondent Lévy measure is alpha-stable

𝛱(𝑑𝑢) = 𝜆𝑑𝑢
|𝑢|u�+1 .

The particular case corresponds to the model with porous environment [2], and in this
case the parameter 𝛼 = 𝛼(𝑥) is state dependent. By definition, the Lévy-type process
is such a Markov process that its generator on the functions of the class 𝒞2

∞ = {𝑓 ∶
𝑓 ∈ 𝐶2, 𝑓 (𝑥) → 0, 𝑓 ′(𝑥) → 0, as |𝑥| → ∞} takes the form

𝐴𝑓 (𝑥) = 𝑎(𝑥)𝑓 ′(𝑥) + 1
2

𝜎2(𝑥)𝑓 ″(𝑥)

+ ∫
ℝ

(𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 ′(𝑥)𝑦𝟏|u�|⩽1)𝛱(𝑥, 𝑑𝑦)

+ ∫
ℝ

(𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥))𝟏|u�|>1𝛱(𝑥, 𝑑𝑦), 𝑥 ∈ ℝ. (1)

Here functions 𝑎 ∶ ℝ → ℝ, 𝜎2 ∶ ℝ → [0; ∞) and a Lévy kernel 𝛱(𝑥, 𝑑𝑦) (a measur-
able function w.r.t. 𝑥 and a Lévy measure for any 𝑥 ∈ ℝ) are the state dependent
analogue of the characteristic triplet of a Lévy process. Lévy-type processes also
may appear as limiting distributions in theorems of Skorokhod’s invariance principle-
type with the convergence of step-wise processes constructed via Markov chains (see
[8, 7]). One of the most natural ways to construct and characterise such processes is
to use an SDE approach, e.g. to define the required process as a (strong) solution to
a proper SDE. Naturally, one could expect that the uniqueness and existence of so-
lution to such SDE remain valid under Lipschitz continuity type assumptions on the
members of the (state-dependent) characteristic triplet, which leads us to the question:
what should be the proper form for the Lipschitz continuity condition for the Lévy ker-
nel? To answer this question we consider a transportation distance on the set of Lévy
measures on ℝ.

The main idea of the transportation distance construction is to present any Lévy
measure 𝛱 uniquely as a transformation of a fixed infinite Lévy measure 𝛱0 by means
of a function 𝑐 from some prescribed family of functions, and then compare the corre-
spondent functions for two measures. Below we show that for a given 𝛱 the respective
function 𝑐 is unique in the properly chosen class and the transportation distance is a
metrics on the set of Lévy measures on ℝ. The main gain of this method is that we can
obtain any Poisson point measure, with a Lévy kernel as a Lévy measure by means
of such function 𝑐, from the measure 𝜈0 with the Lévy measure 𝛱0. This technique
allows one to write a Lévy-type process with a given state dependent characteristic
triplet as a solution to an SDE with 𝜈0 as a Poisson random noise. The solvability of
such SDEs and the solution properties are the questions under consideration in this
paper.

The idea to present any Lévy kernel as an image of some fixed measure goes back
to the works of Skorokhod [9] and Strook [10]. The authors therein treat the equa-
tion with indirectly defined function 𝑐. The conditions for uniqueness and existence
of the solution to such SDE are quite implicit. It appears that in our approach the ex-
plicit transportation distance construction allows one to give the conditions in more
transparent form.
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This paper is organised as follows: first we introduce the notion of the transporta-
tion distance and formulate the theorem about the uniqueness and existence of the
strong solution to an SDE for Lévy type process. As examples we construct Gamma-
type and 𝛼-stable like processes as strong solutions to SDEs.

2 Main results

2.1 Transportation distance
Recall that a Lévy measure on ℝ is a measure 𝛱 on ℝ such that

∫
ℝ

(𝑢2 ∧ 1)𝛱(𝑑𝑢) < ∞.

It is convenient for our further purposes to introduce two slightly unusual conventions.
First, we admit that a Lévy measure assigns a non-trivial mass to the point 0; that is, it
contains a term 𝑚𝛿0(𝑑𝑢). This term can be even infinite; that is 𝑚 ∈ [0; ∞] in general.
Second, for two such measures 𝛱1, 𝛱2 we write

𝛱1 ≐ 𝛱2

if they coincide up to the term 𝑚𝛿0(𝑑𝑢). In other words, 𝛱1 ≐ 𝛱2 iff

∫
ℝ

𝑔(𝑢)𝛱1(𝑑𝑢) = ∫
ℝ

𝑔(𝑢)𝛱2(𝑑𝑢),

for any 𝑔 ∶ ℝ → ℝ such that |𝑔(𝑢)| ⩽ 𝑢2 ∧ 1, 𝑢 ∈ ℝ.

Proposition 1. Let us fix a Lévy measure

𝛱0(𝑑𝑢) = 𝑑𝑢
𝑢2 , 𝑢 ∈ ℝ

and let 𝛱 be an arbitrary Lévy measure. Then there exists a unique function 𝑐 ∶ ℝ → ℝ,
such that 𝛱 = 𝛱0 ∘ 𝑐−1 and 𝑐 satisfies the additional assumptions

1. 𝑐 ∶ (−∞; 0] → (−∞; 0] and 𝑐 ∶ [0; +∞) → [0; +∞);
2. 𝑐 is nondecreasing;
3. 𝑐 is left continuous on (−∞; 0] and right continuous on [0; +∞).

Example 1. Let 𝛱(𝑑𝑢) = u�u�
u�2 𝟏u�>0, then the function 𝑐 equals 𝑐(𝑣) = 𝑣𝟏u�>0. Note that

this function maps all the mass from [−∞; 0] to the point 0, consequently we get a
measure �̃�(𝑑𝑢) = u�u�

u�2 𝟏u�>0 + ∞ ⋅ 𝛿0 as an image of 𝛱0 under this 𝑐. This is exactly
the reason for us to introduce the conventions we’ve discussed above.

For any 𝑥, 𝑦 ∈ ℝ denote

𝜌(𝑥, 𝑦) = |𝑥 − 𝑦| ∧ 1.

Definition 1. For two Lévy measures 𝛱1, 𝛱2 on ℝ we put

𝑇(𝛱1, 𝛱2) = √∫
ℝ

𝜌2(𝑐u�1
(𝑢), 𝑐u�2

(𝑢))𝛱0(𝑑𝑢). (2)

Proposition 2. The function 𝑇 defined above is a metric on the set of the Lévy mea-
sures on ℝ.
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Taking into account the proposition above, we call the function 𝑇 as a transporta-
tion distance. Proofs of Propositions 1 and 2 are of a technical nature, and we postpone
them to Appendix A in order not to overload the text.

