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Abstract We consider a stochastic differential equation of the form

dXt = θa(t, Xt ) dt + σ1(t, Xt )σ2(t, Yt ) dWt

with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove
existence–uniqueness results for weak and strong solutions of this equation under various con-
ditions on the process Y and the coefficients a, σ1, and σ2. Also, we study the strong consis-
tency of the maximum likelihood estimator for the unknown parameter θ . We suppose that Y

is in turn a solution of some diffusion SDE. Several examples of the main equation and of the
process Y are provided supplying the strong consistency.
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1 Introduction

The goal of the paper is to study the stochastic differential equation (SDE), the diffu-
sion coefficient of which includes an additional stochastic process:

dXt = θa(t, Xt ) dt + σ(t,Xt , Yt ) dWt , (1)

where σ(t, x, y) = σ1(t, x)σ2(t, y), and to estimate the drift parameter θ by the
observations of stochastic processes X and Y . Such equations often arise as models
of a financial market in mathematical finance. For example, one of the first models
of such a type with σ(t, x, y) = xy was proposed in [8], where Y was the square
root of the geometric Brownian motion process. A similar model was considered by
Heston [6], where the volatility was governed by the Ornstein–Uhlenbeck process.
Fouque et al. used the model with stochastic volatility driven by the Cox–Ingersoll–
Ross process; see [4, 5]. The case where σ(t, x, y) = xσ2(y) and Y is the Ornstein–
Uhlenbeck process was studied in [12, 13].

In the present paper, we investigate the existence and uniqueness of weak and
strong solutions to the equation (1). We adapt the approaches of Skorokhod [20],
Stroock and Varadhan [21, 22], and Krylov [10, 11] to establish the weak existence
and weak uniqueness. Concerning the strong existence and uniqueness, we use the
well-known approaches of Yamada and Watanabe [23] (see also [2]) for inhomoge-
neous coefficients and Lipschitz conditions. In the present paper, we consider only
the case of multiplicative stochastic volatility, where, as it was mentioned, the diffu-
sion coefficient is factorized as σ(t, x, y) = σ1(t, x)σ2(t, y). Then we construct the
maximum likelihood estimator for the unknown drift parameter and prove its strong
consistency. As an example, we consider a linear model with stochastic volatility
driven by a solution to some Itô’s SDE. In particular, we study in details an SDE with
constant coefficients, the Ornstein–Uhlenbeck process, and the geometric Brownian
motion, as the model for volatility (note that process Y can be interpreted not only as
a volatility, but also as an additional source of randomness). Note that the maximum
likelihood estimation in the Ornstein–Uhlenbeck model with stochastic volatility was
studied in [1]. Similar statistical methods for the case of deterministic volatility can
be found in [7, 9, 16, 18].

The paper is organized as follows. In Section 2, we prove the existence of weak
and strong solutions under different conditions. In Section 3, we establish the strong
consistency of the maximum likelihood estimator of the unknown drift parameter θ .
Section 4 contains the illustrations of our results with some simulations. Auxiliary
statements are gathered in Section 5.

2 Existence and uniqueness results for weak and strong solutions

Let (Ω,F ,F ,P) be a complete probability space with filtration F = {Ft , t ≥ 0}
satisfying the standard assumptions. We assume that all processes under consideration
are adapted to the filtration F .
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2.1 Existence of weak solution in terms of Skorokhod conditions
Consider the following stochastic differential equation:

dXt = a(t, Xt ) dt + σ1(t, Xt )σ2(t, Yt ) dWt , (2)

where X|t=0 = X0 ∈ R, W is a Wiener process, and Y is some adapted stochastic
process to be specified later.

Theorem 1. Let Y be a measurable and continuous process, a, σ1, and σ2 be contin-
uous w.r.t. x ∈ R, y ∈ R, and t ∈ [0, T ], σ2 be bounded, and∣∣σ1(t, x)

∣∣2 + ∣∣a(t, x)
∣∣2 ≤ K

(
1 + |x|2)

for some constant K > 0. Then Eq. (2) has a weak solution.

Proof. Consider a sequence of partitions of [0, T ]: 0 = tn0 < tn1 < · · · < tnn = T

such that limn→∞ maxk(t
n
k+1 − tnk ) = 0. Define ξn

k by ξn
0 = X(0) and

ξn
k+1 = ξn

k + a
(
tnk , ξn

k

)
�tnk + σ1

(
tnk , ξn

k

)
σ2

(
tnk , Y

(
tnk

))
�Wn

k .

It follows from Lemma 1, Lemma 2, and Proposition 1 in Section 5 that it is possible
to choose a subsequence n′ and construct processes ξ̃n′ , W̃n′ , and Ỹn′ such that the
finite-dimensional distributions of ξ̃n′ , W̃n′ , and Ỹn′ coincide with those of ξn′

, W ,
and Y and ξ̃n′ → ξ̃ , W̃n′ → W̃ and Ỹn′ → Ỹ in probability, where ξ̃ , W̃ , and Ỹ are
some stochastic processes (evidently, W̃ is a Wiener process). It suffices to prove that
ξ̃ is a solution of Eq. (2) when W and Y are replaced by W̃ and Ỹ .

We have that ξ̃n′ satisfies the equation

ξ̃n′(t) = ξ̃n′(0) +
∑

tn
′

k+1≤t

a
(
tn

′
k , ξ̃n′

(
tn

′
k

))
�tn

′
k

+
∑

tn
′

k+1≤t

σ1
(
tn

′
k , ξ̃n′

(
tn

′
k

))
σ2

(
tn

′
k , Ỹn′

(
tn

′
k

))
�W̃n′

k .

Since σ2 is bounded and σ1 is of linear growth, their product is of linear growth:∣∣σ1(t, x)σ2(t, y)
∣∣ ≤ K1(1 + |x|),

where K1 > 0 is a constant. Therefore,

P

(
sup

0≤t≤T

∣∣σ1
(
t, ξ̃n′(t)

)
σ2

(
t, Ỹn′(t)

)∣∣ > C
)

≤ P

(
sup

0≤t≤T

K1
(
1 + ∣∣̃ξn′(t)

∣∣) > C
)

= P

(
sup

0≤t≤T

∣∣̃ξn′(t)
∣∣ >

C

K1
− 1

)
= P

(
sup

0≤t≤T

∣∣ξn′
(t)

∣∣ >
C

K1
− 1

)
.

Using Lemma 1, we get that

P

(
sup

0≤t≤T

∣∣σ1
(
t, ξ̃n′(t)

)
σ2

(
t, Ỹn′(t)

)∣∣ > C
)

→ 0 as C → ∞.
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Moreover, we have that σ1(t, x)σ2(t, y) is continuous w.r.t. t ∈ [0, T ], x, y ∈ R.
Then, for any ε > 0, there exists δ > 0 such that∣∣σ1(t1, x1)σ2(t1, y1) − σ1(t2, x2)σ2(t2, y2)

∣∣ < ε

whenever |t1 − t2| < δ, |x1 − x2| < δ, |y1 − y2| < δ. Therefore,

P
(∣∣σ1

(
t1, ξ̃n′(t1)

)
σ2

(
t1, Ỹn′(t1)

) − σ1
(
t2, ξ̃n′(t2)

)
σ2

(
t2, Ỹn′(t2)

)∣∣ > ε
)

≤ P
(∣∣̃ξn′(t1) − ξ̃n′(t2)

∣∣ < δ,
∣∣Ỹn′(t1) − Ỹn′(t2)

∣∣ < δ,∣∣σ1
(
t1, ξ̃n′(t1)

)
σ2

(
t1, Ỹn′(t1)

) − σ1
(
t2, ξ̃n′(t2)

)
σ2

(
t2, Ỹn′(t2)

)∣∣ > ε
)

+ P
(∣∣̃ξn′(t1) − ξ̃n′(t2)

∣∣ ≥ δ
) + P

(∣∣Ỹn′(t1) − Ỹn′(t2)
∣∣ ≥ δ

)
= P

(|ξn′(t1) − ξn′(t2)| ≥ δ
) + P

(|Y(t1) − Y(t2)| ≥ δ
)
,

and the last relation implies the following one:

lim
h→0

lim
n′→∞

sup
|t1−t2|≤h

P
(∣∣σ1

(
t1, ξ̃n′(t1)

)
σ2

(
t1, Ỹn′(t1)

)
− σ1

(
t2, ξ̃n′(t2)

)
σ2

(
t2, Ỹn′(t2)

)∣∣ > ε
) = 0.

Applying Lemma 1, we get that∑
tn

′
k+1≤t

σ1
(
tn

′
k , ξ̃n′

(
tn

′
k

))
σ2

(
tn

′
k , Ỹn′

(
tn

′
k

))
�Wn′

k →
∫ T

0
σ1

(
s, ξ̃ (s)

)
σ2

(
s, Ỹ (s)

)
dW̃(s)

in probability as n′ → ∞, and we also have that∑
tn

′
k+1≤t

a
(
tn

′
k , ξ̃n′

(
tn

′
k

))
�tn

′
k →

∫ T

0
a
(
s, ξ̃ (s)

)
ds,

whence the proof follows.

2.2 Existence and uniqueness of weak solution in terms of Stroock–Varadhan con-
ditions

In this approach, we assume additionally that the process Y also is a solution of some
diffusion stochastic differential equation. Let W 1 and W 2 be two Wiener processes,
possibly correlated, so that dW 1

t dW 2
t = ρdt for some |ρ| ≤ 1. In this case, we can

represent W 2
t = ρW 1

t + √
1 − ρ2W 3

t , where W 3 is a Wiener process independent of
W 1.

Theorem 2. Consider the system of stochastic differential equations{
dXt = a(t, Xt ) dt + σ1(t, Xt )σ2(t, Yt ) dW 1

t , (3)

dYt = α(t, Yt ) dt + β(t, Yt ) dW 2
t , (4)

where all coefficients a, α, σ1, σ2, and β are nonrandom measurable and bounded
functions, σ1, σ2, and β are continuous in all arguments. Let |ρ| < 1, and let
σ1(t, x) > 0, σ2(t, y) > 0, β(t, y) > 0 for all t, x, y. Then the weak existence
and uniqueness in law hold for system (3)–(4), and in particular, the weak existence
and uniqueness in law hold for Eq. (3) with Y being a weak solution of Eq. (4).
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Proof. Equations (3) and (4) are equivalent to the two-dimensional stochastic differ-
ential equation

dZ(t) = A(t, Zt ) dt + B(t, Zt ) dW(t),

where Z(t) = (
X(t)
Y (t)

), W(t) = (
W 1(t)

W 3(t)
) is a two dimensional Wiener process,

A(t, x, y)=
(

a(t, x)

α(t, y)

)
, and B(t, x, y)=

(
σ1(t, x)σ2(t, y) 0

ρβ(t, y)
√

1 − ρ2β(t, y)

)
.