2.2 An SDE for a Lévy-type process
Let us consider a state dependent characteristic triplet (𝑎(𝑥), 𝜎2(𝑥), 𝛱(𝑥, ⋅)) and the
function 𝑐(𝑥, 𝑣) such that 𝛱(𝑥, 𝑑𝑢) = 𝛱0({𝑣 ∶ 𝑐(𝑥, 𝑣) ∈ 𝑑𝑢}) and for every fixed 𝑥
the function 𝑐(𝑥, ⋅) has the properties listed in Proposition 1. In the same spirit with
§1, Chap. 4 [4], one can write the following SDE, whose solution, if exists, is a natu-
ral candidate to be a Levy-type process with the given state dependent characteristic
triplet:

𝑑𝑋(𝑡) = 𝑎(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡)

+ ∫
ℝ

𝑐(𝑋(𝑡−), 𝑣)𝟏|u�(u�(u�−),u�)|⩽1�̃�0(𝑑𝑡, 𝑑𝑣)

+ ∫
ℝ

𝑐(𝑋(𝑡−), 𝑣)𝟏|u�(u�(u�−),u�)|>1𝜈0(𝑑𝑡, 𝑑𝑣), (3)

where 𝑋(0) = 𝑥0, 𝑥0 ∈ ℝ, 𝜈0 is a Poisson point measure with the intensity measure
𝛱0, 𝑊 is independent of 𝜈0 Wiener process and �̃�0(𝑑𝑡, 𝑑𝑣) = 𝜈0(𝑑𝑡, 𝑑𝑣)−𝛱0(𝑑𝑣)𝑑𝑡.
However, a thorough look at some particular classes of processes (see Section 3.2
below) shows that it will be more flexible to consider more general SDE

𝑑𝑋(𝑡) = 𝑎(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡)

+
u�

∑
u�=1

[∫
ℝ

𝑐u�u�
(𝑋(𝑡−), 𝑣)𝟏|u�u�u�(u�(u�−),u�)|⩽1�̃�u�(𝑑𝑡, 𝑑𝑣)

+ ∫
ℝ

𝑐u�u�
(𝑋(𝑡−), 𝑣)𝟏|u�u�u�(u�(u�−),u�)|>1𝜈u�(𝑑𝑡, 𝑑𝑣)], (4)

where

𝛱(𝑥, ⋅) =
u�

∑
u�=1

𝛱u�(𝑥, ⋅) (5)

is some decomposition of the given Lévy kernel, 𝑐u�u�
(𝑥, ⋅) are corresponding functions

transporting 𝛱0 to 𝛱u�(𝑥, ⋅), 𝜈1, … , 𝜈u� are independent copies of the Poisson point
measure 𝜈0, and �̃�1, … , �̃�u� are corresponding compensated Poisson point measures.

Denote
̃𝑎(𝑥) = 𝑎(𝑥) + 𝛱(𝑥, {|𝑢| > 1}).

Theorem 1. Assume that, for some decomposition (5) and some 𝑙 ⩽ 𝑛, the following
conditions hold true.

1. The functions ̃𝑎 and 𝜎 satisfy the Lipschitz condition w.r.t. 𝜌, i.e. there exists a
constant 𝐿1 > 0 such that

∣ ̃𝑎(𝑥1) − ̃𝑎(𝑥2)∣ + ∣𝜎(𝑥1) − 𝜎(𝑥2)∣ ⩽ 𝐿1𝜌(𝑥1, 𝑥2).

2. There exists a constant 𝐿2 > 0 such that

𝑇(𝛱u�(𝑥1, ⋅), 𝛱u�(𝑥2, ⋅)) ⩽ 𝐿2𝜌(𝑥1, 𝑥2), 𝑘 = 1, … , 𝑙, 𝑥1, 𝑥2 ∈ ℝ.
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3. For 𝑘 = 1, … , 𝑙,
sup
u�∈ℝ

𝛱u�(𝑥, {𝑢 ∶ |𝑢| > 1}) < ∞.

4. For 𝑘 = 𝑙 + 1, … , 𝑛,
sup
u�∈ℝ

𝛱u�(𝑥, ℝ) < ∞.

Then there exists a unique strong solution to the equation (4). This solution is a Markov
process, and its generator on the class 𝐶2

∞ takes the form (1).

Proof of Theorem 1: uniqueness. In order not to overload the notation we prove
only the case where 𝑛 = 𝑙 = 1; that is, in fact we shall deal with equation (3). This will
not restrict generality, because (a) dealing with 𝑙 Lipschitz terms instead of one can be
made literally in the same way; (b) it is a standard observation that adding the terms
with bounded “total intensity” of jumps does not spoil an existence and uniqueness
result because we can separate the time instants where the jumps with the bounded
total intensity occur, and resolve consequently the SDE on the intervals between these
time instants.

Consider two solutions of the equation (3) with the same starting point:

𝑑𝑋u�(𝑡) = 𝑎(𝑋u�(𝑡))𝑑𝑡 + 𝜎(𝑋u�(𝑡))𝑑𝑊(𝑡)

+ ∫
ℝ

𝑐(𝑋u�(𝑡−), 𝑣)𝟏|u�(u�u�(u�−),u�)|⩽1�̃�0(𝑑𝑡, 𝑑𝑣)

+ ∫
ℝ

𝑐(𝑋u�(𝑡−), 𝑣)𝟏|u�(u�u�(u�−),u�)|>1𝜈0(𝑑𝑡, 𝑑𝑣), 𝑖 = 1, 2. (6)

The standard argument here, say, for SDE’s with square integrable noise, would be
to use the Itô formula and the Gronwall lemma to prove that 𝐄(𝑋1(𝑡) − 𝑋2(𝑡))2 = 0.
Now because of possible lack of square integrability we shall modify this argument.
Namely, we shall prove that for every 𝑡 ∈ [0, 1]

𝐄((𝑋1(𝑡) − 𝑋2(𝑡))2 ∧ 1) = 0. (7)

To do this, we apply the smoothing cut-off technique developed in [3]. Namely we
shall apply the Itô formula to

𝐹(𝑦) = arctan 𝑦2,

see Chap. 2, [5]. To use the Itô formula we need an auxiliary construction. For some
> 0 we can rewrite the process 𝑌(𝑡) = 𝑋1(𝑡) − 𝑋2(𝑡) as follows

𝑌(𝑡) = ∫
u�

0
( ̃𝑎(𝑋1(𝑠)) − ̃𝑎(𝑋2(𝑠)))𝑑𝑠 + ∫

u�

0
(𝜎(𝑋1(𝑠)) − 𝜎(𝑋2(𝑠)))𝑑𝑊(𝑠)