It follows from the measurability and boundedness of a and α and from the conti-
nuity and boundedness of σ1, σ2, and β that the coefficients of matrices A and B

are nonrandom, measurable, and bounded, and additionally the coefficients of B are
continuous in all arguments. Then we can apply Theorems 4.2 and 5.6 from [21] (see
also Prop. 1.14 in [3]) and deduce that we have to prove the following relation: for
any (t, x, y) ∈ R

+ × R
2, there exists ε(t, x, y) > 0 such that, for all λ ∈ R

2,∥∥B(t, x, y)λ
∥∥ ≥ ε(t, x, y)‖λ‖. (5)

Relation (5) is equivalent to the following one (we omit arguments):

σ 2
1 σ 2

2 λ2
1 + β2(ρλ1 +

√
1 − ρ2λ2

)2 ≥ ε2(λ2
1 + λ2

2

)
or (

σ 2
1 σ 2

2 + β2ρ2)λ2
1 + β2(1 − ρ2)λ2

2 + 2ρ

√
1 − ρ2β2λ1λ2 ≥ ε2(λ2

1 + λ2
2

)
. (6)

The quadratic form

Q(λ1, λ2) = (
σ 2

1 σ 2
2 + β2ρ2)λ2

1 + β2(1 − ρ2)λ2
2 + 2ρ

√
1 − ρ2β2λ1λ2

in the left-hand side of (6) is positive definite since its discriminant

D = ρ2(1 − ρ2)β4 − β2(1 − ρ2)(σ 2
1 σ 2

2 + β2ρ2) = −β2(1 − ρ2)σ 2
1 σ 2

2 < 0.

The continuity of Q(λ1, λ2) implies the existence of minλ2
1+λ2

2=1 Q(λ1, λ2) > 0.
Then, putting ε = minλ2

1+λ2
2=1 Q(λ1, λ2) and using homogeneity, we get (6).

2.3 Existence of strong solution in terms of Yamada–Watanabe conditions
Now we consider strong existence–uniqueness conditions for Eq. (2), adapting the
Yamada–Watanabe conditions for inhomogeneous coefficients from [2].

Theorem 3. Let a, σ1, and σ2 be nonrandom measurable bounded functions such
that

(i) There exists a positive increasing function ρ(u), u ∈ (0,∞), satisfying ρ(0) =
0 such that ∣∣σ1(t, x) − σ1(t, y)

∣∣ ≤ ρ(|x − y|), t ≥ 0, x, y ∈ R,

and
∫ ∞

0 ρ−2(u)du = +∞.

(ii) There exists a positive increasing concave function k(u), u ∈ (0,∞), satisfying
k(0) = 0 such that
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∣∣ ≤ k(|x − y|), t ≥ 0, x, y ∈ R,

and
∫ ∞

0 k−1(u)du = +∞. Also, let Y be an adapted continuous stochastic
process. Then the pathwise uniqueness of solution holds for Eq. (2), and hence
it has a unique strong solution.

Proof. Let 1 > a1 > a2 > · · · > an > · · · > 0 be defined by∫ 1

a1

ρ−2(u) du = 1,

∫ a1

a2

ρ−2(u) du = 2, . . . ,

∫ an−1

an

ρ−2(u) du = n, . . . .

We have that an → 0 as n → ∞. Let φn(u), n = 1, 2, . . ., be a continuous

function with support contained in (an, an−1) such that 0 ≤ φn(u) ≤ 2ρ−2(u)
n

and∫ an−1
an

φn(u) du = 1. Such a function obviously exists. Set

ϕn(x) =
∫ |x|

0

∫ y

0
φn(u) du dy, x ∈ R.

Clearly, ϕn ∈ C2(R),
∣∣ϕ′

n(x)
∣∣ ≤ 1, and ϕn(x) ↗ |x| as n → ∞.

Let X1 and X2 be two solutions of Eq. (2) on the same probability space with
the same Wiener process and such that X1(0) = X2(0). Then we can present their
difference as

X1(t) − X2(t) =
∫ t

0
σ2

(
s, Y (s)

)(
σ1

(
s,X1(s)

) − σ1
(
s,X2(s)

))
dW(s)

+
∫ t

0

(
a
(
s,X1(s)

) − a
(
s,X2(s)

))
ds.

By the Itô formula,

ϕn

(
X1(t) − X2(t)

)
=

∫ t

0
ϕ′

n

(
X1(s) − X2(s)

)
σ2

(
s, Y (s)

)(
σ1

(
s,X1(s)

) − σ1
(
s,X2(s)

))
dW(s)

+
∫ t

0
ϕ′

n

(
X1(s) − X2(s)

)(
a
(
s,X1(s)

) − a
(
s,X2(s)

))
ds

+ 1

2

∫ t

0
ϕ′′

n

(
X1(s) − X2(s)

)
σ2

(
s, Y (s)

)2(
σ1

(
s,X1(s)

) − σ1
(
s,X2(s)

))2
ds

= J1 + J2 + J3.