+ ∫
u�

0
∫

|u�|⩽u�
(𝑐(𝑋1(𝑠−), 𝑣) − 𝑐(𝑋2(𝑠−), 𝑣))�̃�0(𝑑𝑣, 𝑑𝑠)

+ ∫
u�

0
∫

|u�|>u�
(𝑐(𝑋1(𝑠−), 𝑣) − 𝑐(𝑋2(𝑠−), 𝑣))𝜈0(𝑑𝑣, 𝑑𝑠)

− ∫
u�

0
∫

|u�|>u�
[𝜏(𝑐(𝑋1(𝑠), 𝑣)) − 𝜏(𝑐(𝑋2(𝑠), 𝑣))]𝛱0(𝑑𝑣)𝑑𝑠

+ ∫
u�

0
∫

|u�|⩽u�
[𝑐(𝑋1(𝑠), 𝑣) − 𝜏(𝑐(𝑋1(𝑠), 𝑣))]𝛱0(𝑑𝑣)𝑑𝑠

− ∫
u�

0
∫

|u�|⩽u�
[𝑐(𝑋2(𝑠), 𝑣) − 𝜏(𝑐(𝑋2(𝑠), 𝑣))]𝛱0(𝑑𝑣)𝑑𝑠, (8)
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where
𝜏(𝑣) = (|𝑣| ∧ 1) sign(𝑣), 𝑥, 𝑣 ∈ ℝ.

Using the Itô formula we get

𝐹(𝑌(𝑡)) = ∫
u�

0
( ̃𝑎(𝑋1(𝑠)) − ̃𝑎(𝑋2(𝑠)))𝐹′(𝑌(𝑠))𝑑𝑠

+ ∫
u�

0
(𝜎(𝑋1(𝑠)) − 𝜎(𝑋2(𝑠)))𝐹′(𝑌(𝑠))𝑑𝑊(𝑠)

+ ∫
u�

0

1
2

(𝜎(𝑋1(𝑠)) − 𝜎(𝑋2(𝑠)))2𝐹″(𝑌(𝑠))𝑑𝑠

+ ∫
u�

0
∫

|u�|⩽u�
[𝐹(𝑌(𝑠−) + (𝑐(𝑋1(𝑠−), 𝑣) − 𝑐(𝑋2(𝑠−), 𝑣)))

− 𝐹(𝑌(𝑠−))]�̃�0(𝑑𝑣, 𝑑𝑠)

+ ∫
u�

0
∫

|u�|⩽u�
[𝐹(𝑌(𝑠) + (𝑐(𝑋1(𝑠), 𝑣) − 𝑐(𝑋2(𝑠), 𝑣)))

− (𝑐(𝑋1(𝑠), 𝑣) − 𝑐(𝑋2(𝑠), 𝑣))𝐹′(𝑌(𝑠)) − 𝐹(𝑌(𝑠))]𝛱0(𝑑𝑣)𝑑𝑠

+ ∫
u�

0
∫

|u�|>u�
[𝐹(𝑌(𝑠−) + (𝑐(𝑋1(𝑠−), 𝑣) − 𝑐(𝑋2(𝑠−), 𝑣)))

− 𝐹(𝑌(𝑠−))]𝜈0(𝑑𝑣, 𝑑𝑠)

− ∫
u�

0
∫

|u�|>u�
[𝜏(𝑐(𝑋1(𝑠), 𝑣)) − 𝜏(𝑐(𝑋2(𝑠), 𝑣))]𝐹′(𝑌(𝑠))𝛱0(𝑑𝑣)𝑑𝑠

+ ∫
u�

0
∫

|u�|⩽u�
[𝑐(𝑋1(𝑠), 𝑣) − 𝜏(𝑐(𝑋1(𝑠), 𝑣))]𝐹′(𝑌(𝑠))𝛱0(𝑑𝑣)𝑑𝑠

− ∫
u�

0
∫

|u�|⩽u�
[𝑐(𝑋2(𝑠), 𝑣) − 𝜏(𝑐(𝑋2(𝑠), 𝑣))]𝐹′(𝑌(𝑠))𝛱0(𝑑𝑣)𝑑𝑠. (9)

After rearrangements, we get finally the formula

𝐹(𝑌(𝑡)) = 𝑀u� + ∫
u�

0
𝑔(𝑌(𝑠), 𝑋1(𝑠), 𝑋2(𝑠))𝛱0(𝑑𝑣)𝑑𝑠, (10)

where

𝑀u� = ∫
u�

0
(𝜎(𝑋1(𝑠)) − 𝜎(𝑋2(𝑠)))𝐹′(𝑌(𝑠))𝑑𝑊(𝑠)

+ ∫
u�

0
∫

ℝ
[𝐹(𝑌(𝑠−) + (𝑐(𝑋1(𝑠−), 𝑣) − 𝑐(𝑋2(𝑠−), 𝑣))) − 𝐹(𝑌(𝑠−))]�̃�0(𝑑𝑣, 𝑑𝑠)

(11)

is a martingale, and

𝑔(𝑦, 𝑥1, 𝑥2) = ( ̃𝑎(𝑥1) − ̃𝑎(𝑥2))𝐹′(𝑦)

+ 1
2

(𝜎(𝑥1) − 𝜎(𝑥2))2𝐹″(𝑦)

+ ∫
u�

0
∫

ℝ
[𝐹(𝑦 + (𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣)))

− [𝜏(𝑐(𝑥1, 𝑣)) − 𝜏(𝑐(𝑥2, 𝑣))]𝐹′(𝑦) − 𝐹(𝑦)]𝛱0(𝑑𝑣)𝑑𝑠
= 𝑔1(𝑦, 𝑥1, 𝑥2) + 𝑔2(𝑦, 𝑥1, 𝑥2) + 𝑔3(𝑦, 𝑥1, 𝑥2). (12)
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Observe that
𝑦 ∧ 1 ⩽ 4

𝜋
arctan 𝑦, 𝑦 ⩾ 0. (13)

In addition, for the function 𝐹 and its derivatives, we have the following explicit ex-
pressions and bounds:

𝐹′(𝑦) =
2𝑦

1 + 𝑦4 , 𝐹″(𝑦) = 2
1 − 𝑦4

(1 + 𝑦4)2 , (14)

∣𝐹″(𝑦)∣ ⩽ 2, ∣𝐹′(𝑦)∣ ⩽
1 + 𝑦2

1 + 𝑦4 ⩽ 2, (15)

∣𝐹′(𝑦)∣∣𝑦∣ =
2𝑦2

1 + 𝑦4 ⩽ (2𝑦2) ∧ 1 ⩽ 4
𝜋

𝐹(𝑦), (16)

∣𝐹(𝑦 + 𝛿) − 𝐹(𝑦) − 𝐹′(𝑦)𝛿∣ ⩽ 𝛿2

2
sup

u�
∣𝐹″(𝑣)∣ ⩽ 𝛿2. (17)

Using that, we bound every term in the r.h.s. of (12) for any triple (𝑦, 𝑥1, 𝑥2) which
satisfy 𝑦 = 𝑥1 − 𝑥2. Observe that 𝑌(𝑠) = 𝑋1(𝑠) − 𝑋2(𝑠), hence to estimate the right
hand side of (10) we can restrict our consideration to this class of triples (𝑦, 𝑥1, 𝑥2).