We have that E(J1) = 0,

|E(J2)| ≤
∫ t

0
E

∣∣a(
s,X1(s)

) − a
(
s,X2(s)

)∣∣ ds

≤
∫ t

0
E(k

(|X1(s) − X2(s)|
)
ds ≤

∫ t

0
k(E

(|X1(s) − X2(s)|
)
ds
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by Jensen’s inequality, and

|E(J3)| ≤ C2

2

∫ t

0
E

(
2

n
ρ−2(∣∣X1(s) − X2(s)

∣∣)ρ2(∣∣X1(s) − X2(s)
∣∣))ds

≤ t

n
→ 0 as n → ∞.

So by letting n → ∞ we get

E
(∣∣X1(s) − X2(s)

∣∣) ≤
∫ t

0
k(E

(∣∣X1(s) − X2(s)
∣∣) ds.

We have that
∫ ∞

0 k−1(u)du = +∞. Then we get E(|X1(s) − X2(s)|) = 0, and hence
X1(s) = X2(s) a.s.

2.4 Existence and uniqueness for strong solution in terms of Lipschitz conditions

Theorem 4. Let a, σ1, and σ2 be nonrandom measurable functions, and let Y be an
adapted continuous stochastic process. Consider the following assumptions:

(i) There exists K > 0 such that, for all t ≥ 0 and x ∈ R,∣∣σ1(t, x)
∣∣2 + ∣∣a(t, x)

∣∣2 ≤ K2(1 + |x|2);
(ii) For any n ∈ N, there exists KN > 0 such that, for all t ≥ 0 and for all (x, y)

satisfying |x| ≤ N and |y| ≤ N ,∣∣a(t, x) − a(t, y)
∣∣ + ∣∣σ1(t, x) − σ1(t, y)

∣∣ ≤ KN |x − y| ;

(iii) sups≥0 sup|x|≤N |σ2(s, x)| ≤ CN .

Then Eq. (2) has a unique strong solution.

This result can be proved by using the successive approximation method; see, for
example, [19, Thm. 1.2].

3 Drift parameter estimation

3.1 General results

Let (Ω,F ,F ,P) be a complete probability space with filtration F = {Ft , t ≥ 0}
satisfying the standard assumptions. We assume that all processes under consideration
are adapted to the filtration F . Consider a parameterized version of Eq. (2)

dXt = θa(t, Xt ) dt + σ1(t, Xt )σ2(t, Yt ) dWt , (7)

where W is a Wiener process. Assume that Eq. (7) has a unique strong solution
X = {Xt, t ∈ [0, T ]}. Our main problem is to estimate the unknown parameter θ

by continuous observations of X and Y .
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Denote

f (t, x, y) = a(t, x)

σ 2
1 (t, x)σ 2

2 (t, y)
, g(t, x, y) = a(t, x)

σ1(t, x)σ2(t, y)
.

Assume that, for all t > 0,

σ1(t, Xt )σ2(t, Yt ) �= 0 a.s., (8)∫ t

0
g2(s,Xs, Ys) ds < ∞ a.s., (9)∫ ∞

0
g2(s,Xs, Ys) ds = ∞ a.s. (10)

Then a likelihood function for Eq. (7) has the form

dPθ (T )

dP0(T )
= exp

{
θ

∫ T

0
f (t,Xt , Yt ) dXt − θ2

2

∫ T

0
g2(t, Xt , Yt ) dt

}
;

see [15, Ch. 7]. Hence, the maximum likelihood estimator of parameter θ constructed
by observations of X and Y on the interval [0, T ] has the form

θ̂T =
∫ T

0 f (t,Xt , Yt ) dXt∫ T

0 g2(t, Xt , Yt ) dt
= θ +

∫ T

0 g(t,Xt , Yt ) dWt∫ T

0 g2(t, Xt , Yt ) dt
. (11)

Theorem 5. Under assumptions (8)–(10), the estimator θ̂T is strongly consistent as
T → ∞.

Proof. Note that, under condition (9) the process Mt = ∫ t

0 g(s,Xs, Ys) dWs is a
square-integrable local martingale with quadratic variation 〈M〉t =∫ t

0 g2(s,Xs, Ys) ds. According to the strong law of large numbers for martingales
[14, Ch. 2, § 6, Thm. 10, Cor. 1], under the condition 〈M〉T → ∞ a.s. as T → ∞,
we have that MT〈M〉T → 0 a.s. as T → ∞. Therefore, it follows from representation (11)

that θ̂T is strongly consistent.

3.2 Linear equation with stochastic volatility

As an example, let us consider the model

dXt = θXt dt + Xtσ2(Yt ) dWt , X0 = x0 ∈ R, (12)

where Wt is a Wiener process, and Yt is a continuous stochastic process with values
from an open interval J = (l, r) (further, in examples, we will consider J = R or
J = (0,+∞)). By Theorem 4, under the assumption

(A1) σ2(y) is locally bounded on J ,

there exists a unique strong solution of (12).
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Let Y be a J -valued solution of the equation

dYt = α(Yt ) dt + β(Yt ) dW 1
t , Y0 = y0 ∈ J, (13)

where W 1 is a Wiener process, possibly correlated with W .
By L1

loc(J ) we denote the set of Borel functions J → [−∞,∞] that are locally
integrable on J , that is, integrable on compact subsets of J . By L1

loc(l+) we denote
the set of Borel functions f : J → [−∞,∞] such that

∫ z

l
|f (y)| dy < ∞ for some

z ∈ J . The notation L1
loc(r−) is introduced similarly.

Assume that coefficients α and β satisfy the Engelbert–Schmidt conditions

(A2) β(y) �= 0 for all y ∈ J , and

(A3) β−2, αβ−2 ∈ L1
loc(J ).

Let us introduce the following notation:

ρ(y) = exp

{
−2

∫ y

c

α(u)

β2(u)
du

}
, y ∈ J,

s(y) =
∫ y

c

ρ(u) du, y ∈ J̄ = [l, r],

for some c ∈ J . Assume additionally that

(A4) s(r) = ∞ or s(r)−s

ρβ2 /∈ L1
loc(r−),

(A5) s(l) = −∞ or s−s(l)

ρβ2 /∈ L1
loc(l+).

Under (A2)–(A3), the SDE (13) has a weak solution, unique in law, which possi-
bly exits J at some time ζ . Moreover, ζ = ∞ a.s. if and only if conditions (A4)–(A5)
are satisfied, see, for example, [17, Prop. 2.6].

Assume also that

(A6) β−2σ−2
2 ∈ L1

loc(J ),

(A7) one of the following four conditions holds:

(i) s(r) = ∞, s(l) = −∞,

(ii) s(r) < ∞, s(l) = −∞, s(r)−s

ρβ2σ 2
2

/∈ L1
loc(r−),

(iii) s(r) = ∞, s(l) > −∞, s−s(l)

ρβ2σ 2
2

/∈ L1
loc(l+),

(iv) s(r) < ∞, s(l) > −∞, s(r)−s

ρβ2σ 2
2

/∈ L1
loc(r−), s−s(l)

ρβ2σ 2
2

/∈ L1
loc(l+),

(A8) Xtσ(Yt ) �= 0 a.s., t ≥ 0.

The maximum likelihood estimator (11) for model (12) equals

θ̂T =
∫ T

0 X−1
t σ−2

2 (Yt ) dXt∫ T

0 σ−2
2 (Yt ) dt

. (14)
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Theorem 6. Under assumptions (A1)–(A8), the estimator θ̂T is strongly consistent
as T → ∞.

Proof. We need to verify conditions (8)–(10) of Theorem 5. For model (12), they
read as follows:

Xtσ2(Yt ) �= 0, t ≥ 0, a.s., (15)∫ t

0
σ−2

2 (Ys) ds < ∞, t > 0, a.s., (16)∫ ∞

0
σ−2

2 (Ys) ds = ∞ a.s. (17)

Note that (15) is assumption (A8). By [17, Thm. 2.7] the local integrability con-
dition (A6), together with (A2)–(A5), implies (16). Further, if assumption (A7)(i)
holds, then (17) is satisfied by [17, Thm. 2.11]. In the remaining case s(r) < ∞ or
s(l) > −∞, we have that

Ω =
{

lim
t↑∞ Yt = r

}
∪

{
lim
t↑∞ Yt = l

}
;

see [17]. Moreover, if s(r) = ∞, then P(limt↑∞ Yt = r) = 0 by [17, Prop. 2.4]. If
s(r) < ∞ and s(r)−s

ρβ2σ 2
2

/∈ L1
loc(r−), then

∫ ∞
0 σ−2

2 (Ys) ds = ∞ a.s. on {limt↑∞ Yt = r}
by [17, Thm. 2.12]. The similar statements hold for {limt↑∞ Yt = l}. This implies
that (17) is satisfied under each of conditions (ii)–(iv) of assumption (A7).

Now we consider several examples of the process Y , namely the Bachelier model,
the Ornstein–Uhlenbeck model, the geometric Brownian motion, and the
Cox–Ingersoll–Ross model. We concentrate on verification of assumption (A7) for
these models, assuming that other conditions of Theorem 6 are satisfied.

Example 1 (Bachelier model). Let Y be a solution of the SDE

dYt = α dt + β dW 1
t , Y0 = y0 ∈ R,

where α ∈ R and β �= 0 are some constants. Assume that σ−2
2 (y) ∈ L1

loc(R) and one
of the following assumptions holds:

(i) α = 0,

(ii) α > 0 and σ−2
2 (y) /∈ L1

loc(+∞),

(iii) α < 0 and σ−2
2 (y) /∈ L1

loc(−∞).

Then estimator (14) is strongly consistent.

Indeed, in this case, J = R,

ρ(y) = exp

{
−2α

β2
y

}
, and s(y) =

∫ y

0
exp

{
−2α

β2
u

}
du.

If α = 0, then s(y) = y, s(+∞) = ∞, s(−∞) = −∞, and assumption (A7)(i) is
satisfied. Otherwise, we have
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s(y) = β2

2α

(
1 − exp

{
−2α

β2
y

})
.