Estimate (16) and condition 1 yield

𝑔1(𝑦, 𝑥1, 𝑥2) ⩽
4𝐿1
𝜋

𝐹(𝑦), 𝑦 = 𝑥1 − 𝑥2.

Estimates (15), (13) and condition 1 yield

𝑔2(𝑦, 𝑥1, 𝑥2) ⩽
2𝐿2

1
𝜋

𝐹(𝑦), 𝑦 = 𝑥1 − 𝑥2.

To estimate 𝑔3(𝑦, 𝑥1, 𝑥2), we re-write it in the following way

𝑔3(𝑦, 𝑥1, 𝑥2) = ∫
{u�∶|u�(u�1,u�)−u�(u�2,u�)}|⩽1

+ ∫
{u�∶|u�(u�1,u�)−u�(u�2,u�)|>1}

[𝑓 (𝑦, 𝑥1, 𝑥2)]𝛱0(𝑑𝑣),

where

𝑓 (𝑦, 𝑥1, 𝑥2) ∶= 𝐹(𝑦 + (𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣))) − 𝐹(𝑦) − 𝐹′(𝑦)(𝜏(𝑐(𝑥1, 𝑣)) − 𝜏(𝑐(𝑥2, 𝑣)))

and note that in any case the absolute value of the 𝑓 (𝑦, 𝑥1, 𝑥2) does not exceed 𝜋 + 4.
In the case when |𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣)| ⩽ 1, we have the inequality

𝐹(𝑦+(𝑐(𝑥1, 𝑣)−𝑐(𝑥2, 𝑣)))−𝐹(𝑦) ⩽ 𝐹′(𝑦)(𝑐(𝑥1, 𝑣)−𝑐(𝑥2, 𝑣))+(𝑐(𝑥1, 𝑣)−𝑐(𝑥2, 𝑣))2,

which comes from (17). Hence, after simple re-arrangements, we get

𝑔3(𝑦, 𝑥1, 𝑥2) ⩽ (𝜋 + 4) ∫
ℝ

((𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣))2 ∧ 1)𝛱0(𝑑𝑣)

+ 𝐹′(𝑦) ∫
|u�(u�1,u�)−u�(u�2,u�)|⩽1

[(𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣))

− (𝜏(𝑐(𝑥1, 𝑣)) − 𝜏(𝑐(𝑥2, 𝑣)))]𝛱0(𝑑𝑣)
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= (𝜋 + 4)𝑇2(𝛱(𝑥1, ⋅), 𝛱(𝑥2, ⋅))

+ 𝐹′(𝑦) ∫
|u�(u�1,u�)−u�(u�2,u�)|⩽1

[(𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣))

− (𝜏(𝑐(𝑥1, 𝑣)) − 𝜏(𝑐(𝑥2, 𝑣)))]𝛱0(𝑑𝑣).

Next, the function 𝜏 is Lipschitz with the constant 1, hence the absolute value of the
inner function in the last integral is bounded by

∣𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣)∣ + ∣𝜏(𝑐(𝑥1, 𝑣)) − 𝜏(𝑐(𝑥2, 𝑣))∣ ⩽ 2(∣𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣)∣ ∧ 1),

since the domain of integration is {𝑣 ∶ |𝑐(𝑥1, 𝑣)−𝑐(𝑥2, 𝑣)| ⩽ 1}. If, within this domain,
we have |𝑐(𝑥1, 𝑣)| ⩽ 1, |𝑐(𝑥2, 𝑣)| ⩽ 1, then 𝜏(𝑐(𝑥u�, 𝑣)) = 𝑐(𝑥u�, 𝑣), 𝑖 = 1, 2 and the
inner function in the last integral equals zero. Hence by the Cauchy inequality

∫
|u�(u�1,u�)−u�(u�2,u�)|⩽1

[𝜏(𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣)) − (𝜏(𝑐(𝑥1, 𝑣)) − 𝜏(𝑐(𝑥2, 𝑣)))]𝛱0(𝑑𝑣)

⩽ 2 ∫
|u�(u�1,u�)|>1 or |u�(u�2,u�)|>1

(∣𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣)∣ ∧ 1)𝛱0(𝑑𝑣)

⩽ 2(∫
ℝ2

((𝑐(𝑥1, 𝑣) − 𝑐(𝑥2, 𝑣))2 ∧ 1)𝛱0(𝑑𝑣))
1/2

× (𝛱0({𝑣 ∶ ∣𝑐(𝑥1, 𝑣)∣ > 1 or ∣𝑐(𝑥2, 𝑣)∣ > 1}))1/2.

Denote
𝐵 = sup

u�∈ℝ
𝛱(𝑥, {𝑢 ∶ |𝑢| > 1});

see condition 3. Then, using the elementary inequality 2𝑎𝑏 ⩽ 𝑎2 + 𝑏2 we obtain

𝑔3(𝑦, 𝑥1, 𝑥2) ⩽ (𝐹′(𝑦))2 + (𝜋 + 4 + 2𝐵)𝑇2(𝛱(𝑥1, ⋅), 𝛱(𝑥2, ⋅)). (18)

Recall that 𝑦 = 𝑥1 − 𝑥2, hence by the Lipschitz condition on 𝛱(𝑥, ⋅) we have

𝑇2(𝛱(𝑥1, ⋅), 𝛱(𝑥2, ⋅)) ⩽ 𝐿2
2(|𝑥1 − 𝑥2|2 ∧ 1) ⩽

4𝐿2
2

𝜋
𝐹(𝑦).

Next, combining the first inequality in (14) and the second one in (15), we get

∣𝐹′(𝑦)∣ ⩽ 2(|𝑦| ∧ 1).

Hence, using (13) once again, we can write

(𝐹′(𝑦))2 ⩽ 4(𝑦2 ∧ 1) ⩽ 16
𝜋

𝐹(𝑦), 𝑦 ∈ ℝ. (19)

This gives finally

𝑔3(𝑦, 𝑥1, 𝑥2) ⩽
16 + 4𝐿2

2(𝜋 + 4 + 2𝐵)
𝜋

𝐹(𝑦). (20)

Summarising all the above we get

𝑔(𝑦, 𝑥1, 𝑥2) ⩽
4𝐿1 + 2𝐿2

1 + 16 + 4𝐿2
2(𝜋 + 4 + 2𝐵)

𝜋
𝐹(𝑦). (21)
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Putting

𝑄 ∶=
4𝐿1 + 2𝐿2

1 + 16 + 4𝐿2
2(𝜋 + 4 + 2𝐵)

𝜋
,

we’ll get that
𝐄𝐹(𝑌(𝑡)) ⩽ 𝑄 ∫

u�

0
𝐄𝐹(𝑌(𝑠))𝑑𝑠 (22)

since 𝑀u� is a martingale and hence 𝐄𝑀u� = 0. Thus by the Gronwall lemma and non-
negativity of the function 𝐹 we get

𝐄𝐹(𝑌(𝑡)) = 0. (23)

Consequently by (13) we get (7). This completes the proof of the uniqueness part.

Proof of Theorem 1: existence. Consider the sequence of the successive approxima-
tions for the solution of the equation (3):

𝑋0(𝑡) = 𝑥0, 𝑡 ∈ [0; 1],

𝑋u�+1(𝑡) = 𝑥0 + ∫
u�

0
𝑎(𝑋u�(𝑠))𝑑𝑠 + ∫

u�

0
𝜎(𝑋u�(𝑠))𝑑𝑊(𝑠)

+ ∫
u�

0
∫

ℝ
𝑐(𝑋u�(𝑠−), 𝑣)𝟏|u�(u�u�(u�−),u�)|⩽1[𝜈0(𝑑𝑠, 𝑑𝑣) − 𝛱0(𝑑𝑣)𝑑𝑠]

+ ∫
u�

0
∫

ℝ
𝑐(𝑋u�(𝑠−), 𝑣)𝟏|u�(u�u�(u�−),u�)|>1𝜈0(𝑑𝑠, 𝑑𝑣). (24)

Using the same arguments as for the estimate (22) we can get for the processes
𝑌u�+1(𝑡) = 𝑋u�+1(𝑡) − 𝑋u�(𝑡) the following

𝐄𝐹𝑌u�+1(𝑡) ⩽ 𝑄 ∫
u�

0
𝐄𝐹(𝑌u�(𝑠))𝑑𝑠 (25)

Using the estimates (13) and

𝐹(𝑦) ⩽ 𝑦2 ∧ (𝜋/2) ⩽ (𝜋/2)(𝑦 ∧ 1),

we obtain

𝐄(𝑌u�+1(𝑡)2 ∧ 1) ⩽ �̃� ∫
u�

0
𝐄(𝑌u�(𝑠)2 ∧ 1)𝑑𝑠 ⩽

�̃�u�

𝑛!
, 𝑡 ∈ [0; 1], (26)

where �̃� = 2𝑄. Consequently

sup
u�∈[0;1]

𝐄𝜌2(𝑋u�+1(𝑡), 𝑋u�(𝑡)) = 0, 𝑛 ⩾ 1. (27)

Therefore there exists a process 𝑋 such that it satisfies equation (3) and

lim
u�→∞

sup
u�∈[0;1]

𝐄𝜌2(𝑋u�(𝑡), 𝑋(𝑡)) = 0. (28)

Passing to the limit in (24) will yield that 𝑋 is a solution to (3); this argument is
standard and we omit the details.

The proof of the Markov property for 𝑋 is standard as well, and it is omitted. The
formula (1) for its generator follows from the Itô formula in a standard way, and again,
we omit the details.
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3 Examples

3.1 The Gamma-type process

Let us consider Gamma process with the Lévy measure 𝛱(𝑑𝑢) = u�u�−u�u�

u� 𝑑𝑢, 𝑦 > 0,
𝛾, 𝜆 > 0. Here parameter 𝛾 can be interpreted as a rate of jump arrivals, and 𝜆 as an
effective size of a jump. The proposition below gives the estimates for the transporta-
tion distance between two Gamma measures, with one of the above parameters being
fixed and other one varying.

Proposition 3. 1. Let 𝛱u�, 𝑗 = 1, 2 be two Gamma measures with the same pa-
rameter 𝜆 and different parameters 0 < 𝛾1 < 𝛾2. Then there exists a constant
𝐷 > 0 such that the following bound holds true

𝑇(𝛱1, 𝛱2) ⩽ 𝐷
𝜆2 (𝛾2 − 𝛾1)(log 𝛾2 − log 𝛾1). (29)

2. Let 𝛱u�, 𝑗 = 1, 2 be two Gamma measures with the same parameter 𝛾 and
different parameters 0 < 𝜆1 < 𝜆2. Then there exists a constant �̃� > 0 such that
the following bound holds true

𝑇(𝛱1, 𝛱2) ⩽ 𝛾�̃�(𝜆2 − 𝜆1)2( 1
𝜆1

+ 1
𝜆2

+ 1). (30)

For the proof we refer the reader to Appendix B.
We call a Gamma-type process a Lévy-type process with a characteristic triplet

(0, 0, 𝛱(𝑥, 𝑑𝑢)) where a Lévy kernel is 𝛱(𝑥, 𝑑𝑢) = u�(u�)u�−u�(u�)u�

u� 𝑑𝑢, 𝑢 > 0. If we assume
that only the size of jumps varies, i.e. the parameter 𝛾 is fixed, then the corresponding
SDE can be easily written in the form:

𝑑𝑋u� = 1
𝜆(𝑋u�−)

𝑑𝑋1
u� ,

where 𝑋1 denotes the Gamma process with the same parameter 𝛾 and 𝜆(𝑥) = 1.
Meanwhile the case where the intensity of jumps 𝛾 = 𝛾(𝑥) varies is not so easy to
treat because, heuristically, one should introduce the change of time into the Lévy-Itô
formula.

Nevertheless using Theorem 1 in this case is also manageable. If 𝛾(𝑥) is Lipschitz
continuous, then all the conditions of Theorem 1 are verified. The condition 2 follows
from (30), the condition 3 is easy to verify straightforwardly. Thus Gamma-type pro-
cess in this case can be written as a solution to equation (3) with 𝑐(𝑥, 𝑣) = 𝜑( 1

u�u�(u�) )/𝜆.