If α > 0, then s(+∞) = β2

2α
, s(−∞) = −∞, and

s(+∞) − s(y)

ρ(y)β2σ 2
2 (y)

= 1

2ασ 2
2 (y)

/∈ L1
loc(+∞),

and hence (A7)(ii) holds. The case α < 0 is considered similarly.

Example 2 (Ornstein–Uhlenbeck or Vasicek model). Let Y be a solution of the SDE

dYt = a(b − Yt ) dt + γ dW 1
t , Y0 = y0 ∈ R,

where a, b ∈ R, and γ > 0 are some constants. Assume that σ−2
2 ∈ L1

loc(R) and one
of the following assumptions holds:

(i) a ≥ 0,

(ii) a < 0, y−1σ−2
2 (y) /∈ L1

loc(+∞) ∪ L1
loc(−∞).

Then estimator (14) is strongly consistent.

In this case, we also take J = R. Then

ρ(y) = exp

{
−2

∫ y

b

a(b − u)

γ 2
du

}
= exp

{
a

γ 2
(y − b)2

}
,

s(y) =
∫ y

b

exp

{
a

γ 2
(u − b)2

}
du.

If a ≥ 0, then exp{ a

γ 2 (u − b)2} ≥ 1, and we get that s(+∞) = ∞, s(−∞) =
−∞.

If a < 0, then

s(y) = γ√−a

∫ √−a
γ

(y−b)

0
e−z2

dz.

Therefore, s(+∞) = −s(−∞) = γ
√

π

2
√−a

< ∞, and we need to verify (A7)(iv). Since∫ ∞
x

e−z2
dz ∼ 1

2x
e−x2

as x → ∞, we see that

s(+∞) − s(y)

ρ(y)γ 2σ 2
2 (y)

=

γ√−a

∞∫
√−a

γ
(y−b)

e−z2
dz

exp
{

a

γ 2 (y − b)2
}

γ 2σ 2
2 (y)

∼ 1

−2a(y − b)σ 2
2 (y)

as y → ∞. Then s(+∞)−s(y)

ρ(y)γ 2σ 2
2 (y)

/∈ L1
loc(+∞) if y−1σ−2

2 (y) /∈ L1
loc(+∞). The condition

s−s(−∞)

ρβ2σ 2
2

/∈ L1
loc(−∞) is considered similarly.

Example 3 (Geometric Brownian motion). Let Y be a solution of the SDE

dYt = αYt dt + βYt dW 1
t , Y0 = y0 > 0,
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where α ∈R and β �= 0 are some constants. Assume that y−2σ−2
2 (y)∈ L1

loc((0,+∞))

and one of the following assumptions holds:

(i) β2 = 2α2,

(ii) β2 < 2α2 and y−1σ−2
2 (y) /∈ L1

loc(+∞),

(iii) β2 > 2α2 and y−1σ−2
2 (y) /∈ L1

loc(0+).

Then estimator (14) is strongly consistent.

In this case, the process Y is positive, and hence J = (0,∞). We have

ρ(y) = exp

{
−2

∫ y

1

α2

β2u
du

}
= y

− 2α2

β2 ,

s(y) =
∫ y

1
u

− 2α2

β2 du =

⎧⎪⎪⎨⎪⎪⎩
y

1− 2α2

β2 −1

1− 2α2

β2

, β2 �= 2α2,

ln y, β2 = 2α2.

If β2 = 2α2, then s(0) = −∞ and s(+∞) = ∞. If β2 < 2α2, then s(0) = −∞,
s(+∞) < ∞, and

s(+∞) − s(y)

ρ(y)β2y2σ 2
2 (y)

= 1

(2α2 − β2)yσ 2
2 (y)

/∈ L1
loc(+∞).

If β2 > 2α2, then s(0) > −∞, s(+∞) = ∞, and

s(y) − s(0)

ρ(y)β2y2σ 2
2 (y)

= 1

(β2 − 2α2)yσ 2
2 (y)

/∈ L1
loc(0+).

Example 4 (Cox–Ingersoll–Ross model). Let Y be a solution of the SDE

dYt = a(b − Yt ) dt + γ
√

Yt dW 1
t , Y0 = y0 ∈ R,

where a, b, γ are positive constants, and 2ab ≥ γ 2. Assume that

y−1σ−2
2 (y) ∈ L1

loc

(
(0,+∞)

)
.

Then estimator (14) is strongly consistent.