3.2 The 𝛼-stable like process
Recall that for an 𝛼-stable process, its Lévy measure has the form

𝛱(𝑑𝑢) = (𝛼𝜆−|𝑢|−u�−1𝟏(−∞;0)(𝑢) + 𝛼𝜆+𝑢−u�−1𝟏(0,∞)(𝑢)) 𝑑𝑢, (31)

where 𝛼 ∈ (0, 2) and 𝜆−, 𝜆+ ⩾ 0. Analogously to Proposition 2 in [3] one can obtain
the following
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Proposition 4. 1. Let 𝛱u�, 𝑗 = 1, 2 be two 𝛼-stable measures with the same shape
parameter 𝛼 and different scale parameters 𝜆±

1,2 ∈ [𝑎, 𝑏], 𝑎, 𝑏 > 0. In this case

𝑇(𝛱1, 𝛱2) ⩽ ( 2
2 − 𝛼

)(∣(𝜆−
1)1/u� − (𝜆−

2)1/u�∣u�

+ ∣(𝜆+
1)1/u� − (𝜆+

2)1/u�∣u�). (32)

2. Let 𝛱u�, 𝑗 = 1, 2 be two 𝛼-stable measures with the same scale parameters
𝜆+, 𝜆−, but different shape parameters 𝛼1,2 ∈ [𝑐, 𝑑] ⊂ (0; 2). In this case
there exists a constant 𝐷 > 0 such that the estimate is as follows

𝑇(𝛱1, 𝛱2) ⩽ 𝐷|𝛼2 − 𝛼1|u�/2. (33)

We call as an 𝛼-stable like process, a Lévy-type process with a characteristic triplet
(0, 0, 𝛱(𝑥, 𝑑𝑢)), where a Lévy kernel is

𝛱(𝑥, 𝑑𝑢) = 𝛼(𝑥)𝜆−(𝑥)|𝑢|−u�(u�)−1𝟏u�<0 𝑑𝑢 + 𝛼(𝑥)𝜆+(𝑥)𝑢−u�(u�)−1𝟏u�>0 𝑑𝑢. (34)

Note that even if the functions 𝛼, 𝜆± are Lipschitz continuous itself, then by esti-
mates (32) and (33) we observe that the kernel 𝛱(𝑥, 𝑑𝑢) is not Lipschitz continuous
in transportation distance, hence we can not use Theorem 1 to construct the required
Lévy-type process as a strong solution to the SDE (3). Nevertheless, we are still able to
use Theorem 1: to do that, we represent the kernel 𝛱(𝑥, 𝑑𝑢) as a sum of the Lipschitz
continuous kernel and the one of a bounded total jump intensity.

Consider the damped 𝛼-stable Lévy measure

𝛱(𝑑𝑢) = 𝛼𝜆−|𝑢|−u�−1𝟏(−1,0)(𝑢) + 𝛼𝜆+𝑢−u�−1𝟏(0,1)(𝑢) 𝑑𝑢. (35)

Proposition 5. 1. Let 𝛱u�, 𝑗 = 1, 2 be two damped 𝛼-stable measures with the
same shape parameter 𝛼 and different scale parameters 𝜆±

1,2 ∈ [𝑎, 𝑏], 𝑎, 𝑏 > 0.
In this case there exists some constant 𝐷1 > 0 such that

𝑇(𝛱1, 𝛱2) ⩽ 𝐷1(∣𝜆−
1 − 𝜆−

2 ∣ + ∣𝜆+
1 − 𝜆+

2 ∣). (36)

2. Let 𝛱u�, 𝑗 = 1, 2 be two damped 𝛼-stable measures with the same scale parame-
ter 𝜆+, but different shape parameters 𝛼1,2 ∈ [𝑐, 𝑑] ⊂ (0; 2). In this case there
exists some constant 𝐷2 > 0 such that

𝑇(𝛱1, 𝛱2) ⩽ 𝐷2|𝛼1 − 𝛼2|. (37)

The proof is given in Appendix B.
Now we can rewrite the kernel (34) as follows:

𝛱(𝑥, 𝑑𝑢) = 𝛼(𝑥)𝜆−(𝑥)|𝑢|−u�(u�)−1𝟏u�∈(−1,0) 𝑑𝑢 + 𝛼(𝑥)𝜆+(𝑥)𝑢−u�(u�)−1𝟏(𝑢)(0,1) 𝑑𝑢

+ 𝛼(𝑥)𝜆−(𝑥)|𝑢|−u�(u�)−1𝟏u�∈(−∞,−1) + 𝛼(𝑥)𝜆+(𝑥)𝑢−u�(u�)−1𝟏(𝑢)(1,+∞) 𝑑𝑢
= 𝛱1(𝑥, 𝑑𝑢) + 𝛱2(𝑥, 𝑑𝑢). (38)

Hence, if the functions 𝜆−(𝑥) and 𝜆+(𝑥) are Lipschitz continuous and bounded, and
the function 𝛼(𝑥) is Lipschitz continuous and takes its values in a segment [𝑐, 𝑑] ⊂
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(0, 2), then the kernel 𝛱(𝑥, 𝑑𝑢) admits a decomposition such that all the conditions
of Theorem 1 are verified. Correspondingly, the 𝛼-stable like process with the Lévy
kernel (34) can be obtained as a solution to the SDE

𝑑𝑋(𝑡) =
2

∑
u�=1

[∫
ℝ

𝑐u�u�
(𝑋(𝑡−), 𝑣)𝟏|u�u�u�(u�(u�−),u�)|⩽1�̃�u�(𝑑𝑡, 𝑑𝑣)

+ ∫
ℝ

𝑐u�u�
(𝑋(𝑡−), 𝑣)𝟏|u�u�u�(u�(u�−),u�)|>1𝜈u�(𝑑𝑡, 𝑑𝑣)]. (39)

A Proof of the properties of transportation distance

Proof of Proposition 1. The statement of the proposition is equivalent to the fact that
there exists an unique nondecreasing function 𝜅u� ∶ ℝ → ℝ cáglád on (−∞; 0] and
cádlág on [0; +∞) such that

𝛱({𝑢 ∶ 𝑢 > 𝑥}) = 𝛱0({𝑣 ∶ 𝑣 > 𝜅u�(𝑥)}), 𝑥 ⩾ 0,
𝛱({𝑢 ∶ 𝑢 < −𝑥}) = 𝛱0({𝑣 ∶ 𝑣 < 𝜅u�(−𝑥)}), 𝑥 ⩾ 0. (40)

Here and below we understand 𝛱({𝑢 ∶ 𝑢 > 0}) = limu�′→0,u�′>0 𝛱({𝑢 ∶ 𝑢 > 𝑥′}). Thus
one immediately get the function 𝜅u� explicitly:

𝜅u�(𝑥) ∶=
⎧{
⎨{⎩

1
u�({u�∶u�>u�}) , 𝑥 ⩾ 0;
− 1

u�({u�∶u�<u�}) , 𝑥 ⩽ 0.
(41)

When it is needed let us put 1/∞ = 0. The function 𝜅u� is non-decreasing, left-
continuous on (−∞; 0] and right-continuous on [0; +∞) respectively, thus we can
take the function 𝑐 as the generalised inverse of the function 𝜅 when 𝑥 ⩾ 0 and when
𝑥 ⩽ 0, that is

𝑐u�(𝑦) = {
sup{𝑥 ∈ (0; +∞) ∶ 𝜅u�(𝑥) < 𝑦}, 𝑦 ∈ [0; +∞);
inf{𝑥 ∈ (−∞; 0) ∶ 𝜅u�(𝑥) > 𝑦}, 𝑦 ∈ (−∞; 0].