Under the condition 2ab ≥ γ 2, the process Y is positive, and hence J = (0,∞).
Further,

ρ(y) = exp

{
−2

∫ y

1

a(b − u)

γ 2u
du

}
= y

− 2ab

γ 2 e
2a

γ 2 (y−1)
,

s(y) = e
− 2a

γ 2

∫ y

1
u

− 2ab

γ 2 e
2a

γ 2 u
du.
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Table 1. The means and standard deviations of θ̂T

T

α(y) β(y) σ2(y) 10 50 100 200

1 1 |y|1/4 Mean 1.9455 1.9431 1.9711 1.9762
Std.dev. 0.4260 0.2576 0.2367 0.2022

y 2y
√

y Mean 2.0104 2.0000 2.0000 2.0000
Std.dev. 0.1225 5.7 · 10−5 4.7 · 10−8 1.6 · 10−14

y y (1 + y)−1 Mean 2.0008 2.0001 2.0000 2.0000
Std.dev. 0.0769 0.0010 2.2 · 10−12 1.4 · 10−14

y 1 2 + sin y Mean 1.9358 1.9819 1.9927 1.9939
Std.dev. 0.5436 0.2437 0.1679 0.1077

−y 1 2 + sin y Mean 1.9061 1.9684 1.9700 1.9786
Std.dev. 0.5994 0.2472 0.1781 0.1254

2 − y
√

y
√

y Mean 1.9923 2.0039 1.9796 1.9872
Std.dev. 0.3540 0.1604 0.1173 0.0782

2 − y
√

y y Mean 2.0830 1.9835 1.9803 1.9886
Std.dev. 0.4347 0.1974 0.1205 0.0840

Since u
− 2ab

γ 2 e
2a

γ 2 u → ∞ as u → ∞, we see that s(+∞) = ∞. Moreover, using the

inequality e
2a

γ 2 u ≥ 1, we get

s(0) = −e
− 2a

γ 2

∫ 1

0
u

− 2ab

γ 2 e
2a

γ 2 u
du ≤ −e

− 2a

γ 2

∫ 1

0
u

− 2ab

γ 2 du = −∞

since 2ab

γ 2 > 1. Thus, assumption (A7)(i) is satisfied.

4 Simulations

We illustrate the quality of the estimator θ̂T in model (12)–(13) by simulation exper-
iments. We simulate the trajectories of the Wiener processes W and W 1 at the points
t = 0, h, 2h, 3h, . . . and compute the approximate values of the process Y and X as
solutions to SDEs using Euler’s approximations. For each set of parameters, we sim-
ulate 100 sample paths with step h = 0.0001. The initial values of the processes are
x0 = y0 = 1, and the true value of the parameter is θ = 2. The results are reported in
Table 1.

5 Appendix

The next two propositions are taken from [20].

Proposition 1. Assume that we have r sequences of stochastic processes ξ
(1)
n , . . . , ξ

(r)
n

such that, for all i = 1, . . . , r ,

(i) for every δ > 0, limh→0 limn→∞ sup|t1−t2|≤h P(|ξ (i)
n (t1) − ξ

(i)
n (t2)| > δ) = 0,
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(ii) limC→∞ limn→∞ sup0≤t≤T P(|ξ (i)
n (t)| > C) = 0.

Then, for some sequence nk we can construct processes X
(1)
nk

, . . . , X
(r)
nk

on the proba-
bility space (Ω ′,F ′, P ′), where Ω ′ = [0, 1], F ′ = B([0, 1]), and P ′ is the Lebesgue
measure, such that the finite-dimensional distributions of X

(1)
nk

, . . . , X
(r)
nk

coincide

with those of ξ
(1)
nk

, . . . , ξ
(r)
nk

and each of the sequences X
(1)
nk

, . . . , X
(r)
nk

converges in
probability to some limit.

Proposition 2. Let ηn(t) be a sequence of martingales such that ηn(t) → W(t) in
probability for all t and Eηn(t)

2 → t as n → ∞. Let fn(t) be a sequence such
that

∫ T

0 fn(t) dηn(t) exists for all n, fn(t) → f (t) in probability for all t , and∫ T

0 f (t) dW(t) exists. Suppose that, in addition, the following conditions hold:

(i) for all ε > 0, there exists C > 0 such that, for all n,

P

(
sup

0≤t≤T

∣∣fn(t)
∣∣ > C

)
≤ ε,

(ii) for all ε > 0,

lim
h→0

lim
n→∞ sup

|t1−t2|≤h

P
(∣∣fn(t2) − fn(t1)

∣∣ > ε
) = 0.

Then
∫ T

0 fn(t) dηn(t) → ∫ T

0 f (t) dW(t) in probability.

In the next two lemmas, we modify the corresponding auxiliary results from [20]
to Eq. (1) with multiplicative diffusion. Consider a sequence of partitions 0 = tn0 <

tn1 < · · · < tnn = T of [0, T ] such that limn→∞ maxk(t
n
k+1 − tnk ) = 0. Define ξn

k by
ξn

0 = X(0) and

ξn
k+1 = ξn

k + a
(
tnk , ξn

k

)
�tnk + σ1

(
tnk , ξn

k

)
σ2

(
tnk , Y

(
tnk

))
�Wn

k .

Lemma 1. The random variables supk |ξn
k | are bounded in probability uniformly

w.r.t. n.