(42)

Now we should check that for the function 𝑐 defined in (42)

{ ⩾ 0 ∶ 𝑐u�( ) > 𝑥} = (𝜅u�(𝑥); +∞) 𝑥 ⩾ 0 and
{ < 0 ∶ 𝑐u�( ) < −𝑥} = (−∞; 𝜅u�(−𝑥)), 𝑥 ⩽ 0. (43)

Indeed, let us consider for 𝑥 ⩾ 0

{ ⩾ 0 ∶ 𝑐u�( ) > 𝑥} = { ⩾ 0 ∶ sup
u�∈[0;+∞)

(𝜅u�(𝑦) < ) > 𝑥} = ⋃
u�>u�

{𝜅u�(𝑦) < }

= ⋃
u�>u�

(𝜅u�(𝑦); +∞) = (𝜅u�(𝑥); +∞).

The second part of (43) can be obtained using the same reasoning.
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Proof of Proposition 2. To verify the statement of the proposition we need to check
three properties of the metric. First note that the quantity 𝑇 is nonnegative because 𝜌
is a metric. If 𝑇(𝛱1, 𝛱2) = 0 then 𝜌(𝑐u�1

(𝑢), 𝑐u�2
(𝑢)) = 0, 𝑢 ∈ ℝ. It implies that

𝑐u�1
(𝑢) = 𝑐u�2

(𝑢), 𝑢 ∈ ℝ,

thus
𝛱1 = 𝛱2

because 𝑐u� uniquely identifies the measure 𝛱. The symmetry axiom for the metric 𝑇
follows from the one for 𝜌. The triangle inequality follows from the triangle inequality
for the metric 𝜌 and the Minkovsky inequality:

𝑇(𝛱1, 𝛱2) ⩽ (∫
ℝ

(𝜌(𝑐u�1
(𝑢), 𝑐u�3

(𝑢)) + 𝜌(𝑐u�3
(𝑢), 𝑐u�2

(𝑢))2) 𝛱0(𝑑𝑢))
1/2

⩽ 𝑇(𝛱1, 𝛱3) + 𝑇(𝛱3, 𝛱2).

B Explicit calculations for transportation distance

Proof of Proposition 3: statement 1. First let us denote the function 𝜓u�(𝑥) =
∫+∞

u�
u�u�−u�

u� 𝑑𝑢. Note that function 𝜓1(𝑥) = −𝐄𝐢(−𝑥), 𝑥 > 0, where 𝐄𝐢(𝑥) is the well-
known exponential integral (see for instance Chap. VI [6]). Also let us denote the
inverse to 𝜓u�(𝑥) as 𝜑u�(𝑦), 𝑦 > 0. It can be easily seen that

𝑐u�u�
(𝑦) = 1

𝜆
𝜑u�u�

(1
𝑦

), 𝑦 > 0, 𝑗 = 1, 2.

Using the fact that |𝑥 − 𝑦| ⩾ 𝜌(𝑥, 𝑦) we get the following

𝑇(𝛱1, 𝛱2) ⩽ ∫
+∞

0
(𝑐u�1

(𝑦) − 𝑐u�2
(𝑦))2 𝑑𝑦

𝑦2 .

Making a change of variables in the integral in the r.h.s. of the last inequality we get

∫
+∞

0
(𝑐u�1

(𝑦) − 𝑐u�2
(𝑦))2 𝑑𝑦

𝑦2 = 1
𝜆2 ∫

∞

0
(𝜑u�1

(𝑣) − 𝜑u�2
(𝑣))2𝑑𝑣.

Consequently
𝑇(𝛱1, 𝛱2) ⩽ 1

𝜆2 ∫
∞

0
(𝜑u�1

(𝑣) − 𝜑u�2
(𝑣))2𝑑𝑣. (44)

To bound the expression in the r.h.s. of (44) we need some properties of the function
𝜓u�. First note that 𝜓u�(𝑥) = 𝛾𝜓1(𝑥) for any 𝛾 > 0 and 𝑥 > 0. Consequently 𝜑u�(𝑣) =
𝜑1(𝑣/𝛾). We have that 𝜕u�𝜓u�(𝑥) = 𝜓1(𝑥) and 𝜓u�(𝜑u�(𝑢)) = 𝑢. Differentiating both
sides of the latter equation we immediately obtain 𝜕u�𝜑u�(𝑢) = 1

u�2 𝜑u�(𝑢)𝑒u�u�(u�)𝑢.

Now the integral in the r.h.s. of (44) equals ∫∞
0 (∫u�2

u�1
𝜕u�𝜑u�(𝑣)𝑑𝛾)2𝑑𝑣. By the Cauchy-

Schwarz inequality we get that the last integral is not greater then

(𝛾1 − 𝛾2) ∫
∞

0
∫

u�2

u�1

1
𝛾4 𝜑2

u�(𝑣)𝑒2u�u�(u�)𝑣2𝑑𝛾𝑑𝑣.
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Changing the order of integration we have

(𝛾1 − 𝛾2) ∫
u�2

u�1

1
𝛾4 ∫

∞

0
𝜑2

u�(𝑣)𝑒2u�u�(u�)𝑣2𝑑𝑣𝑑𝛾.