Proof. Let ηn
0 = ξn

0 1|ξn
0 |≤N and

ηn
k+1 = ηn

k + aN
(
tnk , ηn

k

)
�tnk + σN

1

(
tnk , ηn

k

)
σ2

(
tnk , Y

(
tnk

))
�Wn

k , (18)

where aN(t, x) = a(t, x)1|x|≤N , σN
1 (t, x) = σ1(t, x)1|x|≤N . If |ηn

k | > N , then
ηn

k+1 = ηn
k , and if |ηn

k | ≤ N , then∣∣ηn
k+1

∣∣ ≤ N + ∣∣aN
(
tnk , ηn

k

)∣∣�tnk + ∣∣σN
1

(
tnk , ηn

k

)
σ2

(
tnk , Y

(
tnk

))∣∣ ∣∣�Wn
k

∣∣ .
Then, for any 1 ≤ k ≤ n,

∣∣ηn
k

∣∣ ≤ N +
k−1∑
r=0

∣∣aN
(
tnr , ηn

r

)∣∣�tnr +
k−1∑
r=0

∣∣σN
1

(
tnr , ηn

r

)
σ2

(
tnr , Y

(
tnr

))∣∣ ∣∣�Wn
r

∣∣
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and is square-integrable. Furthermore,

E
∣∣ηn

k+1

∣∣2 = E
∣∣ηn

k

∣∣2 + 2E
(
aN

(
tnk , ηn

k

)
ηn

k�tnk
) + EaN

(
tnk , ηn

k

)2(
�tnk

)2

+ E
((

σN
1

(
tnk , ηn

k

))2(
σ2

(
tnk , Y

(
tnk

)))2(
�Wn

k

)2)
≤ E

∣∣ηn
k

∣∣2 + 2E
(
aN

(
tnk , ηn

k

)
ηn

k�tnk
) + EaN

(
tnk , ηn

k

)2(
�tnk

)2

+ C2
E

((
σN

1

(
tnk , ηn

k

))2
�tnk

)
.

Then there exists a constant H = H(T ,K) such that

E
∣∣ηn

k+1

∣∣2 ≤ E
∣∣ηn

k

∣∣2 (
1 + H�tnk

) + H�tnk ≤ E
∣∣ηn

k

∣∣2
eH�tnk + H�tnk ,

E
∣∣ηn

k+1

∣∣2 + 1 ≤ (
E

∣∣ηn
k

∣∣2 + 1
)
eH�tnk ≤ (

E
∣∣ηn

0

∣∣2 + 1
)
eHT ,

E
∣∣ηn

k+1

∣∣2 ≤ (
E

∣∣ηn
0

∣∣2 + 1
)
eHT − 1.

We have that

sup
k

∣∣ηn
k

∣∣ ≤ ∣∣ηn
0

∣∣ +
n−1∑
j=0

∣∣aN
(
tnj , ηn

j

)∣∣�tnj + sup
k

∣∣∣∣∣∣
k−1∑
j=0

σN
1

(
tnj , ηn

j

)
σ2

(
tnj , Y

(
tnj

))
�Wn

j

∣∣∣∣∣∣ .
So, since

E sup
0≤r≤n

∣∣∣∣∣
r∑

k=0

σN
1

(
tnk , ηn

k

)
σ2

(
tnk , Y

(
tnk

))
�Wn

k

∣∣∣∣∣
2

≤ 4
n∑

k=0

E
∣∣σN

1

(
tnk , ηn

k

)
σ2

(
tnk , Y

(
tnk

))∣∣2
�tnk ≤ 4K

n∑
k=0

(
E

∣∣ηn
k

∣∣2 + 1
)
�tnk

and

E

(n−1∑
k=0

∣∣aN
(
tnk , ηn

k

)∣∣�tnk

)2

≤ KT

n−1∑
k=0

(
E

∣∣ηn
k

∣∣2 + 1
)
�tnk ,

we get
E sup

k

∣∣ηn
k

∣∣2 ≤ A + B
∣∣ηn

0

∣∣2
.

We have that ηn
0 is bounded uniformly w.r.t. n and N . Then supk |ηn

k |2 is bounded in
L2 uniformly w.r.t. n, N .

For supk |ηn
k | < N , we have supk |ηn

k | = supk |ξn
k |. Hence, supk |ξn

k | is bounded
in probability uniformly w.r.t. n.

Remark 1. Using Lemma 1, we have that, for all ε > 0, there exists N > 0 such that,
for every n ≥ N, P(supk |ξn

k − ηn
k | > 0) < ε.

Lemma 2. Let ξn(t) = ξn
k for t ∈ [tnk , tnk+1). Then, for all δ > 0,

lim
h→0

lim
n→∞ sup

|t1−t2|≤h

P
(∣∣ξn(t1) − ξn(t2)

∣∣ > δ
) = 0.
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Proof. Let ηn(t) = ηn
k , t ∈ [tnk , tnk+1). Then

sup
|t1−t2|≤h

P
(∣∣ξn(t1) − ξn(t2)

∣∣ > δ
) ≤ sup

|t1−t2|≤h

P
(∣∣ηn(t1) − ηn(t2)

∣∣ > δ
)

+ P

(
sup
k

∣∣ξn
k − ηn

k

∣∣ > 0
)
.

From (18) and the boundedness of aN , σN
1 , and σ2 we have that

lim
h→0

lim
n→∞ sup

|t1−t2|≤h

P
(∣∣ηn(t1) − ηn(t2)

∣∣ > δ
) = 0.

Therefore,

lim
h→0

lim
n→∞ sup

|t1−t2|≤h

P
(∣∣ξn(t1) − ξn(t2)

∣∣ > δ
) ≤ lim

n→∞P

(
sup
k

∣∣ξn
k − ηn

k

∣∣ > 0
)
.

The proof follows now from Remark 1.
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