Using that 𝜑1(𝑣/𝛾) = 𝜑u�(𝑣) and changing variables in the inner integral we obtain

(𝛾1 − 𝛾2) ∫
u�2

u�1

1
𝛾

∫
∞

0
𝜑2

1(𝑢)𝑒2u�1(u�)𝑢2𝑑𝑢𝑑𝛾. (45)

Using the well known asymptotics of the function 𝜓1 (see Chap. VI [6]) we get the
asymptotical behaviour of the function 𝜑1: there exist constants 𝐵1, 𝐵2 > 0 and 0 <
𝑏1 < 1, 𝑏2 > 1 such that 𝜑1(𝑢) ⩽ 𝐵1 log 1

u�u� , 𝑢 ∈ (0; 𝑏1) and 𝜑1(𝑢) ⩽ 𝐵2𝑒−u�, 𝑢 ∈
[𝑏2; +∞), here 𝐶 is the Euler-Mascheroni constant. Using this we obtain

∫
∞

0
𝜑2

1(𝑢)𝑒2u�1(u�)𝑢2𝑑𝑢 ⩽
𝐵1

𝐶2 ∫
u�1

0
(log 𝑢)2𝑑𝑢 + ∫

u�2

u�1
𝜑2

1(𝑢)𝑒2u�1(u�)𝑢2𝑑𝑢

+ 𝐵2 ∫
∞

u�2
𝑒−2u�𝑒2u�−u�

𝑢2𝑑𝑢.

Every integral in the r.h.s. of the last expression is finite, thus there exists a constant
𝐷 > 0 such that the integral at (45) is bounded from above by (𝛾1 − 𝛾2) ∫u�2

u�1
u�
u� 𝑑𝛾.

Thus we obtain (29).

Proof of Proposition 3: statement 2. Now we consider the function

𝜓u�(𝑥) = ∫
+∞

u�

𝑒−u�u�

𝑢
𝑑𝑢 = ∫

+∞

u�u�

𝑒−u�

𝑢
𝑑𝑢.

Note that 𝜓u�(𝑥) = 𝜓1(𝜆𝑥), where 𝜓1(𝑥) = −𝐄𝐢(−𝑥), 𝑥 > 0. Thus the inverse
function 𝜑u�(𝑦) = 𝜑1(𝑦)/𝜆, where 𝜑1 is the inverse to 𝜓1. In this case 𝑐u�u�

(𝑦) =
𝜑u�u�( 1

u�u� ), 0 ⩽ 𝑦 ⩽ 1, 𝑗 = 1, 2. As in the proof of Proposition 3, statement 1 we reduce
the calculations to the estimation of the integral

∫
+∞

0
(𝑐u�1

(𝑦) − 𝑐u�2
(𝑦))2 𝑑𝑦

𝑦2 .

Analogously to (44) we obtain

𝑇(𝛱1, 𝛱2) ⩽ 𝛾 ∫
∞

0
(𝜑u�1(𝑣) − 𝜑u�2(𝑣))2𝑑𝑣. (46)

Using the same argument as for the 𝜕u�𝜑u� we get that 𝜕u�𝜑u�(𝑢) = −u�u�u�
u� . Making the

same steps as for (45) we obtain

(𝜆2 − 𝜆1) ∫
u�2

u�1

1
𝜆4 ∫

∞

0
𝜑2

1(𝑢)𝑑𝑢𝑑𝜆. (47)

Using the asymptotics of 𝜑1 we conclude that there exists a constant �̃� > 0 such that
the integral in (47) is not greater than

�̃�(𝜆2 − 𝜆1)( 1
𝜆1

− 1
𝜆2

). (48)

Using this we get (30).
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Proof of Proposition 4: statement 1. It can be straightforwardly verified that

𝑐u�u�
(𝑦) = −(1 − 1

𝜆−
u� 𝑦

)
−1/u�

𝟏u�<0 + (1 + 1
𝜆+

u� 𝑦
)

−1/u�
𝟏u�>0, 𝑗 = 1, 2. (49)

Using an obvious estimate 𝜌(𝑥, 𝑦) ⩽ |𝑥 − 𝑦| we get

𝑇(𝛱1, 𝛱2) ⩽ ∫
0

−∞
((1 − 1

𝜆−
1𝑦

)
−1/u�

− (1 − 1
𝜆−

2𝑦
)

−1/u�
)

2 𝑑𝑦
𝑦2

+ ∫
+∞

0
((1 + 1

𝜆+
1𝑦

)
−1/u�

− (1 + 1
𝜆+

2𝑦
)

−1/u�
)

2 𝑑𝑦
𝑦2 . (50)

Making a change of variables in the first integral we get that the r.h.s. of the last ex-
pression is not greater than

𝑇(𝛱1, 𝛱2) ⩽ ∫
+∞

0
((1 + 1

𝜆−
1𝑦

)
−1/u�

− (1 + 1
𝜆−

2𝑦
)

−1/u�
)

2 𝑑𝑦
𝑦2

+ ∫
+∞

0
((1 + 1

𝜆+
1𝑦

)
−1/u�

− (1 + 1
𝜆+

2𝑦
)

−1/u�
)

2 𝑑𝑦
𝑦2 . (51)

Note that we can estimate only one of these integrals. To do this we consider

𝜕
𝜕𝜆+ (1 + 1

𝜆+𝑦
)

−1/u�
= − 1

𝑦(𝜆+)2 (−1/𝛼)(1 + 1
𝜆+𝑦

)
−1/u�−1

. (52)

Rewriting the r.h.s. of the last inequality we get

1
𝜆+

1
u�u�+u�

1 + 1
u�+u�

(1 + 1
𝜆+𝑦

)
−1/u�

⩽ 1
𝛼𝜆+ , 𝑦 > 0. (53)

Using this and Cauchy-Schwarz inequality we obtain

∫
+∞

0
((1 + 1

𝜆+
1𝑦

)
−1/u�

− (1 + 1
𝜆+

2𝑦
)

−1/u�
)

2 𝑑𝑦
𝑦2

⩽ (𝜆+
1 − 𝜆+

2) ∫
+∞

0
∫

u�+
2

u�+
1

1
(𝛼𝜆𝑦)2 𝑑𝜆𝑑𝑦. (54)

Thus we get the estimate (36).

Proof of Proposition 4: statement 2. It is now clear that the estimate (37) can be
obtained after estimation of the following integral

∫
+∞

0
((1 + 1

𝜆+𝑦
)

−1/u�1
− (1 + 1

𝜆+𝑦
)

−1/u�2
)

2 𝑑𝑦
𝑦2 , (55)

or after changing variables

𝜆+ ∫
∞

1
(𝑣−1/u�1 − 𝑣−1/u�2)2𝑑𝑣. (56)
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The r.h.s. of the last equation equals 𝜆+ ∫∞
1 ∫u�2

u�1
(𝜕/𝜕𝛼𝑣−1/u�)2𝑑𝛼𝑑𝑣. By Cauchy-

Schwarz inequality we get that this is not greater then

𝜆+(𝛼1 − 𝛼2) ∫
∞

1
∫

u�2

u�1

1
𝛼4 𝑣−2/u�(log 𝑣)2𝑑𝑣𝑑𝛼.

As the integrand in the inner integral is integrable we get estimate (37).
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